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Perfect Crystals and ¢-deformed Fock Spaces

M. Kashiwara, T. Miwa, J.-U. H. Petersen and C. M. Yung

Abstract. In [S], [KMS] the semi-infinite wedge construction of level 1 Uq(Agl)) Fock spaces and

their decomposition into the tensor product of an irreducible Uq(Agll))—module and a bosonic Fock
space were given. Here a general scheme for the wedge construction of g-deformed Fock spaces
using the theory of perfect crystals is presented.

Let Ug{g) be a quantum affine algebra. Let V be a finite-dimensional U}(g)-module with a
perfect crystal base of level I. Let Vg o~ V ® (fz, z7!] be the affinization of V, with crystal base
(Laf, Bagr). The wedge space Vg A Vg is defined as the quotient of Vg ® V,g by the subspace
generated by the action of Ug{g)[z® ® 2° + 2% ® 2%], 1ez on v ® v (v an extremal vector). The
wedge space A" Vg (r € N) is defined similarly. Normally ordered wedges are defined by using
the energy function H : B,g ® Bag — Z. Under certain assumptions, it is proved that normally
ordered wedges form a base of AT V,g.

A g-deformed Fock space is defined as the inductive limit of A" V,g as r — oo, taken along
the semi-infinite wedge associated to a ground state sequence. 1t is proved that normally ordered
wedges form a base of the Fock space and that the Fock space has the structure of an integrable
Uq(g)-module. An action of the bosons, which commute with the U;(g)-action, is given on the
Fock space. It induces the decomposition of the g-deformed Fock space into the tensor product of
an irreducible U,{g)-module and a bosonic Fock space.

As examples, Fock spaces for types Agi), BS), A(zi)_l, Dfll) and foll at level 1 and Agl)
at level &k are constructed. The commutation relations of the bosons in each of these cases are

calculated, using two point functions of vertex operators.
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1. Introduction

Let g be an affine Lie algebra. The construction of integrable highest weight
modules for g has been studied extensively for more than 15 years, with appli-
cations to problems in mathematical physics like soliton equations and conformal
field theories. More recently, a further item was added to the list of interactions
between representation theory and integrable systems: the link between quan-
tum affine algebras, U,(g), and solvable lattice models (see [JM] and references
therein}.

The link is twofold: (a) the R-matrices, which appear as the Boltzmann weights
of solvable lattice models, are intertwiners of level 0 U,(g)-modules, and (b) the
irreducible integrable highest weight modules for U,(g) appear as the spaces of
the eigenvectors of the corner transfer matrices. This suggests a construction
of integrable highest weight modules by means of semi-infinite tensor products
of level 0 modules. In fact, in the crystal limit, such a construction was given
for a large class of representations known as the representations with perfect crys-
tals [KMN1].

The idea of using Fock spaces of bosons or fermions goes back to earlier works
before the above link was found. In fact, the literature is vast. Let us mention
some of the works that are closely related to the present work. In [LW], [KKLW],
bosonic Fock spaces were used to construct some level 1 highest weight modules of
affine Lie algebras using the fact that the actions of the principal Heisenberg subal-
gebras are irreducible. In [DJKM] the level 1 highest weight modules of gl were
constructed in the fermionic Fock space. By the boson-fermion correspondence one
has the action of bosons on the Fock space. The action of affine Lie algebras such
as sl,, as subalgebras of g, was then realized as the commutant of bosons of
degree divisible by n. Likewise, level 1 highest weight modules of other affine Lie
algebras g were constructed by realizing g as a subalgebra of go,, (see also [JY])
Or g0y0,-

Under the influence of quantum groups, several further developments were made
in this direction. A g-deformed construction of the fermion Fock space was achieved
in [H]. In [MM], this was connected to the crystal base theory of Kashiwara [K1)].
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These works and the developments in solvable lattice models led to the semi-infinite
construction of affine crystals mentioned above.

Very recently, in [S], Stern gave a semi-infinite construction of the level 1 Fock
spaces for U,(g) when g = sl,. Subsequently, in [KMS], the decomposition of the
Fock spaces into the level 1 irreducible highest weight modules and the bosonic
Fock space was given. In the present paper, we give a similar construction of Fock
spaces and their decomposition, for various cases in the class of representations
with perfect crystals. The case in [S], [KMS] corresponds to the perfect crystal of

level 1 for Ag). Here we treat
level 1 A2, B, A | DO, DB and level k AD.

In order to handle these cases, we not only follow the basic strategy in [S], [KMS],
but also develop some new machinery, where the R-matrix and crystal bases play
an important role.

In the following we recall the basic construction in [KMS] and compare it with

. . . . 1
the newer version developed in this paper, by taking the examples of level [ Ag ),

1=1,2.
1.1 The kernel of R — 1

Let V' be a finite-dimensional U/ (g)-module, and Vag = V®C[z, 27 ] its affinization.
The r-th g-wedge space is given by

N\ Var = V& /N,

where
r—2

M= S g e N eV
i=0
and the space N is a certain subspace of Vog @ Vog. Namely, the g-wedge space
is defined as a quotient of the tensor product of Vag modulo certain relations of
nearest neighbour type.
For the level 1 Agl) case, the space V is the 2-dimensional representation of
U, (s1y), V = Quo ® Qu;. In [S], [KMS], the action of the Hecke algebra generator
T was given on Vag @ Vg, and the space N was defined by

N = Ker(T + 1).
It was also noted that N = U, ;(th) vy ® vo. In this paper, we define, in general,

N=U/glz®z2z"'0z",201+1®z] - v®u, (1.1.1)
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where v is an extremal vector in Vg (see §3.1 for the definition). For [ = 1, any
2%y; {(n € Z,i=0,1) is extremal. For | = 2, we take

V =Quo @ Qu; @ Qus.

The extremal vectors are z"vg and 2"y (n € Z). For [ = 1, in the ¢ = 1 limit, the
construction gives rise to ordinary wedges with anti-commutation relations

m

2™ A 2"+ 2"y A z2M g = 0.

For [ = 2, this is not the case, e.g. v; Avy # 0, even in the ¢ = 1 limit.

The definition (1.1.1) is appropriate for computational use. For theoretical use,
we have the equivalent definition

N = Ker(R - 1).

Here R is the R-matrix acting on Vag ® Vg (strictly speaking, the image of R
belongs to a certain completion of Vag @ Vag ).

