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A b-function of an analytic function f (x)  is, by definition, a gcnerator of the ideal 
formed by the polynomials b(s) satisfying 

P(s, x, Dx) f (x)" + 1 = b(s) f (x)  ~ 

for some differential operator P(s, x, Dx) which is a polynomial on s. 
Professor M.Sato introduced the notions of "a-function", "b-function" and 

"'c-function" for relative invariants on prehomogeneous vector spaces, when he 
studied the fourier transforms and ~-functions associated with them (see [10, 12]). 
He defined, in the same time, b-functions for arbitrary holomorphic functions and 
conjectured their existence and the rationality of their roots. 

Professor Bernstein introduced, independently of Prof. Sato, b-functions and 
proved any polynomial has a non zero b-function [1]. Professor Bj6rk extended 
this result to an arbitrary analytic functions by the same method [3]. 

The rationality of roots of b-functions is closely related to the quasi-uni- 
potency of local monodromy. In fact, Professor Malgrange showed that the 
eigenvalues of local monodromy are exp (2 n l f Z ~ a  ) for a root c~ of the b-function 
when f has an isolated singularity [9]. 

In this paper, the proof of the existence of b-functions and the rationality of 
their roots are given. The method employed here is to study the system of differen- 
tial equations which satisfies f (x)  ~. First, we will show that ~J~ is a subholonomic 
system and prove the existence of b-functions as its immediate consequence. Next, 
we study the rationality of roots of b-functions by using the desingularization 
theorem due to Hironaka. So, the main result of this paper is the following two 
theorems. 

Theorem, The characteristic variety oJ'~J ~ is equal to W s. Wf is, by dffinition, the 
closure of {(x, ~); ~ = s grad log f (x)  for some sol2} in the cotangent vector bundle. 

* Supported by NFS contract MCS 73-08412 
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Theorem. Let X', X be two complex manifolds and F: X'--~X be the blowing up 
with center contained in the zeros of the holomorphic function f(x) on X. Set f '  : f o  F. 
7hen bf(s) is a divisor of by,(s)by,(s+ l ) . . .  by,(s+N) for some integer N. Here, 
b f(s) and b y,(S) are the b-functions of f (x)  and f'(x') respectively. 

I express my hearty thanks to Professors M.Sato and T. Kawai for many valuable discussions 
with them 

w 1. A Statement of the Theorems 

Let X be a complex manifold of dimension n and ~x be a sheaf of differential 
operators of finite order. We set ~x[S] = ~ x ~ C  [s]. Here, s is an indeterminate, 

c 
commuting with all differential operators. ~x [s] is, therefore, the sheaf of rings 
whose center is C Is]. 

Let f (x)  be a non zero holomorphic function on X. Denote by J :  the Ideal 
of ~x [s] consisting of all operators P(s, x, D) in ~x  Is] such that P(s, x, D)f(x) ~ = 0 
holds for a generic x and every s. We set ~ = @x [s] ft. ~ is therefore isomorphic 
to ~x  [s] /~ .  

Let t: ~ - ~  JV) be an endomorphism of ~ defined by 

P(s)ff~-~ P(s + 1)ff + 1 = (P(s + 1)f)ff.  

t is a ~x-linear homomorphism but not 6~[s]-linear. We have a commutation 
relation 

[ t , s ]=t  ( [ t , s ] = t s - s t ) .  

We will denote by C[s, t] the ring generated by s and t with the fundamental 
relation [t, s] = t. Therefore, we have 

(1.1) q~(s)t=tq~(s-1) in r  

for any polynomial q~(s). Set ~x [s, t] = ~ x @ ~  [s, t]. ~ has a structure of ~x [s, t]- 
Module. r 

We set ~l  f = Jffs/t Jg" s. 

(1.1) Lemma../1r162 is a ~[s]-Module. 

In fact, s t y =  t ( s - 1 ) ~  t ~ .  

(1.2) Definition. The b-function off(x) is a generator of the ideal of the polynomials 
b(s) such that 

b ( s ) f f ~ [ s ] f f  +1 =t~Ar I (or equivalently, b(s)~l,=O). 

We will denote it by bf(s). It is clear that b(s)ff~ ~ [s] f f+l  implies bf(s)lb(s). The 
purpose of this paper is to prove that 

(a) ~#y is a subholonomic system (i.e. a coherent ~x-Module whose characteristic 
variety has codimension > n - 1). 

(b) b f (s) ~:O and the roots of it are negative and rational numbers. 
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w 2. Review on the Theory of Systems of Differential Equations 

In this paper, the results and the terminologies in S-K-K [11] and [4] are 
frequently used. Since [4] is written in Japanese and is hardly available, we collect 
here some of the results in it. 

The sheaf of differential operators of finite order on a complex manifold X 
X is denoted by ~x.  In this paper, we not use differential operators of infinite 
order. The sheaf of micro-differential operators of finite order is denoted by 
~x .1 ~x is a coherent Ring on the cotangent projective bundle P*X of X. ~x  m) 
(resp. g~x m)) signifies the sheaf of differential (resp. micro-differential) operators of 
order <m. Let nx: P*X-~X  be the canonical projection. Then gx contains 
~x 1 @x as a sub-Ring and flat over it. Here, n-1 means the inverse image in the 
sheaf theory. 

A coherent ~x-Module Jr  (resp. a coherent 8x-Module ~/) is called a system 
of (linear) differential equations (resp. micro-differential equations). The charac- 
teristic variety of~t'  is, by definition, the support of gx(~) J / a n d  denoted by SS(J/I). 

~ x  
Let ? =? x :  T * X - X ~ P * X  be the canonical projection from the cotangent 

vector bundle T * X  onto P ' X ,  defined outside of the zero-section X of T*X.  
7-1(SS(JC))w Supp(d//) is denoted by S~S(~t'). Here, the support Supp (Jg) of ~ /  
is identified with the closed set of the zero section of T* X. S~S(J/) is also called 
the characteristic variety of ~r S~S(Jg) is an involutory closed analytic set in 
T 'X ,  invariant under the action of the multiplicative group • • of non zero 
complex numbers. Recall that an analytic subset V of T* X is called involutory 
if, for any two functions f, g vanishing on V, their poisson bracket {f, g} vanishes 
on V. An involutory analytic subset has always codimension equal or less than 
n = dim X. It implies, therefore, codim S-S(~t') < n. 

S~S(JI) can be reformulated as follows. Let ~x be the Ring of T* X defined by 

dx[r*x-x=? - '  gx and rcx. gx=Nx,  

where ~x is the canonical projection from T*X onto X. By choosing a local 
coordinate system, for any open set U in T* X, we have 

O~x(U) = {(pj(x, ~))j~z; pj(x, ~)e(gT, x(U ) 

such that 

i) pi(x, ~) is homogeneous of degree j with respect to 4. 
ii) sup [p~(x, ~)[ < ( - j ) !  R~ j for any K c c  U and j < 0 .  

iii) pi(x, 4) = 0 for j >> 0. 

ocx contains n -1 ~ x  and flat over it. ~xlx is isomorphic to @x. 

