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Complex projective manifolds which admit

non‐isomorphic surjective endomorphisms

By

Yoshio Fujimoto * and Noboru NAKAYAMA **

Abstract

This article overviews recent progress of the study of endomorphisms of complex projec‐
tive manifolds from the viewpoint of classification theory of compact complex manifolds, and

surveys the papers [19], [21], [46] of the authors.

§1. Introduction

A surjective endomorphism of a compact complex manifold X means a surjective

morphism (holomorphic map) from X to itself. Typical examples of non‐isomorphic

surjective endomorphism f and X are as follows:

\bullet  X is a projective space \mathbb{P}^{n} and f is given by

(\mathrm{x}_{0}:\cdots:\mathrm{x}_{n})\mapsto(\mathrm{x}_{0}^{m}:\cdots:\mathrm{x}_{n}^{m})

for a positive integer m\geq 2 ,
where (\mathrm{x}_{0}:\cdots : \mathrm{x}_{n}) is a homogeneous coordinate.

\bullet  X is a compact complex torus \mathbb{C}^{n}/L and f is given by x\mapsto mx=x+\cdots+x for

m\geq 2 ,
where L\simeq \mathbb{Z}^{2n} is a submodule with \mathbb{C}^{n}=L\otimes_{\mathbb{Z}} R.

The study of surjective endomorphisms of a given variety X
,

such as projective spaces

\mathbb{P}^{n}
, complex tori \mathbb{C}^{n}/L , etc., is a chief concern of complex dynamical systems, which
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is usually done by analytic methods. The complex dynamical systems also treat non‐

holomorphic cases, e.g., meromorphic endomorphisms f:X \rightarrow X . For example, some

of K3 surfaces admit meromorphic dominant endomorphisms of degree >1 ,
but any

surjective endomorphism of an arbitrary K3 surface is an automorphism.
The concern of our paper is on the other side, i.e., the study of compact complex

manifolds X admitting non‐isomorphic surjective (holomorphic) endomorphisms. So,
we may replace an endomorphism f with another one freely. In particular, f is replaced
with a power f^{k}=f\circ\cdots f for k>0 . The existence of non‐isomorphic surjective

endomorphisms yields strong conditions on the variety X . For example:

\bullet  X is not of general type.

\bullet If  X has non‐negative Kodaira dimension  $\kappa$(X) ,
then the (topological) Euler num‐

ber e(X) and the EulerPoincaré characteristic  $\chi$(X, \mathcal{O}_{X}) are both zero, and the

fundamental group $\pi$_{1}(X) is infinite.

\bullet If  X is a compact smooth surface, then X has at most finitely many irreducible

curves whose self‐intersection number is negative.

\bullet If  X is a smooth projective 3‐fold with  $\kappa$(X)\geq 0 ,
then X has at most finitely many

extremal rays in the sense of Mori [39].

In some cases, we can classify such X only using these conditions. For example, a smooth

projective curve admitting a non‐isomorphic surjective endomorphism is a rational curve

or an elliptic curve (i.e., a one‐dimensional compact complex torus).
We note that if f:X\rightarrow X is a non‐isomorphic surjective endomorphism, then so is

the product mapping f\times \mathrm{i}\mathrm{d}_{Y}:X\times Y\rightarrow X\times Y for any variety Y . So, in many cases, the

classification is done by relating to the direct products of certain varieties of this type.
For example: A smooth projective surface X of  $\kappa$(X)=1 admits a non‐isomorphic

surjective endomorphism if and only if e(X)=0 . Moreover this is equivalent to that a

finite étale covering of X is isomorphic to E\times C for an elliptic curve E and a curve C

of genus \geq 2 (cf. Proposition 4.1; [19], [20]).
The purpose of this article is to survey the classification of complex projective

manifold X admitting non‐isomorphic surjective endomorphisms in the case of \dim X=

2 and the case of \dim X=3 with  $\kappa$(X)\geq 0 . The set of irreducible curves with

negative self‐intersection number plays an important role in the former case, and the

theory of extremal rays in the latter case. The classification of such surfaces is given in

Theorem 1.1 below, which is proved mainly in [46].

Theorem 1.1. Let X be a smooth projective surfa ce. Then X admits a non‐

isomorphic surjective endomorphism if and only if one of the following conditions is

satisfied:
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(1) X is a toric surfa ce (i.e., there is an equivariant open immersion (\mathbb{C}^{\star})^{2}\subset X of the

two‐dimensional algebraic torus (\mathbb{C}^{\star})^{2} ).

(2) X is a \mathbb{P}^{1} ‐bundle over an elliptic curve.

(3) X is a \mathbb{P}^{1} ‐bundle over a curve B of genus \geq 2 such that X\times BB'\simeq \mathbb{P}^{1}\times B' over

B' for a finite étale covering B'\rightarrow B.

(4) X is an abelian surfa ce.

(5) X is a hyperelliptic surfa ce.

(6) X is a projective surfa ce of  $\kappa$(X)=1 and e(X)=0 : This is equivalent to that a

finite étale covering of X is isomorphic to E\times C for an elliptic curve E and a curve

C of genus \geq 2.

We shall explain the idea and the outline of the proof of Theorem 1.1 in Section 4.

The authors extended the classification to all the smooth compact complex analytic
surfaces in [20]. The classification in the case of smooth projective 3‐folds is completed
in papers [19] and [21]. The main result of [21] is:

Theorem 1.2. Let X be a smooth projective 3‐fold with  $\kappa$(X)\geq 0 . Then the

following two conditions are equivalent to each other:

(A) X admits a non‐isomorphic surjective endomorphism.

(B) There exists a finite étale Galois covering  $\tau$:\overline{X}\rightarrow X and an abelian scheme struc‐

ture (i.e., a relative Lie group structure)  $\varphi$:\overline{X}\rightarrow T over a variety T of dimension

\leq 2 such that the Galois group \mathrm{G}\mathrm{a}1( $\tau$) acts on T and  $\varphi$ is \mathrm{G}\mathrm{a}1( $\tau$) ‐equivariant.

The implication (\mathrm{B})\Rightarrow(\mathrm{A}) holds in any dimension ([21], Theorem 2.26). The other

implication (\mathrm{A})\Rightarrow(\mathrm{B}) for 3‐folds is proved by considering the minimal models and the

structure of Iitaka fibrations, etc. A finer description of the 3‐fold X is as follows:

Theorem 1.3. Let X be a smooth projective 3‐fold with  $\kappa$(X)\geq 0 which ad‐

mits a non‐isomorphic surjective endomorphism. Then there exists a finite étale Galois

covering \overline{X}\rightarrow X satisfy ing the following conditions:

(1) If  $\kappa$(X)=0 ,
then either

(a) \overline{X} is an abelian 3‐fold, or

(b) \overline{X}\simeq E\times S for an elliptic curve E and a surfa ce S birational to a K3 surfa ce

or an abelian surfa ce.
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(2) If  $\kappa$(X)=1 ,
then either

(a) \overline{X} is an abelian scheme over a curve T of genus \geq 2 ,
or

(b) \overline{X}\simeq E\times S for an elliptic curve E and a surfa ce S with  $\kappa$(S)=1.

(3) If  $\kappa$(X)=2 ,
then \overline{X}\simeq E\times S for an elliptic curve E and a surfa ce S of general

type.

We shall explain the idea and the outline of the proof of Theorems 1.2 and 1.3 in

Section 5.

In order to study compact complex manifolds X admitting non‐isomorphic surjec‐
tive endomorphisms, it is important to analyze data of X preserved by the endomor‐

phisms, since they reveal much of the deeper structure of the variety X . The following
data are important in this article.

Iitaka fibration: Let $\Phi$_{X}:X \rightarrow W be the Iitaka fibration of the variety X . Then

for a surjective endomorphism f of X and for a suitable choice of W ,
there exists an

automorphism h of W with $\Phi$_{X}\circ f=h\circ$\Phi$_{X} (cf. Lemma 3.1 below). Moreover, h is of

finite order by [47], Theorem \mathrm{A} (cf. Theorem 3.2 below). Hence by replacing f with a

suitable power f^{k}=f\mathrm{o} . . . of, we may assume that $\Phi$_{X}\circ f=$\Phi$_{X} . Thus, f induces a

surjective endomorphism of a fiber of $\Phi$_{X}.

The set of extremal rays: A surjective endomorphism f:X\rightarrow X of X with  $\kappa$(X)\geq
 0 induces a permutation of the set ER(X) of extremal rays of X (cf. Lemma 5.1 below;

[19], Theorem 4.2). If \dim(X)=3 and  $\kappa$(X)\geq 0 ,
then ER(X) is a finite set; hence, we

may assume that f_{*}R=R for any extremal ray R of X by replacing f with a suitable

power f^{k}.
The set of negative curves: Assume that X is a smooth compact complex analytic

surface. An irreducible and reduced curve on X is called negative if its self‐intersection

number is negative. If X admits a non‐isomorphic surjective endomorphism f ,
then the

set S(X) of negative curves is finite and C\mapsto f(C) induces a permutation of S(X) (cf.
Proposition 4.2 below; [46], [20]). The sum N_{X}=\displaystyle \sum C of all the negative curves plays
an important role in determining the structure of X.

Further progress on the study of non‐isomorphic surjective endomorphisms f seems

to depend on finding such important objects invariant under f_{*} or f^{*}.
This article is organized as follows: In Section 2, we present briefly the history of

the algebraic study of endomorphisms. Basic properties of non‐isomorphic surjective

endomorphisms related to Kodaira dimension are explained in Section 3. The study
on smooth projective surfaces admitting non‐isomorphic surjective endomorphisms in

papers [46], [20] is surveyed in Section 4 with an outline of the proof of Theorem 1.1.

The case of smooth projective 3‐folds with  $\kappa$\geq 0 is treated in Section 5. After discussion

of extremal rays, minimal reductions, and abelian fibrations in Sections 5.15.3, we give
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an outline of the proof of Theorems 1.2 and 1.3. The final Section 6 is devoted to survey

the recent result on �building blocks� of étale endomorphisms by Nakayama and Zhang

[47].
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§2. History of the algebro‐geometric study of endomorphisms

We recall briefly the history of the study of endomorphisms of complex projective
manifolds by algebro‐geometric methods.

§2.1. Lazarsfeld conjecture

One of the origins of the study of endomorphisms in algebraic geometry is the

following conjecture by Lazarsfeld [35] (1984):

Conjecture 2.1 (Lazarsfeld). Let G be a complex semi‐simple algebraic group,

P\subset G a maximal parabolic subgroup, and Y:=G/P . Let h:Y\rightarrow X be a finite

surjective morphism of \deg(h)>1 to a smooth projective variety X . Then X\simeq \mathbb{P}^{n}.

Note that the quotient space Y=G/P is a rational homogeneous Fano manifold

with the Picard number one.

