Kazhdan-Lusztig Conjecture for Symmetrizable Kac-Moody Lie Algebra. II —Intersection Cohomologies of Schubert Varieties—

Masaki KASHIWARA* Toshiyuki TANISAKI**

dedicated to Professor Jacques Dixmier on his sixty-fifth birthday

0. Introduction

- 0.0. This article is a continuation of Kashiwara [K3]. We shall complete the proof of a generalization of the Kazhdan-Lusztig conjecture to the case of symmetrizable Kac-Moody Lie algebras.
- 0.1. The original Kazhdan-Lusztig conjecture [KL1] describes the characters of irreducible highest weight modules of finite-dimensional semisimple Lie algebras in terms of certain combinatorially defined polynomials, called Kazhdan-Lusztig polynomials. It was simultaneously solved by two parties, Beilinson-Bernstein and Brylinski-Kashiwara, by similar methods ([BB], [BK]). The proof consists of the following two parts.
- (i) The algebraic part the correspondence between D-modules on the flag variety and representations of the semisimple Lie algebra.
- (ii) The topological part the description of geometry of Schubert varieties in terms of the Kazhdan-Lusztig polynomials.

Note that the topological part had been already established by Kazhdan and Lusztig themselves ([KL2]).

0.2. Our proof of the generalization of the Kazhdan-Lusztig conjecture in the symmetrizable Kac-Moody Lie algebra case is similar to that in the finite-dimensional case mentioned above. The algebraic part has

^{*}R.I.M.S., Kyoto University, Kyoto 606, Japan.

^{**}College of General Education, Osaka University, Toyonaka 560, Japan.

already appeared in [K3] and this paper is devoted to the topological part. The proof is again similar to the finite-dimensional case except two points.

The first point is that we use the theory of mixed Hodge modules of M. Saito [S] instead of the Weil sheaves. Note that mixed Hodge modules and Weil sheaves are already employed by several authors in order to relate the Hecke-Iwahori algebra of the Weyl group with the geometry of Schubert varieties ([LV], [Sp], [T]).

The second point is that we interpret the inverse Kazhdan-Lusztig polynomials as the coefficients of certain elements of the dual of the Hecke-Iwahori algebra. The appearance of the dual of the Hecke-Iwahori algebra is natural because the open Schubert cell corresponds to the identity element of the Weyl group, contrary to the finite-dimensional case in which the open Schubert cell corresponds to the longest element.

0.3. We shall state our results more precisely. Let $\mathfrak g$ be a symmetrizable Kac-Moody Lie algebra, $\mathfrak h$ the Cartan subalgebra and W the Weyl group (see [K']). For $\lambda \in \mathfrak h^*$ let $M(\lambda)$ (resp. $L(\lambda)$) be the Verma module (resp. irreducible module) with highest weight λ . For $w \in W$ we define a new action of W on $\mathfrak h^*$ by $w \circ \lambda = w(\lambda + \rho) - \rho$, where ρ is an element of $\mathfrak h^*$ such that $\langle \rho, h_i \rangle = 1$ for any simple coroot $h_i \in \mathfrak h$. For $w, z \in W$ let $P_{w,z}(q)$ be the Kazhdan-Lusztig polynomial and $Q_{w,z}(q)$ the inverse Kazhdan-Lusztig polynomial ([KL1], [KL2]). They are defined through a combinatorics in the Hecke-Iwahori algebra of the Weyl group, and are related by

(0.3.1)
$$\sum_{w \in W} (-1)^{\ell(w) - \ell(y)} Q_{y,w} P_{w,z} = \delta_{y,z}.$$

Our main result is the following.

Theorem. For a dominant integral weight $\lambda \in \mathfrak{h}^*$ we have

$$\operatorname{ch} L(w \circ \lambda) = \sum_{z \in W} (-1)^{\ell(z) - \ell(w)} Q_{w,z}(1) \operatorname{ch} M(z \circ \lambda),$$

or equivalently

$$\operatorname{ch} M(w \circ \lambda) = \sum_{z \in W} P_{w,z}(1) \operatorname{ch} L(z \circ \lambda).$$

Here ch denotes the character and $\ell(w)$ is the length of w.

0.4. Let X be the flag variety of g constructed in [K2] and let X_w be the Scubert cell corresponding to $w \in W$. Note that X_w is a finite-

codimensional locally closed subvariety of the infinite-dimensional variety X.

By the algebraic part [K3] \mathfrak{g} -modules correspond to holonomic \mathcal{D}_X -modules. Hence by taking the solutions of holonomic \mathcal{D}_X -modules, we obtain a correspondence between \mathfrak{g} -modules and perverse sheaves on X. Since $M(w \circ \lambda)$ and its dual $M^*(w \circ \lambda)$ have the same characters and since the perverse sheaf corresponding to the highest weight module $L(w \circ \lambda)$ (resp. $M^*(w \circ \lambda)$) is ${}^{\pi}\mathbf{C}_{X_w}[-\ell(w)]$ (resp. $\mathbf{C}_{X_w}[-\ell(w)]$), the proof of the theorem is reduced to

$$(0.4.1) [^{\pi} \mathbf{C}_{X_{w}}[-\ell(w)]] = \sum_{z \in W} (-1)^{\ell(z) - \ell(w)} Q_{w,z}(1) [\mathbf{C}_{X_{z}}[-\ell(z)]]$$

(in the Grothendieck group of perverse sheaves). We shall prove it for any (not necessarily symmetrizable) Kac-Moody Lie algebra in §6 by using Hodge modules.

0.5. We finally remark that the Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras is explicitly stated in Deodhar-Gabber-Kac [DGK]. We also note that we have received the following short note announcing the similar result: L. Cassian, Formule de multiplicité de Kazhdan-Lusztig dans le case de Kac-Moody, preprint.

1. Infinite-dimensional schemes

- 1.0. In this section we shall briefly discuss infinite-dimensional schemes.
- 1.1. A scheme X is called *coherent* if the structure ring \mathcal{O}_X is coherent. A scheme X over C is said to be of countable type if the C-algebra $\mathcal{O}_X(U)$ is generated by a countable number of elements for any affine open subset U of X (cf. [K2]). A morphism $f: X \to Y$ of schemes is called weakly smooth if $\Omega^1_{X/Y}$ is a flat \mathcal{O}_X -module, where $\Omega^1_{X/Y}$ is the sheaf of relative differentials.
- 1.2. We say that a C-scheme X satisfies (S) if $X \simeq \varprojlim_{n \in \mathbb{N}} S_n$ for some projective system $\{S_n\}_{n \in \mathbb{N}}$ of C-schemes satisfying the following conditions:
- (1.2.1) S_n is quasi-compact and smooth over C for any n.
- (1.2.2) The morphism $p_{nm}: S_m \to S_n$ is smooth and affine for $m \ge n$.

In particular, X is quasi-compact.

Remark that by [EGA IV, Proposition (8.13.1)], the pro-object " \lim " S_n is uniquely determined in the category of C-schemes of finite

type. More precisely, we have

(1.2.3)
$$\underset{n}{\underline{\lim}} \operatorname{Hom}(S_n, Y) \xrightarrow{\sim} \operatorname{Hom}(X, Y)$$

for any C-scheme Y locally of finite type.

Note that the projection $p_n: X \to S_n$ is flat and and we have

(1.2.4)
$$\Omega_X^1 \simeq \lim_{n \to \infty} (p_n)^* \Omega_{S_n}^1,$$

where $\Omega_X^1 = \Omega_{X/\mathbb{C}}^1$. Thus we obtain

(1.2.5) Ω_X^1 is locally a direct sum of locally free \mathcal{O}_X -modules of finite rank.

We see from the following lemma that, if X is separated, we may assume that S_n is also separated for any n.

Lemma 1.2.1. Let X be an affine (resp. separated) scheme such that $X \simeq \varprojlim_n S_n$, where $\{S_n\}_{n \in \mathbb{N}}$ is a projective system of schemes satisfying the following conditions:

- (1.2.6) S_n is quasi-compact and quasi-separated for any n.
- (1.2.7) $p_{nm}: S_m \to S_n$ is affine for $m \ge n$.

Then S_n is also affine (resp. separated) for $n \gg 0$.

Proof. Let $p_n: X \to S_n$ be the projection.

- (1) Assume that X is affine. We see from the assumptions that there exist an affine open covering $S_0 = \bigcup_{i \in I} U_i$ and $f_i \in \Gamma(X; \mathcal{O}_X)$ $(i \in I)$ such that $p_0^{-1}(U_i) \supset X_{f_i}$ and $X = \bigcup_{i \in I} X_{f_i}$, where I is a finite index set and $X_{f_i} = X \setminus \operatorname{Supp}(\mathcal{O}_X/\mathcal{O}_X f_i)$. Setting $A = \Gamma(X; \mathcal{O}_X)$ and $A_n = \Gamma(S_n; \mathcal{O}_{S_n})$, we have $A = \varinjlim_n A_n$ by [EGA IV, Theorem(8.5.2)], and hence there exists some n satisfying $f_i \in A_n$ $(i \in I)$. Thus we may assume that $f_i \in A_0$ from the beginning. It is easily seen from the assumptions that $(S_n)_{f_i} \subset p_{0n}^{-1}U_i$ and $A_n = \sum_{i \in I} A_n f_i$ for $n \gg 0$. Then $(S_n)_{f_i}$ is affine, and hence $S_n \to \operatorname{Spec}(A_n)$ is an affine morphism.
- (2) Assume that X is separated. In order to prove that S_n is separated for $n \gg 0$, it is enough to show that, for any affine open subsets U and V of S_0 , $p_{0n}^{-1}(U \cap V) \to p_{0n}^{-1}(U) \times p_{0n}^{-1}(V)$ is a closed embedding for $n \gg 0$. Since $p_0^{-1}(U \cap V)$ is affine, $p_{0n}^{-1}(U \cap V)$ is affine for $n \gg 0$ by (1), and hence we may assume from the beginning that $U \cap V$ is affine.

Since $\mathcal{O}_{S_0}(U\cap V)$ is of finite type over $\mathcal{O}_{S_0}(U)$, $\mathcal{O}_{S_0}(U\cap V)$ is generated by finitely many elements a_i over $\mathcal{O}_{S_0}(U)$. Since $p_0^{-1}(U\cap V)\to p_0^{-1}(U)\times p_0^{-1}(V)$ is a closed embedding, $(p_0)^*a_i$ is contained in the image of $\mathcal{O}_X(p_0^{-1}(U))\otimes \mathcal{O}_X(p_0^{-1}(V))\to \mathcal{O}_X(p_0^{-1}(U\cap V))$. Thus $(p_{0n})^*a_i$ is contained in the image of $\mathcal{O}_{S_n}(p_{0n}^{-1}(U))\otimes \mathcal{O}_{S_n}(p_{0n}^{-1}(V))\to \mathcal{O}_{S_n}(p_{0n}^{-1}(U\cap V))$ for $n\gg 0$. Therefore $\mathcal{O}_{S_n}(p_{0n}^{-1}(U))\otimes \mathcal{O}_{S_n}(p_{0n}^{-1}(V))\to \mathcal{O}_{S_n}(p_{0n}^{-1}(U\cap V))$ is surjective. \square

1.3. Let (L) (resp. (LA)) denote the category of quasi-compact smooth C-schemes and smooth (resp. smooth affine) morphisms.

Proposition 1.3.1. Let X be a C-scheme satisfying (S). Then " \lim " S_n as a pro-object in (LA) does not depend on the choice of the projective system $\{S_n\}_{n\in\mathbb{N}}$ as in §1.2.

Proof. It is enough to show that, for any quasi-compact smooth C-scheme Y, the natural map

(1.3.1)
$$\varinjlim_{n} \operatorname{Hom}_{(L)}(S_{n}, Y) \to \{ f \in \operatorname{Hom}(X, Y) ; (f^{*}\Omega^{1}_{Y})(x) \to \Omega^{1}_{X}(x)$$
is injective for any $x \in X \}$

is bijective. Here, for an \mathcal{O}_X -module \mathcal{F} and $x \in X$, $\mathcal{F}(x)$ denotes $\mathcal{F}_x/\mathfrak{m}_x\mathcal{F}_x$, where \mathfrak{m}_x is the maximal ideal of $\mathcal{O}_{X,x}$. In fact, by Lemma 1.2.1, we then have

$$(1.3.2) \underset{n}{\varinjlim} \operatorname{Hom}_{(LA)}(S_n, Y) \xrightarrow{\sim} \{ f \in \operatorname{Hom}(X, Y) ; f \text{ is affine and}$$

$$(f^*\Omega^1_Y)(x) \to \Omega^1_X(x) \text{ is injective for any } x \in X \}.$$

The injectivity of (1.3.1) follows from (1.2.3). Let $f: X \to Y$ be a C-morphism such that $(f^*\Omega^1_Y)(x) \to \Omega^1_X(x)$ is injective for any $x \in X$. Then f splits into the composition of $p_n: X \to S_n$ and $\tilde{f}: S_n \to Y$ for some n. Since $(\tilde{f}^*\Omega^1_Y)(p_n(x)) \to (f^*\Omega^1_Y)(x)$ is injective for any $x \in X$, $(\tilde{f}^*\Omega^1_Y)(s) \to \Omega^1_{S_n}(s)$ is also injective for any $s \in p_n(X)$. Hence there exists an open neighborhood Ω of $p_n(X)$ such that $(\tilde{f}^*\Omega^1_Y)(s) \to \Omega^1_{S_n}(s)$ is injective for any $s \in \Omega$. Now [EGA IV, Proposition (1.9.2)] guarantees that there exists $m \ge n$ such that $p_{nm}^{-1}(\Omega) = S_m$, and hence

 $((\tilde{f} \circ p_{nm})^*\Omega^1_Y)(s) \to \Omega^1_{S_m}(s)$ is injective for any $s \in S_m$. This means that $\tilde{f} \circ p_{nm}$ is smooth. \square

Lemma 1.3.2. Let $f: X \to Y$ be a morphism of C-schemes satisfying (S). Then the following conditions are equivalent.

