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0. Introduction

0.0. This article is a continuation of Kashiwara [K3]. We shall complete
the proof of a generalization of the Kazhdan-Lusztig conjecture to the
case of symmetrizable Kac-Moody Lie algebras.

0.1. The original Kazhdan-Lusztig conjecture [KL1] describes the char-
acters of irreducible highest weight modules of finite-dimensional

semisimple Lie algebras in terms of certain combinatorially defined poly-
nomials, called Kazhdan-Lusztig polynomials. It was simultaneously
solved by two parties, Beilinson-Bernstein and Brylinski-Kashiwara, by

similar methods ([BB], [BK]). The proof consists of the following two
parts.

(i) The algebraic part — the correspondence between D-modules on
the flag variety and representations of the semisimple Lie algebra.

(i1) The topological part — the description of geometry of Schubert
varieties in terms of the Kazhdan-Lusztig polynomials.

Note that the topological part had been already established by Kazhdan
and Lusztig themselves ([KL2]).

0.2. Our proof of the generalization of the Kazhdan-Lusztig conjecture
in the symmetrizable Kac-Moody Lie algebra case is similar to that in
the finite-dimensional case mentioned above. The algebraic part has

*RIMS., Kyoto University, Kyoto 606, Japan.
**College of General Education, Osaka University, Toyonaka 560, Japan.

1



already appeared in [K3] and this paper is devoted to the topological
part. The proof is again similar to the finite-dimensional case except
two points.

The first point is that we use the theory of mixed Hodge modules
of M. Saito [S] instead of the Weil sheaves. Note that mixed Hodge
modules and Weil sheaves are already employed by several authors in
order to relate the Hecke-Iwahori algebra of the Weyl group with the
geometry of Schubert varieties ([LV], [Sp], [T)]).

The second point is that we interpret the inverse Kazhdan-Lusztig
polynomials as the coefficients of certain elements of the dual of the
Hecke-Iwahori algebra. The appearance of the dual of the Hecke-Iwahori
algebra is natural because the open Schubert cell corresponds to the
identity element of the Weyl group, contrary to the finite-dimensional
case in which the open Schubert cell corresponds to the longest element.

0.3. We shall state our results more precisely. Let g be a symmetrizable
Kac-Moody Lie algebra, h) the Cartan subalgebra and W the Weyl group
(see [K’]). For A € b~ let M()) (resp. L(A)) be the Verma module (resp.
irreducible module) with highest weight A. For w € W we define a new
action of W on h* by wo A = w(A + p) — p, where p is an element of
h* such that (p,h;) = 1 for any simple coroot h; € §. For w,z € W
let P, .(q) be the Kazhdan-Lusztig polynomial and Qy :(g) the inverse
Kazhdan-Lusztig polynomial ([KL1], [KL2]). They are defined through
a combinatorics in the Hecke-Iwahori algebra of the Weyl group, and are
related by

(0.3.1) ST (-)AIHIQ, Py L =6y
weWw

Our main result is the following.

Theorem. For a dominant integral weight X € §* we have

ch L(wo ) = Y _(~1)4)-42)Q,, (1) ch M(z0 ),
zeW

or equivalently

ch M(wod)= Y P,.(1)chL(z0 ).
zeW

Here ch denotes the character and £(w) is the length of w.

0.4. Let X be the flag variety of g constructed in [K2] and let X, be

the Scubert cell corresponding to w € W. Note that X, is a finite-
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codimensional locally closed subvariety of the infinite-dimensional vari-
ety X.

By the algebraic part [K3] g-modules correspond to holonomic Dx-
modules. Hence by taking the solutions of holonomic P x-modules, we
obtain a correspondence between g-modules and perverse sheaves on X.
Since M (wol) and its dual M*(wol) have the same characters and since
the perverse sheaf corresponding to the highest weight module L(wo X)
(resp. M*(wol))is "Cx,[—£(w)] (resp. Cx,,[—£(w)]), the proof of the
theorem is reduced to

(04.1)  [Cx,[-w)]] = Y (-1)"D4)Q, .(1)[Cx. [-4(=)]]

zeW

(in the Grothendieck group of perverse sheaves). We shall prove it for
any (not necessarily symmetrizable) Kac-Moody Lie algebra in §6 by
using Hodge modules.

0.5. We finally remark that the Kazhdan-Lusztig conjecture for sym-
metrizable Kac-Moody Lie algebras is explicitly stated in Deodhar-
Gabber-Kac [DGK]. We also note that we have received the following
short note announcing the similar result: L. Cassian, Formule de multi-
plicité de Kazhdan-Lusztig dans le case de Kac-Moody, preprint.

1. Infinite-dimensional schemes

1.0. In this section we shall briefly discuss infinite-dimensional schemes.

1.1. A scheme X is called coherent if the structure ring Ox is coherent.
A scheme X over C is said to be of countable type if the C-algebra
Ox (U) is generated by a countable number of elements for any affine
open subset U of X (cf. [K2]). A morphism f: X — Y of schemes is
called weakly smooth if Qﬁqy is a flat Ox-module, where Qi’/y is the
sheaf of relative differentials.

1.2. We say that a C-scheme X satisfies (S) if X =~ lim N Sy for
n

some projective system {Sy }nen of C-schemes satisfying the following

conditions:

(1.2.1) S, is quasi-compact and smooth over C for any n.
(1.2.2) The morphism py, : S, — Sy, 1s smooth and affine for m 2 n.

In particular, X is quasi-compact.
Remark that by [EGA 1V, Proposition (8.13.1)], the pro-object
“lj_r_n” Sy 1s uniquely determined in the category of C-schemes of finite
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type. More precisely, we have

(1.2.3) lim Hom(S,, Y) = Hom(X,Y')

n

for any C-scheme Y locally of finite type.
Note that the projection p,: X — §,, is flat and and we have

(1.2.4) Q = lim(pa)* Q5

7

where Q) = Q}(/c- Thus we obtain

(1.2.5) Q) is locally a direct sum of locally free O x-modules of finite
rank.

We see from the following lemma that, if X is separated, we may
assume that S, is also separated for any n.

Lemma 1.2.1. Let X be an affine (resp. separated) scheme such
that X =~ lim Sy, where {Sp}nen is a projective system of schemes
n

satisfying the following conditions:

(1.2.6) S, is quasi-compact and quasi-separated for any n.
(1.2.7) pam : Sm — Sn is affine form 2 n.

Then S, is also affine (resp. separated) for n>> 0.

Proof. Let p,: X — S, be the projection.

(1) Assume that X is affine. We see from the assumptions that there
exist an affine open covering So = UjerU; and f; € T'(X;0x) (z € I)
such that pgl(Ui) D Xj, and X = Uje;Xy,, where I is a finite index
set and Xy, = X\ Supp(Ox/Ox fi). Setting A = I'(X;0x) and A,, =
T'(S,;0s,), we have A = Iiﬂ}n A, by [EGA IV, Theorem(8.5.2)], and
hence there exists some n satisfying f; € A, (i € I). Thus we may
assume that f; € Ay from the beginning. It is easily seen from the
assumptions that (S,);, C panlU; and A, =) ;c; Anfi for n > 0. Then
(Sn)y. is affine, and hence S, — Spec(Ay) is an affine morphism.

(2) Assume that X is separated. In order to prove that S, is sepa-
rated for n > 0, it is enough to show that, for any affine open subsets
U and V of So, p5,} (UNV) = pg.(U) x p5.} (V) is a closed embedding
for n > 0. Since py (U N V) is affine, py,}(U N V) is affine for n > 0 by
(1), and hence we may assume from the beginning that U NV is affine.
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Since Og,(U NV) is of finite type over Og,(U), Og, (U N V) is gener-
ated by finitely many elements a; over Og,(U). Since p7 (UNV) —
po H(U)xpy ' (V) is a closed embedding, (pg)*a; is contained in the image
of Ox(pg 1 (U)®Ox(py (V) = Ox (p3 1 (UNV)). Thus (pon)* a2 is con-
tained in the image of Os, (po,l (U))®0s, (P (V) = Os, (po (UNV))

for n 3> 0. Therefore Os, (pg. (U))® Os, (p5.1(V)) — Os, (p5.1(UNV))
is surjective. [J

1.3. Let (L) (resp. (LA)) denote the category of quasi-compact smooth
C-schemes and smooth (resp. smooth affine) morphisms.

Proposition 1.3.1. Let X be a C-scheme satisfying (S). Then
“lim” S, as a pro-object in (LA) does not depend on the choice of the

projective system {Sy}nen as in §1.2.

Proof. It is enough to show that, for any quasi-compact smooth
C-scheme Y, the natural map

(1.3.1)
lim Homy,)(Sn,Y) ={f € Hom(X,Y); (f” Qb )(z) = Q% ()

n

is injective for any z € X }

is bijective. Here, for an Ox-module F and z € X, F(z) denotes
Fo/mzF, where my is the maximal ideal of Ox ;. In fact, by Lemma
1.2.1, we then have

(1.3.2)
lim Hom(p,4)(Sa, Y) 5 {f € Hom(X,Y); f is affine and

n

(f*Q)(z) — Q4 (z) is injective for any z € X }.