(2.1) Lemma. o~x is a coherent sheaf. 

In fact, dx is coherent on T ' X - X ,  because ~XlT*X-X is isomorphic to y - t  6ox 
and eg x is coherent. Let s 1 . . . . .  su be sections of dx defined in a neighborhood of 
(x, 4) = (Xo, 0). Let .A? be a kernel of dx N ~ ~x defined by s i. sj are necessarily dif- 

1 In S-K-K [11] "pseudo-differential" and ~x are used instead of"micro-differential" and 8 x 
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ferential operators. Let ~"  be a kernel of ~x  N -* ~x  defined by sj. Then, since fx  
is flat over ~x ,  f x @  ~t'~ is isomorphic to ~/V. Therefore, ~.V is locally of finite 

~ x  
type. Q.E.D. 

(2.2) Lemma. Let o/ff be a coherent ff-Module defined all over T* X. Set J/[ = Jff]x. 
Then, o/tl is a coherent @x-Module and ,/t]= f (~ )~ ' .  

Proqf The first statement is evident. Since ff is a constant sheaf along the fiber 
of 7, ,/[7 is also a locally constant sheaf along the fiber of 7. Therefore, Jr = n,  Jff. 
Thus, we have the canonical homomorphism 

ff@~-~.g, 

which is isomorphic in a neighborhood of the zero sections. Because they are 
locally constant along the fiber of 7, it is globally isomorphic. Q.E.D. 

By the definition of fix, it is evident that, for any coherent @x-Module ,/g, 
S-S(JI) coincides with the support of f x @  J/{. 

~ x  
If a(x, ~) be a homogeneous functions on T* X which vanishes on the char- 

acteristic variety S-S(,~') of ~g and u is a section of ,fig, then there exists locally a 
differential operator P(x, D) such that P(x, D)u=0 and the principal symbol of 
P is a power of a(x, ~). 

A system is said to be holonomic (resp. subholonomic) if the codimension of 
its characteristic variety is n = d i m X  (resp. > n - l ) .  An n-codimensional in- 
volutory subvariety of T * X  (resp. P ' X )  is said to be holonomic. An analytic 
subset V in T * X  (resp. P ' X )  is called isotropic, if the restriction of the funda- 
mental 1-form o J = ~  ~j dxj onto V vanishes on a non singular locus of V. An 
isotropic variety has always codimension >n. An analytic set is holonomic if 
and only if it is isotropic and purely of codimension n. 

(2.3) Theorem. Let ,//g be a system of differential (resp. micro-differential) equa- 
tion. Then, we have 

i) &~l i (J///, ~x) = 0 for i < codim SS(d[) (resp. dr ( ~ ,  dx) = 0 for i < codim 
Supp J r )  

ii) codim SS(d~li(Jg, @x))>= i (resp. codim Supp (d~c~'i (~g/, dx))>= i). 

The proof of this theorem can be found in [4] in the case of ~-Module.  Here, 
we review the proof in it with a slight modification. 

First, we assume ~ / i s  a coherent g-Module. Let Jk{ o be a coherent d(~ - 
module of .//r which generates J/r By w Chapter II if S-K-K [11], we have 
micro-locally the exact sequence of d(~ 

0 + - ~ o  ~d~~176 ~P~~ ' P' "" 

whose symbol sequences 

ro a(Po) rl o(PO 
o ~ '  = ~ ' o / d ( - ' ) ~ #  o ~ r ~ p ,  x , r ; p , x ,  . . .  
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is exact. Therefore we have the free resolution 

0 ~-//g ~-o  ~'~ ~ Po g~, ~ P, ... 

of rig. g~:~,i (.~#, 6'p,x) is the i-th cohomology  of the complex 

~,o x ~ ( ~ , x  ~ ... 

and this is a symbol  sequence of 

~ o  ~ g~ P, > ... 

whose i-th cohomology  is 5~g~ (Jr ~). Therefore,  the vanishing of gzd  ~ ( J / ,  (gp, x) 
implies that of g-J:d~(~ ', g ) b y  w Chapter  II of S -K-K [11]. In other words, we 
have 

Supp g~ / i  ( jg ,  ~) c Supp (~z/ i  (J/g, (ge~ x)). 

Since S u p p - _ ~ = S u p p , ~ ,  a) and b) are the consequence of the wel l -known 
theorems of the commuta t ive  ring corresponding to them. N o w  let us prove the 
case of differential equat ions as a consequence of micro-differential  equat ions 
case. 

Set ~ = {(t, x; ~ d t + (~, dx) )  e P* (ff~ x X); z + 0} and h be the project ion f rom 
~2 onto T* X defined by (t, x; ~ dt + (~, dx))~--, (x, ~ + (~, dx)).  

Note  that  gr • x contains h-  ~ d~x and faithfully flat over h -  1 gx. Let . ~  be a 
coherent ~ x - M o d u l e .  Set .///' = ge ~ x @ J g .  ~r is a coherent  gr215 Module.  

Nx 

(2.4) Lemma. g.-c/,~(0/r g~• ~ x ) @ g c •  
Nx 

This l emma  is easily deduced f rom the fact that  gr • x is flat over  ~ x .  

(2.5) Lemma. Supp (,/r = h-  1 S~S(jr 

Because d/{ '= ge • x @ ( f f x @ J g  ) and ge• x is faithfully fiat over  fix, this l emma 

is evident, t:~ ~x 

Now, Theorem (2.3) for o./g is a trivial consequence of that  for os In fact, we 
have 

Supp (~ccg i (Jg', ~ ~ x)) = h-  1 ~S(~y.~i (j/d, @x)). 

This method is frequently available when we want  to get a result on differential 
equations (resp. hyperfunctions)  f rom the corresponding result on micro-dif-  
ferential equat ions (resp. microfunctions).  

(2.6) Theorem [4]. Let ~[  be a coherent Y-Module  (resp. o~-Module). 

.At,= {u~ J{ ;  codim S S ( ~ u ) >  r} (resp. { u 6 ~ / ;  codim Supp ( g u ) >  r)} 

is a coherent Y-Module  (resp. S-Module).  

In fact, we can construct  j//, in a cohomologica l  way. After Sato, we will 
introduce an associated cohomology  (see [4]) and express Jr using this. 
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For a complex A ' =  {. . .A" a ~  A,+I ~ ...}, we will define a>,(A') and a<=,(A') 
as follows (see [4]) 

a>r(A'): ... --~ 0 -~  Im d~ --~A "+1 -~A r+2 ~ "--, 

a<=~(A')" ... --~ A "-2 -~ A ~-1 ~ Ker d~ ~ 0  ~ --. 