- (i) f is weakly smooth (i.e. $\Omega^1_{X/Y}$ is flat).
- (ii) For any $x \in X$, $(f^*\Omega^1_Y)(x) \to \Omega^1_X(x)$ is injective.
- (iii) There exist projective systems $\{X_n\}$, $\{Y_n\}$ satisfying (1.2.1), (1.2.2) and a morphism $\{f_n\}$: $\{X_n\} \to \{Y_n\}$ of projective systems such that $X \simeq \varprojlim_n X_n$, $Y \simeq \varprojlim_n Y_n$, $f = \varprojlim_n f_n$, and f_n is smooth for any f_n .
- Proof. (i) \Rightarrow (ii) is evident. (iii) \Rightarrow (i) follows from the fact that $\Omega^1_{X/Y}$ is the inductive limit of the flat \mathcal{O}_X -modules $(p_n)^*\Omega^1_{X_n/Y_n}$, where $p_n \colon X \to X_n$ is the projection. Assume (ii). By (1.2.3), there exist $\{X_n\}, \{Y_n\}$ and $\{f_n\}$ such that $X \simeq \varprojlim_n X_n, Y \simeq \varprojlim_n Y_n, f = \varprojlim_n f_n$. Then we see from the bijectivity of (1:3.1) that, for any n, there exists some $m \geq n$ such that the composition $X_m \to X_n \to Y_n$ is smooth. This implies (iii). \square
- 1.4. A C-scheme X is called *pro-smooth* if it is covered by open subsets satisfying (S).

Lemma 1.4.1 (cf. [K2]). A pro-smooth C-scheme is coherent and of countable type.

Lemma 1.4.2. Let $f: X \to Y$ be a smooth morphism of C-schemes. If Y satisfies (S), so does X.

Proof. Let $Y \simeq \varprojlim_n S_n$, where $\{S_n\}$ is as in §1.2. By [EGA IV, Theorem (8.8.2)] there exist some n and a morphism $f_n: X_n \to S_n$ satisfying $f \simeq f_n \times_{S_n} Y$. Then, by [EGA IV, Proposition (17.7.8)], $f_n \times_{S_n} S_m$ is smooth for $m \gg 0$. \square

Corollary 1.4.3. A C-scheme smooth over a pro-smooth C-scheme is also pro-smooth.

- 1.5. We give several examples of pro-smooth C-schemes.
- (a) $\mathbf{A}^{\infty} = \operatorname{Spec}(\mathbf{C}[X_n ; n = 1, 2, ...])$ (cf. [K2]). Let $p_n : \mathbf{A}^{\infty} \to \mathbf{A}^n$ be the projection given by $(X_1, ..., X_n)$. Then we have $\mathbf{A}^{\infty} \simeq \lim_{n \to \infty} \mathbf{A}^n$.

- (b) \mathbf{P}^{∞} (cf. [K2]).
- (c) Let E be a countable subset of C, and let A be the C-subalgebra of the rational function field C(x) generated by x and $\{(x-a)^{-1}; a \in E\}$. Then $X = \operatorname{Spec}(A)$ is a pro-smooth C-scheme and we have $X(C) \simeq C E$.
- (d) Let A be the C-algebra which is generated by the elements e_n (n ∈ Z) satisfying the fundamental relations e_ne_m = δ_{n,m}e_n. Let x_n (n ∈ Z) and ξ be the points of X = Spec(A) given by the prime ideals A(1 e_n) (n ∈ Z) and ∑_{n∈Z} Ae_n respectively. Then X is a prosmooth C-scheme consisting of x_n (n ∈ Z) and ξ. The underlying topological space is homeomorphic to the one-point compactification of Z with discrete topology, and the structure sheaf O_X is isomorphic to the sheaf of locally constant C-valued functions.
- 1.6. A C-scheme X is called *essentially smooth* if it is covered by open subsets U, each of which is either smooth over C or isomorphic to $W \times A^{\infty}$ for a smooth C-scheme W. An essentially smooth C-scheme is obviously pro-smooth.

Proposition 1.6.1. If W is a C-scheme of finite type such that $W \times \mathbf{A}^{\infty}$ is pro-smooth, then W is smooth.

Proof. We may assume that $W \times \mathbf{A}^{\infty}$ satisfies (S). Hence we have $W \times \mathbf{A}^{\infty} \simeq \varprojlim S_n$ for some $\{S_n\}$ satisfying (1.2.1) and (1.2.2). Then there exist n and m such that the morphism $p_{0m}: S_m \to S_0$ splits into $S_m \to W \times \mathbf{A}^n \to S_0$. Hence $W \times \mathbf{A}^n \to S_0$ is smooth at the image of S_m . Therefore $W \times \mathbf{A}^n$ is smooth and hence so is W. \square

Proposition 1.6.2. Let X and Y be C-schemes and let $f: Y \to X$ be a morphism of finite presentation. Assume $X \simeq W \times \mathbf{A}^{\infty}$ for a C-scheme W of finite type. Then there exist some n and a C-morphism $f': U \to W \times \mathbf{A}^n$ of finite type satisfying $f = f' \times \mathbf{A}^{\infty}$ (Note that we have $\mathbf{A}^{\infty} \simeq \mathbf{A}^n \times \mathbf{A}^{\infty}$).

Proof. Since $X \simeq \varprojlim_n W \times \mathbf{A}^n$, there exist some n and a C-scheme U of finite presentation over $W \times \mathbf{A}^n$ such that $Y \simeq X \times_{W \times \mathbf{A}^n} U$ by [EGA IV, Theorem (8.8.2)]. Then $f' : U \to W \times \mathbf{A}^n$ satisfies the desired condition. \square

Corollary 1.6.3. A C-scheme smooth over an essentially smooth C-scheme is also essentially smooth.

Lemma 1.6.4. Any essentially smooth C-scheme is a disjoint union of open irreducible subsets.

Proof. Let X be an essentially smooth C-scheme. Since X is covered by open irreducible subsets, it is enough to show that, if U is an open irreducible subset of X, then \overline{U} is also an open subset of X. Let $x \in \overline{U}$ and let W be an irreducible open subset of X containing x. Since $W \cap U \neq \emptyset$, we have $\overline{W} = \overline{W \cap U} = \overline{U}$. This shows that \overline{U} is a neighborhood of x. \square

1.7. We shall recall the definition of \mathcal{D}_X and admissible \mathcal{D}_X -modules for a pro-smooth C-scheme X.

For a morphism $f: X \to Y$ of pro-smooth C-schemes we set

$$(1.7.1)$$

$$F_{n}(\mathcal{D}_{X\to Y}) = 0 \quad (n < 0),$$

$$(1.7.2)$$

$$F_{n}(\mathcal{D}_{X\to Y}) = \{ P \in Hom_{\mathbf{C}}(f^{-1}\mathcal{O}_{Y}, \mathcal{O}_{X});$$

$$[P, a] \in F_{n-1}(\mathcal{D}_{X\to Y}) \text{ for any } a \in \mathcal{O}_{Y} \} \quad (n \geq 0),$$

$$(1.7.3)$$

$$F(\mathcal{D}_{X\to Y}) = \bigcup_{n} F_{n}(\mathcal{D}_{X\to Y}) \subset Hom_{\mathbf{C}}(f^{-1}\mathcal{O}_{Y}, \mathcal{O}_{X}).$$

We have

$$(1.7.4) F_0(\mathcal{D}_{X\to Y}) \simeq \mathcal{O}_X,$$

$$(1.7.5) F_1(\mathcal{D}_{X\to Y}) \simeq \mathcal{O}_X \oplus \Theta_{X\to Y},$$

where $\Theta_{X\to Y}:=Hom_{f^{-1}\mathcal{O}_Y}(f^{-1}\Omega^1_Y,\mathcal{O}_X)$ is the sheaf of derivations.

Let I_{Δ_Y} denote the defining ideal of the diagonal Δ_Y in $Y \times_{\mathbf{C}} Y$ and set $\mathcal{O}_{\Delta_Y(n)} = \mathcal{O}_{Y \times_{\mathbf{C}} Y} / (I_{\Delta_Y})^{n+1}$. Then $\mathcal{O}_{\Delta_Y(n)}$ is locally a direct sum of locally free \mathcal{O}_Y -modules of finite rank with respect to the \mathcal{O}_Y -module structure induced by the first projection. Then we have

$$F_n(\mathcal{D}_{X\to Y}) = Hom_{f^{-1}\mathcal{O}_Y}(f^{-1}\mathcal{O}_{\Delta_Y(n)}, \mathcal{O}_X),$$

and hence $F_n(\mathcal{D}_{X\to Y})$ has a structure of a sheaf of linear topological spaces induced from the pseudo-discrete topology of $\mathcal{O}_{\Delta_Y(n)}$ (cf. [EGA 0, 3.8]). More concretely, for an affine open subset U of X and an affine open subset V of Y such that $U \subset f^{-1}(V)$,

$$\{P \in F_n(\mathcal{D}_{X \to Y})(U); P(f_i) = 0 \quad (i \in I)\}$$

form a neighborhood system of 0 in $\Gamma(U; F_n(\mathcal{D}_{X \to Y}))$, where $\{f_i\}_{i \in I}$ ranges over finite subsets of $\mathcal{O}_Y(V)$.

If $g: Y \to Z$ is also a morphism of pro-smooth C-schemes, we can define the composition

$$(1.7.6) \mathcal{D}_{X \to Y} \otimes f^{-1} \mathcal{D}_{Y \to Z} \to \mathcal{D}_{X \to Z}.$$

In particular, $D_X := D_{X \xrightarrow{\mathrm{id}} X}$ is a sheaf of rings and $\mathcal{D}_{X \to Y}$ is a $(\mathcal{D}_X, f^{-1}\mathcal{D}_Y)$ -bimodule.

If Y is a smooth C-scheme, we have

$$(1.7.7) \mathcal{D}_{X \to Y} \simeq \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}\mathcal{D}_Y.$$

Definition 1.7.1. Let X be a pro-smooth C-scheme. A \mathcal{D}_X -module \mathfrak{M} is called *admissible* if it satisfies the following conditions:

(1.7.8) For any affine open subset U of X and any $s \in \Gamma(U; \mathfrak{M})$, there exists a finitely generated subalgebra A of $\Gamma(U; \mathcal{O}_X)$ such that Ps = 0 for any $P \in \Gamma(U; \mathcal{D}_X)$ satisfying P(A) = 0.

(1.7.9) \mathfrak{M} is quasi-coherent as an \mathcal{O}_X -module.

The condition (1.7.8) is equivalent to saying that \mathcal{D}_X acts continuously on \mathfrak{M} with the pseudo-discrete topology.

- 1.8. Let $f: X \to Y$ be a morphism of pro-smooth C-schemes. Then for any admissible \mathcal{D}_Y -module \mathfrak{N} , $f^*\mathfrak{N} = \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}\mathfrak{N}$ has a structure of \mathcal{D}_X -module. Moreover $f^*\mathfrak{N}$ is admissible (cf. §1.9).
- 1.9. Let X be a C-scheme satisfying (S). Let $\{S_n\}_{n\in\mathbb{N}}$ be a projective system as in §1.2 and let $p_n: X \to S_n$ be the projection. Then we have

$$(1.9.1) F_{k}(\mathcal{D}_{X \to S_{n}}) \simeq \varinjlim_{m} p_{m}^{-1} F_{k}(\mathcal{D}_{S_{m} \to S_{n}}) = \mathcal{O}_{X} \otimes_{p_{n}^{-1} \mathcal{O}_{S_{n}}} p_{n}^{-1} F_{k}(\mathcal{D}_{S_{n}}),$$

$$(1.9.2) F_{k}(\mathcal{D}_{X}) \simeq \varprojlim_{n} F_{k}(\mathcal{D}_{X \to S_{n}}).$$

If \mathfrak{M} is an admissible \mathcal{D}_X -module locally of finite type, then there exist some n and a coherent \mathcal{D}_{S_n} -module \mathfrak{N} such that

$$(1.9.3) \quad \mathfrak{M} \simeq (p_n)^* \mathfrak{N} = \mathcal{O}_X \otimes_{p_n^{-1}\mathcal{O}_{S_n}} p_n^{-1} \mathfrak{N} \simeq \mathcal{D}_{X \to S_n} \otimes_{p_n^{-1}\mathcal{D}_{S_n}} p_n^{-1} \mathfrak{N}.$$

Conversely, for a quasi-coherent \mathcal{D}_{S_n} -module \mathfrak{N} , the \mathcal{D}_X -module $(p_n)^*\mathfrak{N}$ is an admissible \mathcal{D}_X -module.

1.10. Let X be a pro-smooth C-scheme. A \mathcal{D}_X -module \mathfrak{M} is called holonomic (resp. regular holonomic) if it satisfies the following condition:

(1.10.1) For any point $x \in X$, there exist a morphism $f: U \to Y$ from an open neighborhood U of x to a smooth C-scheme Y and a holonomic (resp. regular holonomic) \mathcal{D}_Y -module \mathfrak{N} such that $\mathfrak{M}|U$ is isomorphic to $f^*\mathfrak{N}$.

Let $X \simeq \varprojlim_n S_n$, where $\{S_n\}_{n \in \mathbb{N}}$ is a projective system as in §1.2 and let \mathfrak{N} be a coherent \mathcal{D}_{S_0} -module. It is seen that, if $(p_0)^*\mathfrak{N}$ is a holonomic (resp. regular holonomic) \mathcal{D}_X -module, then $(p_{0n})^*\mathfrak{N}$ is a holonomic (resp. regular holonomic) \mathcal{D}_{S_n} -module for any n.

2. The analytic structure on C-schemes

- 2.0. In this section, ringed spaces, schemes and their morphisms are all over C.
- **2.1.** Let X be an affine C-scheme. We define a local ringed space $X_{\rm an}$ as follows. The underlying set of $X_{\rm an}$ is the set X(C) of the C-valued points of X. The topology on $X_{\rm an}$ is the weakest one such that, for any $f \in \mathcal{O}_X(X)$, $f(C) \colon X(C) \to C$ is continuous with respect to the Euclidian topology on C. We define the sheaf of rings $\mathcal{O}_{X_{\rm an}}$ on X(C) by

(2.1.1)
$$\mathcal{O}_{X_{\mathrm{an}}} = \varinjlim_{t} f(\mathbf{C})^{-1} \mathcal{O}_{S_{\mathrm{an}}},$$

where $f\colon X\to S$ ranges over morphisms with schemes S of finite type as targets. Here $S_{\rm an}$ denotes the complex analytic space associated to S.

2.2. More generally, let X be a C-scheme. We endow with X(C) the weakest topology such that, for any affine open subset U of X, any open subset of $U_{\rm an}$ is open in X(C). Let $X_{\rm an}$ denote this topological space. We define the sheaf of rings $\mathcal{O}_{X_{\rm an}}$ by $\mathcal{O}_{X_{\rm an}}|U_{\rm an}\simeq \mathcal{O}_{U_{\rm an}}$ for any affine open subset U of X.

Then we can check easily the following.

Lemma 2.2.1. (i) The ringed space $(X_{an}, \mathcal{O}_{X_{an}})$ is well-defined.