The injectivity of (1.3.1) follows from (1.2.3). Let f: X — Y be a C-
morphism such that (f*Q})(z) — Q% (z) is injective for any z € X.
Then f splits into the composition of p,: X — S, and f: S, — Y
for some n. Since (f QL) (pa(z)) — (£ )(z) is injective for any z €
X, (f*Qi)(s) — Qg _(s) is also injective for any s € p,(X). Hence
there exists an open neighborhood Q of p,(X) such that (f*QL)(s) —

Q%, (s) is injective for any s € Q. Now [EGA 1V, Proposition (1.9.2)]
guarantees that there exists m 2 n such that p;},(Q) = Sp,, and hence
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((f 0 Pam)* QY )(s) = QL _(s) is injective for any 5 € Sm. This means
that fopnm is smooth. O

Lemma 1.3.2. Let f: X — Y be a morphism of C-schemes sai-
isfying (S). Then the following conditions are equivalent.

(1) f is weakly smooth (i.e. Q}/y is flat).

(ii) For any z € X, (f*Q})(z) — Q% (z) is injective.

(i) There exist projective systems {X,}, {Y,} satisfying (1.2.1),
(1.2.2) and a morphism {f,}: {Xn} — {Ya} of projective systems such
that X ~ Ei_r_nn Xn, Y ~ lijln Y, f= !iLnn fn, and f, is smooth for any
n.

Proof. (1)=(ii) is evident. (iii)=>(i) follows from the fact that
Q}/Y is the inductive limit of the flat () x-modules (pn)*Q}n/Yn, where
Pn: X — X, is the projection. Assume (ii). By (1.2.3), there exist
{Xn}, {Yn} and {fn} suchthat X ~lim X, Y ~lim Y,, f=lm f,.

—n —n —n

Then we see from the bijectivity of (1:3.1) that, for any n, there exists
some m 2 n such that the composition X,, — X, — Y, is smooth.
This implies (1i). O

1.4. A C-scheme X is called pro-smooth if it is covered by open subsets
satisfying (S).

Lemma 1.4.1 (cf. [K2]). A pro-smooth C-scheme is cokerent
and of countable type.

Lemma 1.4.2. Let f: X — Y be a smooth morphism of C-
schemes. If Y satisfies (S), so does X .

Proof. Let Y ~lim S,, where {S,} is as in §1.2. By [EGA IV,

Theorem (8.8.2)] there exist some n and a morphism f,: X, — S,
satisfying f ~ f, xg Y. Then, by [EGA IV, Proposition (17.7.8)],
fn Xg, Sm is smooth for m > 0. U

Corollary 1.4.3. A C-scheme smooth over a pro-smooth C-
scheme s also pro-smooth.

1.5. We give several examples of pro-smooth C-schemes.

(a) A® =Spec(C[X,;n=1,2,...]) (cf. [K2]). Let pr: A® — A™ be
the projection given by (X1,...,Xy). Then we have A® ~ hﬂ An.
n
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(b) P> (cf. [K2]).

(¢) Let E be a countable subset of C, and let A be the C-subalgebra of
the rational function field C(z) generated by z and {(z —a)"';a €
E}. Then X = Spec(A) is a pro-smooth C-scheme and we have
X(C)~C-E.

(d) Let A be the C-algebra which is generated by the elements e, (n €
Z) salisfying the fundamental relations e, ey = 8p men. Let 2, (n €
Z) and £ be the points of X = Spec(A) given by the prime ideals
A(l —en) (n € Z) and ), 5 Ae, respectively. Then X is a pro-
smooth C-scheme consisting of z,, (n € Z) and €. The underlying
topological space is homeomorphic to the one-point compactification
of Z with discrete topology, and the structure sheaf O x is isomorphic
to the sheaf of locally constant C-valued functions.

1.6. A C-scheme X is called essentially smooth if it is covered by open
subsets U, each of which is either smooth over C or isomorphic to W x
A® for a smooth C-scheme W. An essentially smooth C-scheme is
obviously pro-smooth.

Proposition 1.6.1. If W is a C-scheme of finite type such that
W x A® is pro-smooth, then W s smooth.

Proof.  We may assume that W x A satisfies (S). Hence we have
W x A% ~ lim S, for some {S,} satisfying (1.2.1) and (1.2.2). Then
there exist n and m such that the morphism py,, : Sy, — So splits into
Sm — W x A®™ > Sy. Hence W x A" — Sj is smooth at the image of
Sm. Therefore W x A™ is smooth and hence so is W. 0

Proposition 1.6.2. Lel X and Y be C-schemes and let f: Y —
X be a morphism of finite presenialion. Assume X ~ W x A® for a
C-scheme W of finite type. Then there exist some n and a C-morphism
[ U — W x A" of finite type satisfying f = f' x A® (Note that we
have A® ~ A" x A% ).

Proof. Since X ~ !in W x A" there exist some n and a C-scheme
n

U of finite presentation over W x A™ such that Y ~ X xy, 2. U by

[EGA 1V, Theorem (8.8.2)]. Then f’: U — W x A" satisfies the desired
condition. I

Corollary 1.6.3. A C-scheme smooth over an essentially smooth
C-scheme s also essentially smooth.

Lemma 1.6.4. Any essentially smooth C-scheme is a disjoint
unton of open irreducible subsets.
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Proof. Let X be an essentially smooth C-scheme. Since X is cov-
ered by open irreducible subsets, it is enough to show that, if U is an
open irreducible subset of X, then U is also an open subset of X. Let
z € U and let W be an irreducible open subset of X containing z.
Since WNU # 0, we have W = WNU = U. This shows that U is a
neighborhood of z. O '

1.7. We shall recall the definition of Dy and admissible D x-modules
for a pro-smooth C-scheme X.
For a morphism f: X — Y of pro-smooth C-schemes we set

(1.7.1)
Fn(Dx_.y) =0 (n < 0),
(1.7.2)
F.(Px_y)={P € Homc(f 'Oy,0x);
[P.a] € Fumi(Dxoy) forany a€ Oy } (n 2 0),

(1.7.3)
F(Dx—y)=Un Fa(Dx_y) C Homc(f 'Oy, 0x).
We have
(1.7.4) Fo(Dx-y) ~0x,
(1.7.5) Fi(Dx—y)~0x ®Ox_y,

where Ox .y := Homjy-1p, (f1QL,0x) is the sheaf of derivations.

Let Ia, denote the defining ideal of the diagonal Ay in Y x< Y and
set Oay(n) = Oyx, v/(Iay)"t!. Then Oa,(n) is locally a direct sum
of locally free Oy-modules of finite rank with respect to the Qy-module
structure induced by the first projection. Then we have

Fn(Dxﬁy) = Hom!_xoy(f_’(?AY(n),Ox),

and hence F,(Dx—vy) has a structure of a sheaf of linear topological
spaces induced from the pseudo-discrete topology of Oa, (n) (cf. [EGA
0, 3.8]). More concretely, for an affine open subset U of X and an affine
open subset V of Y such that U C f~}(V),

{P€FDxoy)(U); P(fi)=0 (iel)}

form a neighborhood system of 0 in T'(U; Fa(Dx—y)), where {fi}ier
ranges over finite subsets of Oy (V).
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If g: Y — Z is also a morphism of pro-smooth C-schemes, we can
define the composition

(1.7.6) Dx_y® f 'Dy_z = Dx_z.

In particular, Dx = DX 4 is a sheaf of rings and Dx_y is a

(Dx, f~'Dy)-bimodule.
If Y is a smooth C-scheme, we have

(1.7.7) Dx_y 2 O0x ®; 10, [ Dy.

Definition 1.7.1. Let X be a pro-smooth C-scheme. A Dx-module
M is called admzssible if it satisfies the following conditions:

(1.7.8) For any affine open subset U of X and any s € I'(U;9N), there
exists a finitely generated subalgebra A of T'(U;Ox) such that Ps =0
for any P € I'(U; Dx) satisfying P(A) = 0.

(1.7.9) M is quasi-coherent as an Ox-module.

The condition (1.7.8) is equivalent to saying that Dx acts continu-
ously on 91 with the pseudo-discrete topology.

1.8. Let f: X — Y be a morphism of pro-smooth C-schemes. Then for
any admissible Dy-module M, f*N = Ox ®;-10, £~ has a structure
of Dx-module. Moreover f*91 is admissible (cf. §1.9).