The R-matrix satisfies the Yang-Baxter equation

Ri3Ra3Ri2 = Ra3RiaRas,

commutes with the U, (g)-action on Vag ® Vag, satisfies

Rz®1)=(1®2)R, R(1®z)=(2®1)R,

and is normalized as
Rvev)=v®uv,

where v is an extremal vector.
1.2. Energy function and the normal ordering rules

In [KMS], it was shown that the g-wedge relations give a normal ordering rule of
products of vectors. Define u,, {(m € Z) by

z"vi = U9p—i- (1.2.1)
It was shown that the vectors
Umy A A, (M < -+ <my)

form a base of A" Vag.
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To describe the normal ordering rules in the general case, we use the energy
function

H : B.g ® Bag — Z.

The set B,g is the crystal of V,g. For each element b in By, we have a corre-
sponding vector G(b) in V,g. In this section we use the same symbol for b and G(b):

e.g. a general element of By for the level 1 Agl} case and that of Vg are denoted
by z™v;. The energy function H is such that

R(G(by) ® G(by)) = 271G (by) @ 2~ H1®¥) G (by) mod gL (Vagr) © L(Vasr),

where L(V,g) is the free module generated by G(b) (b € Bag) over A ef {f € Qg);
f is regular at ¢ = 0}.
For the level 2 Agl) case,

Bag = {zMvi;m € Z,i=0,1,2}

and
H(Zm’l),' & z”'vj) =-m-+n-+ hz‘j

where the (h;;)i j=o,1,2 are given by

i=0

t=0 0
1 1
2 2

We show that the set of vectors

[ S e S

oo N
N

G(by) A~ AG(by)

such that
H(b§®bg+1)>0 (?:Z].,‘..,’F—l) (1.2.2)

is a base of A" Vag.

The vectors satisfying (1.2.2) are called normally ordered wedges. To show that
the normally ordered wedges span the g-wedge space, we need to write down the
basic g-wedge relations explicitly. This part of the work is technically much in-
volved. We do it case by case. The generality in handling examples in this paper
is narrower than that of [KMN2] because of this limitation.

In [KMS] the linear independence of the normally ordered wedges is proved by
reduction to the ¢ = 1 limit. Since the ¢ = 1 result is not known for the general
case, we prove the linear independence directly by using the Yang-Baxter equation
for R and the crystal base theory.
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1.3. Fock representations

In [KMS] the Fock spaces are constructed by means of an inductive limit of A" Vag.

In the case of level 1 Agl), we take the sequence (tm)mez as in (1.2.1). The Fock
space J,, is defined as the space spanned by the semi-infinite wedges

Ujy A Ujy Ny Ao

such that j, = m + k — 1 for sufficiently large k. The action of Uq(sA[g) on F,, is
defined by using the semi-infinite coproduct. It was shown that F,, is the tensor
product

V() @ C[H_].

Here V(A,,) is the irreducible highest weight representation with the highest weight
Am, where
Ay Hm=0mod 2
Am =

Ag ifm=1mod 2,

and C[H_ ] is the Fock space of the Heisenberg algebra generated by B,, (n € Z\{0})
that acts on JF,, by

ke

o
v
Bn:§ 12 102"01Q ...
k=1

To construct Fock spaces in the general case, we use the construction of affine
crystals developed in [KMN1]. We assume that V has a perfect crystal B of level

I. Then we can choose a sequence b, in Bag such that

(ceby)) =1,
5@21) - (p(bfyH—l)v
I{(b?n ® b?thl) =1

(see subsection 3.1 for the definition of €(b) and ¢(b)). In the case of level 2 Agl),
we have

by, =

m

{ zFv; if m is odd; (13.1)

ZhH1=dy, ; if m is even,
for some k € Z and j € {0,1,2} independent of m. Then we shall define the Fock

space F,, as a certain quotient of the space spanned by the semi-infinite wedges

G(b) AG(b) AG(bs) A -+
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such that b, = b, ,,_; for sufficiently large n. In particular, the Fock space contains
the highest weight vector

Im) = G(b5,) A G(bly1) A G(bh49) A
with the highest weight

"L (2=- )AL +jAg if mis even.

The quotient is such that if
Hb®b,) <0

we require that
G(b) A jm) = 0.

Here is a significant difference between level 1 Ag) and other cases. For the former
if H(b®b,) <0 then

GOYAG, )N - AG(by) =0

for sufficiently large m'. But, this is not true in general. The correct statement is
that for any n we can find m' such that the g-wedge G(b)) AG(b,) A --- AG(b2,.)
is a linear combination of normally ordered wedges whose coefficients are O(g™) at
g = 0. Therefore we need to impose the separability of the g-adic topology, taking
the quotient by the closure of {0}.

It is necessary to check that the action of U,(g) given by the semi-infinite co-
product, is well-defined. A careful study of the g-wedges shows that

Al (f)lm) = G(fiby,) Alm + 1), (1.3.2)

where

5
A/ (5, Zl@ BIRLi®LRL®- .

T

In the case in [KMS], the action of A{®/2)(f;) on each vector in F,, is such that
only finitely many terms in the sum are different from 0. This is not true in general.
For example, consider the case k = 1 and j = 1 in (1.3.1). We have fiv; = [2]vs
([2] = ¢+ ¢71) and t;|m) = q|m). Therefore we have

A (Y Avi Avi A---) = g2z Avi Avi A---) +q[2(v1 Ava Avy A=)
+q2(vi Avi Avg Aee ) e )
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On the other hand, we have
vy A vs +q2’02/\?)1 =0,

and hence

A(OO/Q)(fl)(’Ul/\’Ul/\-"):’Uz/\’Ul/\’Ul/\"',

by summing up

L4 (=) + (P =

in the ¢-adic topology.
In general, based on (1.3.2) we can show the well-definedness of the U, (g)-action.
The decomposition of the g-Fock spaces into the irreducible Uy(g)-modules and

the bosonic Fock space goes the same as the level 1 Af ) case. We carry out
the computation of the exact commutation relations of the bosons in each case by
reducing it to the commutation relations of vertex operators.

The plan of this paper is as follows. We list the notations in Section 2. We
define the finite ¢-wedges in Section 3 and prove that the normally ordered wedges
form a base. In Section 4, we define the ¢-Fock space and the actions of U,(g) and
the Heisenberg algebra. We give level 1 examples in Section 5 for which we check
the conditions assumed in Section 3. We compute the level 1 two point functions
in Section 6 in order to find the commutation relations of the bosons. Section 7
is devoted to a higher level example. We add four appendices. In Appendix A
we prove a proposition on crystal base which is necessary in this paper but was
not proved in [KMN1]. Appendix B is a proof that the Serre relations follow from
the integrability of representations. Appendix C is the computation of the two-
point correlation functions of the ¢-vertex operators in the Dfﬁl case. In Appendix

D we consider the ¢ — 1 limit for the A:(zi) case and compare it to the result
in [JY].
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2. Preliminary

2.1. Notations

In this paper we use the following notations.