- (ii) The correspondence $X \mapsto (X_{an}, \mathcal{O}_{X_{an}})$ is functorial.
- (iii) $(X \times Y)_{an} = X_{an} \times Y_{an}$ as a topological space.
- (iv) If $X \to Y$ is an open (resp. closed) embedding, so is $X_{\rm an} \to Y_{\rm an}$.
- (v) Let $\{X_n\}_{n\in\mathbb{N}}$ be a projective system of C-schemes such that $X_m \to X_n$ is affine for $m \ge n$. Then we have $(\varprojlim X_n)_{an} \simeq \varprojlim (X_n)_{an}$ as a ringed space.
 - (vi) If X is separated, then X_{an} is Hausdorff.

- (vii) If X is quasi-compact and of countable type, then $X_{\rm an}$ has a countable base of open subsets.
- 2.3. There exists a natural morphism of ringed spaces

$$(2.3.1) \iota = \iota_X : X_{\mathrm{an}} \to X$$

functorial in X, and we have a natural $\iota_X^{-1}\mathcal{D}_X$ -module structure on $\mathcal{O}_{X_{an}}$.

- **2.4.** A quasi-compact stratification of a C-scheme X is a locally finite family $\{X_{\alpha}\}$ of locally closed subsets of X such that
- $(2.4.1) X = \sqcup X_{\alpha}$ as a set,
- $(2.4.2) \ \overline{X}_{\alpha} \cap X_{\beta} \neq \emptyset$ implies $\overline{X}_{\alpha} \supset X_{\beta}$,
- (2.4.3) The inclusion $X_{\alpha} \hookrightarrow X$ is a quasi-compact morphism.
- 2.5. Let X be a coherent C-scheme and let k be a field.

Definition 2.5.1 A sheaf F of k-vector spaces on $X_{\rm an}$ is called weakly constructible if there exists a quasi-compact stratification $X = \coprod X_{\alpha}$ such that $F|(X_{\alpha})_{\rm an}$ is locally constant. If moreover F_x is finite-dimensional for any $x \in X_{\rm an}$, we call F constructible.

- Let $D(X_{\rm an};k)$ be the derived category of the category of sheaves of k-vector spaces on $X_{\rm an}$. An object K of $D(X_{\rm an};k)$ is called *constructible* (resp. weakly constructible) if it satisfies the following conditions.
- (2.5.1) $H^n(K)$ is constructible (resp. weakly constructible) for any n.
- (2.5.2) For any quasi-compact open subset Ω of X, $H^n(K)|\Omega_{an}=0$ except for finitely many n.

The full subcategory of $D(X_{an};k)$ consisting of constructible (resp. weakly constructible) objects will be denoted by $D_c(X;k)$ (resp. $D_{w.c.}(X;k)$).

Proposition 2.5.2. Let W be a smooth C-scheme. Set $X = W \times \mathbf{A}^{\infty}$, $X_n = W \times \mathbf{A}^n$ and let $p_n \colon X \to X_n$ be the projection. Then for any $K \in \mathrm{Ob}(D_c(X;k))$, there exist some n and $K_n \in \mathrm{Ob}(D_c(X_n;k))$ satisfying $(p_n)_{n=1}^{-1} K_n \simeq K$.

Proof. We can take a finite coherent stratification $X = \sqcup X_{\alpha}$ such that $H^{j}(K)|X_{\alpha}$ is locally constant for any j and α . Then there exist some n and a stratification $X_{n} = \sqcup \tilde{X}_{\alpha}$ such that $X_{\alpha} = p_{n}^{-1}\tilde{X}_{\alpha}$. Let $i \colon X_{n} \to X_{n} \times \mathbf{A}^{\infty}$ be the embedding by the origin $\in \mathbf{A}^{\infty}$. Since

 $X \simeq X_n \times \mathbf{A}^{\infty}$ and $(\mathbf{A}^{\infty})_{an}$ is contractible to the origin, we have $K \simeq (p_n)_{an}^{-1} K_n$ with $K_n = (i_{an})^{-1} K$. \square

Proposition 2.5.3. Let $X = \mathbf{A}^{\infty} \times W$, where W is a smooth C-scheme, and let $p: X \to W$ be the projection. Then for a cohomologically bounded object K of $D(W_{an}, k)$, we have

$$\mathbf{R}Hom((p_{\mathrm{an}})^{-1}K, k_{X_{\mathrm{an}}}) \simeq (p_{\mathrm{an}})^{-1}\mathbf{R}Hom(K, k_{W_{\mathrm{an}}}).$$

Proof. We shall show that the functorial morphism

$$(p_{\mathrm{an}})^{-1}\mathbf{R}Hom(K, k_{W_{\mathrm{an}}}) \to \mathbf{R}Hom((p_{\mathrm{an}})^{-1}K, k_{X_{\mathrm{an}}})$$

is an isomorphism. In order to see this, it suffices to show that

$$\mathbf{R}\Gamma((p_{\mathrm{an}})^{-1}V;(p_{\mathrm{an}})^{-1}\mathbf{R}Hom(K,k_{W_{\mathrm{an}}}))$$

$$\rightarrow \mathbf{R}\Gamma((p_{\mathrm{an}})^{-1}V;\mathbf{R}Hom((p_{\mathrm{an}})^{-1}K,k_{X_{\mathrm{an}}}))$$

is an isomorphism for any open subset V of $W_{\rm an}$ (Observe that $U \times (\mathbf{A}^{\infty})_{\rm an} \times V$ form a base of open subsets of $(\mathbf{A}^{\infty} \times W)_{\rm an}$, where $\mathbf{A}^{\infty} \simeq \mathbf{A}^{n} \times \mathbf{A}^{\infty}$, U is an open subset of $(\mathbf{A}^{n})_{\rm an}$ and V is an open subset of $W_{\rm an}$). This follows from the following lemma.

Lemma 2.5.4. Let X, Y and S be topological spaces and let $p_X: X \to S$ and $p_Y: Y \to S$ be continuous maps. Let $p: X \times [0,1] \to X$ be the projection, and let $h: X \times [0,1] \to Y$ be a continuous map satisfying $p_Y \circ h = p_X \circ p$. Define $i_V: X \to X \times [0,1]$ ($\nu = 0,1$) by $i_V(x) = (x,\nu)$, and set $f_V = h \circ i_V$. Let K (resp. F) be a cohomologically bounded (resp. lower bounded) object in the derived category of the category of sheaves of k-vector spaces on S and let f_V^{\dagger} be the composition of

$$\mathbf{R}(p_Y)_*\mathbf{R}Hom(p_Y^{-1}K, p_Y^{-1}F)$$

$$\rightarrow \mathbf{R}(p_Y)_*\mathbf{R}(f_\nu)_*\mathbf{R}Hom(f_\nu^{-1}p_Y^{-1}K, f_\nu^{-1}p_Y^{-1}F)$$

$$\stackrel{\sim}{\rightarrow} \mathbf{R}(p_X)_*\mathbf{R}Hom(p_Y^{-1}K, p_X^{-1}F).$$

Then we have $f_0^{\sharp} = f_1^{\sharp}$.

Proof. Set
$$Z = X \times [0,1]$$
 and $p_Z = p_X \circ p$. Then f_{ν}^{\sharp} is obtained by
$$\mathbf{R}(p_Y)_* \mathbf{R} Hom(p_Y^{-1}K, p_Y^{-1}F)$$

$$\to \mathbf{R}(p_Y)_* \mathbf{R} h_* \mathbf{R} Hom(h^{-1}p_Y^{-1}K, h^{-1}p_Y^{-1}F)$$

$$\simeq \mathbf{R}(p_Z)_* \mathbf{R} Hom(p_Z^{-1}K, p_Z^{-1}F)$$

$$\to \mathbf{R}(p_Z)_* \mathbf{R}(i_{\nu})_* \mathbf{R} Hom(i_{\nu}^{-1}p_Z^{-1}K, i_{\nu}^{-1}p_Z^{-1}F)$$

$$\simeq \mathbf{R}(p_X)_* \mathbf{R} Hom(p_X^{-1}K, p_X^{-1}F).$$

Set $\tilde{K} = p_X^{-1}K$ and $\tilde{F} = p_X^{-1}F$. Since $\mathbf{R}(p_Z)_* = \mathbf{R}(p_X)_*\mathbf{R}p_*$, it is enough to show that the morphism

$$\begin{split} i_{\nu}^{\sharp} : \mathbf{R} p_{*} \mathbf{R} Hom(p^{-1} \tilde{K}, p^{-1} \tilde{F}) \rightarrow & \mathbf{R} p_{*} \mathbf{R} (i_{\nu})_{*} \mathbf{R} Hom(i_{\nu}^{-1} p^{-1} \tilde{K}, i_{\nu}^{-1} p^{-1} \tilde{F}) \\ \simeq & \mathbf{R} Hom(\tilde{K}, \tilde{F}) \end{split}$$

does not depend on ν . Since

$$p^*: \mathbf{R}Hom(\tilde{K}, \tilde{F}) \to \mathbf{R}p_*\mathbf{R}Hom(p^{-1}\tilde{K}, p^{-1}\tilde{F})$$

 $\simeq \mathbf{R}Hom(\tilde{K}, \mathbf{R}p_*p^{-1}\tilde{F})$

is an isomorphism and $i^{\dagger}_{\nu} \circ p^* = \mathrm{id}$, we obtain the desired result. \square

For a quasi-compact separated essentially smooth ${\bf C}\text{-scheme }X$ we set

$$(2.5.3) \mathbf{D}_{X}(K) = \mathbf{R}Hom(K, k_{X,n})$$

for $K \in D_c(X; k)$.

Corollary 2.5.5. Let X be a quasi-compact separated essentially smooth C-scheme. Then

- (i) \mathbf{D}_X preserves $D_c(X;k)$.
- (ii) $\mathbf{D}_X \circ \mathbf{D}_X \simeq \mathrm{id}$.
- **2.6.** Let X be a quasi-compact separated essentially smooth C-scheme. Define full subcategories ${}^pD_c^{\leq 0}(X;k)$ and ${}^pD_c^{\geq 0}(X;k)$ of $D_c(X;k)$ by
- (2.6.1) K belongs to ${}^pD_{\overline{c}}^{\leq 0}(X;k)$ if and only if codim Supp $H^n(K) \geq n$ for any n.
- (2.6.2) K belongs to ${}^pD_{\varepsilon}^{\geq 0}(X;k)$ if and only if $\mathbf{D}_X(K)$ belongs to ${}^pD_{\varepsilon}^{\leq 0}(X;k)$.

The following theorem is similarly proven as in the finite-dimensional case (see [BBD], [KS]), and we omit the proof.

Theorem 2.6.1. (i) $({}^pD_c^{\leq 0}(X;k), {}^pD_c^{\geq 0}(X;k))$ is a t-structure of $D_c(X;k)$.

(ii) For
$$K_1 \in \text{Ob}({}^pD_c^{\leq 0}(X;k))$$
 and $K_2 \in \text{Ob}({}^pD_c^{\geq 0}(X;k))$, we have $H^n(\mathbf{R}Hom(K_1,K_2)) = 0 \ (n < 0)$.

(iii) Perv
$$(X;k) = {}^pD_{\overline{c}}^{\leq 0}(X;k) \cap {}^pD_{\overline{c}}^{\geq 0}(X;k)$$
 is a stack, i.e.

- (a) For $K_1, K_2 \in Ob(Perv(X; k))$, $U \mapsto Hom(K_1|U_{an}, K_2|U_{an})$ is a sheaf on X.
- (b) Let $X = \bigcup_j U_j$ be an open covering. Assume that we are given objects K_j of $\operatorname{Perv}(U_j;k)$ and isomorphisms $f_{ij}: K_j|(U_i)_{\operatorname{an}} \cap (U_j)_{\operatorname{an}} \to K_i|(U_i)_{\operatorname{an}} \cap (U_j)_{\operatorname{an}}$ such that $f_{ij} \circ f_{jk} = f_{ik}$ on $(U_i)_{\operatorname{an}} \cap (U_j)_{\operatorname{an}} \cap (U_k)_{\operatorname{an}}$. Then there exist $K \in \operatorname{Ob}(\operatorname{Perv}(X;k))$ and isomorphisms $f_i: K|(U_i)_{\operatorname{an}} \to K_i$ such that $f_{ij} \circ f_j = f_i$ on $(U_i)_{\operatorname{an}} \cap (U_j)_{\operatorname{an}}$.

We call an object of Perv(X; k) a perverse sheaf. When X is smooth, this definition coincides with the one in [BBD] up to shift.

Proposition 2.6.2. Let X be a separated essentially smooth C-scheme such that $X \simeq \varprojlim_n X_n$ for some projective system $\{X_n\}$ satisfying (1.2.1) and (1.2.2). Then we have $\operatorname{Perv}(X;k) \simeq \varinjlim_n \operatorname{Perv}(X_n;k)$; i.e. the following two properties hold.

(2.6.3) For $M_1, M_2 \in \mathrm{Ob}(\mathrm{Perv}(X_n; k))$ we have

$$\varinjlim_{m} \operatorname{Hom}((p_{nm})^{*}M_{1},(p_{nm})^{*}M_{2}) \simeq \operatorname{Hom}((p_{n})^{*}M_{1},(p_{n})^{*}M_{2}).$$

(2.6.4) For any $M \in \text{Ob}(\text{Perv}(X;k))$ there exist some n and $M_n \in \text{Ob}(\text{Perv}(X_n;k))$ such that $M \simeq (p_n)^* M_n$.

Here, $p_{nm}: X_m \to X_n$ and $p_n: X \to X_n$ are the projections.