1.9. Let X be a C-scheme satisfying (S). Let {S, }nen be a projective
system as in §1.2 and let p,: X — S, be the projection. Then we have

(1.9.1)
Fi(Dxs,) = imp ! Fi(Ds,,—s,) = Ox ® -1 Pr Fr(Ds,),
m
(1.9.2) Fy(Dx) ~ liLan(Dx_.sn).

n

If 91 is an admissible D x-module locally of finite type, then there exist
some n and a coherent Dg_-module 91 such that

(193) M ~ (pn)"‘m = OX ®p;105“ pgl‘ﬂ ~ DX—'S,, ®p;l'D5n pglm

Conversely, for a quasi-coherent Dg, -module M, the D x-module (p, )*N
is an admissible D x-module.

1.10. Let X be a pro-smooth C-scheme. A Dx-module M is called
holonomic (vesp. regular holonomic) if it satisfies the following condition:
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(1.10.1) For any point z € X, there exist a morphism f: U — Y from
an open neighborhood U of z to a smooth C-scheme Y and a holonomic

(resp. regular holonomic) Dy-module N such that OM|U is isomorphic
to f*MN.

Let X ~lim &,,, where {S;}neN Is a projective system as in §1.2
—n
and let 91 be a coherent Dg,-module. It is seen that, if (p)*MN is a

holonomic (resp. regular holonomic) Dx-module, then (pp,)*91 is a
holonomic (resp. regular holonomic) Dg, -module for any n.

2. The analytic structure on C-schemes

2.0. In this section, ringed spaces, schemes and their morphisms are all
over C.

2.1. Let X be an affine C-scheme. We define a local ringed space X,
as follows. The underlying set of X,, is the set X(C) of the C-valued
points of X. The topology on X, is the weakest one such that, for
any f € Ox(X), f(C): X(C) — C is continuous with respect to the
Euclidian topology on C. We define the sheaf of rings Ox,, on X(C)
by

(2.1.1) Ox,, = lim f(C)™'Os
1

an?

where f: X — S ranges over morphisms with schemes S of finite type
as targets. Here S,, denotes the complex analytic space associated to

S. .

2.2. More generally, let X be a C-scheme. We endow with X(C) the
weakest topology such that, for any affine open subset U of X, any open
subset of U,y is open in X(C). Let X,, denote this topological space.
We define the sheaf of rings Ox,, by Ox, |Uan =~ Ou,, for any affine
open subset U of X.

Then we can check easily the following.

Lemma 2.2.1. (i) The ringed space (Xan, Ox,,) is well-defined.

(i) The correspondence X +— (Xan,Ox,,) is funclorial.

(ii1) (X X Y)an = Xan X Yan as a topological space.

(iv) If X = Y is an open (resp. closed) embedding, so is Xoap — Yan.

(v) Let {Xn},en be a projective system of C-schemes such that
Xm — Xn is affine for m 2 n. Then we have (hﬂ Xn)an ~ li(i1(/\’n)an
as a ringed space.

(vi) If X is separated, then Xa, is Hausdorff.
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(vii) If X is quasi-compact and of countable type, then Xan has «
countable base of open subsets.

2.3. There exists a natural morphism of ringed spaces
(2.3.1) t=tx: Xan — X
functorial in X, and we have a natural ¢3' D x-module structure on Ox,, .

2.4. A quasi-compact siratification of a C-scheme X is a locally finite
family {X,} of locally closed subsets of X such that

(24.1) X = UX, as a set,
(24.2) Xo N Xp # 0 implies Xo D X,
(2.4.3) The inctusion X, «— X is a quasi-compact morphism.

2.5. Let X be a coherent C-scheme and let k be a field.

Definition 2.5.1 A sheaf F' of k-vector spaces on X,, is called
weakly constructible if there exists a quasi-compact stratification X =
UXqo such that F|(Xg4)an is locally constant. If moreover Fy is finite-
dimensional for any z € Xa,, we call F' constructible.

Let D(Xan; k) be the derived category of the category of sheaves of
k-vector spaces on X,,. An object K of D(Xapn; k) is called constructible
(resp. weakly constructible) if it satisfies the following conditions.

(2.5.1) H™(K) is constructible (resp. weakly constructible) for any n.
(2.5.2) For any quasi-compact open subset  of X, H"(K)|Qan = 0
except for finitely many n.

The full subcategory of D(Xan;k) consisting of constructible (resp.
weakly constructible) objects will be denoted by D.(X; k) (resp.
Dy . (X k)).

Proposition 2.5.2. Let W be a smooth C-scheme. Set X = W x
A® X, = W x A" and let p,: X — X, be the projection. Then for
any K € Ob(D.(X;k)), there exist some n and K, € Ob(D(Xn:k))
satisfying (pn) s  Kn ~ K.

Proof. We can take a finite coherent stratification X = UX, such
that H7(K)| X4 is locally constant for any j and «. Then there exist
some n and a stratification X,, = LI)Z’O, such that X, = p;l,’za, Let
i: Xn — X, x A® be the embedding by the origin € A®. Since
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X ~ X, x A® and (A%®),, is contractible to the origin, we have
K ~ (pp)7l Kn with K, = (ian)" K. O

Proposition 2.5.3. Let X = A® x W, where W is a smooth C-
scheme, and letp: X — W be the projection. Then for a cohomologically
bounded object K of D(Wan; k), we have

RHom((pan) ' K, kx..) = (Pan) ‘RHom(K kw,,).

an

Proof. We shall show that the functorial morphism
(pan) 'RHom(K, kw,,) — RHom((pan) ™' K, kx,,)
is an isomorphism. In order to see this, it suffices to show that
RI((Pan) ™'V (pan) "' RHom(K, kw.,))
—RT((pan)™'V;RHom((pan) ' K, kx,,))

is an isomorphism for any open subset V of Wy, (Observe that U/ x
(A®)an X V form a base of open subsets of (A® x W),n, where A® ~
A" x A%, U is an open subset of (A"),, and V is an open subset of
Wan). This follows from the following lemma.

Lemma 2.5.4. Let X, Y and S be topological spaces and let
px: X — S andpy, : Y — S be continuous maps. Let p: X x[0,1] — X
be the projection, and let h: X x [0,1] = Y be a continuous map satisfy-
ing pyoh = pyop. Definei,: X — X x[0,1] (v =0,1) byi,(z) = (z,v),
and set f, = hoi,. Let K (resp. F) be a cohomologically bounded (resp.
lower bounded) object in the derived calegory of the category of sheaves
of k-vector spaces on S and let f} be the composition of

R(py )« RHom(py' K, py' F)
—R(py )-R(f,)-RHom(f; 'y K, £, 97 F)
SR(px )« RHom(px' K, p%' F).
Then we have fg = flﬂ
Proof. Set Z =X x[0,1] and p; = px op. Then f} is obtained by
R(py ).RHom(py' K, py' F)
—R(py)-Rh.RHom(h™'py K, A= py,' F)
~R(pz)RHom(p;'K,p;'F)
—R(pz)-R(i, ) RHom(i; p7' K,7, pz ' F)
~R(px).RHom(px'K,px'F).
12



Set K = px'K and F = p3'F. Since R(p;). = R(px).Rp,, it is
enough to show that the morphism

it - Rp,RHom(p™'K,p~'F) »Rp,R(i, )« RHom(i; 'p~ K ,i; ' p~ 1 F)
~RHom(K, F)
does not depend on v. Since
p*: RHom(K,F) —-Rp,RHom(p 'K ,p~'F)
~RHom(K,Rp,p~'F)
is an isomorphism and !, o p* = id, we obtain the desired result. O

For a quasi-compact separated essentially smooth C-scheme X we
set

(2.5.3) Dx(K)=RHom(K kx, )
for K € D.(X; k).

Corollary 2.5.5. Let X be a quasi-compact separated essentially
smooth C-scheme. Then

(1) Dx preserves D.(X; k).
(i) Dx oDx ~id.

2.6. Let X be a quasi-compact separated essentially smooth C-scheme.
Define full subcategories PDcéo(X;lc) and PDCgO(X; k) of D.(X; k) by

(2.6.1) K belongs to PDcéo(X;k) if and only if codimSupp H*(K) 2 n
for any n.

(2.6.2) K belongs to pchO(X;k) if and only if D x (K) belongs to
PDEY(X;k).

The following theorem is similarly proven as in the finite-dimensional
case (see [BBD], [KS]), and we omit the proof.

Theorem 2.6.1. (i) (pDcéo(X; k),”D%O(X;k)) is a t-structure of
D (X; k).

(i) For K; € Ob(”DaS'O(X;k)) and K3 € Ob(pDc;o(X;k)), we have
H"(RHom(Kl, I\’g)) =0 ('I’l < 0)
(ili) Perv(X; k) = PDES-O(X;k)ﬂPDczO(X;k) is a stack, i.e.

13



(a) For K1, Ky € Ob(Perv(X;k)), U+ Hom(X1|Uan, K2|Uan) is a
sheaf on X.