1 if a statement P is true
) = {y e
0 if P is false.
g : an affine Lie algebra.
) its Cartan subalgebra with dimension rank(g) + 1.
I the index set for simple roots.
a; a simple root € §* corresponding to ¢ € 1.
h; a simple coroot € h corresponding to ¢ € I.
We assume that the simple roots and the simple coroots are
linearly independent.
w the Weyl group of g.
{(,) a W-invariant non-degenerate bilinear symmetric form on §*
such that (ay, ;) € 2Z~o.
(,) the coupling h x h* - C.
P a weight lattice C h*.
Q = Y., Za; the root lattice.
R+ = £, ZLxo.
é an element of @ such that Zd = {) € Q; (h;, A) = 0}.
c an element of 3, Zsoh; such that Ze= {h € 3, Zhs; (h, 05) = 0}.
We write
) = y.a;04 and
c = > .alh;
P = P/Z4.
cl P Py
We assume for the sake of simplicity
Py = Hom z(®ie1Zhi, Z).
This implies {A € P;(h;,\) =0 for any 1 € I'} = Z$6.
A; a fundamental weight in P,
i.e. an element of P such that (h;, A;) = §;;.
A = cl(A;), the fundamental weight in P.
Note that A; is determined modulo Z4.
P the level 0 part of P, i.e. {A € P:(c,\) =0}
P the level 0 part of Py, i.e. cl(P).
Uq(g) the quantized universal enveloping algebra with {¢"; h € P*}
as its Cartan part.
U(a) the quantized universal enveloping algebra with {¢";h € Py*}

as its Cartan part.
Hence Uy (g) is a subalgebra of U,(g).
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K = Qo).
We consider U,(g) and Ué(g) over K.
= {f € K; f hasno pole at ¢ = 0}.
U;(E)Z :  the Z[g, ¢~ !]-subalgebra of Ué(g) generated by the divided powers
eﬁ”), fi("), t; and {tn}

Uy(g)z : the Z[g,q "]-subalgebra of U,(g) generated by U} (g)z
and {qn} (h € P*).
The quantized affine algebra U,(g) is a K-algebra generated by e;, f; (¢ € I) and
q" (h € P*) with the commutation relations

¢"=1for h=0,
q'”"hl = qhqh’ for h,h' € P*,
qheiq—h — q<h’ai)€1; and thiq—h — q_<h’ai>fi>

les, fil = &5 " q}p
fori#£jel
Z(-—1)k6§k)€j€§—<hi’aj>_k} =0,
k
Z(_l)kfi(k)fjfé(“wivaj)—k) =0.
k

Here

(ag, o) (aj o)
¢ =q 7 andt;=q 2 h

2.2. Coproducts

There are several coproducts of U,(g) used in the literature. In this paper, we use
a coproduct different from the ones used in [DJO], [JM], [K1], [K2], [KMN1]. In
this subsection, we shall explain the relations among four coproducts:

- "o

A+: ;- e, 0141 Qe; (221}
firm fiot7'+18f;
qh}___> qh®qh

A e @t +1®e (2.2.2)

fir fi®l+t®f;
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e og

A+: e; — €i®1+ti—l®6i (223)
firr [i®tLi+1®f;
O

A e e@ti+1®e; . (2.2.4)

firmr fiol+t7'®f

Their antipodes are given by

¢ gt

ag ; e; — ——ti"lei (225)
firr =fiti
qh — q—h

a_ : e = —eil; (2.2.6)
fimr —t7'f
" "

ay e; > —t;e; (2.2.7)
firr —fit]!
qh > q~—h

a_: e; — ——eit;1 (2.2.8)
firr —tif;

For two U,(g)-modules M, and M, let us denote by M; @4 My, My ®@_ M,
M ®4 M, and M;®_M; the vector space M; @ M, endowed with the U,(g)-
module structure via the coproduct Ay, A_, A, and A_, respectively.

We have functorial isomorphisms of U,(g)-modules

M, ®4 MyS M8 _ M, (2.2.9)
My ®_ M2;M2®+]\/fl (2210)

by u1 @ us = Uz ® uy.
We have functorial isomorphisms of U,(g)-modules

¢ My @y My SMy ©_ M, (2.2.11)
¢ Mi® L My 3 M S M, (2.2.12)
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Here ¢~ () sends u; ®4 us to g Wil wt (w2l @ uy and ¢l sends u; R us
to q(wt (u1),wt (uz))ul'@_u}

The tensor products ®,. and ®_ behave well under upper crystal bases and ®
and ®, behave well under lower crystal bases. Namely, if (L;, B;) is an upper
crystal base of an integrable U,(g)-module M; (j = 1,2), then (L; ® 4 L2, B; ® By)
is an upper crystal base of M; ®,4 M> and M1®_ M,. Similarly, if (L;, B;) is a lower
crystal base of M;, then (L; ®4 Ly, B ® By) is a lower crystal base of M; ®@_ Mo
and M1®.M;. If we use ®4 or @_, the tensor product of crystal base is described
as follows. For two crystals By, By and by € By, by € By,

wt (b ® ba) = wt (by) + wt (b2),

ei(by ® by) = max(e;(b1), €:(b2) — (hs, wt (b1))),

wi(b1 ® by) = max{p;(b1) + (hi, wt (b)), wi(b2)),

y [ ebi @by ifgi(b) > ei(b2),

Gilb ©2) = { by ® &by if i(by) < ei(by),

fib1 ® by if i(b1) > ei(ba),
)

ZCEIARE
f( 1 & 2) { bl ®fib2 if Soz(bl < Ez(b2)

If we use the other tensor products &, or ®_, we have to exchange the first and
the second factors in the formulas above. Namely the tensor product of crystals is
given as

wt, (bl ® bz) = wt (bl) + wt, (bg),
ei(b1 ® b2) = max(e;(b1) — (hs, wt (b2)), €4(b2)),
@i(b1 ® by) = max(p; (b1), wi(b2) + (hi, wt (b1))),

e;b by if g;(by) > pi(ba),
éi(bl®b2)={€1?2 ?6(0 #ilba)

by ® &by if €i(b1) < pi(be), (2.2.13)
0 ®b)_{fibl®bz if €4(b1) > pilba), -
R e by ® fibs it €:(by) < i(ba).

In this article, we mainly use the tensor product ®, and lower crystal bases. The
rule of the tensor product of crystals is therefore by (2.2.13). Note that ®. is used
in [DJO}, [JM] and ®_. in [K2], [KMN1].