2.7. Let X be a C-scheme satisfying (S) and let $\{S_n\}_{n\in\mathbb{N}}$ be a projective system as in §1.2. We denote by $p_{nm}: S_m \to S_n$ $(m \ge n)$ and $p_n: X \to S_n$ the projections. Let $\mathfrak{B}_{(S_n)_{an}}^{(p,q)}$ be the sheaf of (p,q)-forms on $(S_n)_{an}$ with hyperfunction coefficients. Then we have natural homomorphisms

$$(2.7.1) (p_{nm})_{an}^{-1} \mathfrak{B}_{(S_n)_{an}}^{(p,q)} \to \mathfrak{B}_{(S_m)_{an}}^{(p,q)},$$

$$(2.7.2) \quad \iota_X^{-1} p_m^{-1} \mathcal{D}_{S_m \to S_n} \times (p_n)_{\mathrm{an}}^{-1} \mathfrak{B}_{(S_n)_{\mathrm{an}}}^{(0,p)} \to (p_m)_{\mathrm{an}}^{-1} \mathfrak{B}_{(S_m)_{\mathrm{an}}}^{(0,p)}.$$

By (2.7.1) we obtain a sheaf $\mathfrak{B}_{X_{\mathtt{an}}}^{(p,q)} = \varinjlim_{(p_n)_{\mathtt{an}}}^{-1} \mathfrak{B}_{(S_n)_{\mathtt{an}}}^{(p,q)}$ on $X_{\mathtt{an}}$, and this does not depend on the choice of $\{S_n\}_{n\in\mathbb{N}}$ by Proposition 1.3.1. Taking the inductive limit in (2.7.2) with respect to m, we obtain

(2.7.3)
$$\iota_X^{-1} \mathcal{D}_{X \to S_n} \times (p_n)_{\mathrm{an}}^{-1} \mathfrak{B}_{(S_n)_{\mathrm{an}}}^{(0,p)} \to \mathfrak{B}_{X_{\mathrm{an}}}^{(0,p)}.$$

Taking again the limit in (2.7.3) with respect to n, we obtain

(2.7.4)
$$\iota_X^{-1} \mathcal{D}_X \times \mathfrak{B}_{X_{an}}^{(0,p)} \to \mathfrak{B}_{X_{an}}^{(0,p)},$$

and this defines a structure of an $\iota_X^{-1}\mathcal{D}_X$ -module on $\mathfrak{B}_{X_{\mathrm{an}}}^{(0,p)}$. We have also

$$(2.7.5) \qquad \underset{m}{\underline{\lim}} (p_m)_{\mathrm{an}}^{-1} Hom_{\iota_{S_m}^{-1} \mathcal{D}_{S_m}} (\iota_{S_m}^{-1} \mathcal{D}_{S_m \to S_n}, \mathfrak{B}_{(S_m)_{\mathrm{an}}}^{(0,p)})$$

$$\simeq Hom_{\iota_{V}^{-1} \mathcal{D}_{X}} (\iota_{X}^{-1} \mathcal{D}_{X \to S_n}, \mathfrak{B}_{X_{\mathrm{an}}}^{(0,p)}).$$

2.8. More generally, let X be a pro-smooth C-scheme. We can patch the sheaves $\mathfrak{B}_{U_{\mathrm{an}}}^{(p,q)}$ for affine open subschemes U of X satisfying (S), and obtain a sheaf $\mathfrak{B}_{X_{\mathrm{an}}}^{(p,q)}$ on X_{an} such that

$$\mathfrak{B}_{X_{\mathrm{an}}}^{(p,q)}|U_{\mathrm{an}} \simeq \mathfrak{B}_{U_{\mathrm{an}}}^{(p,q)}.$$

We can define the derivatives

(2.8.2)
$$\partial \colon \mathfrak{B}_{X_{an}}^{(p,q)} \to \mathfrak{B}_{X_{an}}^{(p+1,q)},$$

(2.8.3)
$$\overline{\partial} \colon \mathfrak{B}_{X_{\mathrm{an}}}^{(p,q)} \to \mathfrak{B}_{X_{\mathrm{an}}}^{(p,q+1)},$$

and we have the exact sequence:

$$(2.8.4) 0 \to \mathcal{O}_{X_{\mathbf{a}\mathbf{n}}} \to \mathfrak{B}_{X_{\mathbf{a}\mathbf{n}}}^{(0,0)} \xrightarrow{\overline{\partial}} \mathfrak{B}_{X_{\mathbf{a}\mathbf{n}}}^{(0,1)} \xrightarrow{\overline{\partial}} \cdots$$

of $\iota_X^{-1}\mathcal{D}_X$ -modules. The Dolbeault complex:

$$\mathfrak{B}_{X_{\mathtt{A}\mathtt{B}}}^{(0,0)} \xrightarrow{\overline{\partial}} \mathfrak{B}_{X_{\mathtt{A}\mathtt{B}}}^{(0,1)} \xrightarrow{\overline{\partial}} \cdots$$

is denoted by $\mathfrak{B}_{X_{n,n}}$

2.9. Let X be a pro-smooth C-scheme. For a holonomic \mathcal{D}_X -module \mathfrak{M} , we set

$$(2.9.1) \quad \operatorname{Sol}(\mathfrak{M}) = \operatorname{Hom}_{\mathcal{D}_{X}}(\mathfrak{M}, \mathfrak{B}_{X_{\operatorname{an}}}) (= \operatorname{Hom}_{\iota_{\mathbf{v}}^{-1}\mathcal{D}_{X}}(\iota_{X}^{-1}\mathfrak{M}, \mathfrak{B}_{X_{\operatorname{an}}})),$$

and regard this as an object of $D(X_{an}; \mathbf{C})$. When X is smooth, we have

$$\mathrm{Sol}(\mathfrak{M}) = \mathrm{R} Hom_{\mathcal{D}_X}(\mathfrak{M}, \mathcal{O}_{X_{\mathrm{an}}})$$

by [K1].

Let U be an open subset of X satisfying (S) and let $\{S_n\}$ be a projective system of C-schemes satisfying (1.2.1), (1.2.2) such that $U \simeq \underset{\longleftarrow}{\lim} S_n$. Then we have $\mathfrak{M}|U \simeq (p_n)^*\mathfrak{N}$ for some n and some holonomic \mathcal{D}_{S_n} -module \mathfrak{N} , where $p_n: U \to S_n$ is the projection. By (2.7.5) we have

$$(2.9.2)$$

$$Hom_{\mathcal{D}_{U}}(\mathfrak{M}, \mathfrak{B}_{U_{an}}^{(0,p)})$$

$$\simeq Hom_{\mathcal{D}_{U}}(\mathcal{D}_{U \to S_{n}} \otimes_{\mathcal{D}_{S_{n}}} \mathfrak{N}, \mathfrak{B}_{U_{an}}^{(0,p)})$$

$$\simeq Hom_{\mathcal{D}_{S_{n}}}(\mathfrak{N}, Hom_{\mathcal{D}_{U}}(\mathcal{D}_{U \to S_{n}}, \mathfrak{B}_{U_{an}}^{(0,p)}))$$

$$\simeq \lim_{\longrightarrow m} Hom_{\mathcal{D}_{S_{n}}}(\mathfrak{N}, (p_{m})_{an}^{-1} Hom_{\mathcal{D}_{S_{m}}}(\mathcal{D}_{S_{m} \to S_{n}}, \mathfrak{B}_{(S_{m})_{an}}^{(0,p)}))$$

$$\simeq \lim_{\longrightarrow m} (p_{m})_{an}^{-1} Hom_{\mathcal{D}_{S_{m}}}((p_{nm})^{*}\mathfrak{N}, \mathfrak{B}_{(S_{m})_{an}}^{(0,p)})).$$

On the other hand we have

$$(2.9.3) H^{q}(Hom_{\mathcal{D}_{S_{m}}}((p_{nm})^{*}\mathfrak{N},\mathfrak{B}_{(S_{m})_{\mathtt{an}}}))$$

$$\simeq Ext_{\mathcal{D}_{S_{m}}}^{q}((p_{nm})^{*}\mathfrak{N},\mathcal{O}_{(S_{m})_{\mathtt{an}}})$$

$$\simeq (p_{nm})_{\mathtt{an}}^{-1}Ext_{\mathcal{D}_{S_{m}}}^{q}(\mathfrak{N},\mathcal{O}_{(S_{n})_{\mathtt{an}}}).$$

Thus

$$(2.9.4) H^q(\operatorname{Sol}(\mathfrak{M})|U_{\operatorname{an}}) \simeq H^q((p_n)_{\operatorname{an}}^{-1}\operatorname{Sol}(\mathfrak{N})),$$

and we finally obtain

(2.9.5)
$$\operatorname{Sol}(\mathfrak{M})|U_{\mathrm{an}} \simeq (p_n)_{\mathrm{an}}^{-1} \operatorname{Sol}(\mathfrak{N}) \quad \text{in} \quad D^b(U_{\mathrm{an}}; \mathbf{C}).$$

This shows in particular

Lemma 2.9.1. Let X be a quasi-compact separated essentially smooth C-scheme. If \mathfrak{M} is a holonomic \mathcal{D}_X -module, then $Sol(\mathfrak{M})$ is a perverse sheaf, and Sol is a contravariant exact functor from the category of holonomic \mathcal{D}_X -modules to Perv(X).

- 3. Mixed Hodge modules on essentially smooth C-schemes
- 3.0. We shall study mixed Hodge modules on essentially smooth C-schemes. In this section all schemes are over C and assumed to be quasi-compact and separated.
- 3.1. In [S], M. Saito constructed mixed Hodge modules on finite-dimensional manifolds. In his formulation, the weights behave well under direct images, but not under inverse images. Since we treat infinite-dimensional manifolds, we have to modify his definition so that the weights behave well under inverse images.
- 3.2. Let X be a quasi-compact essentially smooth C-scheme. Let $\tilde{M}FW(X)$ be the category consisting of $M=(\mathfrak{M},F,K,W,\iota)$, where
- (3.2.1) \mathfrak{M} is a regular holonomic \mathcal{D}_X -module,
- (3.2.2) F is a filtration of \mathfrak{M} by coherent \mathcal{O}_X -submodules which is compatible with (\mathcal{D}_X, F) ,
- (3.2.3) $W(\mathfrak{M})$ is a finite filtration of \mathfrak{M} by regular holonomic \mathcal{D}_{X} -modules,
- (3.2.4) K is an object of $Perv(X; \mathbf{Q})$,
- (3.2.5) W(K) is a finite filtration of K in Perv $(X; \mathbf{Q})$,
- (3.2.6) ι is an isomorphism $\mathbf{C}_X \otimes_{\mathbf{Q}_X} K \xrightarrow{\sim} \mathrm{Sol}(\mathfrak{M})$ in $D_c(X; \mathbf{C})$, compatible with W; i.e. ι induces a commutative diagram

$$\begin{array}{ccc} \mathbf{C}_X \otimes_{\mathbf{Q}_X} W_k(K) & \stackrel{\sim}{\longrightarrow} & \mathrm{Sol}(\mathfrak{M}/W_{-k-1}(\mathfrak{M})) \\ & & & \downarrow \\ & \mathbf{C}_X \otimes_{\mathbf{Q}_X} K & \stackrel{\sim}{\longrightarrow} & \mathrm{Sol}(\mathfrak{M}). \end{array}$$

We define morphisms of $\tilde{M}FW(X)$ so that $M \mapsto K \in \operatorname{Perv}(X; \mathbf{Q})$ is a covariant functor and $M \mapsto \mathfrak{M}$ is a contravariant functor.

Sometimes, ι in $(\mathfrak{M}, F, K, W, \iota)$ will be omitted.

3.3. Let X be a smooth C-scheme and let MHM(X) be the category of mixed Hodge modules on X defined in Saito [S]. We define a contravariant functor

$$(3.3.1) \varphi_X: MHM(X) \to \tilde{M}FW(X)$$

as follows. Let $M = (\mathfrak{M}, F, K, W)$ be an object of MHM(X) and let $D_X(M) = (\mathfrak{M}^*, F, K^*, W)$ be the dual of M (cf. [S]). Then we define

$$\varphi_{X}(M) = (\mathfrak{N}, F, \tilde{K}, W)$$
 by

$$\mathfrak{N} = \mathfrak{M}^* \otimes_{\mathcal{O}_X} (\Omega_X^{\dim X})^{\otimes -1},$$

$$(3.3.3) F_p(\mathfrak{N}) = F_p(\mathfrak{M}^*) \otimes_{\mathcal{O}_X} (\Omega_X^{\dim X})^{\otimes -1},$$

$$(3.3.4) W_k(\mathfrak{N}) = W_{k+\dim X}(\mathfrak{M}^*) \otimes_{\mathcal{O}_X} (\Omega_X^{\dim X})^{\otimes -1},$$

(3.3.6)
$$W_k(\tilde{K}) = W_{k+\dim X}(K)[-\dim X].$$

Note that \mathfrak{N} is a left \mathcal{D}_X -module since \mathfrak{M} and \mathfrak{M}^* are right \mathcal{D}_X -modules. Let $\tilde{M}HM(X)$ be the image of φ_X . It is a full subcategory of $\tilde{M}FW(X)$, isomorphic to MHM(X).

We define

$$(3.3.7) \varphi_X: D^b(MHM(X)) \xrightarrow{\sim} D^b(\tilde{M}HM(X))$$

by $M^{\cdot} \mapsto \varphi_X(M^{\cdot})[\dim X]$. Hence φ_X is compatible with $i_X : D^b(MHM(X)) \to D_c(X; \mathbf{Q})$ and $i_X : D^b(\tilde{M}HM(X)) \to D_c(X; \mathbf{Q})$.

The duality functor D_X on MHM(X) defines the duality functor

(3.3.8)
$$\mathbf{D}_X : \tilde{M}HM(X) \to \tilde{M}HM(X)^{\mathrm{op}}$$

by $\mathbf{D}_X \circ \varphi_X = \varphi_X \circ \mathbf{D}_X$. Then we have $i_X \circ \mathbf{D}_X = \mathbf{D}_X \circ i_X$, where $\mathbf{D}_X(K) = \mathbf{R} Hom(K, \mathbf{Q}_{X_{an}})$ for $K \in Perv(X; \mathbf{Q})$.

3.4. For a morphism $f: X \to Y$ of smooth C-schemes, we define functors

$$(3.4.1) f^*, f^!: D^b(\tilde{M}HM(Y)) \to D^b(\tilde{M}HM(X))$$

$$(3.4.2) f_*, f_!: D^b(\tilde{M}HM(X)) \to D^b(\tilde{M}HM(Y))$$

using those defined in [S] and the isomorphism (3.3.7). In particular, if $f: X \to Y$ is smooth and $M = (\mathfrak{M}, F, K, W)$ is an object of $\tilde{M}HM(Y)$, then we have

$$(3.4.3) f^*(M) = (f^*\mathfrak{M}, F, f^*K, W) \in \text{Ob}(\tilde{M}HM(X)),$$

where

$$(3.4.4) F_p(f^*\mathfrak{M}) = f^*F_p(\mathfrak{M}),$$

$$(3.4.5) W_k(f^*\mathfrak{M}) = f^*(W_k(\mathfrak{M})), W_k(f^*K) = f^*(W_k(K)).$$

We extend this definition when X is essentially smooth, Y is smooth and f is weakly smooth. Hence in this case, f^* is a functor from $\tilde{M}HM(Y)$ into $\tilde{M}FW(X)$ defined by (3.4.3), (3.4.4) and (3.4.5).

3.5. For an essentially smooth C-scheme X, we define a full subcategory $\tilde{M}HM(X)$ of $\tilde{M}FW(X)$ as follows. An object M of $\tilde{M}FW(X)$ belongs to $\tilde{M}HM(X)$ if and only if X is covered by open subsets U such that there are a weakly smooth morphism $f\colon U\to Y$ to a smooth C-scheme Y and an object M' of $\tilde{M}HM(Y)$ satisfying $M|U\simeq f^*M'$. We can easily see that $\tilde{M}HM(X)$ is a stack. In this paper we call objects of $\tilde{M}HM(X)$ mixed Hodge modules on X. Note that $\tilde{M}HM(X)$ is an abelian category.