(b) Let X = U;U; be an open covering. Assume that we are given
objects K; of Perv(Uj; k) and isomorphisms fij: K;|(Us)an N
(Uj)an — Ii'i|(U,')anﬂ(Uj)an such that f,‘j ofix = fir on (Ui)-,mﬂ
(Uj)an N (Uk)an. Then there ezist K € Ob(Perv(X;k)) and
isomorphisms fi: K|(Ui)an — K; such that fij o fj = fi on
(Ui)an n (Uj)an-

We call an object of Perv(X; k) a perverse sheaf. When X is smooth,
this definition coincides with the one in [BBD] up to shift.

Proposition 2.6.2. Let X be a separated essentially smooth C-
scheme such that X ~ 1_111 Xn for some projective system {X,} satis-
7
fying (1.2.1) and (1.2.2). Then we have Perv(X; k) ~ lim Perv(Xn;k);
i.e. the following two properties hold.

(2.6.3) For My, My € Ob(Perv(X,; k)) we have

li__,mH‘Dm((an)*M] ) (an)* M3) ~ Hom((ps)” M1, (pn)*JWZ)-

m

(2.6.4) For any M € Ob(Perv(X;k)) there exist some n and M, €
Ob(Perv(X,; k)) such that M ~ (p,)*M,.

Here, pnm: Xm — Xn and pp: X — X, are the projections.

2.7. Let X be a C-scheme satisfying (S) and let { Sy, }nen be a projective
system as in §1.2. We denote by ppm: S — Sp (m 2 n) and p,: X —
p.q)

)

S, the projections. Let ‘Bgsn . be the sheaf of (p,¢)-forms on (Sy)an

with hyperfunction coefficients. Then we have natural homomorphisms
(27.1) (P )i B, — B0
(272)  x'Pn!Ds,—s, X (Pn)an BT, = (Pm)aa BSP),, -

By (2.7.1) we obtain a sheaf ‘B(Xpnq) =lim(pn)an ‘BE’;’:"))MX on Xan, and this

does not depend on the choice of {S,}nen by Proposition 1.3.1. Taking
the inductive limit in (2.7.2) with respect to m, we obtain

(2.7.3) %' Dxoas, X (pa)al BT — BEP).

14



Taking again the limit in (2.7.3) with respect to n, we obtain
(2.7.4) ¥ Dx x BYP — BEP),

and this defines a structure of an L}le—module on "B()?:). We have
also

(275)  lim(pm) Hom,zi g (15, Ds s, BsE),,)

~ -1 (0.p)
_Homt}x.Dx (tx Dx—s,, By ).

2.8. More generally, let X be a pro-smooth C-scheme. We can patch
the sheaves %E}’j) for affine open subschemes U of X satisfying (S), and

obtain a sheaf ‘BE\’,’;‘:) on X,, such that
(2.8.1) BED|U,, = B

We can define the derivatives

(2.8.2) 8- %()?;‘i) - 93(){3:1,41)’
(2.8.3) 3: 4351(’;2) - %()z(:;iu))

and we have the exact sequence:
2.8.4 0= Oy — 300 2% gmon 2
(2.8.4) Xun Xun Xun
of L}le—modules. The Dolbeault complex:
E) E)
BLY S OV S
is denoted by By .

2.9. Let X be a pro-smooth C-scheme. For a holonomic Dy -module
M, we set

(29.1) Sol(9M) = Homp, (M, By ) (= Homt;,px(g(lsn,%x“) ),
and regard this as an object of D(Xan; C). When X is smooth, we have
Sol(M) = RHomp, (M, Ox,.)

15



by [K1].

Let U be an open subset of X satisfying (S) and let {S,} be a
projective system of C-schemes satisfying (1.2.1), (1.2.2) such that U ~
]4il_nS,, Then we have MU ~ (p,,)* N for some n and some holonomic

Dg,,-module N, where p,: U — Sy, is the projection. By (2.7.5) we have
(2.9.2)
Homp,, (MM, BYP)
~Homp, (Dy-s, ®p,, N, ‘BS)“‘:’))
~Hompg (N, Homp,(Dy_s,, ’Bg)’p)))

an

~lim Hompg, (R, (pm)an Homps, (Ds,.—s,, BT )

m

> lim(pm )an Homps, ((Pam)* 9, BT ).

m

On the other hand we have

(2.9.3) H(Hompg_ ((Pam)* O, Bs, ). )
ﬁ’Emthsm ((Pam )™, O(Sm)a.n)
z(pnm);nl ‘Emt?Dsn (m’ O(Sn)u\ )

Thus

(2.9.4) HY(Sol(9)|Uan) = H((pn)z.k Sol(M)),

and we finally obtain

(2.9.5) Sol(9M)|Uan = (Pn)as SOl(M) in D¥(Usn; C).
This shows in particular

Lemma 2.9.1. Let X be a quasi-compacl separated essentially
smooth C-scheme. If M is a holonomic Dx-module, then Sol(IM) is
a perverse sheaf, and Sol is a contravariant exact functor from the cai-
egory of holonomic D x -modules to Perv(X).

16



3. Mixed Hodge modules on essentially smooth C-schemes

3.0. We shall study mixed Hodge modules on essentially smooth C-
schemes. In this section all schemes are over C and assumed to be
quast-compact and separaled.

3.1. In [S], M. Saito constructed mixed Hodge modules on finite-
dimensional manifolds. In his formulation, the weights behave well under
direct images, but not under inverse images. ~Since we treat infinite-
dimensional manifolds, we have to modify his definition so that the
weights behave well under inverse images.

3.2. Let X be a quasi-compact essentially smooth C-scheme. Let
MFW(X) be the category consisting of M = (O, F, K, W, ), where

(3.2.1) M is a regular holonomic Dx-module,

(3.2.2) F is a filtration of 90t by coherent O x-submodules which is com-
patible with (Dx, F),

(3.2.3) W(DN) is a finite filtration of M by regular holonomic Dx-
modules,

(3.2.4) K is an object of Perv(X;Q),
(3.2.5) W(K) is a finite filtration of K in Perv(X;Q),

(3.2.6) ¢ is an isomorphism Cx ®q, K = Sol(M) in D.(X;C), com-
patible with W; i.e. ¢ induces a commutative diagram

Cx ®q, Wi(K) —— Sol(M/W_x_1(IM))

! !

Cx ®q, K —— Sol(9M).

We define morphisms of MFI/V(X) so that M — K € Perv(X;Q) is a
covariant functor and M +— 91 is a contravariant functor.
Sometimes, ¢ in (M, F, K, W, ) will be omitted.

3.3. Let X be a smooth C-scheme and let M HM(X) be the cate-
gory of mixed Hodge modules on X defined in Saito [S]. We define a
contravariant functor

(3.3.1) ox: MHM(X) - MFW(X)

as follows. Let M = (O, F, K, W) be an object of M HM(X) and let
Dx(M) = (I*, F, K*, W) be the dual of M (cf. [S]). Then we define
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(pX(M)Z(m,F,f(,VV) by

(3.3.2) N =M Qp, (E™¥)8-1,

(33.3) Fp(9) = Fp(M*) ®p, (AF™*)®7,
(3.3.4) Wi (M) = Wirdim x () @0, (QF™X)®7,
(3.3.5) K = K[~ dim X],

(3.3.6) Wi (K) = Wipdim x (K)[— dim X].

Note that N is a left Dx-module since M and M* are right D x-modules.
Let MHM(X) be the image of wx-. It is a full subcategory of
M FW(X), isomorphic to M HM (X).
We define

(3.3.7) ox: DY (MHM(X))S DY(MHM(X))

by M +— px (M )[dimX]. Hence ¢ is compatible with
ix: DP(MHM(X)) — De(X;Q)and ix: DY(MHM(X)) — D(X; Q).
The duality functor Dx on M HM(X) defines the duality functor

(3.3.8) Dx: MHM(X)— MHM(X)°

by Dx owx = ¢x o Dx. Then we have ix o Dx = Dx o iy, where
Dx(K)=RHom(K, Qy,,) for K € Perv(X; Q).

3.4. For a morphism f: X — Y of smooth C-schemes, we define func-
tors

(3.4.1) . DY (MHM(Y)) — DY(MHM(X))
(3.4.2) fo fi: DY(MHM(X)) — DY(MHM(Y))

using those defined in [S] and the isomorphism (3.3.7). In particular, if

f: X — Y issmooth and M = (9, F, K, W) is an object of MHM(Y),
then we have

(3.4.3) (M) = (f*M, F, f*K, W) € Ob(M HM(X)),
where
(34.4) Fp(f*9N) = f* Fp(M),

(34.5)  Wi(f*OM) = f*(Wi(DN), Wi(f*K) = fH(Wi(K)).
18



We extend this definition when X is essentially smooth, Y is smooth and
[ is weakly smooth. Hence in this case, f* is a functor from M HM(Y)
into MFW(X) defined by (3.4.3), (3.4.4) and (3.4.5).