We have 
�9 H'(a> r ))= ( ) for i>  r 

for i < r  
(2.1) 

i SHi(A ") for i-< r 
H (a=<~(A'))= ~. 

0 for i>r.  

Therefore, A'w,a>~(A'), a~r(A" ) are functors well defined in a derived category. 
For  a couple of integers (p, q) such that p < q we define 

p< (7<=q ---- (7>p o G < q  : G < q  o G> p .  

For a triplet p, q, r such that p__< q =< r, we have a triangle 

(2.2) 

, < a < ~(A' )  - - - - *  q :  a < r (A ' ) .  

(2.7) Definition. For a coherent @x-Module .//~', we define 

(2.3) T ~ q ( J / / ) = E x / i ( p < a ~ q l R . ~ ( d / g , ~ ) , ~ )  for p<=q. 

T~q(~t') possesses the following properties 

(2.8) Proposition. T~q(Jg) is a covariant functor on J/l[ and 

(0) T~q(J/l) is a coherent ~-ModuIe.  
(i) For a triplet p <= q <= r, we have the long exact sequence 

�9 ,, ~ Tq'r T~(J/?)--~ r~q(Jg)-+ Tq'~ ~(,//g) --~... 

(ii) T~q(d//) = 0 for p = q, Tivq( ~[) = Ti_ l q(.~/[) f o r  p < 0 and T;q( Jg) = O for q < O, 
(iii) T~q(~Cl)=Ofor i + q < 0 ,  
(iv) T~_ , .q ( J / )=  &eg~+q(~xgq~(.//g, ~),  ~)), 
(v) r~q(J/g)=O for p > n, and r~q(J//) = Tip,(~l) Jbr q > n, 

(vi) Tie.q(.~)=OJbr i + p > n ,  
(vii) T~q(J#)=Ofor i<0 ,  

(viii) ripq(~J)=O for i+O, p<O, q>n,  
(ix) TCq(Jg)=./gfor i=0 ,  p<O,  q>n ,  
(x) T;o(~g)=Ofor p<O, n >  i, 

(xi) T~,o%AO=Ofor p < 0 ,  n > 2 ,  
(xii) SS(T~q(JI)) ~ ~(S(J[). 

Proof  The property i) is evident by a triple (2.2). iv) is a consequence of 

q- 1 < a < q IR d f ~  ( .g ,  ~ )  = gx /q  (Jg, ~ )  [ - q]. 
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By the induction on q - p ,  0) and iii) can be reduced to the case in which 
p = q - 1. In this case, they are trivial. 

(v) is a trivial consequence of the fact 

,~v~'/(J/{, 9 ) = 0  for i>n .  

Let us prove vi) and vii). By the induction on q - p ,  by using i), we may assume 
p = q - 1. In this case 

T~q (J / )  = 8,-z4~ + ~ (~:Jq (J//, ~) ,  ~ )  = 0 for i + q = i + p + l > n .  

Since codim S~S(&.~/" (J~, ~ ) ) > q ,  T~q(Jh~)=0 for i < 0  and p = q -  1. It implies (vii). 

IR ~ (IR ~:;4~ (.~,  ~),  ~ )  = ,egg implies viii) and ix). 

For  p < 0 ,  i Tpo(d/) = ~,:ge ( ~  (~#L, ~),  9) .  Let 0 ,-- ~ '  ~- 5f o +-- ~1 be a free 
resolution of J / .  Then 

is exact. Let #/ '  be a cokernel of .;((~+** (~0 ,  @) -+ ~b~'~ (L-%, @). Since 

proj dim . ~ . ~  (~ 2 )  < max (proj dim ,.~/" - 2, 0) = max (n - 2, 0), 

we have (x) and (xi). (xii) is a trivial consequence of 

d@Tdq(..#)=N~_,~'~ ( ,<%q  Ill ~b~,~(d@~/d,  d), d). Q.E.D. 

(2.9) Proposition. (a) For a coherent .@-Module d/L, we have 

codlin ~ffS(Gq(~)) > i + p 

.for any i and p. 
(b) / f c o d i m  S~S(~/d/)>q, then T~q(~#)=0. 

Proof  By the induction on q - p ,  we may suppose that  q = p +  1. In this case, 

Theorem (2.3) immediately implies the proposit ion.  

(2.10) Theorem. Let  ~/[ be a coherent ~ x-Module. Then 

0 = T~ ~ T. ~ ~..(j/g) = . . .  ~ To~ ~ T ~  n(, /#) = . ~  

and 

T~~ = {s~ J//; codim SS(@s)>q} .  

Proof T~ , . (d//)= J / a n d  T..~ are already shown. In the exact sequence 

the first term TqL],q(.//g) vanishes by vii) in Proposi t ion (2.8). Therefore T~~ -~ 
T~ ~ ~,,(d'/() is injective. Thus we have the filtration 

o = T ~  = T o_ , ,  . (o#)  = . . .  = T_% . ( ~ )  = ~ .  
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By Proposi t ion (2.9), we have 

codim S'S(Tq~ > q. 

Therefore,  it suffices to show that any coherent  sub ~ - M o d u l e  J{ '  of  ~ / s u c h  that 
azodim f fS(J / ' )>  q is contained in Tq~162 By the exact sequence 

T_-ll  q ( ~ t - )  __~ o , T o , o , ~ , . ( ~  ) ~ - 1 , . ( ~  ) - ~  ~ , , q ( ~  ). 

By Proposit ion (2.8), T-x lq (J [ ' )=0 .  Proposit ion (2.9) implies that  o , ~ 1 , ~ ( ~ ' ) = 0 .  
0 t p Thus we have T ~ , , ( J / ) =  J l .  Therefore, we have a diagram 

J # ' =  Tq,~ T~~ = ~{, and J/g' = Tq~ Q.E.D. 

The above proposi t ions and theorems are also valid for g-Modules  or 6- 
Modules by suitable modifications. 

(2.11) Proposition. Let Jg be a coherent ~x-Module, and V be an irreducible 
component of the characteristic variety of Jt{ of codimension r. Then, the char- 
acteristic variety oJ" g::[ r (~1, ~)  contains V. 

Proof. If g x l r ( ~ @ J / , ~ ) = 0  at a generic point of V, then 6%d(J/4', 6) vanishes 

there for all j. It implies that . ~  = IR ~ , ~  (IR ~r (~ g~), 8") vanishes, which is a 
contradict ion.  Q.E,D. 

(2.12) Theorem. Let .Xr be a coherent ~-Module, r be an integer. Suppose that 

~x/J ( Jg ,  ~ ) = 0  for j4:r. 

Then, for any non zero sub-Module ,/[/[' of ~[, SS(.~') is r codimensional at an), 
point in it. 