We can define the duality functor

$$(3.5.1) \mathbf{D}_X : \tilde{M}HM(X) \to \tilde{M}HM(X)^{\mathrm{op}}$$

by $\mathbf{D}_X M | U \simeq f^* \mathbf{D}_Y M'$. It is an exact functor satisfying $\mathbf{D}_X \circ \mathbf{D}_X \simeq \mathrm{id}$. Hence this extends to

$$(3.5.2) \mathbf{D}_X: D^b(\tilde{M}HM(X)) \to D^b(\tilde{M}HM(X))^{\mathrm{op}}.$$

3.6. Let X be an essentially smooth C-scheme satisfying (S) and let $\{S_n\}_{n\in\mathbb{N}}$ be a projective system as in §1.2. Then we have

(3.6.1)
$$\tilde{M}HM(X) \simeq \lim_{n \to \infty} \tilde{M}HM(S_n),$$

(3.6.2)
$$D^{b}(\tilde{M}HM(X)) \simeq \lim_{\substack{n \\ n}} D^{b}(\tilde{M}HM(S_{n}))$$

- (cf. Proposition 2.6.2).
- 3.7. For a morphism $f: X \to Y$ of essentially smooth C-schemes satisfying (S), we define

$$(3.7.1) f^*: D^b(\tilde{M}HM(Y)) \to D^b(\tilde{M}HM(X))$$

as follows. Let $X \simeq \varprojlim_n X_n$ and $Y \simeq \varprojlim_n Y_n$, where $\{X_n\}$ and $\{Y_n\}$ satisfy (1.2.1) and (1.2.2). We may assume that there are morphisms $f_n \colon X_n \to Y_n \ (n \in \mathbb{N})$ such that $f = \varprojlim_n f_n$. Let $p_{X,n} \colon X \to X_n$ and $p_{Y,n} \colon Y \to Y_n$ be the projections. For a bounded complex M of mixed Hodge modules on Y, there exist some n and a bounded complex M

of mixed Hodge modules on Y_n such that $M^- \simeq (p_{Y,n})^* M_n^+$. Then we define (3.7.1) by

$$(3.7.2) f^*M^{\cdot} = (p_{X,n})^*((f_n)^*M_n^{\cdot}).$$

It is easy to check that this is well-defined.

3.8. Let $f: X \to Y$ be a morphism of essentially smooth C-schemes. Then, for each $i \in \mathbb{Z}$, we can define a functor

$$(3.8.1) Hi f*: \tilde{M} H M(Y) \to \tilde{M} H M(X).$$

In fact, locally on X, $(H^i f^*)(M)$ is defined as $H^i(f^*(M))$, and they can be patched together. It satisfies the following properties:

- (3.8.2) If f is weakly smooth, then we have $(H^i f^*)(M) = 0$ for $i \neq 0$, and $(H^0 f^*)(M)$ is given by (3.4.4) and (3.4.5).
- (3.8.3) If $(H^i f^*)(M) = 0$ for $i \neq p$ and if $g: W \to X$ is another morphism, then we have $(H^i g^*)(H^p f^*)(M) \simeq (H^{i+p}(f \circ g)^*)(M)$.
- **3.9.** Let $f: X \to Y$ be a morphism of finite presentation. Assume that Y satisfies (S), so that X also satisfies (S). Then we define

$$(3.9.1) f_*: D^b(\tilde{M}HM(X)) \to D^b(\tilde{M}HM(Y)),$$

$$(3.9.2) f_!: D^b(\tilde{M}HM(X)) \to D^b(\tilde{M}HM(Y)),$$

$$(3.9.3) f!: D^b(\tilde{M}HM(Y)) \to D^b(\tilde{M}HM(X))$$

as follows. Let $X \simeq \varprojlim_n X_n$ and $Y \simeq \varprojlim_n Y_n$, where $\{X_n\}$ and $\{Y_n\}$ satisfy (1.2.1) and (1.2.2), and let M be a bounded complex of mixed Hodge modules on X (resp. Y). We may assume that there exists a morphism $f_0: X'_0 \to Y_0$ such that $X \simeq X'_0 \times_{Y_0} Y$ and $f = f_0 \times_{Y_0} Y$. Set $f_n = f_0 \times_{Y_0} Y_n$. We may further assume that there exists $\{g_n\}: \{X'_0 \times_{Y_0} Y_n\} \to \{X_n\}$ (resp. $\{h_n\}: \{X_n\} \to \{X'_0 \times_{Y_0} Y_n\}$) such that $\varprojlim_n g_n = \operatorname{id}_X$ (resp. $\varprojlim_n h_n = \operatorname{id}_X$). Let $p_{X,n}: X \to X_n$ and $p_{Y,n}: Y \to Y_n$ be the projections. There exist some n and a bounded complex M_n of mixed Hodge modules on X_n (resp. Y_n) such that $M \simeq (p_{X,n})^* M_n$ (resp. $M \simeq (p_{Y,n})^* M_n$). Then we define (3.9.1), (3.9.2) (resp. (3.9.3)) by

$$(3.9.4) f_* M = (p_{Y,n})^* \varphi_{Y_n}(f_n)_* (g_n)^* \varphi_{X_n}^{-1}(M_n),$$

(3.9.5)
$$f_! M^{\cdot} = (p_{Y,n})^* \varphi_{Y_n}(f_n)_! (g_n)^* \varphi_{X_n}^{-1}(M_n)$$

(3.9.6) (resp.
$$f'M' = (p_{X,n})^* \varphi_{X_n}(h_n)^* (f_n)^! \varphi_{Y_n}^{-1}(M_n)$$
).

It is easy to check that they are well-defined. We have the following properties concerning them.

(3.9.7) The functor f_* (resp. $f^!$) is a right adjoint functor of f^* (resp. $f_!$).
(3.9.8) $f_* \circ D_X \simeq D_Y \circ f_!$.
(3.9.9) If f is proper, then we have $f_* = f_!$.

Note that (3.9.9) follows from the fact that f_n is proper for $n \gg 0$ if f is proper.

3.10. For an essentially smooth C-scheme X, we define

(3.10.1)
$$\mathbf{Q}_X^H = (\mathcal{O}_X, F, \mathbf{Q}_X, W, \iota) \in \mathrm{Ob}(\tilde{M}HM(X))$$

by

$$(3.10.2) F_p(\mathcal{O}_X) = \begin{cases} \mathcal{O}_X & (p \geq 0) \\ 0 & (p < 0), \end{cases}$$

$$(3.10.3) W_k(\mathcal{O}_X) = \begin{cases} \mathcal{O}_X & (k \geq 0) \\ 0 & (k < 0), \end{cases}$$

$$(3.10.4) W_k(\mathbf{Q}_X) = \begin{cases} \mathbf{Q}_X & (k \geq 0) \\ 0 & (k < 0), \end{cases}$$

$$(3.10.5) \iota : \mathbf{C}_X \otimes_{\mathbf{Q}_X} \mathbf{Q}_X \xrightarrow{\sim} \mathrm{Sol}(\mathcal{O}_X) \text{ is induced by}$$

$$1\mapsto \mathrm{id}\in Hom_{\mathcal{D}_X}(\mathcal{O}_X,\mathcal{O}_X)\subset Hom_{\mathcal{D}_X}(\mathcal{O}_X,\mathfrak{B}^{(0,0)}_{X_{\mathtt{an}}}).$$

Set (pt) = Spec(C) and let $a_X: X \to (pt)$ be the projection. We shall identify $\tilde{M}HM((pt))$ with the category MHS of mixed Hodge structures. Then we have $\mathbf{Q}_X^H = (a_X)^*\mathbf{Q}^H$, where \mathbf{Q}^H is the trivial mixed Hodge structure on \mathbf{Q} .

3.11. Let X and Y be essentially smooth C-schemes and let $j: Y \hookrightarrow X$ be an emmbeding of finite presentation. Then for any $M \in \tilde{M}HM(Y)$, there exists an object ${}^{\pi}M$ of $D^b(\tilde{M}HM(X))$ satisfying the following properties:

$$(3.11.1) \, ^{\pi}M[-\operatorname{codim} Y] \in \operatorname{Ob}(\tilde{M}HM(X)),$$

(3.11.2) Supp $^{\pi}M[-\operatorname{codim} Y] \subset \overline{Y}$,

 $(3.11.3) j^*(^{\pi}M) \simeq M,$

 $(3.11.4)^{\pi}M[-\operatorname{codim} Y]$ has neither non-zero quotient nor non-zero sub-object whose support is contained in $\overline{Y} - Y$.

Such ${}^{\pi}M$ is unique up to isomorphism, and we call it the *minimal extension* of M.

3.12. The following descent theorem being proven in a canonical way, we leave its proof to the readers.

Proposition 3.12.1. Let $f: X \to Y$ be a weakly smooth morphism of essentially smooth C-schemes. Assume that f admits a section locally on Y. Let $p_i: X \times_Y X \to X$ (i = 1, 2) and $p_{ij}: X \times_Y X \times_Y X \to X \times_Y X$ (i, j = 1, 2, 3) be the obvious projections.

(i) For any $M, M' \in Ob(\tilde{M}HM(Y))$ we have an exact sequence:

$$0 \to Hom(M, M') \to Hom(f^*M, f^*M')$$

$$\xrightarrow{(p_1)^* - (p_2)^*} Hom((p_1)^* f^*M, (p_1)^* f^*M').$$

- (ii) Let $M \in \text{Ob}(\tilde{M}HM(X))$ and let $\alpha: (p_1)^*M \xrightarrow{\sim} (p_2)^*M$ be an isomorphism satisfying $(p_{23})^*\alpha \circ (p_{12})^*\alpha = (p_{13})^*\alpha$ (Note that we have $(p_{13})^*(p_1)^*M = (p_{12})^*(p_1)^*M$, $(p_{12})^*(p_2)^*M = (p_{23})^*(p_1)^*M$ and $(p_{13})^*(p_2)^*M = (p_{23})^*(p_2)^*M$). Then there exist some $N \in \text{Ob}(\tilde{M}HM(Y))$ and an isomorphism $\beta: M \xrightarrow{\sim} f^*N$ satisfying $(p_1)^*\beta = (p_2)^*\beta \circ \alpha$.
- 3.13. Let G be an essentially smooth affine group scheme acting on an essentially smooth C-scheme X. Let $\mu\colon G\times X\to X$ be the composition morphism, $pr\colon G\times X\to X$ the projection and $i\colon X\to G\times X$ the embedding by the identity element $e\in G$. We define morphisms $p_i\colon G\times G\times X\to G\times X$ (i=1,2,3) by $p_1(g_1,g_2,x)=(g_1,g_2x)$, $p_2(g_1,g_2,x)=(g_1g_2,x)$ and $p_3(g_1,g_2,x)=(g_2,x)$. For a mixed Hodge module M on X we have mixed Hodge modules μ^*M and pr^*M since μ and pr are weakly smooth.

We define an abelian category $\tilde{M}HM^G(X)$ as follows. An object is a mixed Hodge module M on X, together with an isomorphism $\alpha_M: \mu^*M \xrightarrow{\sim} pr^*M$, satisfying the following conditions:

(3.13.1) $i^*\alpha_M: i^*\mu^*M \to i^*pr^*M$ coincides with id: $M \to M$ under the identificaions $i^*\mu^*M = M$ amd $i^*pr^*M = M$.

(3.13.2) We have $(p_2)^*\alpha_M = (p_3)^*\alpha_M \circ (p_1)^*\alpha_M$ under the identifications $(p_2)^*\mu^*M = (p_1)^*\mu^*M$, $(p_2)^*pr^*M = (p_3)^*pr^*M$ and $(p_1)^*pr^*M = (p_3)^*\mu^*M$.

A morphism $\varphi: M \to N$ in $\tilde{M}HM^G(X)$ is a morphism of mixed Hodge modules satisfying $pr^*\varphi \circ \alpha_M = \alpha_N \circ \mu^*\varphi$. An object of $\tilde{M}HM^G(X)$ is called a G-equivariant mixed Hodge module on X.

Note that (3.13.1) is a consequence of (3.13.2) since α_M is an isomorphism.

If M is a mixed Hodge structue, then $(a_X)^*M$ is naturally endowed with a structure of G-equivariant mixed Hodge module, and we call it a constant G-equivariant mixed Hodge module. Here a_X is the morphism $X \to (pt)$.

Lemma 3.13.1. Any G-equivariant mixed Hodge module on G (with respect to the left multiplication) is constant.

Proof. Let $M \in \text{Ob}(\tilde{M}HM^G(G))$. Let $\iota : (\text{pt}) \to G$ be the embedding by e and let $\iota' : G \to G \times G$ be the morphism given by $g \mapsto (g, e)$. Since $\mu \circ \iota' = \text{id}$ and $pr \circ \iota' = \iota \circ a_G$, we have $M = \iota'^* \mu^* M \simeq \iota'^* pr^* M = (a_G)^* \iota^* M$. We can easily check that the action of G on M coincides with the one on the constant mixed Hodge module $(a_G)^* \iota^* M$. \square

Set $MHS^G = \tilde{M}HM^G((pt))$.

Lemma 3.13.2. The abelian category MHS^G is naturally equivalent to MHS^{G/G^0} , where G^0 is the connected component of G containing the identity element e (Note that G/G^0 is a finite group by Lemma 1.6.4).

Proof. This follows from the fact that, for any $M \in \text{Ob}(MHS^G)$, the restriction of $\alpha_M : (a_G)^*M \to (a_G)^*M$ to each connected component of G comes from an automorphism of M in MHS. \square

The following theorem can be easily proven by Lemma 3.13.2 and Proposition 3.12.1.

Theorem 3.13.3. Let G be an affine group scheme and H an essentially smooth closed subgroup scheme of G. Assume that H acts locally freely on G and that G/H is separated and essentially smooth. Let $i: (pt) \to G/H$ be the embedding by $e \in G$. Then $M \mapsto i^*M$ gives an equivalence: $\tilde{M}HM^G(G/H) \xrightarrow{\sim} MHS^{H/H^0}$.

4. Kac-Moody Lie algebras and flag varieties

4.1. Let $A = (a_{ij})_{1 \leq i,j \leq \ell}$ be a matrix of integers satisfying $a_{ii} = 2$, $a_{ij} \leq 0$ $(i \neq j)$, $a_{ij} \neq 0 \Leftrightarrow a_{ji} \neq 0$. Assume that we are given a finite-dimensional C-vector space \mathfrak{h} , and elements $h_1, \ldots, h_\ell \in \mathfrak{h}$, $\alpha_1, \ldots, \alpha_\ell \in \mathfrak{h}^*$ satisfying the following conditions:

$$(4.1.1) \qquad \langle h_i, \alpha_i \rangle = a_{ij} \quad (i, j = 1, \dots, \ell),$$

(4.1.2)
$$\{\alpha_1, \ldots, \alpha_{\ell}\}$$
 is linearly independent,

(4.1.3)
$$\{h_1, \ldots, h_\ell\}$$
 is linearly independent.