3. Wedge products

3.1 Perfect crystal

Let us take an integrable finite-dimensional representation V of U (g). Let V =
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®xepo Va be its weight space decomposition. Its affinization is defined by

Vi = @(Vaﬂ')}\

AEP

where (Vag)s = Van) for A € P. Let cl @ (Vag)n = Ven) denote the canonical
isomorphism. Then V,& has a natural structure of a Uy(g)-module such that cl :
Var — V is Ug(g)-linear (see [KMN1}).

Let z : Vag = Vag be the endomorphism of weight é given by

(Vag)r —=— (Vas ) a4

{ |

Vaoy =—— Vapgte)

The endomorphism z is U {g)-linear.

Taking a section of cl: P — P, Vg may be identified with V ® Clz, 27 1] (see
section 5.1).

We assume that

{P) V has a perfect crystal base (L, B).

Let us recall its definition in [KMN1]. A crystal base (L, B) is called perfect of
level I € Z~y if it satisfies the following axioms (P1)-(P3).

(P1) There is a weight A° € P such that the weights of V are contained in the
convex hull of WA° and that dim V5. = 1 for any w in the Weyl group W.
We call a vector in V5o an extremal vector with extremal weight wA°.

(P2) B ® B is connected.

{(P3) There is a positive integer [ satisfying the following conditions.

(i) For every b € B, {(c,e(b)) = (¢,(b)) > l. Here we set

e(b) = > ei(b)AS € Py
iel

o) = pi(B)AT € Py (3.1.1)
iel

with the fundamental weights A§' € P.
(ii) Set Bmin = {b € B;{c,e(b)) = I} and (PT); = {A € Pa; (¢, A\) =l and
(hi, A) > 0 for every ¢ € I'}. Then

€, : Bmin = (PI), are bijective.



428 M. Kashiwara et al. Selecta Math.

Note that (P1) is equivalent to the irreducibility of V (see [CP)).
Note that the equality {c,e(b)) = {c, (b)) in (P3) (i) follows from

p(b) = wt (b) +£(b)
and the fact that V' is a U, (g)-module of level 0.

Remark. The map (b) = ¢(b) (b € Bin) defines an automorphism of (P1),.
In all the examples of perfect crystals that we know, this automorphism is induced
by a Dynkin diagram automorphism.

We have constructed Vog out of V. Similarly we construct the crystal base
(Lagr, Bagr) of Vagr out of (L,B). We define similarly cl : Bag — B and z :
B.g — Bag.

We assume further that V has a good base {G(b) }repn:

(G) V has a lower global base {G(b) }iesn.

This means that the base {G(b)}scp satisfies the following conditions (cf. [K2]).

(i) @ Zlg, ¢ '|G(b) is a Uj(g)z-submodule of V.
beB

(i) b=G(() mod L/qL. ‘

(ili) eG(b) = [pi(b) + 1):G(ed) + ¥ i, G(b),

(iv) fiG(b) = [ei(b) + 1[G (fib) + 30 Fy , G (V).
In both cases, the sum ranges over b’ that belongs to an i-string strictly longer than
that of b (& &;(b') > €;(b) or i (b') > ;(b) respectively for (iii) or (iv)). Moreover
the coefficients satisfy

Eiy € qq; 7 2lqluq 2l (3.1.2)
Fiy € g7 zlgug g zlg™). (3.1.3)

Remark. The reason why we choose a lower global base is explained in Theo-

rem 4.2.5 and the remark after Proposition 4.2.8.
We define the base {G(b)}sen,, of Vag by cl{G(b)) = G(cl(b)). We have
G(z"b) = z"G(b) for n € Z and b € Bag.

3.2. Energy function

Let H be an energy function (see [KMN1]). Namely H : Bag ® Bag — Z satisfies
(E1) H(zby @ ba) = H(l1 ® by) — 1.
(E2) H(by ® 2bz) = H(by ® b2) + 1.
(E3) H is constant on every connected component of the crystal graph Bag ® Bag -
By (E1-3), H is uniquely determined up to a constant. We normalize H by

(E4) H(b®b)=0 for any (or equivalently some) extremal b€ Bag (i.e. cl(wt (b)) €
WA°).
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We know already its existence and uniqueness ([KMN1]). The existence is in fact
proved by using the R-matrix. Let us explain their relation. There is a U,(g)-linear
endomorphism (R-matrix) R of Vg ® Vag such that

Ro(z@1)={1®z)oR (3.2.1)
Ro(1®z)=(z®1)oR

and normalized by
Ru®u)=u®u  for every extremal u € V,g. (3.2.3)

Strictly speaking, R is a homomorphism from Vg ® Vg to its completion Vot @ Vgt
It is proved in [KMNT1] that R sends Lag ® Lag t0 Lag®Lag and

R(G(b1) @ G(b2))
= G(zH(b‘®"2)b1) ® G(Z_H(b1®b2)b2) mod gLag®Lag (3.2.4)
for every by, by € Bag.

We know that R has finitely many poles. It means that there is a non-zero ¢ €
K[z® 2z} 27! ® z] such that YR sends Vog ® Vo into itself. We assume that the
denominator 3 of R satisfies the following property:

(D) € Az®z" | andy =1 at ¢q=0.
We take a linear form s : P — Q such that s(a;) = 1 for every i € I, and define

l:Bag = Z

by 1(b) = s(wt (b)) + ¢ for some constant c. With a suitable choice of ¢, | is Z-valued.
It satisfies

(i) I(zb) = 1(b) + a for any b € B,g. Here a is a positive integer independent of
(i) 1(é;b) =U(b) + 1if i € I and b € B,g satisfy &b # 0.

We assume that it satisfies

(L) If H(bi ® by) <0, then I(by) > I(b2).

3.3. Wedge products

We define L(V,$?) by Lag®a Lag. Let usset R = ¢(2®1,102)R = RY(19z,21).
Then it is an endomorphism of Va‘?f and L(Va%'z) is stable by R. We shall denote
by the same letter R the endomorphism of L(Vﬁz) / qL(V;‘?}z) induced by R. Then
by (D) and (3.2.4) we have the equality in L(V.$%)/qL(V.%?)

R(by ® by) = ZHO®b2)p o~ Hi®b2)p, g every by,by € Bag- (3.3.1)
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Since R? = 1, we have
(R-9(z®1,1®2)) o (R+y¥(1®z,2®1)) =0. (3.3.2)
Let us choose an extremal vector u € Var. Then we define
N=U/z®z "0z 201+10 2] (u®u).

This definition does not depend on the choice of u, because an extremal vector u
of weight A satisfies

(FMu) @ (fu) = fE (e w) i (b, A) =n >0,

1

(egn)u) ® () = e weu) if (hi,\) = —n < 0.
By definition, we have

fell®z)NCN

3.3.3
for any symmetric Laurent polynomial f(z1, 22). ( )

We make the following postulate.