Proof. Since r <a_<, IR ,~(#~,~,~ (,///, @)= 0 we have T f , ( J [ ) =  0. This implies Theorem 
(2.12), together with Proposi t ion (2.11). Q.E.D. 

Let Jr be a coherent  g -Modu le  whose support  is contained in an analytic 
set V, and V o be an irreducible component  of V. Let us choose a coherent  ~(o) 
sub-Module  ~#o of J / w h i c h  generate ~ at g-Module .  The multiplicity of the 
coherent  (gv, x-Module ,/go/g (- ~)Jgo at the generic point  of V o is called the multi- 
plicity of ~ along V o. 

(2.13) Proposition. The definition of the multiplicity does not depend on the 
choice of  J//[o. 

Proof. Take another  Jg6. Then, we may assume ~/o ~ J / 0  replacing J#o with 
g(")J/{o for m~0 .  In the same way, we may assume 

Jk'o ~ o~(") J/Lo for m ~ 0 .  

Now, we will prove by the induction on m. If m = 1, we have the exact sequences 

0 ' (- 1) ~/' o ~ / g  -~ ~ o / ~  ~- ' ) ~ ' o  --, ~ o / ~ o  -~ o 

and 
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Thus, we have 

mult (,~o/g (- 1)Jtlo ) 

= mult (,//go/JgO) + mult (~ '0 /g  I- 1),/go) 

= m u l t  (g( 1)~'o/g( 1),//g0)+mult (.//go/g ( 1 ) ~ ' o )  

= mult (,,gg;/g(- 1) ,~) ,  

and the proposi t ion is proved. Suppose m > l .  Set JC/0'=JC'o+g(1)dg0. Since 
g ( 1 ) - ~ / t O C , ~ [ 0 ' c g ( m - 1 ) ( g ( 1 ) * f / / / O )  and J l / l O C , / ~ / 0 ' = g ( 1 ) , ~ ' / O ,  mult(./CZo/g(-l)Jr 
mult (Jh'o'/g (- ~) ~'~') = mult (g(a).//,(o/./r = mult (..#o/g ( 1 )  j/4,o) ' by the hypothesis 
of the induction. Q.E.D. 

The multiplicity is an additive quantity.  That  is, we have the following 

(2.14) Proposition. Let O ~ J # ' - ~ , / C l - - . J g " ~ O  be an exact sequence. Then the 
multiplicity of .//g is a sum of those of ,~ '  and ,~". 

Proof Let J o  be a coherent  g(o) sub-Module  of ,//~' which generates Jg. Let 
~'0 = ,//go c~ ,///' ,~';' be the image of ~ in ~ Then, we have the exact sequence 

~,~, , ,~( -  i) ,t~,,, 0 ~ , / / / lO/g ( - 1) ~r ~ ~,~//lO/g(- 1 ) J ~ O  ~ ./gt' 0 / ~  J//l 0 ~ 0 .  

Therefore, the multiplicity of J/do/g (- 1)o///o is a sum of those of .#(;/g(-1)Jr 0 and 
J//0'/g(-t)Jh'o '. It implies Proposi t ion (2.14). Q.E.D. 

w 3. The Existence of b-Functions 

In this section, we will show that there exists locally a non zero polynomial  b(s) 
such that 

b(s) f S s ~ [ s ]  .f,~+ 1, 

for any holomorphic  function f(x).  The question being only in the ne ighborhood 
of zeros o f f ,  we will assume 

(3.1) {x; (?f/Sx 1 . . . . .  8f/Sx,=O} is contained in f - l ( 0 ) .  

Moreover,  we assume, in the first step, that  

(3.2) f (x )  is quasi-homogeneous,  that is, there is a vector field X o 

such that X o f = f  

Under this condition, ~ .  is generated by f= because s"f== X"d f=. Therefore, '/~I 
is a coherent  @x-Module. Later  we will prove that  '/~I is always coherent  @- 
Module without  the assumption (3.2). 

(3.1) Proposition..A S is subholonomic (i.e. the codimension of the characteristic 
variety is n -  1). 

Proof Let ~A/"= {ue .@;  codim SS(~u)>=n-1},  Jg" is a coherent  sub-Module  of 
~/~. If a derivative o f f ( x )  does not vanish, . ~  is evidently subholonomic.  There- 
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fore, ./~} and ~g" coincides outside of zero o f f  Let Uo be the section of ~UI/.Ar' 
corresponding to .f~e~A~. Since the support of (9 x u 0 is contained in f-~(0),  there 
is an integer m such that f "  u 0 = 0 by the Nullstellensatz of Hilbert. It means that 
~ f , , . f s  is a subholonomic system. Since ~fm .f~ is isomorphic to .W I by the 
homomorphism t% ~.~ is a subholonomic system. Q.E.D. 

(3.2) Corollary. ~r is holonomic. 

Proof. We have the exact sequence 

0 -~ .S)  ~ , ~ 2  ~ ~ ~ 0. 

At each irreducible component of the characteristic variety of , ~ ,  the multiplicity 
of "J/r is the difference of that of .A/j: and the same one, that is, zero. Therefore the 
characteristic variety of sC[y does not contain any irreducible component of that 
of sg). Hence, the codimension of the characteristic variety is strictly greater 
than that of.A/). Q.E.D. 

(3.3) Theorem. For any holomorphic function f (x) ,  there exists locally a non zero 
polynomial b(s) such that 

b ( s ) f S e ~ [ s ] f  ~+1. 

Proof First, we will assume Condition (3.2). In this case, ~ I  is a holonomic 
system. For  any point x, ~ (Jgl,  Jr has finite dimension over II~ by I-5]. 
Therefore, there is a non zero polynomial b(s) which is zero in g~d~ (~'I)~- It is 
equivalent to say that b(s ) f  ~ belongs to ~ [ s ]  J'~+ ~. 

Next, we will prove the general case. Let f ' ( t ,  x) be a holomorphic function 
on ~2 • X defined by tf(x). It is evidently quasi-homogeneous. By the preceding 
result, there is a non zero polynomial b(s) and a differential operator P(t, x, Dr, D~) 
such that 

(3.3) P(t, x, D,, D~) f ' ( t ,  x y  + 1 = b(s)f ' ( t ,  X) ~. 

Let Q(t, x, D t, D~) be the homogeneous part of degree ( -  1) with respect to t. Note 
that t is of degree 1 and D t is of degree - 1. Then, comparing the homogeneity of 
the both sides of (3.3), we have Q( t, x, Dr, D~) t s+ 1 f (x)~+ 1 = b(s) t~ f~). Q(t, x, D~, D x) 
has the form 

Q(t, x, D t, D~) = ~ Qj(x, D~)(tO,) j D,. 