A Kac-Moody Lie algebra associated to these data is a Lie algebra \mathfrak{g} over C which contains \mathfrak{h} as an abelian subalgebra and which is generated by \mathfrak{h} and elements $e_1, \ldots, e_\ell, f_1, \ldots, f_\ell$ satisfying the following relations:

$$[h, e_i] = \alpha_i(h)e_i, \quad (h \in \mathfrak{h}, i = 1, \dots, \ell),$$

$$[h, f_i] = -\alpha_i(h)f_i \quad (h \in \mathfrak{h}, i = 1, \dots, \ell),$$

$$(4.1.6) [e_i, f_j] = \delta_{ij} h_i (i, j = 1, \dots, \ell),$$

$$(4.1.7) (ad e_i)^{1-a_{ij}}e_i = 0 (i \neq j),$$

(4.1.8)
$$(ad f_i)^{1-a_{ij}} f_j = 0 \quad (i \neq j).$$

4.2. For $i = 1, ..., \ell$, let s_i be the linear automorphism of \mathfrak{h}^* given by

$$(4.2.1) s_i(\lambda) = \lambda - \langle h_i, \lambda \rangle \alpha_i.$$

The Weyl group W of $(\mathfrak{g}, \mathfrak{h})$ is the subgroup of $\operatorname{Aut}(\mathfrak{h}^*)$ generated by $S = \{s_1, \ldots, s_\ell\}$. It is well known that (W, S) is a Coxeter group with

$$\begin{array}{ccccc} a_{ij}a_{ji} & 0 & 1 & 2 & 3 & \geq 4 \\ \operatorname{ord}(s_is_j) & 2 & 3 & 4 & 6 & \infty \end{array}$$

for $i \neq j$. We denote the length function and the Bruhat order on W by ℓ and \geq , respectively.

Set

$$(4.2.2) \mathfrak{g}_{\alpha} = \{ x \in \mathfrak{g} ; [h, x] = \alpha(h)x (h \in \mathfrak{h}) \} (\alpha \in \mathfrak{h}^*),$$

(4.2.3)
$$\Delta = \{ \alpha \in \mathfrak{h}^* \setminus \{0\} ; \, \mathfrak{g}_{\alpha} \neq 0 \},$$

(4.2.4)
$$\Delta^{+} = \Delta \cap \sum_{i=1}^{\ell} \mathbf{Z}_{\geq 0} \alpha_{i}, \quad \Delta^{-} = \Delta \cap \sum_{i=1}^{\ell} \mathbf{Z}_{\leq 0} \alpha_{i}.$$

Let \mathfrak{n} (resp. \mathfrak{n}^-) be the subalgebra of \mathfrak{g} generated by e_1, \ldots, e_ℓ (resp. f_1, \ldots, f_ℓ). Then we have

$$\mathfrak{n} = \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha}, \quad \mathfrak{n}^- = \bigoplus_{\alpha \in \Delta^-} \mathfrak{g}_{\alpha},$$

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}.$$

Set

$$(4.2.7) b = h \oplus n, b^- = h \oplus n^-,$$

$$(4.2.8) g_i = \mathfrak{h} \oplus \mathbf{C} e_i \oplus \mathbf{C} f_i \quad (i = 1, \dots, \ell),$$

(4.2.9)

$$\mathfrak{n}_i = \bigoplus_{\alpha \in \Delta^+ \setminus \{\alpha_i\}} \mathfrak{g}_{\alpha}, \quad \mathfrak{n}_i^- = \bigoplus_{\alpha \in \Delta^- \setminus \{-\alpha_i\}} \mathfrak{g}_{\alpha} \quad (i = 1, \dots, \ell),$$

$$(4.2.10) \mathfrak{p}_i = \mathfrak{g}_i \oplus \mathfrak{n}_i \mathfrak{p}_i^- = \mathfrak{g}_i \oplus \mathfrak{n}_i^- (i = 1, \dots, \ell).$$

They are subalgebras of g.

4.3. We shall define groups corresponding to certain subalgebras of \mathfrak{g} (see [M], [K2]). Fix a **Z**-lattice P in \mathfrak{h}^* satisfying

(4.3.1)
$$\alpha_i \in P, \quad \langle h_i, P \rangle \subset \mathbf{Z} \quad (i = 1, \dots, \ell).$$

Let

- $(4.3.2) T = \operatorname{Spec}(\mathbf{C}[P]),$
- $(4.3.3) U = \lim_{k \to \infty} \exp(\mathfrak{n}/(\operatorname{ad} \mathfrak{n})^k \mathfrak{n}), U^- = \lim_{k \to \infty} \exp(\mathfrak{n}^-/(\operatorname{ad} \mathfrak{n}^-)^k \mathfrak{n}^-),$
- (4.3.4) B (resp. B^-) is the semi-direct product of T and U (resp. U^-),
- (4.3.5) G_i is the algebraic group with $G_i \supset T$, $Lie(G_i) = \mathfrak{g}_i$, $Lie(T) = \mathfrak{h}$,
- $(4.3.6) U_i = \varprojlim_k \exp(\mathfrak{n}_i/(\operatorname{ad}\mathfrak{n})^k\mathfrak{n}_i), U_i^- = \varprojlim_k \exp(\mathfrak{n}_i^-/(\operatorname{ad}\mathfrak{n}^-)^k\mathfrak{n}_i^-),$
- (4.3.7) P_i (resp. P_i^-) is the semi-direct product of G_i and U_i (resp. U_i^-).

Here we denote by $\exp(\mathfrak{a})$ the unipotent algebraic group corresponding to a finite-dimensional nilpotent Lie algebra \mathfrak{a} . The groups defined above are naturally endowed with group scheme structures (see [M], [K2]).

4.4. In [K2] the first-named author has given a scheme theoretic construction of the flag variety of $(\mathfrak{g}, \mathfrak{h}, P)$. It is the quotient $X = G/B^-$, where G is the scheme defined in [K2] which has a locally free action of B^- . Let $x_0 = (1 \mod B^-) \in X$ and set $X_w = Bwx_0 \subset X$ for $w \in W$. As in the finite-dimensional case we have the following.

Proposition 4.4.1 ([K2]).

(i) X_w is an affine scheme with codimension $\ell(w)$ in X.

- (ii) $X = \sqcup_{w \in W} X_w$.
- (iii) $\overline{X}_w = \sqcup_{z \geq w} X_z$.

For $i = 1, ..., \ell$ set $X^i = G/P_i^-, x_i = (1 \mod P_i^-) \in X^i$ $(P_i^- \text{ acts on } G \text{ locally freely})$. Let $q_i : X \to X^i$ be the natural morphism.

Proposition 4.4.2 ([K3]).

- (i) qi is a P1-bundle.
- (ii) $X^i = \sqcup_{\ell(ws_i) > \ell(w)} Bwx_i$.
- (iii) $q_i^{-1}(Bwx_i) = X_w \sqcup X_{ws_i}$
- (iv) q_i induces an isomorphism $Bwx_0 \simeq Bwx_i$ for $\ell(ws_i) < \ell(w)$.
- (v) q_i induces an A^1 -bundle $Bwx_0 \to Bwx_i$ for $\ell(ws_i) > \ell(w)$.

Lemma 4.4.3. Any B-invariant quasi-compact open subset of X or X^i satisfies (S).

Proof. The proof being similar, we shall prove the theorem only for X. Let Ω be a B-invariant quasi-compact open subset of X. Then there exists a finite subset J of W such that $\Omega = \bigcup_{w \in J} Bwx_0 = \bigcup_{w \in J} wBx_0$. Let Θ be a subset of Δ^+ such that $\Delta^+ \setminus \Theta$ is a finite set, $(\Theta + \Theta) \cap \Delta^+ \subset \Theta$ and $w^{-1}\Theta \subset \Delta^+$ for any $w \in J$. We denote by U_Θ the closed subgroup of U corresponding to $\mathfrak{n}_\Theta = \sum_{\alpha \in \Theta} \mathfrak{g}_{\alpha}$; i.e. $U_\Theta = \varprojlim_k \exp(\mathfrak{n}_\Theta/(\operatorname{ad}\mathfrak{n})^k\mathfrak{n}_\Theta)$. For $w \in J$ the action of U_Θ on wBx_0 is equivalent to the action of $w^{-1}U_\Theta w \subset U$ on uBx_0 , and hence uBx_0 acts on uBx_0 freely. Thus $uBx_0 \subset U$ 0 exists and it is a quasi-compact smooth $uBx_0 \subset U$ 1. $uBx_0 \subset U$ 2.

- 4.5. Let us recall the results of [K3]. Assume that \mathfrak{g} is symmetrizable until the end of §4. For $\lambda \in P$, let $\mathcal{O}_X(\lambda)$ be the corresponding invertible \mathcal{O}_X -module. Set $\mathcal{D}_\lambda = \mathcal{O}_X(\lambda) \otimes_{\mathcal{O}_X} \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{O}_X(-\lambda)$ and $\mathcal{F}(\lambda) = \mathcal{O}_X(\lambda) \otimes_{\mathcal{O}_X} \mathcal{F}$ for an \mathcal{O}_X -module \mathcal{F} . Note that, if \mathfrak{M} is a \mathcal{D}_X -module, then $\mathfrak{M}(\lambda)$ is a \mathcal{D}_λ -module. For $w \in W$ set $\mathfrak{B}_w = \mathcal{H}_{X_w}^{\ell(w)}(\mathcal{O}_X)$, where $\ell(w)$ is the length of w. Let \mathfrak{M}_w be the dual of the \mathcal{D}_X -module \mathfrak{B}_w and let \mathfrak{L}_w be the image of the unique non-zero homomorphism $\mathfrak{M}_w \to \mathfrak{B}_w$. Then \mathfrak{L}_w is the minimal extension of $\mathfrak{B}_w|wBx_0$.
- 4.6. For $\lambda \in \mathfrak{h}^*$ let $M(\lambda)$ be the Verma module with highest weight λ , $M^*(\lambda)$ the \mathfrak{h} -finite part of the dual of the Verma module with lowest weight $-\lambda$ and $L(\lambda)$ the image of the unique non-zero homomorphism $M(\lambda) \to M^*(\lambda)$. Then $L(\lambda)$ is the irreducible module with highest weight λ .

Set $w \circ \lambda = w(\lambda + \rho) - \rho$ for $w \in W$ and $\lambda \in \mathfrak{h}^*$, where ρ is an element of \mathfrak{h}^* such that $\langle h_i, \rho \rangle = 1$ for any i.

4.7. Let $\lambda \in P_+ = {\lambda \in P; \langle h_i, \lambda \rangle \geq 0 \text{ for any } i}$. For a *B*-equivariant \mathcal{D}_{λ} -module \mathfrak{M} we set

(4.7.1)
$$\tilde{H}^n(X;\mathfrak{M}) = \bigoplus_{\mu \in P} \varprojlim_{\Omega} (H^n(\Omega;\mathfrak{M}))_{\mu},$$

$$(4.7.2) \tilde{\Gamma}(X;\mathfrak{M}) = \tilde{H}^{0}(X;\mathfrak{M}),$$

where Ω ranges over *B*-invariant quasi-compact open subsets of X, and for a semisimple \mathfrak{h} -module M the weight space with weight μ is denoted by M_{μ} . By [K3, Theorem 5.2.1] we have

$$\tilde{H}^n(X;\mathfrak{M}) = 0 \text{ for any } n \neq 0.$$

$$\tilde{\Gamma}(X;\mathfrak{M}_w(\lambda)) = M(w \circ \lambda),$$

(4.7.5)
$$\tilde{\Gamma}(X;\mathfrak{B}_{w}(\lambda)) = M^{*}(w \circ \lambda),$$

(4.7.6)
$$\tilde{\Gamma}(X; \mathfrak{L}_{w}(\lambda)) = L(w \circ \lambda).$$

4.8. Our main theorem is the following.

Theorem 4.8.1. Let \mathfrak{g} be a symmetrizable Kac-Moody Lie algebra. Then, for $\lambda \in P_+$ and $w \in W$, we have:

$$\operatorname{ch} L(w \circ \lambda) = \sum_{z \geq w} (-1)^{\ell(z) - \ell(w)} Q_{w,z}(1) \operatorname{ch} M(z \circ \lambda),$$

where $Q_{w,z}$ is the inverse Kazhdan-Lusztig polynomial (see [KL2] and §5.3 below).

In order to prove this theorem, it is sufficient to show that, for any B-invariant quasi-compact open subset Ω , we have:

$$(4.8.1) \qquad \qquad [\mathfrak{L}_w|\Omega] = \sum_{z \ge w} (-1)^{\ell(z) - \ell(w)} Q_{w,z}(1) [\mathfrak{B}_z|\Omega]$$

in the Grothendieck group of the abelian category of B-equivariant holonomic \mathcal{D}_{Ω} -modules. Note that $M(w \circ \lambda)$ and $M^*(w \circ \lambda)$ have the same characters. Since we have

(4.8.2)
$$\operatorname{Sol}(\mathfrak{L}_w) = {}^{\pi}\operatorname{C}_{X_w}[-\ell(w)],$$

(4.8.3)
$$\operatorname{Sol}(\mathfrak{B}_w) = \mathbf{C}_{X_w}[-\ell(w)],$$

this is again reduced to:

$$(4.8.4) \quad [{}^{\pi}\mathbf{C}_{X_{w}}[-\ell(w)]|\Omega] = \sum_{z \geq w} (-1)^{\ell(z)-\ell(w)} Q_{w,z}(1)[\mathbf{C}_{X_{z}}[-\ell(z)]|\Omega]$$

in the Grothendieck group of the abelian category of B-equivariant perverse sheaves on Ω .

The last statement will be proven for any (not necessarily symmetrizable) Kac-Moody Lie algebras in §6 by the aid of mixed Hodge modules.

5. Hecke-Iwahori Algebras

- **5.0.** In this section W denotes a Coxeter group with canonical generator system S. The length function and the Bruhat order on W are denoted by ℓ and \geq , respectively.
- 5.1. The Hecke-Iwahori algebra H(W) is the associative algebra over the Laurent polynomial ring $\mathbb{Z}[q,q^{-1}]$ which has a free $\mathbb{Z}[q,q^{-1}]$ -basis $\{T_w\}_{w\in W}$ satisfying the following relations:

(5.1.1)
$$(T_s + 1)(T_s - q) = 0$$
 for $s \in S$,

(5.1.2)
$$T_{w_1}T_{w_2} = T_{w_1w_2}$$
 if $\ell(w_1) + \ell(w_2) = \ell(w_1w_2)$.