In 1989, Paranjape and Srinivas [49] gave partial answers to Conjecture 2.1 and

showed that the homogeneous manifold Y=G/P admits a non‐isomorphic surjective

endomorphism if and only if  Y\simeq P. This is considered as the first result on endo‐

morphisms of algebraic varieties. Lazarsfeld�s conjecture itself was solved affirmatively

by Hwang and Mok [23] in 1999. A generalization to the case of compact complex

homogeneous manifolds was obtained by Cantat [12] in 2000.
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The following related conjecture was proved by [3] and [24] for  n=3 ,
but is still

open for n\geq 4 :

Conjecture 2.2. Let X be a Fano manifold of dimension n with Picard number

one. If there is a non‐isomorphic surjective endomorphism f:X\rightarrow X ,
then X\simeq \mathbb{P}^{n}.

A stronger conjecture is studied in [3] and [24], where is asked the boundedness of

the degrees of surjective morphisms between two given smooth projective manifolds of

Picard number one. In [3], it is discovered a formula of Hurwitz type on the top Chern

classes for finite morphisms between smooth projective manifolds ([3], Corollary 1.2).
Applying the formula, Beauville [5] has succeeded in proving:

Theorem 2.3. A smooth complex projective hypersurfa ce of dimension \geq 2 and

degree \geq 3 does not admit a non‐isomorphic surjective endomorphism.

This result is related also to Conjecture 2.6 below.

§2.2. Classification theory

Another aspect of the study of endomorphisms is found in the paper [50] (1998) of

Fujimoto and Sato, where they announced some results on the classification of smooth

projective varieties of non‐negative Kodaira dimension admitting non‐isomorphic sur‐

jective endomorphisms in dimensions two and three. The results with detailed proofs
are given by Fujimoto in [19]. In the paper, Fujimoto almost classified such smooth

projective 3‐folds by applying the theory of extremal rays developed by Mori [39]. It

is proved that there exists a finite étale covering \overline{X}\rightarrow X such that \overline{X} is isomorphic to

either an abelian 3‐fold or the direct product E\times S of an elliptic curve E and a smooth

projective surface S , except for the case where  $\kappa$(X)=1 and the general fiber of the

Iitaka fibration of X is an abelian surface.

The exceptional case is treated in ajoint paper [21] of the authors, and the classifi‐

cation of the smooth projective 3‐folds with  $\kappa$\geq 0 admitting non‐isomorphic surjective

endomorphisms is completed (cf. Theorems 1.2, 1.3, and Section 5).
Before the paper [50] appeared, Sato and his student Segami started to study

smooth projective surfaces admitting non‐isomorphic surjective endomorphisms. For

example, in [51], Segami proved that if such a surface X is irrational and ruled, then X

is a \mathbb{P}^{1} ‐bundle over a curve, and moreover that if the irregularity q(X)>1 in addition,
then the \mathbb{P}^{1} ‐bundle is associated with a semistable vector bundle of rank two. Sato

informed the authors the following conjecture in 1998:

Conjecture 2.4 (Sato). A smooth rational surface admitting non‐isomorphic

surjective endomorphisms is a toric surface.
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The converse to Sato�s conjecture is true. In fact, every toric variety admits a

non‐isomorphic surjective endomorphism which is induced from the map

(\mathbb{C}^{\star})^{n}\ni(t_{1}, \ldots, t_{n})\mapsto(t_{1}^{k}, \ldots, t_{n}^{k})\in(\mathbb{C}^{\star})^{n}

for k>1 for the open torus (C). Conjecture 2.4 was solved affirmatively by Nakayama
in [46], where is also given a complete list of smooth projective surfaces of  $\kappa$=-\infty

admitting non‐isomorphic surjective endomorphisms (cf. Theorem 1.1 and Section 4

below). The key idea is to consider the set of negative curves. Partial classification

results for rational surfaces are also given in [5] and [54], where is obtained a list of

(weak) del Pezzo surfaces. In 2003, Amerik [1] had another idea in classifying irrational

ruled surfaces and generalized it to projective bundles  X\rightarrow B admitting non‐isomorphic

surjective endomorphisms over B : By the geometric invariant theory, she showed that

\mathrm{a}\mathbb{P}^{n} ‐bundle X\rightarrow B admits a non‐isomorphic surjective endomorphism over B if and

only if X is trivialized after a finite base change.
The authors [20] completely classified smooth compact complex analytic surfaces

admitting non‐isomorphic surjective endomorphisms in 2005. The idea is also to consider

the set of negative curves with the help of classification theory of elliptic surfaces and

\mathrm{V}\mathrm{I}\mathrm{I} ‐surfaces.

§2.3. Polarized endomorphisms

Endomorphisms, especially polarized endomorphisms, are studied by many re‐

searchers of arithmetic geometry (cf. [9], [14], [27], [56]), where the canonical height

functions play an important role. A surjective endomorphism f:X\rightarrow X of a projec‐
tive variety X is called polarized if there is an ample divisor H such that f^{*}H\sim qH
for some q>0 . The following are some of geometric results in [14] and [56], which are

not related to the canonical height functions:

Theorem 2.5.

(1) If f:X\rightarrow X is a polarized endomorphism, then there exist a closed immersion

i:X\subset \mathbb{P}^{N} and a surjective endomorphism g:\mathbb{P}^{N}\rightarrow \mathbb{P}^{N} such that g oi=i\circ f ([14],
Corollary 2.2).

(2) Let X be a smooth projective variety admitting a non‐isomorphic polarized endo‐

morphism. If  $\kappa$(X)\geq 0 ,
then a finite étale covering of X is an abelian variety ([14],

Theorem 4.2). If  $\kappa$(X)<0 ,
then X is uniruled ([56], Proposition 2.2.1).

In particular, the study of polarized endomorphisms is reduced to that of surjective

endomorphisms g of \mathbb{P}^{N}\supset X such that g(X)=X.
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Endomorphisms of projective spaces \mathbb{P}^{N} are studied by many researches of com‐

plex analysis as a subject of complex analytic dynamical systems. For the invariant

subvarieties, the following conjecture is studied (cf. [15], §4):

Conjecture 2.6. Let g:\mathbb{P}^{N}\rightarrow \mathbb{P}^{N} be a non‐isomorphic surjective endomor‐

phism, and V\subset \mathbb{P}^{N} a subvariety with g^{-1}(V)=V . Then V is linear.

This is solved affirmatively in case N=2 with \deg(V)\geq 3 ([15], §4), and in case

V is a smooth hypersurface with (N, \deg(V))\neq(2,2) ([13]). Theorem 2.3 gives another

proof in the case of smooth hypersurfaces V of degree >2 . Note that the arguments on

Conjecture 2.6 in [15] and [13] are algebraic. In 2004, the paper [8] announced a proof
of Conjecture 2.6 in any case, but unfortunately, the proof seems to have a gap, so the

conjecture is still open.

§2.4. Building blocks

Inspired by dynamical study of automorphisms of projective varieties (cf. [55]),
D.‐Q. Zhang started to consider �building blocks� of surjective endomorphisms of pro‐

jective algebraic varieties in 2006. The building blocks are obtained through the Iitaka

fibration, the Albanese map, and the maximal rationally connected fibration (cf. [10],
[11], [34], [22]). Nakayama and Zhang [47] gave a weak answer to the question what

are the building blocks for étale endomorphisms, assuming good minimal model con‐

jectures, etc. They asserted that the study of étale endomorphisms is reduced in some

sense to that of étale endomorphisms of abelian varieties or that of nearly étale rational

endomorphisms of weak CalabiYau varieties (cf. Section 6). However, the result only

gives a perspective of classification; for example, even if we know each of the building
blocks of an étale endomorphism f very well, it is rather difficult to recover the structure

of f as in [19], [21]. We overview some of the results of [47] in Section 6.

§3. Basic properties related to Kodaira dimension

We discuss elementary properties related to non‐isomorphic surjective endomor‐

phisms and the Kodaira dimension of compact complex manifolds. All the results in

this section are well‐known except for Theorem 3.2.

The Kodaira dimension  $\kappa$(X) is one of the most important bimeromorphic invari‐

ants of compact complex manifolds X . For a positive integer m
,
the m‐th pluricanonical

linear system |mK_{X}| is defined to be the set of divisors \mathrm{d}\mathrm{i}\mathrm{v}( $\eta$) associated to non‐zero

m‐ple holomorphic n‐forms  $\eta$ ,
where  n=\dim X . Thus, |mK_{X}| is identified with the

projective space

\mathbb{P}(\mathrm{H}^{0}(X, $\omega$_{X}^{\otimes m})^{\vee})=(\mathrm{H}^{0}(X, $\omega$_{X}^{\otimes m})\backslash \{0\})/\mathbb{C}^{\star},
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where $\omega$_{X}=$\Omega$_{X}^{n} is the sheaf of germs of holomorphic n‐forms. The canonical divisor

K_{X} is a divisor with \mathcal{O}_{X}(K_{X})\simeq$\omega$_{X} . Even if $\omega$_{X} has no non‐zero meromorphic sections,
we use K_{X} symbolically and call it the canonical divisor. Then, $\omega$_{X}^{\otimes m}\simeq \mathcal{O}_{X}(mK_{X}) .

Suppose that |mK_{X}|\neq\emptyset . Then the base locus Bs |mK_{X}|=\displaystyle \bigcap_{D\in|mK_{X}}{}_{1}\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}D is

a proper subset of X . For x\in X\backslash \mathrm{B}\mathrm{s}|mK_{X}| ,
the subset

 H_{x}=\{D\in|mK_{X}| ; x\in Supp D \}

is a hyperplane of |mK_{X}| . By x\mapsto[H_{x}] ,
we have a meromorphic map

$\Phi$_{m}=$\Phi$_{|mK_{X}|}:X \rightarrow|mK_{X}|^{\vee}=\mathbb{P}(\mathrm{H}^{0}(X, OmK

to the dual projective space |mK_{X}|^{\vee} ,
which is holomorphic on X\backslash \mathrm{B}\mathrm{s}|mK_{X}| . The map

$\Phi$_{m} is called the m‐th pluricanonical map. The Kodaira dimension  $\kappa$(X) is defined by:

 $\kappa$(X):=\left\{\begin{array}{ll}
-\infty, & \mathrm{i}\mathrm{f} |mK_{X}|=\emptyset \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{a}\mathrm{n}\mathrm{y} m>0;\\
\mathrm{m}\mathrm{a}\mathrm{x}\mathrm{d}\mathrm{i}\mathrm{m} $\Phi$_{m}(X) ; |mK_{X}|\neq\emptyset, m\in \mathbb{N}\}, & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
This is a bimeromorphic invariant of compact complex manifolds. For a singular com‐

pact complex variety, its Kodaira dimension is defined as that of a compact complex
manifold bimeromorphic to it. Iitaka [25] (cf. [26]) proved that, in case  $\kappa$(X)>0 ,

if

m is sufficiently large and divisible, then $\Phi$_{X}=$\Phi$_{m}:X \rightarrow$\Phi$_{m}(X) is uniquely deter‐

mined up to bimeromorphic equivalence and a very general fiber F of $\Phi$_{X} is connected

with  $\kappa$(F)=0 . The map $\Phi$_{X} is called the Iitaka fibration of X . Iitaka also showed

the following asymptotic behavior of P_{m}(X)=\dim \mathrm{H}^{0}(X, \mathcal{O}_{X}(mK_{X})) : There exist an

integer m_{0} , positive numbers  $\alpha$< $\beta$ such that, for any  m\gg 0,

 $\alpha$ m^{ $\kappa$(X)}\leq P_{mm_{0}}(X)\leq $\beta$ m^{ $\kappa$(X)}.