3.5. For an essentially smooth C-scheme X, we define a full subcategory
MHM(X) of MFW(X) as follows. An object M of M FW(X) belongs
to ]\;_fHM(X) if and only if X is covered by open subsets U such that
there are a weakly smooth morphism f: U — Y to a smooth C-scheme
Y and an object M’ of MHM(Y) satisfying M|U ~ f*M’. We can
easily see that MHM(X) is a stack. In this paper we call objects of

MHM(X) mized Hodge modules on X. Note that MHM(X) is an
abelian category.

We can define the duality functor
(3.5.1) Dx: MHM(X)— MHM(X)°P

by DxM|U ~ f*Dy M'. It is an exact functor satisfying DxoDx ~ id.
Hence this extends to

(3.5.2) Dx: DY(MHM(X)) — D*(MHM(X))°P.

3.6. Let X be an essentially smooth C-scheme satisfying (S) and let
{5, }nen be a projective system as in §1.2. Then we have

(3.6.1) MHM(X) =~ lim MHM(S,),
(3.6.2) DY (M HM(X)) = lim D*(M HM(S,))

(cf. Proposition 2.6.2).

3.7. For a morphism f: X — Y of essentially smooth C-schemes satis-
fying (S), we define

(3.7.1) f* DY(MHM(Y)) —» D*(MHM(X))

as follows. Let X ~ 1i_mn Xpand ¥V ~ liﬂln Y, . where {X,} and {Y,;}
satisfy (1.2.1) and (1.2.2). We may assume that there are morphisms
fo: X — Y, (n € N) such that f = l](_lll fa. Let py 0 X — X, and
Pyn: Y — Y, be the projections. For a b':)unded. complex M of mixed
Hodge modules on Y, there exist some n and a bounded complex M,
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of mixed Hodge modules on Y, such that M" ~ (py )" M. Then we
define (3.7.1) by

(3.7.2) "M = (px )" ((fn)" M)
It is easy to check that this is well-defined.

3.8. Let f: X — Y be a morphism of essentially smooth C-schemes.
Then, for each ¢ € Z, we can define a functor

(3.8.1) Hif* MHM(Y) > MHM(X).

In fact, locally on X, (H'f*)(M) is defined as H‘(f"(M)), and they can
be patched together. It satisfies the following properties:

(3.8.2) If f is weakly smooth, then we have (H*f*)(M) = 0 for i £ 0,
and (H°f*)(M) is given by (3.4.4) and (3.4.5).

(3.8.3) If (H*f*)(M) =0 fori # pand if g: W — X is another mor-
phism, then we have (H'g*)(HP f*)(M) ~ (H**?(f o g)*)(M).

3.9. Let f: X — Y be a morphism of finite presentation. Assume that
Y satisfies (S), so that X also satisfies (S). Then we define

(3.9.1) fo: DY(MHM(X)) — DY (MHM(Y)),
(3.9.2) fi: DY(MHM(X)) — DY(MHM(Y)),
(3.9.3) fH DY (MHM(Y)) — DY (MHM(X))

as follows. Let X ~ liLnn X, and YV ~ &iiln Y,, where {X,} and {Y,}
satisfy (1.2.1) and (1.2.2), and let M be a bounded complex of mixed
Hodge modules on X (resp. Y). We may assume that there exists a
morphism fo: X3 — Yo such that X ~ Xy xy, Y and f = fo xy, Y. Set
fa = foxy, Yn. We may further assume that there exists {gn}: {X{ Xy,
Yo} — {Xn} (resp. {hn}: {Xn} — {X( Xy, Yn}) such that limg, =idx
(resp. li(_rilhﬂ = idx). Let px,: X — Xn and py,: Y — Y, be the
projections. There exist some n and a bounded complex M, of mixed
Hodge modules on X,, (resp. Y;) such that M ~ (pxn)*M, (resp.
M =~ (pyn)*M,) . Then we define (3.9.1), (3.9.2) (resp. (3.9.3)) by

(394) f* (pYn) <pYn(fn Qn)* _I(M;z))

(3.9.5) FM = (py o) ey, (fa)(gn) 0 x. (M)

(39.6)  (resp. f'M = (px.n) px,(ha) (fa) oy (M,)).
20



It is easy to check that they are well-defined. We have the following
properties concerning them.

(3.9.7) The functor f, (resp. f') is a right adjoint functor of f* (resp.
£

(39.8)f, 0 Dx =~ Dy® ReBY Ly
(3.9.9) T f is proper, then we have f. = fi.

Note that (3.9.9) follows from the fact that f; is proper for n > 0 if f
is proper.

3.10. For an essentially smooth C-scheme X, we define

(3.10.1) QY = (0x,F,Qx,W,t) € Ob(MHM(X))
by

(3102) Fp(0x) = { SX gf g;

(3.10.3) Wi (Ox) = { BDX Ef i gi

104 we@an) = { Ef Zo

(3.105) ¢: Cx ®q, Qx = Sol(Ox) is induced by

L+ id € Homp, (Ox,0x) C Homp, (Ox, BE?).

Set (pt) = Spec(C) and let ay: X — (pt) be the projection. We
shall identify M HM((pt)) with the category M HS of mixed Hodge

structures. Then we have Qﬁ = (ax)*'Q¥, where Q¥ is the trivial
mixed Hodge structure on Q.

3.11. Let X and Y be essentially smooth C-schemes and let j: Y «— X
be an emmbeding of finite presentation. Then for any M € MHM(Y),

there exists an object "M of Db(Aijﬂ/[(X)) satisfying the following
properties:

(3.11.1) "M[—codim Y] € Ob(M HM(X)),

(3.11.2) Supp™M[—codimY] C Y,

(3.11.3) j*("M) ~ M,

(3.11.4) M|~ codim Y] has neither non-zero quotient nor non-zero sub-
object whose support is contained in ¥ — Y.
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Such "M 1s unique up to isomorphism, and we call it the minimal ez-
tension of M.

3.12. The following descent theorem being proven in a canonical way,
we leave its proof to the readers.

Proposition 3.12.1. Let f: X — Y be a weakly smooth mor-
phism of essentially smooth C-schemes. Assume that f admils a section
locallyonY. Letpi: X xy X = X (i=1,2) and pij: X Xy X Xy X —
X xy X (3,7 =1,2,3) be the obvious projections.

(i) For any M, M' € Ob(M HM(Y)) we have an ezact sequence:

0— Hom(M,M"y — Hom(f*M, f*M')
(P1)"—(pa)"

Hom((p1)" f*M,(p1)" f*M").

(i) Let M € Ob(MHM(X)) and let a: (p))*M = (p3)*M be
an isomorphism satisfying (paz)*a o (p12)*a = (p13)*« (Note that we
have (p13)*(p1)*M = (p12)*(P1)" M, (p12)*(p2)"M = (p23)*(p1)" M and
(P13)* (p2)"M = (p23)*(p2)*M ). Then there exist some
N € Ob(MHM(Y)) and an isomorphism 8: M = f*N satisfying
(P)'B=(p2)"Boc

3.13. Let G be an essentially smooth affine group scheme acting on an
essentially smooth C-scheme X. Let u: G x X — X be the composition
morphism, pr: G x X — X the projection and i: X — G x X the
embedding by the identity element ¢ € G. We define morphisms p;: G x
Gx X —->GxX (1=1,2,3) by pi(g;,92,2) = (91,922), P2(91, 92, %) =
(9192,z) and p3(gy,92,%) = (g2,2). For a mixed Hodge module M on
X we have mixed Hodge modules py*M and pr*M since p and pr are
weakly smooth.

We define an abelian category MHMS(X) as follows. An ob-
ject is a mixed Hodge module M on X, together with an isomorphism
ap p*M S pr* M, satisfying the following conditions:

(3.13.1) *erpy s *p* M — *pr* M coincides with id: M — M under the
identificaions “p*M = M amd *pr*M = M.

(3.13.2) We have (p2)*ay, = (p3)" ay,0(p1)" oy, under the identifications
(p2)*w*M = (p1)*p*M, (p2)*pr*M = (p3)'pr*M and (p1)'pr'M =
(p3)"p M.

A morphism ¢: M — N in MFIMG(X) is a morphism of mixed Hodge
modules satisfying pr @ o ap = an o p*p. An object of M HMC(X) is
called a G-equivariant mized Hodge module on X.
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Note that (3.13.1) is a consequence of (3.13.2) since o, is an iso-
morphism.

If M is a mixed Hodge structue, then {ax)*M is naturally endowed
with a structure of G-equivariant mixed Hodge module, and we call it a

constant G-equivariant mixed Hodge module. Here ax is the morphism
X — (pt).

Lemma 3.13.1. Any G-equivariant mized Hodge module on G
(with respect to the left multiplication) is constant.

Proof. Let M € Ob(MHMS%(G)). Let ¢: (pt) — G be the embed-
ding by e and let ¢/: G — G x G be the morphism given by g +— (g,¢).
Since pod =id and prot = toag, we have M = /*pu*M ~ J/*pr*M =
(ag)*t*M. We can easily check that the action of G on M coincides
with the one on the constant mixed Hodge module (ag)*¢*M. O

Set M HSS = MHMS((pt)).