(R) For every pair (by,bs) in Bag with H(by ® by) = 0, there exists Cpy p, € N
which has the form

Crype = G(01) @ Glba) = Y ay, .y, G(b) ® G(by) .

by bY
Here the sum ranges over (b},b,) such that

H(by ®b,) >0,
U(b2) < 1(by) < Uby),
1(b2) < 1(by) < 1(by),

and the coefficients ay, v, belong to Zlg,q7 Y.
Later in Lemma, 3.3.2, we see that ay, i, belong to gZ[q].
Since we have normalized the R-matrix by R{u ® u) = u ® u, we have

Rivy=¢(2®1,1® z)v for every v € N. (3.3.4)

Hence R sends N to itself.
We set
L{N) = NN L(VZ).
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Then by (D) and (3.3.4), we have the equality in L(V.$?)/qL(V.$?
R(b)=b for every b € L(N)/qL(N). (3.3.5)
We define the wedge product by
A Vag = VE2/N .

For vi,v5 € V, let us denote by v; Avy the element of /\QVaﬁ‘ corresponding to v; @us.
We set
L(N’Var) = LVE)/L(N) € \*Vag.

Now we shall study the properties of A*V,g under conditions (P), (G), (D),
(L) and (R). We conjecture that (P) and {G) imply the other conditions (D), (L)
and (R).

Lemma 3.3.1. If 3 (5, @250 Qb1 ,b:G(01) ®G(b2) belongs to Ker (R—1(2®1,1®
z)), then all ay, p, vanish.

Proof. It is enough to show that for n € Z
if ap, b, € g™ A for all by, by, then ap, p, € ¢"T1A. (3.3.6)

By (D), (3.3.4) and (3.3.1), we obtain the identity in L(V,$?)/¢L(VE?),

Yo @ Tanp)bi ®@br= D (g " b))y @ 2 H 180,
H(b1®b2)>0 H{b1®bz)>0

Since H (zH(01®02)p; @ ~H1®02)p,) = —H (b ® by) < 0, we obtain the desired
assertion (3.3.6). }

A similar argument leads to the following result.

Lemma 3.3.2. IfH(b1®b2) =0 andG(bl)(X)G(bg)“ Z ab»“b'zG(bj)@G(b'z)
H(by ®b3)>0
belongs to N, then ay, 1, € gA.

We shall call a pair (b1, b) of elements in Bag normally ordered and G (b )AG(bs)
a normally ordered wedge if H(b; ® bz) > 0. The axiom (R) may be considered as
a rule to write G(by) A G(b2) as a linear combination of normally ordered wedges
when H(b; @ b2) = 0. In order to treat the case H(b; ® by) = —¢ < 0, we introduce
an element of N (see (3.3.3))

C{I)I ,{72 = (1 ® Z_C + Z~C ® I)Ct‘)i,zcbg (33.7)
- (1 ®z2+2® l)CZ'Cbl,bg'

Note that H(bl ® 2652) = H(z"cbl & bz) =0.
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Lemma 3.3.3. If H(b; ® by) <0, then Cy_ ,, has the form
G(b1) ® G(ba) — Y ay 4, G(b)) ® G(b5).
v b,
Here the sum ranges over (b},b,) such that
H(b, @ b)) > H(by ®bs),
Uba) < U(by) < U(br),
U{bs) < U(by) < U(b1).
Moreover ay y, belongs to Z[q).
Proof. Assume H(b; ® by) = —¢ < 0. Set
e =GB @)~ Y ay G(b) © G).
H(b, @b})>0
Here the sum ranges over
1(b2) < U(bY) <U{z7°Dy),
1(bs) < 1) < U(=""1).

Then
Chipy = G(b1) ® G(b2) + G(27b1) @ G(2°by)
=Y ayu (GY)) ® G(2bh) + G(=°b)) © G(by)).
H(b, @b)>0
The desired properties can be easily checked. (]

By the repeated use of the proposition above, we obtain the following result.

Corollary 3.3.4. If H(b; ®b3) < 0 then N contains an element Cy, p,, which has
the form

G(b1) ® G(ba) = Y ay, 1, G (b)) ® G(B).

b;,b%
Here the sum ranges over (b}, bh) such that
H{b; ®by) >0,
1(b2) < 1(by) < 1(by),
1(b2) < 1(b5) < 1{by).
and ay, p, € Zlq].
By Lemma 3.3.1, Cj, 4, is uniquely determined. Note that we shall see
ap, 1, (0) = —8(b} ® by = 2 (1180)p; @ ;= H(1 @) p,)

{see Lemma 3.3.8).
The following corollary is a consequence of the corollary above and Lemma 3.3.1.
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Lemma 3.3.5. L(N) is a free A-module with {C, b, } H(s,0b,)<0 05 its basis.

Proposition 3.3.6.

(i) The normally ordered wedges form a base of \*Vag.
(i) L{A*Vag) is a free A-module with the normally ordered wedges as a base.

Proof. Lemma 3.3.1 implies the linear independence of the normally ordered wedges
and Corollary 3.3.4 implies that they generate /\2 Vasr.

(ii) follows from (i) and Corollary 3.3.4. O
Corollary 3.3.7. N =Ker (R~ 4(z®1,1® z)).

Proof. We know already that N is contained in Ker (R—4(2®1,1®z)). Since the
normally ordered wedges are linearly independent in V,$*/ Ker (R—9(2®1,1®2))
by Lemma 3.3.1, A*Vag — V§?/Ker (R - (2 ® 1,1 ® 2)) is injective. a

We define for n > 0

n—2
No=3 (VB eoNeVg" ™) cvg
k=0

and then
N'"Vag = VE" /N, .

For uy,us,...,u, € Vag, we denote by uj Auz A- - -Au, the image of u; Qu2®- - -Quy,
in A" Vagr.
There is a U,(g)-linear homomorphism

A /\nVaﬁ'®/\m‘/aﬂ - /\n+mVaH'

Let us set L(V.S") = L& and let L(A" Vag) be the image of L(V.E") in A" Vag.
We call a sequence (by,bs,...,b,) normally ordered if its every consecutive pair is
normally ordered, i.e. if H(b; ® bj41) > 0for j =1,...,n — 1. In this case we call
G(b1) A -+ AG(by) a normally ordered wedge. Set

n—2
L(N) =Y L(Vag)®* @4 L(N) @4 L(Vag) 7279 ¢ LVE™).
k=0

Note that we have not yet seen L(N,,) D N, N L(V.S"™), which will follow from
Lemma 3.3.11. In the formulae below, we have to pay attention to a difference
between modulo ¢L(N,) and modulo gL(V.3").