Hence, we obtain 

(s+ 1) ~ s ~ Qj(x, D~) f ( x )  ~+1 =b(s) f ( x )  ~. Q.E.D. 

w 4. Integration of Systems of Differential Equations 

In order to obtain more precise informations of b(s) and ~ ,  we employ Hironaka's 
desingularization theorem. Therefore, we must study the relationship between 

and ~ ,  where f '  = fo  F and F: X ' - ~ X  is a monoidal transform. 
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Remember that Bernstein and Gelfand [2] considered the integral relation 

(4.1) j~(x)=S f ' ( x ' ) S 3 ( x - F ( x  ))~x,x, dx  

when they proved that f ( x )  s is a meromorphic function of s. Following their line, 
we understand ..4:) as "an integration" of .A)., along fibers of F. In this section, as 
its preparation, we will study the integration of systems of differential equations. 

Now, let X and Y be two complex manifold and F: X--, Y be a holomorphic 
map. ~r~x is, by definition, 

V-a(~v@(f2r) | @ f2x. 
(,v F 1(01, 

Here, f2 x (resp. g2v) is the sheaf of holomorphic forms of degree dim X (resp. dim Y) 
on X(resp. Y). ~r~x has a structure of (F - I~v ,  ~x)-bi-Module. That is, F - l ~ r  
operates @r ~x from the left and ~x from the right. 

(4.1) Definition. For a system Jr X, we define the integration S./g by 
L 

(4.2) ; J / = R ~  ( N r ~ x @ , t [ ) .  
\ ~ x  / 

i 

and ~JCl by 

i L 

(4.3) ~JC[=RiF, ( ~ r . x @ J / / ) .  
\ ~ x  ! 

L 

Here, @ is a left derived functor in the derived category. 
The purpose of this section is to prove the following finiteness theorem. 

(4.2) Theorem. Let  F: X --~ Y be a holomorphic map and ~[/d be a coherent ~x -  
Module satisfying the following conditions 

(i) F is a projective morphism (i.e. F can be imbedded into Y x IP~---~ Y). 

(ii) There exists a coherent sub Cx-Module Jgo of J r  which generates Jg as a 
~x-Module .  

Then we have 
i 

(a) SJr a coherent ~v-Module  for each i, and 
i 

(b) ~ S ( ~ ' ) c  (5 p -~ S~S(Jr) 

where Co and p are the canonical morphisms X x T* Y ~  T* Y and X x T* Y-~  T ' X ,  
respectively, r r 

This section is spent to the proof of this theorem. We will prove this theorem in 
two steps. First, we prove it in the case where X = Y x IP N and nextly in the general 
c a s e .  

For a submanifold Z of K the definition of a coherent 8r-Module CCzl r is 
given in S-K-K [11] (there, it is denoted by cg~lr). Choosing a local coordinate 
system (y~ . . . . .  y,) of Ysuch that Z = {)'1 . . . . .  )'~ = 0}, 

Cffzlr=gy/gry 1 + ... + gryl + ~r Dy~+~ + ... + ~r D.~,,,. 
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We define @Zlr by 

@zl r is equal  to ~Y@~Zl r. r is a ~ : M o d u l e  defined intrinsicly by 
~ y  

lim l ,. ___, g~ley((~zLr , (~r), 
v 

where :r is the defining ideal of Z. We define 

g~-x =~xjx x r@ ~x. 

Here,  X is identified to the graph of F. By the canonical  embedding  

X x T* Y ~ ) T*(X  x Y)-+ T*(X  x Y), 
Y 

we regard 6~y~x as the sheaf on X x T* Y. Let S be a compac t  complex manifold.  
Y 

(4.3) Proposition. For any coherent (gs-Module ~ ,  we have 

R 

Here, (5 is the canonical projection from (Y x S) x T* Y ~  T* Y. 
Y 

Proof. We have 

(~ ~s  

Cs 

and 

Hence, this propos i t ion  is equivalent  to 

R co , (~  v • 2 1 5 1 7 4 1 7 4  * ' " 
fix ~s 

Thus,  the propos i t ion  is the consequence of the following 

(4.4) Proposition. Let Z be a submanifold of Y, then 

R e),(C6z•215 ). 
Cs C 

P r o o f  We have the exact sequence 

O--~rs • ZlC x r ' ' ~o~ • ZlC • r--* C~zl r--~ 0 

and 

O--'C~o;•215215215 ' ,%o;•215215215215215 

Here,  T*  Y is considered as a subset of  T * ( ~  x Y) and t is a coordinate  function 
on ~ ,  etc. Hence,  this proposi t ion  follows f rom the following 
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(4.5) Proposition. 
R' &, (~z•215 ~zir(~ Hi(S :~). 

O's 

Proof. By the quantized contact  t ransformat ion  of P* Y, there is a hypersurface 
Z '  of Y such that  C~ziy is t ransformed to C~z, I r ,  and c6 z • S l v • s to c~ z, • s l r • s- Therefore,  
we may assume, f rom the first time, that Z is a hypersurface.  C~zi Y is a union of 
C~z (m) Here,  cpu,) =E~m)b(q~). (~(9) is a delta function with suppor t  on Z). Thus it I u t~ Y 
suffices to show that  

(4.4) R~ (h,(~")slr• ). 

(gz (m) is i somorphic  to c6~-sa) by the elliptic opera to r  of order  m +  1. Therefore, it Is 
suffices to show (4.4) when m = - 1 .  Cgz~-~} and ~<-1~ is i somorphic  to (gr[ z ~ Z x S I Y x N  
and C z • ~ s. Therefore,  (4.4) is a consequence of 

R' F, ((gr • s@ ~)  = (~r @ H~(S :,~) 
Os r 

where F is the projection Y • S -~  Y. Q.E.D. 

Now, let us prove the theorem when X = Y • IP N. Set S = I P  N. By Condi t ion (ii), 
there is a resolut ion 

Os Os 

o f ~ '  for coherent  Cs-Modules  o~/, locally on Y. Because there is a coherent  (9 s- 
Module  0% and a surjective h o m o m o r p h i s m  ~/go +--(gx@Yo. Therefore,  we have 

~s 
0 ~ - d g ~ @ x @ ~  0 . Let ~ be the kernel  of this h o m o m o r p h i s m ,  and ~k be the sheaf 

r  
of differential opera tors  of order _<_ k. Since a coherent  (gx-Module, ~ c~ ~k @o~o 
generates 5e as @x-Module for k~>0, we have a surjective h o m o m o r p h i s m  
~ - - ~ x @ ~ .  Cont inuing this process, we get a resolut ion of J//. Thus 

(gs 
L 

~ r ~ x @ J g i s  quas i - i somorphic  to 
NX 

L 

(4.6) Lemma.  R'(5,(dVr_x@~//d) are coherent ~r-Modules. 