Lemma 3.13.2. The abelian category MHSC is naturally equiv-
alent to MHSCS/G" where G° is the connected component of G contain-
ing the identity element e (Note that G/G® is a finite group by Lemma
1.6.4).

Proof This follows from the fact that, for any M € Ob(M HS%),
the restriction of ey : (ag)*M — (ag)* M to each connected component
of G comes from an automorphism of M in MHS. O

The following theorem can be easily proven by Lemma 3.13.2 and
Proposition 3.12.1.

Theorem 3.13.3. Let G be an affine group scheme and H an
essentially smooth closed subgroup scheme of G. Assume that H acts
locally freely on G and that G/H is separated and essentially smooth.
Let i: (pt) — G/H be the embedding by e € G. Then M +— i*M gives
an equivalence: MHMS (G/H) = M HSHIH®,
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4. Kac-Moody Lie algebras and flag varieties

4.1. Let A = (aij)1<ij<e be a matrix of integers satisfying a;; = 2,
a;j £ 0(i # j), aij # 0 ¢ aj; # 0. Assume that we are given a finite-
dimensional C-vector space fj, and elements hy,...,h; € §, oy, ... ,a¢ €
bh* satisfying the following conditions:

(4.1.1) (h;,aj):agj (i,j:l,...,e),
(4.1.2) {ai,...,a¢} is linearly independent,
(4.1.3) {hy,...,he} is linearly independent.

A Kac-Moody Lie algebra associated to these data is a Lie algebra g over
C which contains h as an abelian subalgebra and which is generated by

b and elements ey, ..., e, f1,..., f¢ satisfying the following relations:
(4.1.4) [h,e] = ai(h)e;, (h€bhi=1,...,¢8),

(4.1.5) hfi] = —ai(h)fi (h€bi=1,...,8),

(416) [e,',fj]:5,'jh,' (2_): 1,...,£),

(4.1.7) (ade;)'™%e; =0 (i #J),

(4.1.8) (ad f)! =i f; =0 (i # J).

4.2. Fori=1,...,¢, let s; be the linear automorphism of §* given by
(421) S,‘(/\) =A- (h,‘, /\)a;.

The Weyl group W of (g, b) is the subgroup of Aut(h*) generated by
S={s1,...,8¢}. It is well known that (¥, 5) is a Coxeter group with

ai;Qj4 01 2 3 g 4
ord(sis;) 2 3 4 6 oo
for i # j. We denote the length function and the Bruhat order on W by

£ and 2, respectively.
Set

(4.2.2) ge={z€g;[hz]=a)x(hen)} (aep"),
(4.2.3) —{aeb \ {0}; gaaéo}

(4.2.4) At =AnN ZZ>0a,, AT = AnZz§oa,~.

i=1 i=1
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Let n (resp. n~) be the subalgebra of g generated by e;,...,eq (resp.
fi,.-, ft). Then we have

(425) n= @aeA+ oy N = e3‘:'rEA" Yo
(4.2.6) g=n"@dhodn

Set

(4.2.7) b=hodn b =hHPHn~,
(428) glzh®cez$cfl (lzlrae)a
(4.2.9)

n; = @aEA+\{(¥;}GGx n,'_ = EBaEA‘\{—-a,'}ga (7’ = 1;' e )E)I
(4.2.10) pi=g®n py=gdn; (i=1,...,£).

They are subalgebras of g.

4.3. We shall define groups corresponding to certain subalgebras of g
(see [M], [K2]). Fix a Z-lattice P in h* satisfying

(4.3.1) a€eEP, (h,P)CZ (i=1,...,0).
Let

(4.3.2) T = Spec(C[P)),

(433)U = mk exp(n/(ad n)¥n), U~ = li—r—nk exp(n~/(ad n™)*n"),
(4.3.4) B (resp. B™) is the semi-direct product of T and U (resp. U~),
(4.3.5) G; is the algebraic group with G; D T, Lie(G;) = g;,Lie(T) = b,
(43.6) U; = !iink exp(n;/(ad n)*n;), U7 = l*i_n_1,c exp(n; /(adn=)*n7),
(4.3.7) P; (resp. P.") is the semi-direct product of G; and U; (resp. U;”).

Here we denote by exp(a) the unipotent algebraic group corresponding
to a finite-dimensional nilpotent Lie algebra a. The groups defined above
are naturally endowed with group scheme structures (see [M], [K2]).

4.4. In [K2] the first-named author has given a scheme theoretic con-
struction of the flag variety of (g, 1, P). It is the quotient X = G/B~,
where G is the scheme defined in [K2] which has a locally free action of
B~. Let &y = (1 mod B™) € X and set X,, = Bwzo C X for w e W.
As in the finite-dimensional case we have the following.

Proposition 4.4.1 ([K2]).
(1) Xy 1s an affine scheme with codimension £(w) in X.
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(“) X = UwGWXw-
(iii) 7“, = le;sz.

Fori=1,... ,£set X' =G/P ,zi = (1 mod P[) € X! (P acts
on G locally freely). Let ¢;: X — X’ be the natural morphism.

Proposition 4.4.2 ([K3]).

(i) i 15 a P1-bundle.

(i) Xt = Ug(ws;)>t(w)Bwe;.

(iii) g7 ' (Bwzi) = Xu U Xuws, -

(iv) ¢; induces an isomorphism Bwzg ~ Bwz; for £(ws;) < {(w).
(v) ¢ induces an Al-bundle Buzy — Bwz; for l(ws;) > £(w).

Lemma 4.4.3. Any B-invariant quasi-compact open subset of X
or X' satisfies (S).

Proof. The proof being similar, we shall prove the theorem only for
X. Let 2 be a B-invariant quasi-compact open subset of X. Then there
exists a finite subset J of W such that Q = U, ;Bwzo = U, ;wBzo.
Let © be a subset of A* such that A*\© is a finite set, (04+0)NAt C ©
and w='© C At for any w € J. We denote by Ug the closed subgroup of
U corresponding to g = Y cp 8a; i€. Up = hﬂk exp(ng/(ad n)¥ng).
For w € J the action of Ug on wBzg 1s equivalent to the action of
wlUgw(C U) on Bz, and hence Ug acts on wBzy freely. Thus
Q/Ue exists and it is a quasi-compact smooth C-scheme. Since @ ~
](iLn@ Q/Ue, the assertion follows from Lemma 1.2.1. O

4.5. Let us recall the results of [K3]. Assume that g is symmetrizable
until the end of §4. For A € P, let Ox(A) be the corresponding invertible
Ox-module. Set D) = Ox(}) ®p, Px ®p, Ox(—2A) and F(A) =
Ox(A) ®p, F for an Ox-module F. Note that, if 9 is a Dx-module,
then M(A) is a Dy-module. For w € W set B, = H%:)(OX), where
£(w) is the length of w. Let 9, be the dual of the Dx-module B,, and

let £, be the image of the unique non-zero homomorphism M, — B,,.
Then £,, is the minimal extension of B, |wBzg.

4.6. For A € h* let M(A) be the Verma module with highest weight X,
M*(X) the h-finite part of the dual of the Verma module with lowest
weight —A and L()) the image of the unique non-zero homomorphism
M(X) — M*(X). Then L(X) is the irreducible module with highest
weight A.
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Set wod = w(A+p)—pforw e W and A € b*, where p is an
element of h* such that (h;,p) =1 for any 1.

4.7. Let A € P = {X € P;(h;,\) 2 0 for any ¢}. For a B-equivariant
Dy-module M we set

(47.1) H™(X: ) = @uep im(H™(Q; M),
Q
(4.7.2) I(X; M) = H°(X; M),

where {2 ranges over B-invariant quasi-compact open subsets of X, and
for a semisimple h-module M the weight space with weight pu is denoted
by M,. By [K3, Theorem 5.2.1] we have

(4.7.3) H™(X;91) = 0 for any n # 0,
(4.7.4) I(X;M,(N) = M(wo X),
(4.7.5) I'(X;B,()) = M*(wo ),
(4.7.6) (X £u(A) = L{wo X).

4.8. Our main theorem is the following.

Theorem 4.8.1. Let g be a symmetrizable Kac-Moody Lie alge-
bra. Then, for A € Py and w € W, we have:

chL(woX) = > (~1)4)-4¥)Q, (1) ch M(z o)),

22w

where Qy, , s the inverse Kazhdan-Lusztig polynomial (see [KL2] and
§5.3 below).