434 M. Kashiwara et al. Selecta Math.

Lemma 3.3.8.
(1) If H(by ® by) = 0O then
G(2%b1) A G(2%y) = —G(2"y) A G(2%b;)  mod gL(A*Vag).
(i) If H(bi ® by) <0 then

Chy oy = by @ b + 6(H (by ® by) < 0)zH (1802 g z=H(1®b2)p,
mod gL(V$?).
(i) IfH(b; ®bj41) =0forj=1,...,n—1, then for any o € S,
Gz b)AG(2%b2) A - AG(2%by,)
= sgn{a)Gz* DB AG(Z @ by) A--- AG(2% 1 by,)
mod gL(A"Vag).

Proof. By Lemma 3.3.3, (i) holds for a = b = 0. The general case is obtained
by operating 2* ® 2° + 2 ® 2 on G(b1) ® G(b2) = 0. The other assertions follow
from (i). O

Proposition 3.3.9. Let a,c € Z and n € Zo. Then for by,..., by € Bag with
a < 1I{b;) € ¢, we have

Gby) ® - ®G(ba) € Y_Z[GIGH) ® -+ ® G(by) + L(Na)
where the sum ranges over normally ordered sequences (b}, ..., b},) with a < I(b;) <
c and I(b}) < I(by).

Proof. We shall prove this by induction on n and {(b;). By the induction hypothesis
on n, we may assume that (ba,...,b,) is normally ordered. If H(b; ® bz} > 0, then
we are done. Assume that H(b; ® by) < 0. Then by Corollary 3.3.4, we can write

G(b) @ Glb) = > ay 1, G(b)) ® G(By) mod L(N)
4,0

with H(b) @ by) > 0 and I(b2) < I(b]) < I(b1) and I(bz) < I(by) < I(b1). Then we
have

G(bl) ® G(bz) ® - ®G(by)
= Z ab’l,b'zG(bi) & G(b’z) QG @ - ® G(bn,) mod L(Ny).

Since a < I{by) < I(b}) < I(by), the induction proceeds. O

This proposition says in particular that A" Vg is generated by the normally
ordered wedges. In order to see their linear independence, we need the compatibility
of the relations, which follow from the Yang-Baxter equation for R.
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Lemma 3.3.10. Assume H(b; @ by) = H(by @ b3) = 0. Then fora > b > ¢, we
have
(14 60,4)Cap, 200, ® G(2°b3)
+ (14 85,6)Carpy sty ® G(2%03) + (1 + 80,6)Craty,zen, ® G(2°b3)
= (L +65,c)G(2%01) @ Civpy eu,
+ (14 84,0)G(2°b1) ® Ciapy,zeny + (1 + 80,)G(2°b1) © Clapy son
mod ¢qL(N3).

Proof. We have the Yang-Baxter equation
Rl? ° f%zs © }?12 = Pvzs ° élz ° Rza‘

Here Rij is the action of R on the i, j-th components on Va?f’. Set o1 = P(1®@2®
1,2®1®1), etc. Since R+%(1®2,2® 1) sends L(V,%?) to L(N), Ri; + ¢;; sends
L(VE?) to L(N3). Also we have

(R+9(1®2201)(G=%) ® G(2"b,))
= G(bel) ® G(Zabz) + G(Zabl) & G(bez)
= (14 04,0)Clapy b, mod ¢ L(VS?).

Since L(N) = NN L(V.2?), the above congruence is also true modulo gL(NN). Since
we have

Ra30R12(G(2°b1) ® G(2°b2) ® G(2°b3))
= G(2°h1) ® G(2°by) ® G(2°b3) mod ¢L(VE?),

etc., we have

(Rys +121) 0 Roz 0 Ry (G(z"b) ® G(2%h) ® G(2°bs))
= (ng + 1a1) (G(bel) ® G(z°h) ® G(Zabg))
= (1 + 5b,C)Czbb;,z°b2 ® G(Zab3> mod qL(N3)7

and similarly

(Ros + 123) 0 Ria (G(2%b1) ® G(2°bs) @ G(2°b3))
= (1 + 00,c)G(2%51) ® Chap, eng mod gL{N3).
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They imply
Rys 0 Rag 0 Ria(G(2%h1) ® G(2°b2) ® G(2°b3))
= (1 +35,6)Clp, zep, ® G(2%b3)
— tha1 Rog 0 Ry2(G(2%1) ® G(2°b3) ® G(2°b3))
= (14 85.)Cabpy,ep, ® G(2%03) = (1 + 84,e) 021 G(2°01) ® Crapy et
+ o1 t32 Ria (G(2°b1) © G(2°h2) ® G(2°b3))
= (14 0p,c)Clbp, sep, @ G(2"03) — (1 + 60,0)G(2°b1) ® Clap, 2oty
(14 80.0)Canpy 5, @ G(bs)
— Po1gatps1 G(2%h)) ® G(2°by) ® G(2¢b3).
Here = is taken modulo ¢L(N3). Similarly we have
Ra3 0 Ry 0 Roy (G(z*h) ® G(2°by) ® G(2°b3))
= (14 80,6)G(2°b1) @ Ciapy oty — (14 Sae)Caany 2o, ® G(2°03)
+ (14 8p,c)G(2%01) @ Covpy copy — Va1 G(2"01) ® G(2°by) ® G(2°b3).
Comparing these two identities, we obtain the desired result. 0

Lemma 3.3.11. The Q-vector space L(N,)/qL{Ny,) is generated by G(b) ®---®
G(bi=1)®@C; b4, ©G(big2)®- - -G (by) where (by, ..., by) ranges over the elements
in B such that (biy1,...,bs) is normally ordered and H(b; ® biy1) <0.

Proof. L(N,) is generated by G(b1) ® --- ® G(bi—-1) ® Co; ;4 @ Glbig2) ® -+ ®
G(b,). Here H(b;®b;11) < 0but (bit1,...,by) is not necessarily normally ordered.
We shall prove that such a vector can be written as a Q-linear combination of
vectors satisfying the conditions as in the lemma, by induction on n and descending
induction on 7. Arguing by induction on n, we may assume ¢ = 1. Write by = 2% by,
with H(Bk ® 5k+1) = (. Then a; > a;. By Lemma 3.3.8 (iii), we may assume that
as < ag < -+ < ay. If ay < aa, there i1s nothing to prove. Assume a2 > a3. Then
the preceding lemma implies

(14 8ay.00)Cor 5, sang, ® G(2*b3)
= —(1+ Gana0)Clan, 2o, @ G(2%D3) = (14 6ay05)Clar, zashy, © G(2%b3)
(14 B0 )G (27D1) ® Cang, caspy + (1 + 8ay05)G(2%201) ® Clayj, asis,
+ (L4 8ay,02)G(2%D1) ® C.ay, ey mod gL(N3).
Note tpat a3 is the smallest among (a1,...,a,). After tensoring G(z""*&;) ®---®
G (2% by,), the first two terms can be written in the desired form by Lemma 3.3.8

(iil), and the last three terms can be written in the desired form by the hypothesis
of induction on 3. 0O
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Theorem 3.3.12. The normally ordered wedges form a base of \" Vag.