In fact. we have the spectral  sequence 
L 

By Proposi t ion (4.3), all r  are coherent  g r -Modules ,  which implies L e m m a  (4.6). 

RieS, ~ x @  ~r r is evidently i somorphic  to  R i f ,  ~ y ~ x @ . J / {  . Therefore,  
" ~ X  ; \ @X I 

this is a coherent  ~ , - M o d u l e .  Moreover ,  we have 

R~o ,  ~ x |  4, _ ~ i - g r @ R  F, ~v_x@./r 
\ ~ x  ~ ~ \ ~ x  
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by Lemma (2.2). Therefore, 

i 

(4.5) ffS(~Jg)=Supp (R~oS,(~r~x@/g)).  
~ x  

Since Rg&, is a functor with a local nature, the right hand side of(4.5) is contained in 

cb(Supp (~r + x ( ~ / ) ) =  (5 (Supp (o~r~x@(~x@@l)) )c  o5 p -  1 (Supp (O~x (~)M/)) 
~ x  g x  -~x -~x 

Thus, we proved Theorem (4.2) when X = Y x IP u. 
Now, let us prove Theorem (4.2) in a general case. 
By Condition (ii), F is decomposed into 

X ~--, X' = Y x lPU ---~ K 

(4.7) Lemma. Let X--* Y be an imbedding and Y-*  Z be a smooth morphism, then 

L 

~ .  r |  x =  ~ ~ 
~y 

Proof Since 

L L L L 

--@~,|174 | ~ x , ~ x @ ~ x  
~ v  ~ v  ~ x  ~ v  ~ v  • x ~ x  

and 
L 

~ Z ~ y @ ~ Y  x X =  ~ Z  • X~Y xX,  
~v  

it suffices to show that 

L 

-~z x x~ r • x @ , ~ x  l~. • x =  ~ x  lz • x �9 
O-2y• x 

Thus, the lemma is a corollary of the following 

(4.8) Lemma. Let X---, Y be a smooth morphism and Z be a submanifold of  X such 
that Z ~ Y is an embedding. 7hen 

L 

~x|  
Proof  Locally, Z c X ---, Y has the form X = Yx S, Z c Y and Z x {0} c Y x S for 
0eS.  Thus, it suffces to show that 

L 

~ Y ~ Y x S ( ~ Z x { O } l r x S = ~ Z l  Y. 
~Yxs 

Since we have 

L L L 

~ r ~ r •  | ~ z ~ { o ; I r • 2 1 5 2 1 5 1 7 4 2 1 5 2 1 5  
~ v  • s ~ s  ~ s  
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and since it is isomorphic to Mzl r, we obtain the desired result. 
Now, we can prove Theorem (3.2) in a general case. 
Remember that F is decomposed into X~---,X'= Y x l P N ~  Y. We have 

L L 

~ x  C~x' ~ x  

Because ~ x . - x  is flat over ~x and 

f2x|174 o generates ~x,_x|  There fore~"  = ~x, x@~//// satisfies Condi- 
~ x  ~ x  

tion (ii). Since RiF, N r ~ x @  d/d" =RIF, @r-x" ' , they are coherent ~ r -  
\ ~ x  / 

Modules. The characteristic variety of ~ "  is equal to ~?)' p' 1S~S(~/). Here p' and 
(5' are the canonical maps X • T * X ' ~ .  T * X  and X x T*X'---~T*X'.  By the 

X' X' 

following diagram, Statement (b) o n J g  is a consequence of that fo r~" .  

X x T * Y -  ~ X x T * X '  , T * X  
Y X '  

X' x T* Y , T *  X '  
Y 

T* Y. 

At the end of this section, we will give the following proposition used later. 
(4.9) Proposition. Let X--~ Y be a proper morphism and V be an isotropic subvariety 
o f T * X ,  then so is ~ p-  I V. 

Proof Let cox(resp, cor) be the fundamental 1-form on T * X  (resp. T ' Y ) .  An 
isotropic subvariety V is, by definition, a subvariety on which co x vanishes at its 
non singular locus. (For the brevity, in this case, we will say that the restriction of 
cox to Vvanishes.) Since p 'cox =cb* cot and p*coxlp_,v=-O, we have m*cor[p-,v=0. 
It implies corlzp-, v = 0. Q.E.D. 

This proposition implies immediately the following corollary. 

(4.10) Corollary. Under the condition of Theorem (4.2), !f~/ is a holonomic system 
i 

on X, ~JP/ are holonomic systems on Y. 

w 5. Rationality of Roots of b-Functions 

Let f(x) be a holomorphic function on a complex manifold X of dimension n. 
There is an interest only with a neighborhood of the zeros o f f  when we consider 
b-function. Therefore, we assume hereafter that. 
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The zero of  dr(x) is contained in the zero o f f (x ) .  Let Y be a closed analytic set 
of X which is contained in f - l (0) ,  and F: X ' - - ,X be a projective holomorphic 
map such that X ' - Y '  ~ > X - Y ,  where Y ' = F - I ( Y ) .  Set f ' = f o F .  Let bi(s ) 
and bi,(s ) be a b-functions for f and f', respectively. Then we have the following 
theorem 

(5.1) Theorem. bl(s ) is a divisor of  bl , (s)bl , (s+ 1)... bl , ( s+ N) for a sufficiently 
large N. 

This theorem implies immediately the following 

(5.2) Corollary. The roots o fb l ( s  ) are strictly negative rational numbers. 

In fact, by Hironaka's desingularization theorem, there exists F such that f 
is of the form 

r t  . .  (5.1) f = t  1 t ? .  tT' 

for a suitable local coordinate system (t: . . . . .  t,). The b-function of this function 
is easily calculated to be 

l 

1-[ [(r~s + 1)(r,.s + 2).. .  (r~s+rv)]. 
v = l  

In particular, the roots of be, (s) are negative rational numbers, which implies 
so are the roots of be(s) by Theorem (5.1). In this section, we also prove the following 
theorem. 

(5.3) Theorem. Let  W I be the closure of  {(x, s d log f (x))  G T* X ; f (x)  4 = 0, sGll?} 
in T* X.  Then, Jf'r is a coherent @x-Module and its characteristic variety is W I.  

Before starting the proof of Theorems, we show several geometric properties 
of W I. Let W be the closure of 

{(s, x, s d log f (x))  G ~ x T * X ;  f (x )  + 0 } 

in ~2 x T* X .  

(5.4) Lemma. The canonical projection W - *  T * X  is a finite map and its image is W. 

In fact, it follows immediately from the fact that f (x )  is integral over the ideal 
generated by the derivatives of f (x) .  

(5.5) Lemma. Set 17V o = ITV c~ s-  l(0). Then W o is the inverse image o f W  o = {(x, ~)G W; 
f ( x )  ~ = 0} by the map W-~  W. 