Let g:X\rightarrow Y be a generically finite surjective morphism of compact complex man‐

ifolds. Then we have a natural injection g^{*}$\Omega$_{Y}^{1}\rightarrow$\Omega$_{X}^{1} for the sheaf $\Omega$^{1} of germs of holo‐

morphic one‐forms. Taking the wedge product, we have also an injection  g^{*}:g^{*}$\omega$_{Y}\rightarrow

$\omega$_{X} . Since $\omega$_{X} and $\omega$_{Y} are invertible, the cokernel of g^{*} is expressed as $\omega$_{X}\otimes \mathcal{O}_{R} for an

effective divisor R=R_{g} . Note that, locally on X, g^{*} is expressed as the determinant of

Jacobian matrix of g ,
and R is defined as the zero locus of the function g^{*} . Therefore,

R=0 if and only if g is étale. As a divisor, we can write K_{X}=g^{*}K_{Y}+R ,
which is

called the ramification formula. Here, we use = rather than the linear equivalence \sim,

since the formula means that \mathrm{d}\mathrm{i}\mathrm{v}(g^{*} $\eta$)=g^{*}\mathrm{d}\mathrm{i}\mathrm{v}( $\eta$)+R for a meromorphic n‐form  $\eta$ on

 Y . For every integer m>0 ,
we also have an injection g^{*}$\omega$_{Y}^{\otimes m}\rightarrow$\omega$_{X}^{\otimes m} . Taking global

sections, we have an inequality:  $\kappa$(X)\geq $\kappa$(Y) .
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Lemma 3.1. Let $\Phi$_{X}:X \rightarrow W be the Iitaka fibration of a compact complex

manifold X with  $\kappa$(X)>0 . Suppose that X admits a surjective endomorphism  f:X\rightarrow
X. Then, for a suitable choice of  W ,

there exists a biregular automorphism h of W

such that $\Phi$_{X}\circ f=h\circ$\Phi$_{X}.

Proof. The injective homomorphism

f^{*}:\mathrm{H}^{0}(X, \mathcal{O}_{X}(mK_{X}))\rightarrow \mathrm{H}^{0}(X, \mathcal{O}_{X}(mK))

is an isomorphism, since \mathrm{H}^{0}(X, \mathcal{O}_{X}(mK)) is finite‐dimensional. For the Iitaka fibra‐

tion $\Phi$_{m}:X \rightarrow|mK_{X}|^{\vee} and for the pull‐back homomorphism f^{*} above, we have a

commutative diagram
X \rightarrow^{f} X

$\Phi$_{m}\downarrow $\Phi$_{m}\downarrow
|mK_{X}|^{\vee}\rightarrow^{(f^{*})^{\vee}} |mK_{X}|^{\vee}.

Therefore, the assertion holds for W=$\Phi$_{m}(X) . \square 

The following was conjectured for several years, which has recently been proved in

[47], Theorem \mathrm{A} :

Theorem 3.2. The automorphism h of W in Lemma 3.1 is of finite order, if X

is a compact Kähler manifold.

Remark 3.3.

(1) In [47], Theorem \mathrm{A}
,
the result holds also for dominant meromorphic endomorphisms

X \rightarrow X of compact Kähler manifolds. The proof involves an argument on variation

of Hodge structures and on the automorphism group of W.

(2) If $\Phi$_{X} is holomorphic, then, by Theorem 3.2, a suitable power f^{k} is an endomorphism
of X over W , i.e., $\Phi$_{X}\circ f^{k}=$\Phi$_{X}.

Lemma 3.4. Let f:X\rightarrow X be a surjective endomorphism of a compact complex

manifold X.

(1) If X is Kähler, then f is a finite morphism.

(2) If  $\kappa$(X)\geq 0 or if X is a non‐uniruled projective variety, then f is finite and étale

(cf. [26], Theorem 11.7).

(3) If  $\kappa$(X)=\dim(X) (i.e., X is of general type), then f is an automorphism (cf. [26],
Proposition 10.10).
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Proof. (1): The pull‐back homomorphism f^{*}:\mathrm{H}^{2}(X, \mathbb{R})\rightarrow \mathrm{H}^{2}(X, \mathbb{R}) is an auto‐

morphism preserving the subspace \mathrm{H}^{1,1}(X, \mathbb{R}) :=\mathrm{H}^{2}(X, \mathbb{R})\cap \mathrm{H}^{1,1}(X) . Thus, any Kähler

form of X is cohomologous to the pullback by f^{*} of another Kähler form of X . Hence,
no fiber of f has positive dimension, i.e., f is a finite morphism.

(2): By the ramification formula K_{X}=f^{*}K_{X}+R ,
we have the ramification formula

(^{*}) K_{X}=(f^{k})^{*}K_{X}+(f^{k-1})^{*}R+\cdots+f^{*}R+R

for the k‐th power f^{k}=f\mathrm{o} . . . of for any k . Suppose that  $\kappa$(X)\geq 0 , i.e., |mK_{X}|\neq\emptyset
for some  m>0 . Then any member D\in|mK_{X}| is written as

D=(f^{k})^{*}D_{k}+(f^{k-1})^{*}(mR)+\cdots+f^{*}(mR)+mR

for another member D_{k}\in|mK_{X}| . Thus, R=0 ,
since D has finitely many irreducible

components. If X is projective and not uniruled, then K_{X}A^{n-1}\geq 0 for any ample
divisor A by [38], where n=\dim X . Hence, (^{*} ) implies R=0 ; otherwise

K_{X}A^{n-1}\geq((f^{k-1})^{*}R+\cdots+f^{*}R+R)A^{n-1}\geq k\rightarrow\infty.

Since f is proper, R=0 means that f is finite and étale.

(3): By assumption, the Iitaka fibration $\Phi$_{X}:X \rightarrow W is a birational map. Thus

the assertion is derived by Lemma 3.1 and (2). \square 

Remark 3.5. If \dim X=2
,

then f is finite by [20] even if X is not Kähler. For

\dim X\geq 3 ,
the finiteness of f is unknown.

Corollary 3.6. Let X be a compact complex manifold admitting non‐isomorphic

surjective endomorphisms. If  $\kappa$(X)\geq 0 or ifX is non‐uniruled projective, then the Euler

number e(X)=\displaystyle \sum_{i\geq 0}(1)b(X) and the Euler‐Poincaré characteristic  $\chi$(X, \mathcal{O}_{X})=

\displaystyle \sum_{i\geq 0}(-1)^{i}\dim \mathrm{H}^{i}(X, \mathcal{O}_{X}) are both zero; moreover, the fundamental group $\pi$_{1}(X) is

infinite.

Remark 3.7. If X is a non‐uniruled smooth projective 3‐fold, then  $\kappa$(X)\geq 0 by
Mori [40] and by Miyaoka [36]. However, if we assume that  $\chi$(X, \mathcal{O}_{X})=0 for the 3‐fold

X
,

in addition, then  $\kappa$(X)\geq 0 is easily derived as follows: If the irregularity q(X) is

zero, then p_{g}(X)=1+\dim \mathrm{H}^{2}(X, \mathcal{O}_{X})\geq 1 ; thus  $\kappa$(X)\geq 0 . If q(X)>0 , then, for the

Stein factorization X\rightarrow V of the Albanese map X\rightarrow \mathrm{A}\mathrm{l}\mathrm{b}(X) and for a general fiber

F of X\rightarrow V ,
we have  $\kappa$(X)\geq $\kappa$(F)+ $\kappa$(V) as Iitaka�s addition formula of  $\kappa$ valid for

3‐folds (cf. [28]). Here,  $\kappa$(F)\geq 0 since X is not uniruled. Further  $\kappa$(V)\geq 0 by [52].
Thus,  $\kappa$(X)\geq 0 . Therefore, by Corollary 3.6, we have a simple proof of the assertion

that for a smooth projective 3‐folds X with non‐isomorphic surjective endomorphism,

 $\kappa$(X)\geq 0 if and only if X is not uniruled.
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§4. Smooth projective surfaces

In this section, we consider a smooth projective surface X admitting a non‐isomor‐

phic surjective endomorphism f:X\rightarrow X . As is shown in Section 3, X is not of general

type; If  $\kappa$(X)\geq 0 ,
then e(X)= $\chi$(X, \mathcal{O}_{X})=0 and f is étale. Moreover, we see that if

 $\kappa$(X)\geq 0 ,
then X is minimal. In fact, if X has \mathrm{a}(1) ‐curve (= the exceptional curve

of the first kind), then f^{-1}(C) is a disjoint union of (1)‐curves which are copies of C,
thus X has infinitely many (1)‐curves, a contradiction. The classification in the case

of  $\kappa$(X)\geq 0 is done by:

Proposition 4.1 ([19], Proposition 3.3; [20], Appendix to Section 4). Let X be

a smooth projective surfa ce with 0\leq $\kappa$(X)\leq 1 . Then the following conditions are

mutually equivalent:

(1) X admits a non‐isomorphic surjective endomorphism.

(2) e(X)=0.

(3)  $\chi$(X, \mathcal{O}_{X})=0.

(4) If  $\kappa$(X)=0 ,
then X is an abelian surfa ce or a hyperelliptic surfa ce. If  $\kappa$(X)=1,

then a finite étale Galois covering of X is isomorphic to the product E\times C of an

elliptic curve E and a curve C of genus \geq 2.

§4.1. Negative curves

To proceed the classification in the case of ruled surfaces, the set S(X) of negative
curves plays an important role. Here, an irreducible and reduced curve is called negative
if its self‐intersection number is negative.

Proposition 4.2 ([46], Proposition 11; [20], Proposition 3.5). S(X) is a finite
set and the map C\mapsto f(C) induces a permutation of S(X) .