Proof. The normally ordered wedges generate A" Vag by Proposition 3.3.9. We
shall show that any linear combination of normally ordered tensors in V,, vanishes.
Let C be such a linear combination. Since (), ¢*L{N,) C N ¢*L(A" Vagr) = 0, it
is enough to show that C € L(N,,) implies C € ¢L(N,). By the preceding lemma,
we can write

n—1

!

C= ai(bl,---abn) G(b1)®"'®G(bi—l)®cbi,bi+1
i=1 (by,....bn )€K
® G(biy2) ® - @ G(b,) mod qL(N,).
Here the coeflicients a;(by,...,b,) belong to Q and (biy1,...,b,) is normally or-

dered for (by,...,b,)€ K;. In order to show the vanishing of a;(by,...,by), let us
calculate C modulo gL(Vg™).

C = Z ai(bi, .. bn) by ® - @by @ Cpy iy, Dbiga @ Dby
i b
mod gL(VE").

Since Lemma 3.3.8 (ii} implies

O{,i,biJrl =b;®biy1 + 6(Hb; ®biyq) < O)ZH(b"@b"“}bi ® Z—H(bi®bi*1)bi+1,
we have
n-1
C= ai(bl,...,bn)bl(@'--@b@_l

=1 (b1, b ) €K
® (bz ®bir1 +06(H(b; @ biy1) < O)ZH(bi®bi+l)bi ® Z_H(bi®bi+1)bi+1)
b2 @ Dby mod gL(VE™). (3.3.8)

We shall show a;(by,...,b,) = 0 by the descending induction on 7. Assume that
ak(b1,...,b) = 0 for k > i. Note that H(b; ® biy1) < 0, and H (zH®:®br)p, @
Z=HE:®b1)p, 1) > 0 when H(b; ® b;y) < 0. We also note that (b;, ..., b,) is not
normally ordered for (b1,...,b,) € K, but it is normally ordered for (by,...,b,) €
K, with & < i. By these observations, for (by,...,b,) € Kj, the coefficient of
b1 ®b,®---®b, on the right hand side of (3.3.8) is a;(b1,...,b,) and b; Kb, Q- - -® b,
does not appear in C. Hence a;(by,...,b,) must vanish. O



438 M. Kashiwara et al. Selecta Math.

Corollary 3.3.13. L(A"Vag) is a free A-module with the normally ordered wedges
as a base.

In fact, the normally ordered wedges generate L(A"Va.g) by Proposition 3.3.9
and are linearly independent by the theorem above.

Let B(A" Vag) be the set of normally ordered sequences. Let us regard
B(A" Vagr) as a subset of B&®. Since it is invariant by & and fi, we can endow
B(A" Vag) with the structure of crystal induced by BE". We regard B(A" Vag) as
a basis of L{A" Vag)/¢L(A" Vagt). Then we have

Proposition 3.3.14. (L{A" Vag), B{(A" Vag)) is a crystal base of N" Vg
The following lemma follows immediately from (3.3.3).

Lemma 3.3.15. Let f(z1,...,2,) be a symmetric Laurent polynomial. Then f(2®
1®--L1®z2z01® --®1,...,1® - ®1Q z) induces an endomorphism of

/\ﬂ Va{‘f .

4. Fock space
4.1. Ground state sequence

In this section we shall introduce a g-deformed Fock space in a similar way to the

AP —case ([KMS)).
We continue the discussion on the perfect crystal B of level [. Let us take a
sequence {b%, }mez in Bag such that

{c,e(b)) =1,
5(621 = go(bgﬂ-l)
and H(b,, @by 1) =1.
We call (---,b°,,b5,b,...) a ground state sequence. If we give one of by, then
the other members of a ground state sequence are uniquely determined. Since B is

a finite set, there exists a positive integer N and an integer ¢ such that

bryn = 2°by  for every k. (4.1.1)
Take weights Ay, € P of level [ satisfying

Am = Wt (bfn) + Am1
and  cl(Am) = @(b5,) = elbp,_y1)-

Set v2, = G(b2,) € Vagr.
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4.2. Definition of Fock space

For m € Z, let us define first a (fake) g-deformed Fock space F,, as the inductive
limit (k — oc) of /\k_ml/;ff, where /\k"mVaff - /\k+l~m‘/;ﬁ is given by u — uA
vy. Intuitively Fm is the subspace of A®V,g generated by the vectors of the form
U A1 A+ -+ with uy = o] for k > m. Similarly we define L(F,,) as the inductive
limit of L(/\k‘"mVafy). We define the vacuum vector [m) = v, A V1 A € Fo
Then any vector can be written as v A [m + ) for some positive integer r and
v € AN"Vag. Note that v A|lm+7) = 0 if and only if v Av) A Avg,, =0
for some s > r. Then we introduce the true (¢-deformed) Fock space by

Fm = ?m/( ﬂ an(?m)) :

n>0

Let L(Fp) C Fp be the image of L(F,,), and |m) the image of [m). We have the
homomorphism
N /\rVaff ® -7:1n+r = Fm-

For a normally ordered sequence (b, byt1,. .. ) in Bag such that by = b for k >
m, we call G(bp) A G(bpg1) A+ € Fr a normelly ordered wedge.

Theorem 4.2.1. The normally ordered wedges form o base of Fp,.
In order to prove this theorem, we need some preparations.
Lemma 4.2.2. IfI(b) > I(b;,), then H(b® b3, ,,) < 0.

Proof. 1f 1(b) >> 0, then the assertion holds. Let us prove it by descending induction
on I(b). Assume that there is ¢ € I such that &(b® b}, ,,) = (€b) ® b5, ,; # 0.
Then I(b) < I(é;b) and hence H(b®b;, ;) = H(&;:b® b}, ;) < 0 by the hypothesis
of induction. Hence we may assume that there is no such i. Then €;(b) < @;(b,,,)
for any i, and hence b = 22b¢, for some a € Z. Since I(b) > I(b3,), we have a > 0.
Therefore H(b® b;,,;) =1-a <0. a

Proposition 4.2.3. Assume H(b®b?

o) < 0. Then for every n we can findmy > m
such that

G AV A AvS. € " LIN™ " V,g).