In order to prove this theorem, it is sufficient to show that, for any
B-invariant quasi-compact open subset €2, we have:

(48.1) [£u10] = D (-1)*O=)Q, ,(1)[B, 0]
22w

in the Grothendieck group of the abelian category of B-equivariant holo-
nomic Dg-modules. Note that M (wo A) and M*(w o A) have the same
characters. Since we have
(48.2) Sol(£,) = "Cx, [-&w)],
(48.3) Sol(By) = Cx, [~l(w)].
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this is again reduced to:

(4.8.4) ["Cx,[-¢w)]IQ] = > _ (-1)4-HQ, . (1)[Cx, [-£(2))|0]

2Zw

in the Grothendieck group of the abelian category of B-equivariant per-
verse sheaves on 2.

The last statement will be proven for any (not necessarily sym-
metrizable) Kac-Moody Lie algebras in §6 by the aid of mixed Hodge
modules.

5. Hecke-Iwahori Algebras

5.0. In this section W denotes a Coxeter group with canonical generator
system S. The length function and the Bruhat order on W are denoted
by £ and 2, respectively.

5.1. The Hecke-Iwahori algebra H(W) is the associative algebra over
the Laurent polynomial ring Z[g,g~'] which has a free Z[q,q~!]-basis
{Tw}wew satisfying the following relations:

(5.1.1) (Ts+1)(Ts,—¢)=0 for se€S,
(512)  Tu,Tws = Towws if &w)+ E(wz) = £(wiws).

Let h +— h be the automorphism of the ring H(W) given by
(5.1.3) 7=¢"'. T.=T]L,
and define R, ,, € Z[q,q7 ) for y,w € W by

(5.1.4) To=Y Ryug T,

yew
The following is easily checked by direct calculations (see [KL1]).

(6.1.5) Ry # 0 if and only if y S w.
(5.1.6) Ry, is a ploynomial in ¢ with degree £(w) — £(y) for y < w.
(5.1.7) Ruw = 1.

Following [KL1] we introduce a free Z[g, ¢~ ]-basis {Cy}wew of
H(W).
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Proposition 5.1.1 ([KL1]). For w € W there exists a unique
element _
Cuw = Y ()"~ P, , T, € H(W)

ySw
satisfying the following conditions:
(a) Pyw=1
(b) Ify < w, then P, ,, is a polynomial in q with degree £ (£(w) —

{y) - 1)/2.
(c) Cw = ¢ "™C,.

Weset Py, =0ify $_ w.

5.2. Set H*(W) = Homggy -11(H(W), Z[g,¢™]). For w € W let S, be
the element of H* (W) determined by

(5.2.1) (Sw,Ty) = by y-1¢47 "),

where { , ) denotes the natural paring of H*(W) and H(W). Any ele-
ment of H*(W) is uniquely written as a formal infinite sum ), <y @ Su

(2w € Zlg, 7))
Define an endomorphism u — % of the abelian group H*(W) by

(5.2.2) (@, h) = (u, h) (v € H* (W), h € HW)).

We also define a right H(W)-module structure on #*(W) by
(6.2.3)  (u-hi, ha) = (u,hihy) (u€ H* (W), h1,hy € H(W)).
We can check the following lemma by direct calculations.

Lemma 5.2.1.
(1) ZwEW (lew = ZwEVV qt(w)(zygw ayRy_l'w—l)Sw‘
(i1) For s € S we have

(> awSu) To= Y (9= Daw + tws)Su + Y 90usSu.
weW ws>w ws<w

(iii) (u,h) = €e(u-h) (v€ H*(W),h € H(W)), wheree: H*(W) —
R is given by (), cw @uwSw) = ae.

5.3. For w € W we define an element D,, of H*(W) by
(5.3.1) (Dy,Cy) = by 4174
29



Set Dy = ¥,ew Qu.S: (Qus € Zlq,q~']). It is easily seen that
Quw.: =0 unless 2 2 w, and Qy 4 for y £ w are uniquely determined by

(5.3.2) Y. (NEWIQ Py =6y, (¥ S 2).

ySwsz
By definition we have the following properties:

(6.3.3) Quw = 1.

(5.3.4) If 2 > w, then Qy ., is a polynomial in ¢ with degree < (£(z) —
fw) - 1)/2.

(5.3.5) Dy = ¢“¥ID,,.

Moreover these properties characterize the element D,. We shall
formulate this uniquenes in a more general setting.

Let R be a commutative ring with 1 containing Z[g,q~!]. Assume
that we are given a grading R = ®;ez F; and an involutive automorphism
r — T of the ring R satisfying

(5.3.6) R;R; C Riyj, qE€ Ry, Ri=R., g=q"

Set Hr(W) = R ®y, 1y H(W) and Hp(W) = Homg(Hr(W), R).
Similarly to (5.2.2) and (5.2.3), we have an involution u — % of H{(W)
and a right Hr(W)-module structure on Hp(W).

Proposition 5.3.1. Letw € W. If D, =35 ,Q%,,S: (@, , €
R) s an element of Hp(W) satisfying the following conditions (a), (b),
(c), then we have D}, = D,,.

(a) Q:u’w =1.

(b) Q—:u,z € eigz(z)_z(w)_er’ for z > w.

(c) Dy, = ¢*) D,

Proof. We shall show @, , = Qu . for z 2 w by induction on

£(z) — L(w). If £(z) — &(w) = 0, we have w = z, and the assertion is
trivial. Assume that z > w. By Lemma 5.2.1 (i) we have

Dl = Z qt(u)( Z a:u,yRy—l,u-l)Sm
v2w vZy2w
and hence (c) implies :
Qo=@+ Y Ty Ryi).
2>Y2w
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By the inductive hypothesis we have

(5.3.7) Q. , - qt(z)—i(w)Q:U,z = ¢i&)-tw) Z —Qw,yRy—‘,z—"

D>Y2w
On the other hand (b) implies
(5.3.8) Qu.» E®ige(z)-e(w)-1 R
(5.3.9) ¢ O I € Bize(a)-tw)+1 Bis

and hence the equation (5.3.7) uniquely determines @, ,. Since Q.
also satisfies the same equation, we have @, , = Qu,.- U

6. Hodge modules on flag varieties

6.0. In this section we shall give a proof of (4.8.4) for any (not necessarily
symmetrizable) Kac-Moody Lie algebra g. For an abelian category A
we denote its Grothendieck group by K(A).

6.1. Set R = K(MHS). The abelian group R is naturally endowed with
a structure of commutative ring with 1 via the tensor product. Since
MHS is an Artinian category, R has a free Z-basis consisting of simple
objects. For i € Z we denote by R; the Z-submodule of R generated by
the elements corresponding to pure Hodge structures of weight i. Since
any simple object of M HS is a pure Hodge structure, we have

(6.1.1) R=®iczfi, RiR; C Riy;.

In the following we regard Z[g,q~!'] as a subring of R via ¢¢ =
[QH (1)) € Ry;, where Q¥ (—i) is the pure Hodge structure of weight 2i
obtained by twisting the trivial Hodge structure Q. Let r i 7 be the
involutive automorphism of the ring R induced by the duality operation

in MHS. Then we have
(6.1.2) Ri=R_;, g=q7%,

and hence the ring R satisfies the condition (5.3.6).

6.2. We have a natural R-module structure on K(M HMB(X,,)) for
weW.

31



Lemma 6.2.1. (i) Any object M of MHMPB(X,,) is isomorphic
to a constant B-equivariani mized Hodge module Q¥ QL (= (ax,)*(L))
for some L € Ob(M HS).

(i) K(MHMP(X,)) is a rank one free R-module with basis [Q¥ ).

Proof. This follows from Theorem 3.13.3 since the isotropy group
with respect to the action of B on X, is connected. [J

6.3. We say that a subset J of W is admissible if J is a finite set
satisfying the condition:

(6.3.1) weld, ySw=>yeld

We denote by C the set of admissible subsets of W. For a subset J of
W set Qy = UyesXw. By [K2] we see that Q; is a quasi-compact open
subset of X if and only if J is admissible.

For admissible subsets Jy, Jo satisfying J; C Jg, we have a natural
functor and a natural homomorphism

(6.3.2) MHMB(Q,,) = MHMB(Q,,)
(6.3.3) K(MHMP(Q,,)) = K(MHMB(Q,,))
by the restriction, and they give projective systems {MHMPB(Q,)}sec

and _
{K(MHM®B(Q;))}sec. Set

(6.3.4) MHMP(X) = lim MHEMP(Q,),
JeC
-B _n Yy B
(6.3.5) KB(Xx) = ?I_ZK(MHM Q1))
€

and let py: KB(X) — K(MHMP(Q,)) be the projection. The R-
module KB(X) may be regarded as a completion of the Grothendieck
group of MHMB(X).