Proof. Both coincide evidently where f (x)  is not zero. Suppose f (x o )=0  , and 
(So, Xo, ~o)GIYv'. Then there is a path (s(t),x(t), ~(t)) such that s(0)=So, x (0)=x  o, 
4(0) = ~0 and s(t)d logf (x( t ) )= ~(t). Thus, s( t )df (x( t ) )=f(x( t ) )~( t )  and 

Is(t)l Id f(x(t))l = I~(t)l If(x(t))l <= Cl((t)[ [d f(x(t))l Ix(t)-Xol. 

Thus, we have Is(t)l < I~(t)l Ix(t)-  Xol, and therefore, s o = s(0) = 0. Q.E.D. 
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(5.6) Proposition. W o is holonomic. 

Proof. It suffices to show that W o is isotropic, that is, the fundamental form co 
vanishes at the generic point of W o. Let W' be a normalization of 1~, W(; be an 
inverse image of W o by the projection W'--~ W. At a generic point of W~, W~ ~ W o 
is a local isomorphism. On W', co = sd logf(x)  and s and f(x) are functions on W'. 
Note that at a generic point of W~, W' is non singular. Proposition being clear 
outside of the zero of f, it is sufficient to consider only the component of W~ 
where f vanishes. Let 0 be a defining function of Wd at its generic point. Then, s and 
f can be written by 

s = g 0  =, f = h 0  ~ 
for some functions g, h which do not vanish at generic point of Wd. Then 

co = sd log f =  sd log h + I g 0 " -  1 d0.  

On Wd, s = 0 = 0 ,  we have colw~=0. Hence coLwo=0. Q.E.D. 

Now let us prove Theorem (5.1) and Theorem (5.3) at the same time. Return 
to the situation given in the beginning of this section. Assume that Theorem (5.3) 
is valid for (X' , f ) .  This is easily verified if f '  has normally crossing, that is, of the 
form (5.1). 

Set .t/" =~ ./~J),. By Theorem (4.2), ,A '~' is a coherent ~x-Module  with the 
structure of ~x  Is, @Module.  Note that . f "  is isomorphic to ,.~" outside Y. 

(5.7) Lemma...~U' is a subholonomic system. More precisely, we have ffS(~A/")= 
Wf w A Jor some holonomic variety A. 

Proof. It is evident that SS(.$ ) contains W I. By Theorem (4.2), ~S(.M') is con- 
tained in (Sp-t(~S(.t~))=(Sp-~(Wi,). But, (op-~(WI,)=8)p-~(Wi, x ( X - Y ) ) w  

X 

~ p - l ( W  I, x Y ) c  W I u ~ D - I ( w f ,  x Y). Since W I, x Y is isotropic by Proposition 
X X X 

(5.6), so is eSp -1 (W I, x Y) by Proposition (4.9). Thus we have the desired result. 
X Q.E.D. 

~x~x, has the canonical section lx~ x, corresponding to 6(x-F(x ' ) )  8x 8x ~ dx' 

where 8x/Ox' is ajacobian. I f~x  ~x, is understood as a subsheaf of Horn (F- 1Qx, (2x,), 
lx~ x, is nothing but the inverse image F*. Therefore, this lx~ x, is defined canoni- 

/ x L 

cally because dim X = d i m  X'. We define q2x-~R~176 J V ' r  

by ~x, 1 ~ 1 x~ x, @f '  =. We denote by u the image of 1 e C x by this homomorphism.  
Set ,iV" = ~ x  [s] u ~ .N". 

(5.8) Lemma.  ,A/'" is a coherent ~x-Module with the structure of ~ x Is, t]-Module. 

Proof. Since t ( lx~x,@f '=)=lx~x,@f '=+~=f( lx~x,@f 's ) ,  we have tu=fu .  
Therefore, t t r " c / v "  . . . .  _,_ ,., , from which ,V  has a structure of ~x[S, t]-Module. 
Since JV'" is a union of increasing coherent sub-Modules in JV', it is coherent. 

Now consider the ~[s] - l inear  homomorphism 

~4/" ~ P(s) uv--~ p(s)j~ ~,@. 
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(5.9) Lemma, The above homomorphism is well defined. 

In fact suppose that P(s)u=O. Then, at a generic point u being nothing but 
f~, P(s)fs=O at a generic point. It follows P(s)f~=O in ~}.  

Thus, we have the diagram of 9x[S, t-I-Modules: A / )~ -Y "c~A : ' .  Here, --~ 
means a surjective homomorphism. Therefore, A) is finitely generated and hence 
coherent. Thus, we obtain, as an intermediate result, the following 

(5.10) Proposition. ~A/) is a coherent subholonomic 9x-Module whose characteristic 
variety is a union of Wf and a holonomic variety. 

In order to complete Theorem (5.3) and prove Theorem (5.1), we give several 
properties of 9 [s, t]-Modules. 

Let 50 be a 9x[S, t]-Module, which is coherent over 9x  such that Y / t 5 0  
is holonomic. By [5], g,~d~,:(Se/t50) has a finite dimensional stalk at any point. 
Therefore, there is a non zero polynomial b(s) such that b(s)(50/t50)=O. We 
denote by b(s, 50) the largest common divisor of them. By the definition, the b- 
function b:(s) off (x)  is nothing but b(s, Y:). 

(5.11) Proposition. Let 50 be a coherent hoIonomic ~x-Module wih a structure of 
9 x Is, t]-Module. Then, t N 50 =O for a sufficiently large N. 

Proof First note that a decreasing sequence 50j of a holonomic system 50 is 
stationary. In fact, the kernel of the surjective homomorphisms & v : ( ~ ,  9x)-~  
6%:(50j, 9x)forms an increasing sequence of a coherent 9x-Module 6%:(50, 9x). 
Therefore, it is stationary which implies that E ~ [ " ( ~ ,  9x)-+ ~ ' "  (50~+ 1,9x) is an 
isomorphism for j>>0. Since 50j=gz/:(g~v:(50j ,  gx)gx),50j+~--,L,:~ is an iso- 
morphism. Let 50' be the intersection of all t N 50. Since tN50 is a decreasing se- 
quence, it is stationary and 50 ' - tN50 for some N. Thus t50'=L~'. 50' is also a 
9 x Is, t]-Module such that t: 5 a ' ~  50' is an isomorphism. 

b(s, 50 ' ) t=tb(s - l ,50 ' )  in ~[s, t] .  

It follows that b(s - 1,5 ~ and b(s, 50') must coincide up to constant multiplication. 
Therefore, b(s, 50') is a constant function and consequently 50'=0. Q.E.D. 

(5.12) Corollary. 8xgJ(.Azy, 9)=O for j , n -  1. 