Proof. Let C be a negative curve. Suppose that f(C)=f(C') for an irreducible

curve C' . Then f_{*}C= $\alpha$ f_{*}(C') for some  $\alpha$>0 . For the NéronSeveri group NS(X),
the push‐forward map f_{*}:\mathrm{N}\mathrm{S}(X)\otimes \mathbb{Q}\rightarrow \mathrm{N}\mathrm{S}(X)\otimes \mathbb{Q} is bijective. Hence, C= $\alpha$ C'

in \mathrm{N}\mathrm{S}(X)\otimes \mathbb{Q} . Then C=C' by CC'<0 . This observation implies that C\mapsto f(C)
gives a bijection S(X)\rightarrow S(X) . Let S(X)_{0} be the subset of negative curves which

are irreducible components of the ramification divisor R_{f} . If C\in S(X)\backslash S(X)_{0} ,
then

|C^{2}|>|f(C)^{2}| by C=f^{*}(f(C)) . Thus, for any C\in S(X) ,
there exists an integer

k>0 such that f^{k}(C)\in S(X)_{0} . Then Lemma 4.3 below on the set theory completes
the proof. \square 
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Lemma 4.3 ([20], Lemma 3.4; [46], Proposition 11). Let S be a set, S_{0} a finite

subset, and h:S\rightarrow S an injection such that

S=\displaystyle \bigcup_{m=1}^{\infty}(h^{m})^{-1}(S_{0}) .

Then S is finite.

Therefore, by Proposition 4.2, we may assume from the beginning that f^{-1}(C)=C
for any negative curve C by replacing f with a power f^{k} . Then there is a positive integer
a such that \deg f=a^{2}, f^{*}C=aC ,

and f_{*}(C)=aC for any C\in S(X) . We define

N_{X}:=\displaystyle \sum_{C\in S(X)}C.
Then the ramification formula of f can be replaced with

 K_{X}+N_{X}=f^{*}(K_{X}+N_{X})+\triangle

for an effective divisor \triangle whose irreducible components are not negative. Investigating
the ramification of  f|c:C\rightarrow C ,

we have:

Lemma 4.4 ([20], Lemma 3.7; [46], Lemma 13). A connected component of N_{X}

is one of the following:

(1) An elliptic curve.

(2) A straight chain of \mathbb{P}^{1}
, i.e., a reduced divisor \displaystyle \sum_{i=1}^{l}C_{i} with irreducible components

C_{i}\simeq \mathbb{P}^{1} satisfy ing

C_{i}C_{j}=\left\{\begin{array}{ll}
1, & if|i-j|=1;\\
0, & if|i-j|>1.
\end{array}\right.
(3) A cycle of rational curves, i.e., either a rational curve with exactly one node, or a

connected reduced normal crossing divisor \displaystyle \sum_{i=1}^{l}C_{i}(l\geq 2) with irreducible compo‐

nents C_{i}\simeq \mathbb{P}^{1} satisfy ing

C_{i}(\displaystyle \sum_{j\neq i}C_{j})=2.
§4.2. Ruled surfaces

The classification of smooth rational surfaces X is reduced to proving Conjec‐
ture 2.4. This is proved in [46] by using the properties of the set S(X) of negative
curves shown in Section 4.1 and the following:

Proposition 4.5 ([46], Theorem 17). Let X be a smooth rational surfa ce with

finitely many negative curves. For the sum N_{X} of all the negative curves, assume that

any connected component of N_{X} is either a straight chain of \mathbb{P}^{1} or a cycle of rational

curves. Then X is a toric surfa ce.
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Next, we consider the case where X is irrational and ruled. Let  $\pi$:X\rightarrow T be the

ruling to a smooth projective curve T of genus g(T)=q(X)\geq 1 . Then  $\pi$  of=ho  $\pi$

for a surjective étale endomorphism  h:T\rightarrow T . An irreducible component C of a

reducible fiber of X\rightarrow T is a negative curve, and hence f^{*}C=aC by Section 4.1.

Therefore, h^{*}( $\pi$(C))=a $\pi$(C) ,
which contradicts that h is étale. Hence,  $\pi$ is smooth,

i.e., \mathrm{a}\mathbb{P}^{1} ‐bundle. This argument was essentially used in [51]. The classification in the

case g(T)=q(X)=1 is done by:

Proposition 4.6 ([46], Propositions 5 and 14). An elliptic ruled surfa ce, i.e., a

smooth projective ruled surfa ce with the irregularity one, admits a non‐isomorphic sur‐

jective endomorphism if and only if it is a \mathbb{P}^{1} ‐bundle over an elliptic curve.

In case g(T)\geq 2 ,
there is no negative curve of X dominating T by Lemma 4.4.

Thus,  $\pi$ is associated with a semi‐stable vector bundle of rank two on  T . With more

arguments, we have:

Theorem 4.7 ([46], Theorems 8 and 15). Let X\rightarrow T be a \mathbb{P}^{1} ‐bundle over a

smooth projective curve T of genus \geq 2 . Then, the following three conditions are mu‐

tually equivalent:

(1) X admits a non‐isomorphic surjective endomorphism.

(2) -K_{X/T} is semi‐ample.

(3) X\times $\tau$ T'\simeq \mathbb{P}^{1}\times T' for a finite étale covering T'\rightarrow T.

Here, for the proof of (3) \Rightarrow(1) ,
we apply the following:

Lemma 4.8 ([46], Lemma 6). For a finite subgroup  G\subset Aut(P), there exists

a  G ‐equivariant non‐isomorphic surjective endomorphism f:\mathbb{P}^{1}\rightarrow \mathbb{P}^{1} , i.e.,

f( $\sigma$\cdot x)= $\sigma$\cdot f(x)

for  $\sigma$\in \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{P}) and x\in \mathbb{P}^{1}.

Remark 4.9. A generalization of Theorem 4.7 to the case of \mathbb{P}^{n} ‐bundles over

a higher dimensional base is obtained by Amerik in [1], Theorem 1. In the proof,
Lemma 4.8 is also generalized to the case of \mathbb{P}^{n}

,
and the geometric invariant theory is

used instead of properties of semistable vector bundles.

Remark 4.10. A smooth projective surface X admits a non‐isomorphic étale en‐

domorphism if and only if X is the \mathbb{P}^{1} ‐bundle over an elliptic curve associated with a

semi‐stable vector bundle of rank two. In fact, the �if� part is shown in [46], Proposi‐
tions 5, and the �only if� part is derived essentially from the absence of negative curves,

i.e., N_{X}=0 (cf. Section 4.1).
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These results complete the classification of smooth projective surfaces admitting

non‐isomorphic surjective endomorphisms.

§5. Projective threefolds of non‐negative Kodaira dimension

In this section, we explain the classification in [19], [21] of smooth projective 3‐folds

admitting non‐isomorphic surjective endomorphisms. Applying the theory of extremal

rays by Mori [39], we can reduce the classification problem to the case of smooth minimal

models. The theory of elliptic fibrations and abelian fibrations enable us to describe the

structure of the minimal models in detail.

§5.1. Extremal contraction

We study the set of extremal rays and the associated contraction morphisms for

smooth projective 3‐folds admitting non‐isomorphic surjective endomorphisms.

First, we recall some basics on the theory of extremal rays by Mori [39]. For a

smooth projective n‐fold X
,

the Picard number  $\rho$(X) is defined as the rank of the

Néron‐Severi group NS(X). We set

\mathrm{N}^{1}(X):=\mathrm{N}\mathrm{S}(X)\otimes \mathbb{R} and \mathrm{N}_{1}(X):=\mathrm{H}\mathrm{o}\mathrm{m}(\mathrm{N}\mathrm{S}(X), \mathbb{R}) .

A divisor D is numerically trivial if the class \mathrm{c}1(D)\in \mathrm{N}(\mathrm{X}) is zero. We can regard

\mathrm{N}(\mathrm{X}) as a vector subspace of \mathrm{H}^{2}(X, \mathbb{R}) . There is a natural perfect pairing \mathrm{N}^{1}(X)\times
\mathrm{N}_{1}(X)\rightarrow \mathbb{R} induced from the intersection theory. Hence, for an algebraic 1‐cycle

Z=\displaystyle \sum n_{i}Z_{i} ,
the numerical equivalence class \mathrm{c}1(Z)\in \mathrm{N}(\mathrm{X}) corresponds to the map

D\displaystyle \mapsto DZ=\sum n_{i}DZ_{i} for divisors D.

Let NE(X) \subset \mathrm{N}(\mathrm{X}) be the cone generated by \mathrm{c}1(Z) for all the irreducible curves Z,
and let \overline{\mathrm{N}\mathrm{E}}(X) be the closure of NE(X) in \mathrm{N}(\mathrm{X}) with respect to the metric topology.
The Kleiman criterion of ampleness is that a divisor D is ample if and only if the

functional D on \mathrm{N}(\mathrm{X}) is positive on \overline{\mathrm{N}\mathrm{E}}(X)\backslash \{0\} . A divisor D of X is nef if and

only if D is non‐negative on \overline{\mathrm{N}\mathrm{E}}(X) . The \overline{\mathrm{N}\mathrm{E}}(X) is called the KleimanMori cone. An

extremal ray (more precisely, a K_{X} ‐negative extremal ray) is a 1‐dimensional face R

of \overline{\mathrm{N}\mathrm{E}}(X) with K_{X}R<0 . An extremal ray R defines a proper surjective morphism

\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R}:X\rightarrow Y onto a normal projective variety Y with connected fibers such that for

an irreducible curve C\subset X , Cont(C) is a point if and only if \mathrm{c}1(C)\in R . In higher
dimensional case, this is a consequence of the cone theorem and the base point free

theorem (cf. [31], [33], etc.). The morphism \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R} is characterized by the property and

is called the contraction morphism of R . We denote by ER(X) the set of extremal rays

of X.

Second, we study \overline{\mathrm{N}\mathrm{E}}(X) and ER(X) for X admitting non‐isomorphic surjective

endomorphisms. The following result is proved in [19], Propositions 4.2 and 4.12.



66 Yoshio Fujimoto and Noboru Nakayama

Lemma 5.1. Let f:Y\rightarrow X be a finite surjective morphism between smooth

projective n ‐folds with  $\rho$(X)= $\rho$(Y) .

(1) The push‐forward map f_{*}:\mathrm{N}_{1}(Y)\rightarrow \mathrm{N}(\mathrm{X}) is an isomorphism and f_{*}\overline{\mathrm{N}\mathrm{E}}(Y)=
\overline{\mathrm{N}\mathrm{E}}(X) .

(2) Let f_{*}:\mathrm{N}^{1}(Y)\rightarrow \mathrm{N}(\mathrm{X}) be the map induced fr om the push‐forward map  D\mapsto

 f_{*}D of divisors D. Then the dual f^{*}:\mathrm{N}_{1}(X)\rightarrow \mathrm{N}_{1}(Y) is an isomorphism and

f^{*}\overline{\mathrm{N}\mathrm{E}}(X)=\overline{\mathrm{N}\mathrm{E}}(Y) .

(3) If f is étale and the canonical divisor K_{X} is not nef, then f^{*} and f_{*} above give a

one‐to‐one correspondence between ER(X) and ER(Y) .

(4) Under the same assumption as in (3), for an extremal ray R\in \mathrm{E}\mathrm{R}(X) and for the

contraction morphisms \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R}:X\rightarrow X', \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{f^{*}R}:Y\rightarrow Y' , there exists a finite

surjective morphism f' : Y'\rightarrow X' such that \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R}\circ f=f'\circ \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{f^{*}R}.