Let $h \mapsto \overline{h}$ be the automorphism of the ring H(W) given by

(5.1.3)
$$\overline{q} = q^{-1}, \quad \overline{T}_w = T_{w^{-1}}^{-1},$$

and define $R_{y,w} \in \mathbf{Z}[q,q^{-1}]$ for $y,w \in W$ by

(5.1.4)
$$\overline{T}_w = \sum_{y \in W} \overline{R}_{y,w} q^{-\ell(y)} T_y.$$

The following is easily checked by direct calculations (see [KL1]).

- (5.1.5) $R_{y,w} \neq 0$ if and only if $y \leq w$.
- (5.1.6) $R_{y,w}$ is a ploynomial in q with degree $\ell(w) \ell(y)$ for $y \leq w$.
- $(5.1.7) R_{w,w} = 1.$

Following [KL1] we introduce a free $\mathbb{Z}[q,q^{-1}]$ -basis $\{C_w\}_{w\in W}$ of H(W).

Proposition 5.1.1 ([KL1]). For $w \in W$ there exists a unique element

$$C_w = \sum_{y \le w} (-q)^{\ell(w) - \ell(y)} \overline{P}_{y,w} T_y \in H(W)$$

satisfying the following conditions:

- (a) $P_{w,w} = 1$.
- (b) If y < w, then $P_{y,w}$ is a polynomial in q with degree $\leq (\ell(w) 1)^{-1}$
 - (c) $\overline{C}_w = q^{-\ell(w)}C_w$

We set $P_{y,w} = 0$ if $y \nleq w$.

5.2. Set $H^*(W) = \text{Hom}_{\mathbf{Z}[q,q^{-1}]}(H(W),\mathbf{Z}[q,q^{-1}])$. For $w \in W$ let S_w be the element of $H^*(W)$ determined by

(5.2.1)
$$\langle S_w, \overline{T}_y \rangle = \delta_{w,y^{-1}} q^{-\ell(w)},$$

where \langle , \rangle denotes the natural paring of $H^*(W)$ and H(W). Any element of $H^*(W)$ is uniquely written as a formal infinite sum $\sum_{w \in W} a_w S_w$ $(a_w \in \mathbf{Z}[q, q^{-1}]).$

Define an endomorphism $u \mapsto \overline{u}$ of the abelian group $H^*(W)$ by

$$(5.2.2) \langle \overline{u}, h \rangle = \overline{\langle u, \overline{h} \rangle} (u \in H^*(W), h \in H(W)).$$

We also define a right H(W)-module structure on $H^*(W)$ by

$$(5.2.3) \langle u \cdot h_1, h_2 \rangle = \langle u, h_1 h_2 \rangle (u \in H^*(W), h_1, h_2 \in H(W)).$$

We can check the following lemma by direct calculations.

- Lemma 5.2.1. (i) $\sum_{w \in W} a_w S_w = \sum_{w \in W} q^{\ell(w)} (\overline{\sum_{y \leq w} a_y R_{y^{-1}, w^{-1}}}) S_w$.
- (ii) For $s \in S$ we have

$$\left(\sum_{w \in W} a_w S_w\right) \cdot T_s = \sum_{w s > w} ((q - 1)a_w + a_{w s}) S_w + \sum_{w s < w} q a_{w s} S_w.$$

(iii) $\langle u, h \rangle = \epsilon(u \cdot h)$ $(u \in H^*(W), h \in H(W)), where \epsilon : H^*(W) \rightarrow$ R is given by $\epsilon(\sum_{w \in W} a_w S_w) = a_e$.

5.3. For $w \in W$ we define an element D_w of $H^*(W)$ by

(5.3.1)
$$\langle D_w, \overline{C}_y \rangle = \delta_{w,y^{-1}} q^{-\ell(w)}.$$

Set $D_w = \sum_{z \in W} Q_{w,z} S_z$ $(Q_{w,z} \in \mathbf{Z}[q,q^{-1}])$. It is easily seen that $Q_{w,z} = 0$ unless $z \geq w$, and $Q_{y,w}$ for $y \leq w$ are uniquely determined by

(5.3.2)
$$\sum_{y \le w \le z} (-1)^{\ell(w) - \ell(y)} Q_{y,w} P_{w,z} = \delta_{y,z} \quad (y \le z).$$

By definition we have the following properties:

 $(5.3.3) Q_{w,w} = 1.$

(5.3.4) If z > w, then $Q_{w,z}$ is a polynomial in q with degree $\leq (\ell(z) - \ell(w) - 1)/2$.

 $(5.3.5) \ \overline{D}_{w} = q^{\ell(w)} D_{w}.$

Moreover these properties characterize the element D_w . We shall formulate this uniquenes in a more general setting.

Let R be a commutative ring with 1 containing $\mathbb{Z}[q,q^{-1}]$. Assume that we are given a grading $R = \bigoplus_{i \in \mathbb{Z}} R_i$ and an involutive automorphism $r \mapsto \overline{r}$ of the ring R satisfying

$$(5.3.6) R_i R_j \subset R_{i+j}, \quad q \in R_2, \quad \overline{R_i} = R_{-i}, \quad \overline{q} = q^{-1}.$$

Set $H_R(W) = R \otimes_{\mathbb{Z}[q,q^{-1}]} H(W)$ and $H_R^*(W) = \operatorname{Hom}_R(H_R(W), R)$. Similarly to (5.2.2) and (5.2.3), we have an involution $u \mapsto \overline{u}$ of $H_R^*(W)$ and a right $H_R(W)$ -module structure on $H_R^*(W)$.

Proposition 5.3.1. Let $w \in W$. If $D'_w = \sum_{z \geq w} Q'_{w,z} S_z$ ($Q'_{w,z} \in R$) is an element of $H_R^*(W)$ satisfying the following conditions (a), (b), (c), then we have $D'_w = D_w$.

- (a) $Q'_{w,w} = 1$.
- (b) $Q'_{w,z} \in \bigoplus_{i \leq \ell(z) \ell(w) 1} R_i$ for z > w.
- (c) $\overline{D'_w} = q^{\ell(w)} D'_w$.

Proof. We shall show $Q'_{w,z} = Q_{w,z}$ for $z \ge w$ by induction on $\ell(z) - \ell(w)$. If $\ell(z) - \ell(w) = 0$, we have w = z, and the assertion is trivial. Assume that z > w. By Lemma 5.2.1 (i) we have

$$\overline{D'_w} = \sum_{v \ge w} q^{\ell(v)} \left(\sum_{v \ge y \ge w} \overline{Q'_{w,y} R_{y^{-1},v^{-1}}} \right) S_v,$$

and hence (c) implies:

$$Q'_{w,z} = q^{\ell(z) - \ell(w)} (\overline{Q'_{w,z}} + \sum_{z > y \ge w} \overline{Q'_{w,y} R_{y^{-1},z^{-1}}}).$$

By the inductive hypothesis we have

$$(5.3.7) Q'_{w,z} - q^{\ell(z) - \ell(w)} \overline{Q'_{w,z}} = q^{\ell(z) - \ell(w)} \sum_{z > y \ge w} \overline{Q_{w,y} R_{y^{-1},z^{-1}}}.$$

On the other hand (b) implies

$$(5.3.8) Q'_{w,z} \in \bigoplus_{i \le \ell(z) - \ell(w) - 1} R_i,$$

$$(5.3.9) q^{\ell(z)-\ell(w)}\overline{Q'_{w,z}} \in \bigoplus_{i \ge \ell(z)-\ell(w)+1} R_i,$$

and hence the equation (5.3.7) uniquely determines $Q'_{w,z}$. Since $Q_{w,z}$ also satisfies the same equation, we have $Q'_{w,z} = Q_{w,z}$. \square

6. Hodge modules on flag varieties

- 6.0. In this section we shall give a proof of (4.8.4) for any (not necessarily symmetrizable) Kac-Moody Lie algebra \mathfrak{g} . For an abelian category \mathcal{A} we denote its Grothendieck group by $K(\mathcal{A})$.
- 6.1. Set R = K(MHS). The abelian group R is naturally endowed with a structure of commutative ring with 1 via the tensor product. Since MHS is an Artinian category, R has a free **Z**-basis consisting of simple objects. For $i \in \mathbf{Z}$ we denote by R_i the **Z**-submodule of R generated by the elements corresponding to pure Hodge structures of weight i. Since any simple object of MHS is a pure Hodge structure, we have

(6.1.1)
$$R = \bigoplus_{i \in \mathbf{Z}} R_i, \quad R_i R_j \subset R_{i+j}.$$

In the following we regard $\mathbf{Z}[q,q^{-1}]$ as a subring of R via $q^i = [\mathbf{Q}^H(-i)] \in R_{2i}$, where $\mathbf{Q}^H(-i)$ is the pure Hodge structure of weight 2i obtained by twisting the trivial Hodge structure \mathbf{Q}^H . Let $r \mapsto \overline{r}$ be the involutive automorphism of the ring R induced by the duality operation in MHS. Then we have

$$(6.1.2) \overline{R}_{i} = R_{-i}, \quad \overline{q} = q^{-1},$$

and hence the ring R satisfies the condition (5.3.6).

6.2. We have a natural R-module structure on $K(\tilde{M}HM^B(X_w))$ for $w \in W$.

Lemma 6.2.1. (i) Any object M of $\tilde{M}HM^B(X_w)$ is isomorphic to a constant B-equivariant mixed Hodge module $\mathbf{Q}_{X_w}^H \otimes L (= (a_{X_w})^*(L))$ for some $L \in \mathrm{Ob}(MHS)$.

(ii)
$$K(\tilde{M}HM^B(X_w))$$
 is a rank one free R-module with basis $[\mathbf{Q}_{X_w}^H]$.

Proof. This follows from Theorem 3.13.3 since the isotropy group with respect to the action of B on X_w is connected. \square

6.3. We say that a subset J of W is admissible if J is a finite set satisfying the condition:

$$(6.3.1) w \in J, \quad y \leq w \Rightarrow y \in J.$$

We denote by \mathcal{C} the set of admissible subsets of W. For a subset J of W set $\Omega_J = \bigsqcup_{w \in J} X_w$. By [K2] we see that Ω_J is a quasi-compact open subset of X if and only if J is admissible.

For admissible subsets J_1 , J_2 satisfying $J_1 \subset J_2$, we have a natural functor and a natural homomorphism

(6.3.2)
$$\tilde{M}HM^B(\Omega_{J_2}) \to \tilde{M}HM^B(\Omega_{J_1})$$

(6.3.3)
$$K(\tilde{M}HM^B(\Omega_{J_2})) \to K(\tilde{M}HM^B(\Omega_{J_1}))$$

by the restriction, and they give projective systems $\{\tilde{M}HM^B(\Omega_J)\}_{J\in\mathcal{C}}$ and

$$\{K(\tilde{M}HM^B(\Omega_J))\}_{J\in\mathcal{C}}$$
. Set

(6.3.4)
$$\tilde{M}HM^B(X) = \lim_{\stackrel{\longleftarrow}{J \in C}} \tilde{M}HM^B(\Omega_J),$$

(6.3.5)
$$K^{B}(X) = \lim_{J \in \mathcal{C}} K(\tilde{M}HM^{B}(\Omega_{J})),$$

and let $p_J: K^B(X) \to K(\tilde{M}HM^B(\Omega_J))$ be the projection. The R-module $K^B(X)$ may be regarded as a completion of the Grothendieck group of $\tilde{M}HM^B(X)$.

Let $i_w: X_w \to X$ be the inclusion. Let $w \in W$ and $J \in \mathcal{C}$ such that $w \in J$, and let $i_{w,J}: X_w \to \Omega_J$ be the inclusion. We define objects $(i_w)_! \mathbf{Q}_{X_w}^H$ and ${}^{\pi}\mathbf{Q}_{X_w}^H$ of $D^b(\tilde{M}HM^B(X))$ by

(6.3.6)
$$(i_w)_! \mathbf{Q}_{X_w}^H | \Omega_J = (i_{w,J})_! (\mathbf{Q}_{X_w}^H),$$

(6.3.7)

 ${}^{\pi}\mathbf{Q}_{X_w}^H|\Omega_J=$ (the minimal extension of $\mathbf{Q}_{X_w}^H$ with respect to $i_{w,J}$).

Set $[M] = \sum_{k \in \mathbb{Z}} (-1)^k [H^k(M)]$ for $M \in \text{Ob}(D^b(\tilde{M}HM(\Omega_J)))$. We have elements $[(i_w)_! \mathbf{Q}_{X_w}^H]$ and $[{}^{\pi}\mathbf{Q}_{X_w}^H]$ of $K^B(X)$ satisfying

(6.3.8)
$$p_J([(i_w)_! \mathbf{Q}_{X_w}^H]) = [(i_w)_! \mathbf{Q}_{X_w}^H | \Omega_J],$$

$$(6.3.9) p_J([{}^{\pi}\mathbf{Q}_{X_{w}}^H]) = [{}^{\pi}\mathbf{Q}_{X_{w}}^H|\Omega_J].$$

We nextly define an R-homomorhism

$$(6.3.10) (i_w)^*: K^B(X) \to K(\tilde{M}HM^B(X_w))$$

as follows. For an admissible subset J such that $w \in J$, we have an R-homomorphism

$$(i_{w,J})^*: K(\tilde{M}HM^B(\Omega_J)) \to K(\tilde{M}HM^B(X_w))$$

given by

$$(i_{w,J})^*([M]) = \sum_{k \in \mathbb{Z}} (-1)^k [(H^k(i_{w,J})^*)(M)]$$

for $M \in \mathrm{Ob}(K(\tilde{M}HM^B(\Omega_J)))$, and (6.3.10) is defined by

$$(6.3.11) (i_w)^*(m) = (i_{w,J})^*(p_J(m)).$$

For $m \in K^B(X)$ and $w \in W$ we define $\varphi_w(m) \in R$ by

$$(6.3.12) (i_w)^*(m) = \varphi_w(m)[\mathbf{Q}_{X_w}^H]$$

(see Lemma 6.2.1). We also define an R-homomorphism $\varphi \colon K^B(X) \to H_R^*(W)$ by

(6.3.13)
$$\varphi(m) = \sum_{w \in W} \varphi_w(m) S_w.$$

Lemma 6.3.1. (i) $\varphi([(i_w), \mathbf{Q}_{X_w}^H]) = S_w$ (ii) φ is an isomorphism of R-modules.