Proof. By Theorem (2.3), d%/J(~f ,  9 ) = 0  for j < n -  1. Therefore, it is sufficient to 
show that d=Sx/"( .A:: ,  9 )  is zero. 50 is a holonomic system with a structure of 
9 [ s ,  t]-Module, tN50=O for some N by the preceding proposition. The exact 
sequence 

brings the exact sequence 

50 ~ ~ 5 0 - , & v : + l ( g : , 9 ) = O  

It follows that 50 = t 50. Therefore, 50 = tN50 = 0. Q.E.D. 

As its corollary, we can prove Theorem (5.3). 



B-Functions and Holonomic Systems 51 

(5.13) Corollary. S~S(./V))= Wy. 

Proof By Proposition (5.10), W s c S S ( ~ ' ) ) = W s w A .  Theorem (2.12) implies 
S~S(~)= Wy, because it is purely (n-1)-codimensional. Q.E.D. 

Using Hironaka's desingularization theorem, there exists some F such that 
f is of the form (5.1). And in this case, Theorem (5.3) is easily verified for f'. There- 
fore, Theorem (5.3) is proved for any f.  

(5.14) Corollary. Let LP be a ~[s ,  t]-Module and ~ '  be a ~[s ,  t]-sub-Modules 
of ~-~. Assume that ~f , ~cf, are coherent over ~x and 5f /t~5~' is a holonomic system. 
Then b(s, 5a') is a divisor of b( s, Aa)b(s + 1, 5f) ... b(s + N, Lf) for N >> O. 

Proof Set ~ " = L f / ~ ' .  5P" is holonomic. By Proposition (5.11), tNL~"=0, or 
equivalently, ~ ' =  t N &a. Using the relation, 

b(s +j,  5~) t J ~q~ = t j b(s, ~ )  cp c t j + x 5P, 

we obtain 

b(s+N,  5f) . . .  b(s, ~ ) ~ t  N+I ~ c t ~ '  

Hence, b(s, ~ ) . . .  b(s+N,  5 f ) ~ ' ~  t ~ '  which implies the desired result. Q.E.D. 

Now, we can prove Theorem (5.1). It is evident that by(s)= b(s, J~f) is a divisor 
of b(s, .A/"'). By the preceding corollary, we have 

b s(s) ib(s, o/V')b(s + 1, JV") ... b(s + N, .U') 

for a sufficiently large N. Thus, it suffices to show 

b(s, S ' ) l b  f,(s). 

Since bs,(S)~y, ctJV'y, , there is a homomorphism g: ~ , - * ~ ,  such that bf,(s)= 
tog, bs,(S)=to ~ g in ~ ' .  It follows that bs,(S ) is a multiple of b(s, JV"). It completes 
the proof of Theorem (5.1). 

w 6. Miscellaneous Results 

Let ~ be a complex number. Set 

~;=,~/(s-~)~. 
By Theorem (5.3), SS(,J~) is contained in W s. Since SS(~)  is the zero section out- 
side the zero off(x), S~S(./~) is contained in W o. In particular, JV~ is a holonomic 
system. Now, consider ~ff .  ~ f f  is, by definition, ~ / { P e ~ ;  P f f = 0  at a generic 
point}. Then we have the surjective map .J,~ ~ ~ff .  It implies 

(6.1) Proposition. ~ f f  is also a holonomic system whose characteristic variety is 
contained in W o. 

We obtain further the following result. 
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(6.2) Proposition. I f b I ( ~ - j ) 4 = O  for j =  1, 2, . . . ,  then ~ ~ ~ ~ p .  

Proof  It suffices to show that,  if P / ~ = 0 ,  then P e J s + ( s - ~ ) ~ [ s - ] .  We will prove  
it by the induction of the order  m of P. PJ~ can be written in a(s, x ) p  -m. Here 
a(s, x) is a ho lomorph ic  function and polynomia l  on s. Pf~ = 0 implies a(c~, x) = 0. 
Therefore,  pj~+m is contained in (s--c~ +m)sVy. In other  words, pp+m is contained 
in (s - ~ + m) ~ f  ~ t m ~Yf. First  we will show that  it is conta ined in (s - 0~ + m) t m ~Vy. 
Since b(c~-j)4=0 for j =  1 . . . .  , 

s - c~ + j : J// ~ --, dg I 

is an i somorphism,  in particular,  injective. Therefore,  we have 

(s-c~ + j ) ~ y c ~  t~/  f c ( s - o ~  + j ) t ~ f  . 

Since 

(s-c~+m).A/)c~ t ' % U f ~ ( s - c ~ + m ) t . / ~ f ~  t"~h,}.= t ( ( s -  ~ + m -  1)~3/) n t"-l~4/f), 

and since the induction on m says that  

(s-c~ + m - 1 ) . A f f n t m -  l j t / ' y c ( s - ~  + m - 1 ) t m - l ~ / f  

we have (s - c~ + m),A/j. ~ t % ~  ~ t(s - ~ + m - 1 ) t ~ -  1 ~/'I = (s - ~ + m) t~sgy. It follows 
that  pp+m can be written as P f ~ + m = ( s - e + m ) Q ( s ) p  +m, or equivalently P f ~ =  
( s - ~ ) Q ( s - m ) f f .  Q.E.D. 

(6.3) Theorem. There is P(s) in ~ [ s ]  such that 

(1) it can be written in the form P(s) = s m + A 1 (x, D)s ~ -  1 + . . .  + Am(X ' D) where 
A)(x, D) is a differential operator of  order at most j and 

(2) P(s)~=o. 

Proof  Consider  a function f ' ( t ,  x ) =  t f (x)  on X '  =lI; x X. ~ ,  is a coherent  Module  
and JV), = ~x,  f'~. In fact, sf"~= (t D,)f '  ~. Since f ( x )  is integral on (~ f  / Sx  1 . . . .  , Of /Sx,),  
there exists a function a(s, x, ~) which is homogeneous  on (s, ~)=(s ,  ~ l , - - . ,  ~,) 
of  degree m such that  

a(f(x) ,  x, 8 f / S x  1 . . . . .  8 f /Sx , )  = 0  
and 

a(s, x, O) = s". 

Then 

a(tr, x , ~ ) = O  for ( t ,x ;  r d t +  ( r  in WI,. 

Since the characterist ic variety of  A/), is WI,, there is a differential ope ra to r  
P(t, x,  D~, D~) defined in a ne ighborhood  of t = 0 such that  

P(t, x, Dr, D~) f  '~ = 0 

and 

a ( P ) =  a(tz, x, ~)N 
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for a sufficiently large N. P can be written in the form 

P=P(tD,, x, Dx)+ ~ tJP~(tD~, x, Dx)+ y' DIQj(tD t, x, D~). 
j = l  j = l  

By considering a homogeneity of Pf'~ with respect to t, we have Pf'~=O, that is 
P(s, x, Dx).p= O. P(s, x, O~) has evidently the desired properties. Q.E.D. 
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