Lemma 5.1 is applied to the following fundamental result on ER(X) for smooth

projective 3‐folds X
,

which is proved in [19], Proposition 4.6 and Theorem 4.8.

Theorem 5.2. Let f:X\rightarrow X be a non‐isomorphic surjective endomorphism

of a smooth projective 3‐fold X with  $\kappa$(X)\geq 0 . If K_{X} is not nef, then the following
assertions hold:

(1) ER(X) is a finite set and f_{*} induces a permutation of ER(X). In particular, there

is a positive integer k such that the power  f^{k}=f\mathrm{o}\cdots of satisfies  f_{*}^{k}R=R for any

R\in \mathrm{E}\mathrm{R}(X) .

(2) The contraction morphism \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R}:X\rightarrow X' associated to any extremal ray  R\in

\mathrm{E}\mathrm{R}(X) is a divisorial contraction, and is (the inverse of) the blowing up of X'

along an elliptic curve C.

(3) In the situation of (2) above, assume that f_{*}R=R. Let f':X'\rightarrow X' be the

endomorphism induced from f such that \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R}\circ f=f'\circ \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R} as in Lemma 5.1,

(4). Then f^{\prime-1}(C)=C.

Proof. (1): The contraction morphism \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R} for R\in \mathrm{E}\mathrm{R}(X) is birational since

 $\kappa$(X)\geq 0 . Furthermore, \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R} contracts a prime divisor E to a point or a curve, by

[39]. Hence, E is contained in the fixed part of any non‐empty linear system |mK_{X}|.
Therefore, ER(X) is finite. The f_{*} gives a permutation by Lemma 5.1.

(2) and (3): Replacing f with a power f^{k} , by (1), we may assume that f_{*}R=R.
Let  $\varphi$:=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R}:X\rightarrow X' be the contraction morphism. Then the exceptional divisor

E satisfies f^{-1}(E)=E set‐theoretically, by Lemma 5.1.
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Assume that  $\varphi$(E) is a point. Then, E is isomorphic to \mathbb{P}^{2}, \mathbb{P}^{1}\times \mathbb{P}^{1}
,

or a singular

quadric surface, by [39]. In particular, E is simply connected. Since f^{-1}(E)=E and

f is étale, we have \deg(f|_{E})=\deg(f)\geq 2 . Hence E=f^{-1}(E) is not connected; this is

a contradiction.

Therefore, C= $\varphi$(E) is a curve. Furthermore, by [39], X' and C are smooth, and

 $\varphi$ is (the inverse of) the blowing up of  X' along C . For the endomorphism f' : X'\rightarrow X',
the scheme‐theoretic inverse image f^{\prime-1}(C) is just C ,

since f' is étale. In particular,

f'|c:C\rightarrow C is étale and non‐isomorphic. Thus, C is an elliptic curve. \square 

§5.2. Minimal reduction of an endomorphism

Theorem 5.2 enables us to apply the minimal model program to a smooth projective
3‐fold X with  $\kappa$(X)\geq 0 and a non‐isomorphic surjective endomorphism f of X . Thus,
we can reduce the study of f:X\rightarrow X to an endomorphism f_{\min}:X_{\min}\rightarrow X_{\min} of a

minimal model X_{\min} of X . We shall explain the reduction, which is called the minimal

reduction.

Recall that a normal projective variety Y is called a minimal model if Y has only
terminal singularities and the canonical divisor K_{Y} is \mathrm{n}\mathrm{e}\mathrm{f} . If Z is a projective variety
birational to the minimal model Y

,
then Y is called a minimal model of Z ; however Y

is not necessarily uniquely determined up to isomorphism in case \dim Z\geq 3.

Let f:X\rightarrow X be a non‐isomorphic surjective endomorphism of a smooth projective
3‐fold X with  $\kappa$(X)\geq 0 . If K_{X} is \mathrm{n}\mathrm{e}\mathrm{f}

,
then X is minimal, so we do not need to consider

the reduction. Assume that K_{X} is not \mathrm{n}\mathrm{e}\mathrm{f} . Then ER(X) \neq\emptyset . We may assume that

 f_{*}R=R for any extremal ray R\in \mathrm{E}\mathrm{R}(X) as before. Let us choose an extremal ray

R\in \mathrm{E}\mathrm{R}(X) and consider the contraction morphism $\mu$_{0}:=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R}:X_{0}=X\rightarrow X_{1}.

Then, by Theorem 5.2, $\mu$_{0} is the blowing up of a smooth projective 3‐fold X_{1} along
an elliptic curve C_{1}\subset X_{1} . Moreover, an étale endomorphism f_{1}:X_{1}\rightarrow X_{1} is induced

which satisfies $\mu$_{0}\circ f=f_{1}\circ$\mu$_{0} and f_{1}^{-1}(C_{1})=C_{1}.
If K_{X_{1}} is \mathrm{n}\mathrm{e}\mathrm{f}

,
then we stop here. Otherwise, we consider the same thing to (X_{1}, f_{1})

as (X, f) . Namely, we first replace f_{1} with a power f_{1}^{k} so that f_{1*} acts trivially on

ER(X), second, choose an extremal ray  R_{1}\in ER(X), and consider the contraction

morphism $\mu$_{1}:=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}_{R_{1}}:X_{1}\rightarrow X_{2}.
In this way, we have successive contractions of extremal rays  X=X_{0}\rightarrow X_{1}\rightarrow

 X_{2}\rightarrow\cdots with a strictly decreasing sequence  $\rho$(X)> $\rho$(X_{1})>\cdots of Picard numbers.

Note that no flipping contractions can occur in our minimal model program. Thus,

 X_{k} is a smooth minimal model for some k . Here, we have a non‐isomorphic surjective

endomorphism f_{k}:X_{k}\rightarrow X_{k} which commutes with a power of f . To sum up, after

replacing f by a suitable power f^{l} ,
we have a sequence of extremal contractions

X=X_{0}\rightarrow X_{1} $\mu$ 0\rightarrow^{$\mu$_{1}} . . . \rightarrow X_{k}$\mu$_{k-1}
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and non‐isomorphic surjective endomorphisms f_{i}:X_{i}\rightarrow X_{i} for 0\leq i\leq k such that

(1) $\mu$_{0}= $\mu$, f_{0}=f, $\mu$_{i}\circ f_{i}=f_{i+1}\circ$\mu$_{i} for 0\leq i<k,

(2) $\mu$_{i-1}:X_{i-1}\rightarrow X_{i} is (the inverse of) the blowing up along an elliptic curve C_{i} on

X_{i} with f_{i}^{-1}(C_{i})=C_{i} for all1 \leq i\leq k,

(3) X_{k} is a smooth minimal model of X.

We set X_{\min}:=X_{k} and f_{\min}:=f_{k} . The endomorphism f_{\min}:X_{\min}\rightarrow X_{\min} is

called the minimal reduction of f:X\rightarrow X . We know that K_{X_{\min}} is semi‐ample, i.e.,
Bs |mK_{X_{\min}}|=\emptyset for some  m>0 by the abundance theorem for projective 3‐folds (cf.
[36], [37], [30]). In particular, the Iitaka fibration $\Phi$_{X}:X\rightarrow W is holomorphic for the

canonical model

W= Proj \geq 0\mathrm{H}^{0}(X, \mathcal{O}_{x}(mK_{X})) ,

where $\Phi$_{X}=$\Phi$_{X_{k}}\circ$\mu$_{k-1}\circ\cdots$\mu$_{0} for the Iitaka fibration $\Phi$_{X_{k}}:X_{k}\rightarrow W . By Lemma 3.1

and Theorem 3.2, there is an automorphism h of W of finite order such that $\Phi$_{X}\circ f=
ho $\Phi$_{X} . So, we may assume $\Phi$_{X}\circ f=$\Phi$_{X} by replacing f with a suitable power f^{l}.

The smooth minimal model X_{\min} is a unique minimal model of X and has a strong

property as in Lemma 5.3 below, which was proved implicitly in papers [19], [21]; In fact,
this is derived from the classification results of the minimal model X_{k} . In particular,
the birational morphism X\rightarrow X_{k} is unique up to isomorphism.

Lemma 5.3. If X is a 3‐dimensional smooth projective minimal model, then

there is no non‐isomorphic birational morphism  $\psi$:X\rightarrow V onto a normal projective

variety V such that K_{X}=$\psi$^{*}K_{V} and  $\psi$ is an isomorphism in codimension one. In

particular,  X is a unique minimal model in the birational equivalence class, and the

birational automorphism group Bir(X) coincides with the automorphism group Aut(X).

Proof. Let H be the pullback of an ample \mathbb{Q}‐divisor of V by  $\psi$ . Then  H\sim \mathbb{Q}f^{*}H_{1}
for another semi‐ample \mathbb{Q}‐divisor H_{1} since f^{*}:\mathrm{N}^{1}(X)\rightarrow \mathrm{N}(\mathrm{X}) is isomorphic. Then

we have a birational morphism $\psi$_{1}:X\rightarrow V_{1} and a finite morphism g_{0}:V\rightarrow V_{1} such

that $\psi$_{1}  of=g_{0}\circ $\psi$ . In particular,  $\psi$_{1} is also an isomorphism in codimension one.

Considering the same thing to $\psi$_{1} and repeating, we have infinitely many birational

morphisms $\psi$_{i}:X\rightarrow V_{i} and finite morphisms g_{i}:V_{i}\rightarrow V_{i+1} with $\psi$_{i+1}\circ f=g_{i}\circ$\psi$_{i} for

i\geq 0 ,
where V_{0}=V and $\psi$_{0}= $\psi$.

Let C be an irreducible curve contained in a fiber of  $\psi$ . Then  C\simeq \mathbb{P}^{1} and K_{X}C=0.

Furthermore, for any i>0, C_{i}:=f^{i}(C) is also a smooth rational curve contained in

a fiber of $\psi$_{i} with K_{X}C_{i}=0 . Here, (f^{i})^{-1}(C) is contracted to points by  $\psi$ and is a

disjoint copies of  C since f is étale. Hence,  $\psi$ contracts infinitely many \mathbb{P}^{1} to points.
This is a contradiction.
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If v:X \rightarrow X' is a non‐isomorphic birational map to another minimal model X',
then v is isomorphic in codimension one, and there is a birational morphism  $\psi$:X\rightarrow V
as above (cf. [29]). Thus, X is a unique minimal model and Bir(X) =\mathrm{A}\mathrm{u}\mathrm{t}(X) . \square 

In Section 5.4, we explain the structure of the minimal model X_{\min} in detail. From

an non‐isomorphic surjective endomorphism f_{\min}:X_{\min}\rightarrow X_{\min} ,
an endomorphism of

original X is recovered by the following:

Lemma 5.4. Let  $\sigma$:\hat{X}\rightarrow X be the blowing up along an elliptic curve C\subset X

with f^{-1}(C)=C . Then there is an endomorphism \hat{f} of \hat{X} with  $\sigma$\circ\hat{f}=f\circ $\sigma$ . Moreover,

 K_{X}C=0 and C is contained in a fiber of the Iitaka fibration $\Phi$_{X}.