Proof. (i) is clear. Let us show (ii). Let J be an admissible subset of W. Since $\tilde{M}HM^B(\Omega_J)$ is an Artinian category, its Grothendieck group has a free **Z**-basis consisting of the simple objects. Since any simple object of $\tilde{M}HM^B(\Omega_J)$ is isomorphic to $({}^{\pi}\mathbf{Q}_{X_w}^H|\Omega_J)[-\ell(w)]\otimes L$ for some $w\in J$ and some simple object L of MHS, we see that $K(\tilde{M}HM^B(\Omega_J))$ is a free R-module with basis $\{[{}^{\pi}\mathbf{Q}_{X_w}^H|\Omega_J]; w\in J\}$. Since we have

$$\begin{bmatrix} {}^{\pi}\mathbf{Q}_{X_w}^H | \Omega_J \end{bmatrix} \in \begin{bmatrix} (i_w)_! \mathbf{Q}_{X_w}^H | \Omega_J \end{bmatrix} + \sum_{\substack{y \in J \\ y \in \mathcal{Y}_w}} R[(i_y)_! \mathbf{Q}_{X_y}^H | \Omega_J \end{bmatrix}$$

for $w \in J$, $\{[(i_w), Q_{X_w}^H | \Omega_J]; w \in J\}$ is also a free basis of the R-module $K(\tilde{M}HM^B(\Omega_J))$. Therefore the assertion follows from (i). \square

6.4. We shall define an R-homomorphism

(6.4.1)
$$\tau_i: K^B(X) \to K^B(X)$$

for each $i=1,\ldots,\ell$ as follows. Let \mathcal{C}_i be the set of admissible subsets J of W such that $ws_i \in J$ if $w \in J$. For $J \in \mathcal{C}_i$ let $q_{i,J} \colon \Omega_J \to q_i(\Omega_J)$ be the restriction of $q_i \colon X \to X^i$ and define an endomorphism $\tau_{i,J}$ of the R-module $K(\tilde{M}HM^B(\Omega_J))$ by

$$\tau_{i,J}([M]) = [(q_{i,J})^*(q_{i,J})_!M] \quad \text{ for } \quad M \in \mathrm{Ob}(\tilde{M}HM^B(\Omega_J)).$$

Since $q_{i,J}$ is a B-equivariant \mathbf{P}^1 -bundle, $\tau_{i,J}$ is well-defined. Then we define an endomorphism τ_i of $K^B(X) = \varprojlim_{J \in C_i} K(\tilde{M}HM^B(\Omega_J))$ by $\tau_i = \varprojlim_J \tau_{i,J}$.

Lemma 6.4.1.
$$\varphi(\tau_i(m)) = \varphi(m) \cdot (T_{s_i} + 1)$$
 for $m \in K^B(X)$.

Proof. By Lemma 5.2.1 (ii) and Lemma 6.3.1 it is sufficient to show

$$\tau_{i}([(i_{w})_{!}\mathbf{Q}_{X_{w}}^{H}]) = \begin{cases} [(i_{ws_{i}})_{!}\mathbf{Q}_{X_{ws_{i}}}^{H}] + [(i_{w})_{!}\mathbf{Q}_{X_{w}}^{H}] & (ws_{i} < w) \\ q([(i_{ws_{i}})_{!}\mathbf{Q}_{X_{ws_{i}}}^{H}] + [(i_{w})_{!}\mathbf{Q}_{X_{w}}^{H}]) & (ws_{i} > w). \end{cases}$$

Let $J \in \mathcal{C}_i$ such that $w \in J$. Set $\tilde{X}_w = q_i^{-1}q_i(X_w) = X_w \sqcup X_{ws_i}$ and let $j_{w,J} \colon \tilde{X}_w \to \Omega_J$ be the inclusion. Since $\tilde{X}_w \to q_i(\tilde{X}_w)$ is a \mathbf{P}^1 -bundle and since $X_w \to q_i(\tilde{X}_w)$ is an isomorphism (resp. \mathbf{A}^1 -bundle) for $ws_i < w$ (resp. $ws_i > w$), we have

$$(q_{i,J})^*(q_{i,J})_!((i_{w,J})_!\mathbf{Q}_{X_w}^H) = \left\{ \begin{array}{ll} (j_{w,J})_!\mathbf{Q}_{\tilde{X}_w}^H & (ws_i < w) \\ (j_{w,J})_!\mathbf{Q}_{\tilde{X}_w}^H[-2](-1) & (ws_i > w). \end{array} \right.$$

On the other hand, if $ws_i > w$, we have an exact sequence:

$$\begin{split} 0 &\rightarrow (i_{ws_i,J})_! \mathbf{Q}^H_{X_{ws_i}}[-\ell(w)-1] \rightarrow (i_{w,J})_! \mathbf{Q}^H_{X_w}[-\ell(w)] \\ &\rightarrow (j_{w,J})_! \mathbf{Q}^H_{\tilde{X}_{-}}[-\ell(w)] \rightarrow 0 \end{split}$$

in $\tilde{M}HM^B(\Omega_J)$. Hence the assertion is clear. \square

By Lemma 6.3.1 and Lemma 6.4.1 we can define a right H(W)module structure on $K^B(X)$ by

(6.4.2)
$$m \cdot (T_{s_i} + 1) = \tau_i(m) \quad (m \in K^B(X)).$$

6.5. We denote by $m \mapsto m^*$ the endomorphisms of the abelian groups $K^B(X)$ and $K(\tilde{M}HM^B(X_e))$ induced by the duality operation of mixed Hodge modules.

Lemma 6.5.1.
$$\varphi(m^*) = \overline{\varphi(m)} \text{ for } m \in K^B(X).$$

Proof. We have to show $\langle \varphi(m^*), h \rangle = \overline{\langle \varphi(m), \overline{h} \rangle}$ for $m \in K^B(X)$, $h \in H(W)$. By Lemma 5.2.1 (iii) and §§6.3, 6.4 this is equivalent to

$$(6.5.1) (i_e)^* (m^* \cdot T_z) = ((i_e)^* (m \cdot \overline{T}_z))^* (m \in K^B(X), z \in W),$$

where the right action of H(W) on $K^B(X)$ is given by (6.4.2). Let us prove (6.5.1) by induction on $\ell(z)$. The case z = e being trivial, we take $w \in W$ satisfying $s_i w > w$ and prove (6.5.1) for $z = s_i w$ assuming (6.5.1) for z = w.

Let $J \in \mathcal{C}_i$. Since $q_{i,J}$ is a \mathbf{P}^1 -bundle, we have

$$(6.5.2) (q_{i,J})^*(q_{i,J})! \mathbf{D}_{\Omega_J}(M) = (\mathbf{D}_{\Omega_J}(q_{i,J})^*(q_{i,J})! (M))[-2](-1)$$

for $M \in \mathrm{Ob}(\tilde{M}HM^B(\Omega_J))$ and hence we have

(6.5.3)
$$\tau_{i}(m^{*}) = (q^{-1}\tau_{i}(m))^{*} \quad (m \in K^{B}(X)).$$

Therefore we have

$$(i_e)^*(m^* \cdot T_{s,w}) = (i_e)^*((\tau_i(m^*) - m^*) \cdot T_w)$$

$$= (i_e)^*((q^{-1}\tau_i(m) - m)^* \cdot T_w)$$

$$= ((i_e)^*((q^{-1}\tau_i(m) - m) \cdot \overline{T}_w))^*$$

$$= ((i_e)^*(m \cdot \overline{T}_{s,w}))^*. \quad \Box$$

6.6. We shall determine $H^i((i_{z,J})^*({}^{\pi}\mathbf{Q}_{X_w}^H|\Omega_J))$ for any admissible subset J and $z, w \in J$. Since this does not depend on J, we simply denote it by $H^i((i_z)^*({}^{\pi}\mathbf{Q}_{X_w}^H))$.

We first give a weaker result.

Proposition 6.6.1. $\varphi([{}^{\pi}\mathbf{Q}_{X_{w}}^{H}]) = D_{w} \text{ for } w \in W.$

Proof. Setting $Q'_{w,z} = \varphi_z([{}^{\pi}\mathbf{Q}^H_{X_w}]) \in R$ and $D'_w = \sum_{z \geq w} Q'_{w,z} S_z \in H_R^*(W)$, we have $\varphi([{}^{\pi}\mathbf{Q}^H_{X_w}]) = D'_w$. Hence by Proposition 5.3.1, it is sufficient to show the following conditions:

$$(6.6.1) Q'_{w,w} = 1.$$

(6.6.2)
$$Q'_{w,z} \in \bigoplus_{i \le \ell(z) - \ell(w) - 1} R_i$$
 for $z > w$.

$$(6.6.3) \ \overline{D'_{w}} = q^{\ell(w)} D'_{w}$$

(6.6.1) is trivial, and (6.6.3) follows from Lemma 6.5.1 and

(6.6.4)
$$\mathbf{D}_{\Omega_J}({}^{\pi}\mathbf{Q}_{X_{w}}^H|\Omega_J) = ({}^{\pi}\mathbf{Q}_{X_{w}}^H|\Omega_J)[-2\ell(w)](-\ell(w)).$$

Let us show (6.6.2). Let z > w. Since ${}^{\pi}Q_{X_w}^H|\Omega_J$ is pure of weight 0, $(i_{z,J})^*({}^{\pi}Q_{X_w}^H|\Omega_J)$ is of weight ≤ 0 , and hence $H^i((i_{z,J})^*({}^{\pi}Q_{X_w}^H|\Omega_J))$ is of weight $\leq i$. On the other hand we have $H^i((i_{z,J})^*({}^{\pi}Q_{X_w}^H|\Omega_J)) = 0$ for $i \geq \ell(z) - \ell(w)$ by the definition. Therefore $Q'_{w,z} \in \bigoplus_{i \leq \ell(z) - \ell(w) - 1} R_i$.

Lemma 6.6.2. Let Y be an irreducible closed subvariety of \mathbb{C}^n such that there exist integers $a_1, \ldots, a_n > 0$ satisfying

$$(6.6.5) z \in \mathbb{C}^*, (z_1, \dots, z_n) \in Y \Rightarrow (z^{a_1} z_1, \dots, z^{a_n} z_n) \in Y,$$

and let $i: \{0\} \to Y$ be the inclusion. Then $H^j(i^*({}^{\pi}\mathbf{Q}_Y^H))$ is a pure Hodge structure of weight j.

The proof is similar to [KL2, Lemma 4.5].

Lemma 6.6.3.
$$H^{j}((i_z)^*({}^{\pi}\mathbf{Q}_{X_{w}}^H))$$
 is pure of weight j.

Proof. We may assume that z > w. Let $x \in X_z$. By [K2, Remark 4.5.14] we can take an open neighborhood V of x in X such that there exists a commutative diagram

$$(6.6.6) X_z \cap V \longrightarrow \overline{X}_w \cap V \longrightarrow V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\{0\} \times \mathbf{A}^{\infty} \longrightarrow Y \times \mathbf{A}^{\infty} \longrightarrow \mathbf{C}^n \times \mathbf{A}^{\infty}$$

where Y is an irreducible closed subvariety of \mathbb{C}^n satisfying the assumption of Lemma 6.6.2, the horizontal arrows are the natural inclusions and the vertical arrows are isomorphisms. Hence the assertion follows from Lemma 6.6.2. \square

Set
$$Q_{w,z} = \sum_j c_{w,z,j} q^j$$
 $(c_{w,z,j} \in \mathbf{Z})$ for $z, w \in W$ with $z \ge w$.

Theorem 6.6.4. Let $z \geq w$.

- (i) $H^{2j+1}((i_z)^*({}^{\pi}\mathbf{Q}^H_{X_w})) = 0$ for any $j \in \mathbf{Z}$.
- (ii) For any $j \in \mathbf{Z}$ we have $c_{w,z,j} \geq 0$, and $H^{2j}((i_z)^*({}^{\pi}\mathbf{Q}^H_{X_w}))$ is isomorphic to $(\mathbf{Q}^H_{X_z}(-j))^{\oplus c_{w,z,j}}$.

Proof. By Theorem 3.13.3 there exist some $N_k \in \text{Ob}(MHS)$ $(k \in \mathbb{Z})$ such that $H^k((i_z)^*({}^{\pi}\mathbf{Q}_{X_w}^H)) = (a_{X_z})^*(N_k)$. Then we see from Proposition 6.6.1 that

(6.6.7)
$$\sum_{j} c_{w,z,j} q^{j} = \sum_{k \in \mathbf{Z}} (-1)^{k} [N_{k}].$$

Since $[N_k] \in R_k$ by Lemma 6.6.3, we have $[N_{2j+1}] = 0$ and $[N_{2j}] = c_{w,z,j}q^j$, and this implies that $N_{2j+1} = 0$ and $N_{2j} = (\mathbf{Q}^H)^{\oplus c_{w,z,j}}$. \square

It is easily seen that (4.8.4) is a consequence of Theorem 6.6.4 (or even Lemma 6.6.1).

References

- [EGA] A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, I-IV, Publ. Math. IHES.
- [BB] A. Beilinson, J. Bernstein, Localisation de g-modules, Comptes Rendus, 292 (1981), 15-18.
- [BBD] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérisque, 100 (1983).
- [BK] J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., 64 (1981), 387-410.
- [DGK] V. Deodhar, O. Gabber and V. Kac, Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. Math., 45 (1982), 92-116.
- [K'] V. Kac, "Infinite dimensional Lie algebras", Progress in Math. 44, Birkhäuser, Boston, 1983.
- [K1] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ., 20 (1984), 319-365.
- [K2] M. Kashiwara, The flag manifold of Kac-Moody Lie algebras, Amer. J. Math., 111 (1989).
- [K3] M. Kashiwara, Kazhdan-Lusztig conjecture for symmeytrizable Kac-Moody Lie algebra, to be published in the volume in honor of A. Grothendieck's sixtieth birthday.
- [KS] M. Kashiwara and P. Schapira, "Sheaves on Manifolds", Springer-Verlag.
- [KL1] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165-184.

- [KL2] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Proc. Symp. in Pure Math., 36 (1980), 185-203.
- [LV] G. Lusztig and D. Vogan, Singularities of closures of K-orbits on flag manifolds, Invent. Math., 71 (1983), 365-379.
- [M] O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque, 159-160 (1988).
- [S] M. Saito, Mixed Hodge Modules, Publ. RIMS, Kyoto Univ., 26 (1989).
- [Sp] T. A. Springer, Quelques applications de la cohomologie d'intersection, Séminaire Bourbaki, exposé 589, Astérisque, 92-93 (1982), 249-273.
- [T] T. Tanisaki, Hodge modules, equivariant K-theory and Hecke algebras, Publ. RIMS, Kyoto Univ., 23 (1987), 841-879.