Let iy : Xo — X be the inclusion. Let w € W and J € C such
that w € J, and let 7, ;: X, — Q; be the inclusion. We define objects

(i,) QY and "QY_ of DY(M HMPB(X)) by

(6.3.6) (i) QX 10 = (i, ,)(QX,).
(6.3.7) ,
*Q¥ Qs = ( the minimal extension of Qf\iw with respect to i, ;).
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Set [M] = Yy ez (—1)¥[H*(M)] for M € Ob(D*(M HM(2;))). We have
elements [(i,,)Q¥_] and ["Q¥ ] of KB(X) satisfying

(6.3.8) ps([(i,) QX)) = [(i,):QX,, 92],
(6.3.9) ps("QX, D) ="Qx, 9],

We nextly define an R-homomorhism
(6.3.10) (iw)*: KB(X)— K(MHM?P(X,))

as follows. For an admissible subset J such that w € J, we have an
R-homomorphism

(i )" : K(MHMB(Q))) — K(MHM®(X,))

given by
(i )" ([M]) = é(—l)"[(H"(iw,J)‘)(M)]
for M € Ob(K(MHMB(Q;))), and (6.3.10) is defined by
(6.3.11) (15)*(m) = (iy,4)"(ps (m)).
For m € KB(X) and w € W we define p, (m) € R by
(63.12) (iw)* (m) = pu(mM)[QY, ]

(see Lemma, 6.2.1). We also define an R-homomorphism ¢: K¥(X) —
HRp(W) by

(63.13) pm)= 3 pu(m)Se.
weW

Lemma 6.3.1. (1) ¢([(1, )1 Q¥ ,]) = Sw
(1) ¢ is an isomorphism of R-modules.

Proof. (i) is clear. Let usshow (ii). Let J be an admissible subset of
W. Since MHMB(Q]) is an Artinian category, its Grothendieck group
has a free Z-basis consisting of the simple objects. Since any simple
object of M HMPB(Qy) is isomorphic to ("Q¥_195)[—£(w)] @ L for some
w € J and some simple object L of M HS, we see that K(MHM?Z(Q;))
is a free R-module with basis {["ng[Q‘]]; w € J}. Since we have

Q¥ 1] € [(1w):Q¥, 11+ Y Ri(,).Q¥, ]
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for w € J, {[(iw): Q¥ _19]; w € J} is also a free basis of the R-module
K(MHM?EB(Qy)). Therefore the assertion follows from (i). I

6.4. We shall define an R-homomorphism
(64.1) mi: KB(X) — KB(X)

foreach : = 1,...,¢ as follows. Let €; be the set of adnuissible subsets J
of W such that ws; € J f w e J. For J € C; let 4" Qr — ¢:(2s) be

the restriction of ¢;: X — X' and define an endomorphism 7; ; of the
R-module K(MHMZB(Q;)) by

7. 0((M]) = [(:,5)* (g s M) for M € Ob(MHM?(Q;)).

Since ¢; ; is a B-equivariant Pl-bundle, 7; 5 1s well-defined. Then we
define an endomorphism 7; of KZ(X) = @JGC‘ K(MHMB(Q;)) by
T = %ﬂl g g l

Lemma 6.4.1. ¢(r;(m)) = @(m) - (Ty, + 1) for m € KB(X).

Proof. By Lemma5.2.1 (ii) and Lemma 6.3.1 it is sufficient to show

[Gws ) QE,, 1+ [(W)QE)  (wsi < w)

T ([(Tw ) 4 =
([(0): Q. ) {q([(iw,‘.)!Q%w.i]-f[(iw)!Q;{'w]) (wsi > w).

Let J € C; such that w € J. Set X, = 97" ¢i(Xw) = Xu U Xy, and
let jwg: Xw — s be the inclusion. Since Xo — qi()?w) is a PL-

bundle and since Xy — ¢;(X,) is an isomorphism (resp. A!-bundle)
for ws; < w (resp. ws; > w), we have

(ij)!ng (ws; < w)

Y (a: 1) iw ! H —
(Qn,J) (‘I:,J).(( ,J) QX.,,) { (jw,J)!Q;,-lw[—Q](—l) (WSi > w)‘

On the other hand, if ws; > w, we have an exact sequence:

0— (im,.,.r)!Q%m, [—8(w) — 1] = (3w,s): QY [—&(w)]
— (Ju,s ) Q¥ [—£(w)] — 0

in MHMPB(Q,). Hence the assertion is clear. £
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By Lemma 6.3.1 and Lemma 6.4.1 we can define a right H(W)-
module structure on KB(X) by

(6.4.2) m-(Ty, + 1) =r(m) (me KB(X)).

6.5. We denote by m — m* the endomorphisms of the abelian groups

KB(X) and K(MHM?(X,)) induced by the duality operation of mixed
Hodge modules.

Lemma 6.5.1. ¢(m*) = p(m) for m € KB(X).

Proof ~We have to show (p(m*), k) = (p(m),k) for m € KB(X),
h € H(W). By Lemma 5.2.1 (iii) and §§6.3, 6.4 this is equivalent to

(651)  (G)(m* - T,) = (()"(m-T,))* (me KP(X),zeWw),

where the right action of H(W) on K2(X) is given by (6.4.2). Let us
prove (6.5.1) by induction on €(z). The case z = e being trivial, we

take w € W satisfying s;w > w and prove (6.5.1) for z = s;w assuming
(6.5.1) for z = w.

Let J € C;. Since ¢; ; is a P'-bundle, we have

(652)  (4,)"(4:4):Da,(M) = (Da,(g;5)"(:.0)(M))[-2)(-1)
for M € Ob(MHM?PB(Q;)) and hence we have
(6.5.3) rn(m*) = (¢ n(m))* (me KB(X)).
Therefore we have
(ie)"(m" - Tyw) =(ie)"((n(m") —m™) - Ty)
=(ie)"((¢7 ' mi(m) = m)* - T,)

=((ie)‘((q—l1‘,~(m) —m) 'Tw))‘
=((ie)*(m Tyw))™. O

6.6. We shall determine H"((z'z_J)"(”Qﬁw [£27)) for any admissible sub-
set J and z,w € J. Since this does not depend on J, we simply denote
it by H*((i)"("Q¥.))-

We first give a weaker result.
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Proposition 6.6.1. ¢(["Q¥ 1)= D, forwe w.

Proof. Setting Q., , = ».(["Q¥_]) € Rand D, = 22w Qu,.Ss
€ H3(W), we have o(["Q¥_]) = D,,. Hence by Proposition 5.3.1, it is
sufficient to show the following conditions:

(66.1) @, = 1.

(662) Q:u,z (S ®i§£(z)—£(w)—lR'i for z > w.

(6.6.3) DI, = ¢*) D!, .

(6.6.1) is trivial, and (6.6.3) follows from Lemma 6.5.1 and
(6.6.4) Dq, ("QX, 1) = ("QX, 102)[-28(w))(—£(w)).

Let us show (6.6.2). Let z > w. Since "Qﬁwlﬂ,; is pure of weight 0,
(i2,0)*("Q¥ 1) is of weight £ 0, and hence H*((i, ;)*("Q¥ 1Q,)) is
of weight < ¢. On the other hand we have H'((i,,7)*("Q¥%_|Q,)) =0
for i 2 £(z)—£(w) by the definition. Therefore Q, , € ®i<e(z)—e(w)-1Ri-
O

Lemma 6.6.2. Let Y be an irreducible closed subvariety of C"
such that there exist integers ay,...,an > 0 satisfying

(6.6.5) z€C*, (21,...,2p) €Y = (z“"zl,u.,z“"zn) ey,

and leti: {0} — Y be the inclusion. Then HI(i*("Q¥)) is a pure Hodge
structure of weight j.

The proof is similar to [KL2, Lemma 4.5].
Lemma 6.6.3. H’((i,)"("Q%,)) is pure of weight j.

Proof. We may assume that z > w. Let z € X,. By [K2, Remark
4.5.14] we can take an open neighborhood V of z in X such that there
exists a commutative diagram

XNV —— X,NnV 1%

oo | | 1

{0} X A® — ¥ x A® — C" x A®

where Y is an irreducible closed subvariety of C” satisfying the assump-
tion of Lemma 6.6.2, the horizontal arrows are the natural inclusions
and the vertical arrows are isomorphisms. Hence the assertion follows
from Lemma 6.6.2. OO

Set Qu . = Ej cw,z,jqj (cw,zj €Z) for z,w € W with z 2 w.
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Theorem 6.6.4. Lel z 2 w.

(i) HE+(()*("QK ) =0 for any j € Z.

(i) For any j € Z we have ¢y ;; 2 0, and H((i,)"("QX.)) is
isomorphic to (Q¥ (—3))®cws.

Proof. By Theorem 3.13.3 there exist some Ny € Ob(MHS) (k €
Z) such that H*((i,)*("Q¥_)) = (ax,)"(Ni). Then we see from Propo-
sition 6.6.1 that

(667) ch,z,jqj = Z(_l)k[Nk]

kEZ

Since [Ni] € Ry by Lemma 6.6.3, we have [Nyj41] = 0 and [Nyj] =
cw.2;¢, and this implies that Nyj41 = 0 and Np; = (Q¥)®cw=s. O

It is easily seen that (4.8.4) is a consequence of Theorem 6.6.4 (or
even Lemma 6.6.1).
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