Proof. For the defining ideal \mathcal{I}_{C} ,
we have f^{*}\mathcal{I}_{C}^{j}=\mathcal{I}_{C}^{j} for any j ,

since f is étale.

Thus, there is an endomorphism \hat{f} of \hat{X} compatible with f . We also have an isomorphism

f_{C}^{*}(N_{C/X})\simeq N_{C/X} for the normal bundle N_{C/X} and for the induced morphism f_{C}=

f|c:C\rightarrow C . Thus, \deg N_{C/X}=-K_{X}C=0 . If $\Phi$_{X}(C) is not a point, then the finite

morphism  $\phi$= $\Phi$|c:C\rightarrow$\Phi$_{X}(C) satisfies  $\phi$\circ f_{C}= $\phi$ contradicting \deg( $\phi$\circ f_{C})=
(\deg $\phi$)(\deg f)>\deg( $\phi$) . Thus, $\Phi$_{X}(C) is a point. \square 

§5.3. Seifert abelian fibrations and simple abelian fibrations

In many cases, the minimal model X_{\min} has a structure of an abelian fibration

X_{\min}\rightarrow T over a lower dimensional variety T . Here, we explain some basic facts

on elliptic fibrations, abelian fibrations, especially Seifert abelian fibrations and simple
abelian fibrations that are used in the sequel (cf. [21], Section 2.1).

A projective surjective morphism  $\pi$:V\rightarrow S of normal algebraic varieties is called

an abelian fibration (or abelian fiber space) if a general fiber of  $\pi$ is an abelian variety.
An abelian fibration of relative dimension one is called an elliptic fibration (or an elliptic

fiber space). If  $\pi$ is smooth and has a structure of  S‐group scheme, then it is called an

abelian scheme.

Definition 5.5 (cf. [21], Definition 2.3 and Lemma 2.4). Let V\rightarrow S be an abe‐

lian fibration from a smooth variety V to a normal variety S . It is called a Seife rt

abelian fiber space if there exist finite Galois surjective morphisms W\rightarrow V and T\rightarrow S

satisfying the following conditions:

(1) W and T are smooth varieties.

(2) W is isomorphic to the normalization of V\times sT over T.

(3) W\rightarrow V is étale.



70 Yoshio Fujimoto and Noboru Nakayama

(4) W\rightarrow T is an abelian scheme.

If V\rightarrow S is a Seifert abelian fiber space, then V is a unique relative minimal

model over S ,
since K_{V} is relatively numerically trivial and there are no rational curves

contained in fibers. If S is projective and \dim(V)=\dim(S)+1 ,
then we may replace

the condition (4) with

(4 ) W\simeq E\times T over T for an elliptic curve E.

The following gives a sufficient condition for elliptic fibrations to be Seifert (cf. [41];
[42], Theorems 1.2 and 4.2):

Proposition 5.6. Let  $\pi$:V\rightarrow S be an elliptic fibration from a smooth projective
n ‐fold V onto a normal projective variety S. If the following conditions are satisfied,
then  $\pi$ is a Seife rt elliptic fibration:

(1)  $\pi$ is equi‐dimensional.

(2)  K_{V} is  $\pi$ ‐numerically trivial.

(3) For any prime divisor  $\Gamma$\subset S ,
the support of a general fiber of  $\pi$^{-1}( $\Gamma$)\rightarrow $\Gamma$ is an

elliptic curve (In other words, the singular fiber type of  $\pi$ along  $\Gamma$ is  of_{m}\mathrm{I}_{0} for some

m\geq 1) .

The following gives a sufficient condition for abelian fibrations over curves to be

Seifert, which is derived from arguments in [32], §6, and in [43], §7:

Proposition 5.7. Let  $\pi$:X\rightarrow C be an abelian fiber space from a smooth projec‐
tive variety X onto a smooth projective curve C such that K_{X} is  $\pi$-nef, i.e., K_{X} $\gamma$\geq 0

for any curve  $\gamma$\subset X contracted to a point by  $\pi$ . If there is a point  t\in C such that, for
the fiber X_{t}=$\pi$^{-1}(t) ,

the kernel of the natural homomorphism $\pi$_{1}(X_{t})\rightarrow$\pi$_{1}(X) of fun‐
damental groups contains no nonzero proper Hodge substructure of \mathrm{H}_{1}(X_{t}, \mathbb{Z})\simeq$\pi$_{1}(X_{t}) ,

then  $\pi$ is a Seife rt abelian fibration.

By some arguments of Ueno [53] on Hilbert schemes, we have the following charac‐

terization of abelian fibrations whose very general fiber is a simple abelian variety (cf.
[21], §2.3).

Proposition 5.8. Let  $\varphi$:M\rightarrow T be an abelian fibration between smooth quasi‐

projective varieties. Then the following conditions are equivalent to each other:

(1) One smooth fiber of  $\varphi$ is a simple abelian variety.

(2) A very general fiber of  $\varphi$ is a simple abelian variety.
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(3) If  A_{t}\subset M_{t} is a positive‐dimensional proper abelian subvariety of a smooth fiber

M_{t}=$\varphi$^{-1}(t) ,
then an irreducible component S of Hilb (M/T) containing the point

[A] does not dominate T.

Combining the argument on Hilbert schemes with a discussion on variation of Hodge

structures, we have:

Theorem 5.9 ([21], Theorem 2.23). Let  $\varphi$:M\rightarrow T be a smooth abelian fibra‐
tion over a quasi‐projective variety T and f:M\rightarrow M be a non‐isomorphic surjective

endomorphism over T. Suppose that there is a simple abelian subvariety A of codimen‐

sion one in a fiber M_{o}=$\varphi$^{-1}(0) satisfy ing f^{-1}(A)=A. Then  $\varphi$ has a factorization

 M\rightarrow $\alpha$ S\rightarrow $\beta$ T such that

(1)  $\alpha$:M\rightarrow S is a smooth abelian fibration and A is a fiber of  $\alpha$,

(2)  $\beta$:S\rightarrow T is a smooth elliptic fibration,

(3)  $\alpha$\circ f=v\circ $\alpha$ for an automorphism  v of S over T.

In particular,  $\varphi$ is a non‐simple abelian fibration.

§5.4. Proof of Theorems 1.2 and 1.3

We shall explain an outline of the proof of Theorems 1.2 and 1.3.

The implication (\mathrm{B})\Rightarrow(\mathrm{A}) in Theorem 1.2 holds in any dimension by [21], The‐

orem 2.26, where a Galois cohomology group is considered. Hence, it is enough to

show (\mathrm{A})\Rightarrow(\mathrm{B}) ; roughly speaking, for a given smooth projective 3‐fold X with a non‐

isomorphic surjective endomorphism f ,
we will construct a finite étale Galois covering

\overline{X} over X which has a structure of an abelian scheme over a lower dimensional variety.
The proof is divided into the following cases:

(i)  $\kappa$(X)=0.

(ii)  $\kappa$(X)=1 and a general fiber of the Iitaka fibration $\Phi$_{X} is an abelian surface.

(iii)  $\kappa$(X)=1 and a general fiber of the Iitaka fibration $\Phi$_{X} is not an abelian surface.

(iv)  $\kappa$(X)=2.

In papers [19], [21], the proof treats first the minimal model X_{\min} ,
and later the

original X by applying results similar to Lemma 5.4. Here, an expected étale covering
\overline{X}\rightarrow X is obtained as the pullback of a similarly expected étale covering \overline{X}_{\min}\rightarrow X_{\min}
by the birational morphism X\rightarrow X_{\min} . We need to check \overline{X} to have the same property
as \overline{X}_{\min} . However, for the sake of simplicity, in this article, we explain only the case
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of minimal models. The readers interested in recovering from X_{\min} to X refer to [19],
Section 6, and [21], Sections 4 and 5.

Case (i): Then K_{X}\sim \mathbb{Q}0 . Moreover, the fundamental group $\pi$_{1}(X) is infinite by
Lemma 3.4. By Bogomolov�s decomposition theorem (cf. [7], [4]), there exists a finite

étale Galois covering \overline{X}\rightarrow X such that \overline{X} is isomorphic to an abelian 3‐fold or the

direct product E\times S of an elliptic curve E and a K3 surface S . Thus, we are done.

Case (iv): In this case, the Iitaka fibration $\Phi$_{X}:X\rightarrow W is a minimal elliptic
fibration over a normal surface W . Here, it is known that W has only quotient singu‐
larities. It suffices to show Proposition 5.10 below, which is originally proved in [19],
Theorem 5.1; we shall give a simple proof using Lemma 5.3.

Proposition 5.10. There exists a finite étale covering \overline{X}\rightarrow X such that \overline{X} is

isomorphic to the direct product E\times W' of an elliptic curve E and a surfa ce W' of

general type.

Proof. Note that $\Phi$_{X} is not necessarily equi‐dimensional. By Lemma 5.3 and

by applying results in [44], Appendix \mathrm{A}
,

we infer that there is an equi‐dimensional

elliptic fibration  $\pi$:X\rightarrow T onto a normal projective surface T such that $\Phi$_{X} is the

composition of  $\pi$ and a birational morphism  T\rightarrow W . Since T is uniquely determined,
we have  $\pi$\circ f= $\pi$ . It is enough to prove that  $\pi$:X\rightarrow T is a Seifert elliptic fibration.

Assume the contrary. Then, by Proposition 5.6, there exists a prime divisor B\subset X such

that any irreducible component of general fibers of B\rightarrow $\pi$(B) is a rational curve. Since

B is an irreducible component of $\pi$^{-1}( $\pi$(B)) , (f^{k})^{-1}(B)=B for some k>0 . Thus,

f^{k} induces a non‐isomorphic étale endomorphism B\rightarrow B over  $\pi$(B) . Here, f^{-1}( $\gamma$) of a

rational curve  $\gamma$ in a fiber of  B\rightarrow $\pi$(B) is a union of rational curves, and the number

of irreducible components of f^{-1}( $\gamma$) is \deg f>1 . Hence, a general fiber of B\rightarrow $\pi$(B)
contains infinitely many rational curves; this is a contradiction. Thus, we are done. \square 

Case (iii): A general fiber of the Iitaka fibration $\Phi$_{X} is a hyperelliptic surface, since

f induces a non‐isomorphic surjective endomorphism of the fiber. For a hyperelliptic
surface F

,
the quotient map F\rightarrow F/\mathrm{A}\mathrm{u}\mathrm{t}^{0}(F)\simeq \mathbb{P}^{1} is an elliptic fibration with only

multiple singular fibers. We can consider a relative version of the quotient map by the

theory of �relative generic quotients� by Fujiki [17], [18]. Thus, $\Phi$_{X} is the composition
of a rational map X \rightarrow S to a normal projective surface S and a fibration S\rightarrow C such

that a general fiber of S/C is \mathbb{P}^{1} and a general fiber of X/S is an elliptic curve. By
Lemma 5.3 and by applying results in [44], Appendix \mathrm{A}

,
we may replace S to satisfy

that X\rightarrow S is a holomorphic equi‐dimensional elliptic fibration (cf. Proof of [19],
Theorem 5.10). By the existence of f ,

it is shown that the singular fiber type of X/S
along the discriminant locus is m\mathrm{I}0 for some m . Thus, X/S is Seifert by Proposition 5.6,
and we have an expected étale covering \overline{X}.
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Case (ii): The remaining case is treated in [21]. We write the Iitaka fibration as

$\Phi$_{X}:X\rightarrow C instead of using W . Since \deg(f)\geq 2 ,
we have:

Lemma 5.11 ([21], Lemma 3.8). The natural homomorphism $\pi$_{1}(X_{t})\rightarrow$\pi$_{1}(X)
of fundamental groups has infinite image for a general fiber X_{t}=$\Phi$_{X}^{-1}(t) .

Definition 5.12. Let  $\varphi$:M\rightarrow S be an abelian fiber space between smooth

varieties. If  $\pi$(M_{s})\rightarrow$\pi$_{1}(M) is injective for a general fiber M_{S}=$\varphi$^{-1}(s) ,
then  $\varphi$ is

called a primitive abelian fiber space. If  $\varphi$ is not injective, then it is called imprimitive.

Suppose that  $\Phi$_{X} is a primitive abelian fibration. Then, $\Phi$_{X} is a Seifert abelian

fibration by Proposition 5.7. Thus, we have an expected finite étale Galois covering \overline{X}.
If $\Phi$_{X} is simple, then there is no elliptic curve E\subset X with f^{-1}(E)=E by Theorem 5.9;
in particular, even if we consider X to be not necessarily minimal, X is shown to be

minimal (cf. Theorem 5.2). If $\Phi$_{X} is not simple and if X is not necessarily minimal,
then we need some more arguments in showing \overline{X} to have an expected property (cf.
[21], Section 4.2).

Then, there remains the case where $\Phi$_{X} is imprimitive. Let C^{\star}\subset C be the max‐

imum open subset over which $\Phi$_{X} is smooth. Then, for any t\in C^{\star} and for the fiber

X_{t}=$\Phi$_{X}^{-1}(t) ,
the kernel of $\pi$_{1}(X_{t})\rightarrow$\pi$_{1}(X) contains a Hodge structure H_{t} of rank two

by Lemma 5.11 and Proposition 5.7. By gathering {Ht}, we have a variation of Hodge
substructure H of \mathrm{R}_{1}$\Phi$_{X*}\mathbb{Z}_{X}|_{C^{\star}} of rank two (cf. [21], Corollary 3.9). Then we have a

factorization X \rightarrow Z\rightarrow C of $\Phi$_{X} such that q:Z\rightarrow C and  $\pi$:X \rightarrow Z are smooth

elliptic fibrations over C^{\star} and over q^{-1}(C^{\star}) , respectively, and that \mathrm{H}_{1}(X_{z}, \mathbb{Z})=H_{q(z)}
for z\in q^{-1}(C^{\star}) . The factorization is called an H‐factorization and its existence is

proved in [21], Proposition 2.20, by an argument similar to the proof of Proposition 5.8

and Theorem 5.9.

By Lemma 5.3 and by applying results in [44], Appendix \mathrm{A}
,

we may replace Z to

be a normal projective surface satisfying the condition that  $\pi$:X\rightarrow Z is a holomorphic

equi‐dimensional elliptic fibration (cf. [21], Theorem 5.6). Here, note that  $\pi$ is not

Seifert since  $\Phi$_{X} is imprimitive. So, we need more arguments than the previous cases.

The following is proved in [21], Proposition 5.7:

Proposition 5.13. There is a non‐isomorphic surjective endomorphism  $\beta$ of  Z

with  $\beta$\circ $\pi$= $\pi$\circ f . Moreover, there is a finite Galois covering \overline{C}\rightarrow C such that:

(1) \overline{Z}\simeq E\times\overline{C} over \overline{C} for the normalization \overline{Z} of Z\times c\overline{C} and for an elliptic curve E.

(2)  $\beta$ liftts to an endomorphism of  E\times\overline{C} of the form  $\phi$\times \mathrm{i}\mathrm{d}_{\overline{C}} for an endomorphism  $\phi$

of  E.

(3) The normalization \overline{X} of X\times c\overline{C} is étale over X
,

and \overline{X}\rightarrow\overline{Z} is a non‐Seife rt

minimal elliptic fibration.
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Let us consider the composite \overline{X}\rightarrow\overline{Z}\rightarrow E . Then it is shown to be a holomorphic
fiber bundle. Moreover, the following stronger result is obtained by applying the \partial‐étale

cohomological description of global structures of elliptic fibrations developed in [45]:

Proposition 5.14 ([21], Theorem 5.10). There exist a non‐Seife rt minimal el‐

liptic surfa ce  S\rightarrow\overline{C} and a finite étale covering E'\rightarrow E such that:

(1) \overline{X}':=E'\times E\overline{X} is isomorphic to E'\times S over E'

(2)  $\phi$ liftts to an endomorphism  $\phi$' of E'

(3) \overline{X}'\rightarrow\overline{X}\rightarrow X is a finite étale Galois covering.

(4) f liftts to an endomorphism of \overline{X}'\simeq E'\times S of the form $\phi$'\times v for an automorphism
v of S.

(5) The Galois group \mathrm{G}\mathrm{a}1(\overline{X}'/X) acts on S and the projection \overline{X'}\rightarrow S is equivariant.

Therefore, the étale covering \overline{X}'\rightarrow X satisfies the required conditions. By addi‐

tional arguments recovering from objects on X_{\min} to that on X
,

we complete the proof
of Theorems 1.2 and 1.3.

§6. Building blocks of étale endomorphisms

We shall overview the paper [47] on building blocks of étale endomorphisms. In the

birational classification theory of projective varieties, we study a variety by analyzing
the Iitaka fibration, the Albanese map, and the maximal rationally connected fibration.

Then the classification is reduced in some sense to the following varieties assuming the

good minimal model conjecture, etc.

(i) A rationally connected variety (cf. [10], [11], [34]).

(ii) An abelian variety.

(iii) A weak CalabiYau variety in the sense of [47], i.e., a minimal projective variety F

with only terminal (or canonical) singularities, K_{F}\sim \mathbb{Q}0 ,
and

q^{\max}(F) :=\displaystyle \max{  q(F')|F'\rightarrow F is a finite étale covering} =0.

(iv) A minimal variety of general type.

The reduction is given as follows:

Step 1. ( $\kappa$>0)\Rightarrow( $\kappa$=0)\mathrm{U}(\mathrm{i}\mathrm{v}) : For a variety X with 0< $\kappa$(X)<\dim X ,
we

have the Iitaka fibration $\Phi$_{X}:X \rightarrow W . Then a very general fiber F has  $\kappa$(F)=0.
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Step 2. ( $\kappa$=0)\Rightarrow(\mathrm{i}\mathrm{i}) , (iii): Assume that X has a good minimal model X_{\min} , i.e.,

K_{X_{\min}}\sim \mathbb{Q}0 . Then, by [28], Corollary 8.4, there is a finite étale covering F\times A\rightarrow X_{\min}
for an abelian variety A and a weak CalabiYau variety F.

Step 3. ( $\kappa$=-\infty)\Rightarrow( $\kappa$\geq 0)\cup(\mathrm{i}) : For a variety X
,

a weak version of abundance

conjecture says that  $\kappa$(X)=-\infty if and only if  X is uniruled. If X is uniruled, then there

exists uniquely up to birational equivalence a maximal rationally connected fibration
 $\pi$:X \rightarrow S ,

which satisfies the following conditions (cf. [10], [11], [34], [22]):

\bullet $\pi$^{-1}(U)\rightarrow U is holomorphic for an open dense subset U\subset S.

\bullet A general fiber of  $\pi$ is rationally connected.

\bullet  S is not uniruled.

Varieties in the four classes (i)(iv) are considered to be the building blocks of projective
varieties.

The authors of [47] want to have the similar building blocks for varieties with

surjective endomorphisms. But they restricted to the case of étale endomorphisms. One

reason is that for an étale endomorphism g:V\rightarrow V of a singular variety V ,
there is an

equivariant resolution of singularities  $\mu$:X\rightarrow V , i.e., $\mu$^{-1}\mathrm{o} go  $\mu$:X\rightarrow V\rightarrow V \rightarrow X

is étale. Another reason is that a finite étale morphism corresponds to a finite index

subgroup of the fundamental group of the base space. We explain the reduction in [47]
along the same steps. Let f:X\rightarrow X be an étale endomorphism of a smooth projective

variety X.

Step 1: Assume that  $\kappa$(X)>0 . By the equivariant resolution, we may assume that

the Iitaka fibration $\Phi$_{X}:X\rightarrow W is holomorphic. Then $\Phi$_{X}\circ f^{k}=$\Phi$_{X} for a suitable

power f^{k} by [47], Theorem A. Thus, f^{k} induces an étale endomorphism of a very general
fiber F of $\Phi$_{X} ,

where  $\kappa$(F)=0.

Step 2: Let X be a smooth projective variety of  $\kappa$(X)=0 with a good minimal

model X_{\min} . Then, the étale endomorphism f descends to a nearly étale (cf. [47], §3)
rational endomorphism f_{\min}:X_{\min} \rightarrow X_{\min} of a minimal model X_{\min} . There is a finite

étale covering F\times A\rightarrow X_{\min} for a weak CalabiYau variety F and an abelian variety
A as above. Then, for a suitable choice of A, f_{\min} induces a rational endomorphism of

F\times A of the form f_{F}\times f_{A} ,
where f_{A}:A\rightarrow A is étale and f_{F}:F \rightarrow F is nearly étale

(cf. [47], §4). Thus, we have the following commutative diagram of rational maps:

birational étale
X \rightarrow X_{\min} \leftarrow F\times A

f\displaystyle \downarrow f\min\downarrow \downarrow FA
X \rightarrow X_{\min}\leftarrow F\times A.



76 Yoshio Fujimoto and Noboru Nakayama

On the other hand, there is a conjecture that the fundamental group $\pi$_{1}(F) is

finite for a weak CalabiYau variety F . If the conjecture is true (which is confirmed if

\dim F\leq 3 by [48] ) ,
then f_{F} is birational and hence, the study of f is reduced to that

of f_{A}.

Step 3. For a uniruled X
,
the étale endomorphism f descends to an étale endomor‐

phism h of the base space S of the maximal rationally connected fibration  $\pi$:X \rightarrow S,
for a suitable choice of S (cf. [47], §5), where the proof needs the existence of rela‐

tive minimal models for resolutions of singularities proved in [6] in order to show the

étaleness of h . The commutative diagram

X\rightarrow^{f}X

 $\pi$\downarrow \downarrow $\pi$
 S\rightarrow^{h}S

of rational maps is birationally Cartesian, since a rationally connected manifold is simply
connected.

Therefore, the conclusion of [47] is that if we admit many conjectures and if we

consider modulo birational equivalence, then the building blocks of étale endomorphisms
are the endomorphisms of abelian varieties (and the nearly étale rational endomorphisms
of weak CalabiYau varieties).

Remark 6.1.

(1) The story of [47] gives only a perspective of classification of projective varieties

admitting non‐isomorphic surjective endomorphisms. For example, in Step 1, even

if we know very well the structure of f|_{F}:F\rightarrow F ,
it is usually very difficult to

recover the original f:X\rightarrow X as we have seen in Section 5.

(2) If \dim X=3 ,
then the argument in Step 2 covers almost all the results in Section 5

concerning the case of  $\kappa$(X)=0 . In Step 2, Kawamata�s result in [28] is used

instead of Bogomolov�s decomposition theorem.

References

[1] Amerik, E., Endomorphisms of projective bundles, Manuscripta Math., 111 (2003), 1728.

[2] Amerik, E. and Campana, F., Fibrations méromorphes sur certain variétés de classe canon‐

ique triviale, preprint 2005 (math. \mathrm{A}\mathrm{G}/0510299 ).
[3] Amerik, E., Rovinsky, M. and Van de Ven, A., A boundedness theorem for morphisms

between threefolds, Ann. Inst. Fourier, Grenoble, 49, 2 (1999), 405415.



Non‐isomorphic surjective endomorphisms 77

[4] Beauville, A., Variété Kähleriennes dont la première classe de Chern est nulle, J. Diff.
Geom., 18 (1983), 755782.

[5] Beauville, A., Endomorphisms of hypersurfaces and other manifolds, Math. Res. Notices,

(2001), no. 1, 5358.

[6] Birkar, C., Casini, P., Hacon, C. D. and Mckernan, J., Existence of minimal models for

varieties of \log general type, preprint 2006 (math. \mathrm{A}\mathrm{G}/0610203 ).
[7] Bogomolov, F., On the decomposition of Kähler manifolds with trivial canonical class,

Math. USSR Sbornick, 22 (1974), 580583.

[8] Briend, J.‐V., Cantat S. and Shishikura M., Linearity of the exceptional set for maps of

\mathbb{P}_{k} Math. Ann., 330 (2004), 3943.

[9] Call, G. S. and Silverman, J. H., Canonical heights on varieties with morphisms, Compo.
Math., 89 (1993), 163205.

[10] Campana, F., On twister spaces of the class C, J. Diff. Geom., 33 (1991), 541549.

[11] Campana, F., Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup.,
(4) 25 (1992), 539545.

[12] Cantat, S., Endomorphisms des variétés homogenes, Enseign. Math., 49 (2003), 237262.

[13] Cerveau, D. and Lins Neto, A., Hypersurfaces exceptionnelles des endomorphismes de

\mathbb{C}\mathbb{P}(n) ,
Bol. Soc. Bras. Mat., 31 (2000), no. 2, 155161.

[14] Fakhruddin, N., Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc.,
18 (2003), 109122.

[15] Fornaess, J. and Sibony, N., Complex dynamics in higher dimension, I, Complex analytic
methods in dynamical systems (Rio de Janeiro, 1992), pp. 201231, Astérisque 222, Soc.

Math. France, 1994.

[16] Fujiki, A., On automorphism groups of compact Kähler manifolds, Invent. Math., 44

(1978), 225258.

[17] Fujiki, A., On a holomorphic fiber bundle with meromorphic structure, Publ. Res. Inst.

Math. Sci. Kyoto Univ., 19 (1983), 117134.

[18] Fujiki, A., On the structure of compact complex manifolds in C, in Algebraic va rieties and

Analytic va rieties (S. Iitaka ed Adv. Stud. in Pure Math., 1, pp. 231‐302, Kinokuniya
and North‐Holland 1983.

[19] Fujimoto, Y., Endomorphisms of smooth projective 3‐folds with nonnegative Kodaira

dimension, Publ. Res. Inst. Math. Sci. Kyoto Univ., 57 (2002), 3392.

[20] Fujimoto, Y. and Nakayama, N., Compact complex surfaces admitting non‐trivial surjec‐
tive endomorphisms, Tohoku Math. J., 57 (2005), 395426.

[21] Fujimoto, Y. and Nakayama, N., Endomorphisms of smooth projective 3‐folds with non‐

negative Kodaira dimension, II, J. Math. Kyoto Univ., 47 (2007), 79114.

[22] Graber, T., Harris, J. and Starr, J., Families of rationally connected varieties, J. Amer.

Math. Soc., 16 (2003), 5767.

[23] Hwang, J.‐M. and Mok, N., Holomorphic maps from rational homogeneous spaces of

Picard number 1 onto projective manifolds, Invent. Math., 136 (1999), 209231.

[24] Hwang, J.‐M. and Mok, N., Finite morphisms onto Fano manifolds of Picard number 1

which have rational curves with trivial normal bundles, J. Alg. Geom., 12 (2003), 627651.

[25] Iitaka, S., On D‐dimensions of algebraic varieties, J. Math. Soc. Japan, 23 (1971), 356‐

373.

[26] Iitaka, S., Algebraic Geometry—an Introduction to Birational Geometry of Algebraic va‐

rieties, Graduate Te xts in Mathematics, No. 76, Springer 1981.

[27] Kawaguchi, S., Canonical heights, invariant currents, and dynamical eigensystems of mor‐



78 Yoshio Fujimoto and Noboru Nakayama

phisms for line bundles, J. Reine Angew. Math., 597 (2006), 135173.

[28] Kawamata, Y., Minimal models and the Kodaira dimension of algebraic fiber spaces, J.

Reine Angew. Math., 363 (1985), 146.

[29] Kawamata, Y., Crepant blowing‐up of 3‐dimensional canonical singularities and its appli‐
cation to degenerations of surfaces, Ann. of Math., 127 (1988), 93163.

[30] Kawamata, Y., Abundance theorem for minimal threefolds, Invent. Math., 108 (1992),
229246.

[31] Kawamata, Y., Matsuda, K. and Matsuki, K., Introduction to the minimal model problem,
Algebraic geometry, Sendai, 1985 (T. Oda ed pp. 283360, Adv. Stud. Pure Math., 10,

Kinokuniya and North‐Holland, 1987.

[32] Kollár, J., Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., 113

(1992), 177215.

[33] Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tr acts in

Mathematics, 134, Cambridge Univ. Press, 1998.

[34] Kollár, J., Miyaoka, Y. and Mori, S., Rational connected varieties, J. Alg. Geom., 1 (1992),
429448.

[35] Lazarsfeld, R., Some applications of the theory of positive vector bundles, Complete In‐

tersections (C.I.M.E., Acireale 1983), pp. 2961, Lecture Notes in Math., 1092, Springer,
1984.

[36] Miyaoka, Y., On the Kodaira dimension of minimal 3‐folds, Math. Ann., 281 (1988),
325332.

[37] Miyaoka, Y., Abundance conjecture for 3‐folds: case  $\nu$= 1, Comp. Math., 68 (1988),
325332.

[38] Miyaoka, Y. and Mori, S., A numerical criterion for uniruledness, Ann. of Math., 124

(1986), 6569.

[39] Mori, S., Threefolds whose canonical bundles are not numerically effective, Ann. of Math.,
116 (1982), 133176.

[40] Mori, S., Flip theorem and the existence of minimal models for 3‐folds, J. Amer. Math.

Soc., 1 (1988), 117253.

[41] Nakayama, N., Projective threefolds whose universal covering spaces are \mathbb{C}^{3} ,
Proc. Symp.

on ve ctor Bundles and Algebraic Geometry, January 1997, Kyushu University, organized
by S. Mukai and E. Sato, pp. 610.

[42] Nakayama, N., Projective algebraic varieties whose universal covering spaces are biholo‐

morphic to \mathbb{C}^{n} , J. Math. Soc. Japan., 51 (1999), 643654.

[43] Nakayama, N., Compact Kähler manifolds whose universal covering spaces are biholomor‐

phic to \mathbb{C}^{n} , preprint RIMS‐1230, Res. Inst. Math. Sci. Kyoto Univ. 1999; currently in the

midst of revision.

[44] Nakayama, N., Local structure of an elliptic fibration, Higher Dimensional Birational

Geometry (Y. Miyaoka and S. Mori eds pp. 185295, Adv. Stud. in Pure Math., 35,
Math. Soc. of Japan, 2002.

[45] Nakayama, N., Global structure of an elliptic fibration, Publ. Res. Inst. Math. Sci. Kyoto
Univ., 38 (2002), 451649.

[46] Nakayama, N., Ruled surfaces with non‐trivial surjective endomorphisms, Kyushu J.

Math., 56 (2002), 433446.

[47] Nakayama, N. and Zhang, D.‐Q., Building blocks of étale endomorphisms of complex
projective manifolds, preprint RIMS‐1577, Res. Inst. Math. Sci. Kyoto Univ. 2007.

[48] Namikawa, Y. and Steenbrink, J., Global smoothing of Calabi‐Yau threefolds, Invent.



\mathrm{N}\mathrm{o}\mathrm{N}‐isomorPhic surjective endomorphisms 79

Math., 122 (1995), 403419.

[49] Paranjape, K. H. and Srinivas, V., Self‐maps of homogeneous spaces, Invent. Math., 98

(1989), 425444.

[50] Sato, E. and Fujimoto, Y., On smooth projective threefolds with non‐trivial surjective
endomorphisms, Proc. Japan Acad., 74 Ser. A (1998), 143145.

[51] Segami, M., On surjective endomorphism of surfaces, Proc. Symp. on ve ctor Bundles and

Algebraic Geometry, January 1997, Kyushu University, organized by S. Mukai and E. Sato,
pp. 93102 (in Japanese).

[52] Ueno, K., Classification Theory of Algebraic va rieties and Compact Complex Spaces, Lec‐

ture Notes in Math., 439 Springer, 1975.

[53] Ueno, K., Introduction to the theory of compact complex spaces in the class C, Algebraic
va rieties and Analytic va rieties (S. Iitaka ed pp. 219230, Adv. Stud. in Pure Math.,
1, Kinokuniya and North‐Holland 1983.

[54] Zhang, D.‐Q., On endomorphisms of algebraic surfaces, Topology and geometry: commem‐

orating SISTA G, pp. 249263, Contemp. Math., 314, Amer. Math. Soc. 2002.

[55] Zhang, D.‐Q., Dynamics of automorphisms on projective complex manifolds, preprint
2006; also preprint MPIM2007‐19, Max‐Planck‐Institut für Math.

[56] Zhang, S.‐W., Distributions in algebraic dynamics, Surveys in Differential Geometry,
vol. 10, pp. 381430, Int. Press 2006.