1y

Proof. We shall prove this by induction on n and H(b® b5,). Set H(b®b3,) = —¢
and
G(b) Avy, =) albi,b2)G(b1) AG(b2).

Here the sum ranges over normally ordered pairs (b1, b2) such that

152,) < 1(by) < 1(b),
1(53,) < 1(bs) < L(b). (4.2.1)
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By the preceding lemma H(b; ® b5, ;) < 0. Lemma 3.3.8 (i) implies

a{by, b2) = —6(c < 0 and (b1, b2) = (27, 2°b3,)) mod gA.
We have

GB) Nvgy A Avfy, =Y alby, ba)G(b1) AG(b2) Ay A Aup,,.
Since I(b2) > I(b3,), we have G(bz) A vfnﬂ Ao Ave, € g L(AVag). Hence
a(by,b2)G(b1) A G(ba) Avgyyq A+ Avg,, belongs to ¢"L{AVag) except ¢ < 0 and
(b1,b2) = (27°b, 2°b3,).
Assume that ¢ < 0 and (by,b2) = (z7¢b, 2°b2,). Then we have 0 > H(zcbo
0i1) =1—c> H(b®Db;,). Hence a(by, ba)G(b1) AG(b2) Avg, g A-- - Avy, belongs
to ¢"L{A™ ~™"*V.g) by the hypothesis of induction on H(b® bfn) O

Remark. Assume that ¢ in (4.1.1) is positive (or equivalently, {(b3, ) tend‘s to in-
finity as m tends to infinity). Then H(b®b,,) < 0 implies G(b) Av;, A- =0
for my > m. In fact by the same argument as above we have G(b) Av), A- /‘\vml €

Sy AT e A G(D') where b satisfies 1(85,,) < 1(b') < 1(D).
Note that, under the condition of the proposition, G(b) Avy, Avp i A---Avg =0
for k :>» m is false in general.

A similar argument shows the following dual statement.

Proposition 4.2.4. Assume H (b2, ®b) < 0. Then for every n we can find m; < m
such that |
W3, A A, AGB) € "LIA™ T Van).

my

As an immediate consequence of Proposition 4.2.3, we obtain the following re-
sult.

Theorem 4.2.5. For any vector b € Bag such that H{(b ® b7,) < 0, we have the
equality in F,,
GE)Alm) =0.

Proof of Theorem 4.2.1. Any vector in F,, can be written in the form v A |m +r)
with v € /\rVaﬁ‘. We may assume that v is a normally ordered wedge

G(bm) A A G(bm+r_1).

If H(bpr—1 ® by,) > 0, then v A lm +7) is a normally ordered wedge and
otherwise v A |m + r) = 0 by Proposition 4.2.3.

The linear independence follows immediately from the corresponding statement
for the wedge space (Corollary 3.3.13). O

By a similar argument, we have
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Proposition 4.2.6. L(F,,) is a free A-submodule of F,,, generated by the normally
ordered wedges.

Proposition 4.2.7.

N LFn) = Y. AN Vas AGB) ATm+T)

n>0 H(b®S, ;) <0

- Yo AN TV AGH) Afm+T).

UoY>Ub, 1)

Proof. The first equality follows from Theorems 4.2.1 and 4.2.5 and the last follows
from Lemma 4.2.2 and (4.2.1). 0

As a corollary of Theorem 4.2.5 we have the following result concerning vertex
operators.

Proposition 4.2.8. Let V(),,) be the irreducible Uy(g)-module with highest wei-
ght Ay, and uy,, its highest weight vector. Let @ : Vig @ V(Ap) = V{(A\n-1) be
an intertwiner. Then for any vector b € Bag such thet Hb® b2,) <0, ®(G(bh) ®
u)\m) = 0.

Proof. As proved in [DJO], the intertwiner is unique up to a constant. As seen in
the next two subsections, F, has a U, (g)-module structure and contains V(\,;,) as a
direct summand. By this embedding, the highest vector uy,, of V(Ay,) corresponds
to |m). Therefore ® is given as the composition:

Vaff & V()\m) - Vaf‘f ®]jm - fm—l - 1/()\?3?,«1)-

Now the result follows from Theorem 4.2.5.

Remark. It is known (see e.g. [DJO]) that ®(v @ uy,,) =0for v € Vag)r,._1—an.
such that v € ), e:Hh"”\’"’l)Vm. On the other hand, by the property of the
lower global base ([K2]), G(b) belongs to ), egﬂh"”\m")Vag if and only if ;(b) >
(hi, Am—1) for some 3. Therefore, ®(G(b) ® uy,,) = 0 for b € (Bag)a,,_,—2,, Other
than b7, _;.

This observation shows that we have to take a lower global base in order to have
Theorem 4.2.5. Theorem 4.2.5, as well as Proposition 4.2.8, does not hold for an
arbitrary choice of base other than the lower global base. In the course of our
construction of the Fock space, we have not used explicitly the property of the
lower global base. This is hidden in postulate (R). This postulate fails for an
arbitrary choice of base.
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4.3. Uy(g)-module structure on the Fock space

Let us define the action of Uy(g) on F,,,. We define first the action of the Cartan
part of U,(g) by assigning weights. We set wt (jm)) = A, and wt(w Alm +71)) =
wt (v) + wt (Jm + 1)) for v € A" Vag. This defines the weight decomposition of the
Fock space.

Let B(F,,) denote the set of normally ordered sequences (by,, b1, ... ) in Bag
such that by = b for k > m. Then it has a crystal structure as in [KMN1]. More-
over B(F,,) may be considered as a base of L(F,,}/qL(F,) by Proposition 4.2.6.
We write by A by Ao+ for (b, bmar, .- )

Proposition 4.3.1.
(i) ch (Fm) =ch(V(An)) [L150(1 = e k)1
(i) The weights of Fy, appear as weights of V(Ap.). In particular, any weight p
of F, satisfies s(u) < s(Am) (see the end of §3.2 for s : P = Q). Moreover,
s{1) = s(Ap) implies pp = Xp,.
(iti) For any p € P, dim(Fp,)u < 00.

: KG(frb5,) Alm +1)if 0 <n < (hiy Am),
(iv) (Fm)am-na: = .
0 otherwise.
(v) If b € Bag satisfies wt (b) = wt (by,) — nay, then G(b) A lm +1) = 0 unless
0 <n<(hy, Am) and b= flby,.
(vi) Any highest weight element of B(Fy,) has the form 2% by, Az%m+1by, (A~ -
with @y < ame1 < - and ap =0 for k> m.

(vii) For by Abpmer A+ € B(Fp), by = b5, implies by, = b} for any k > m.

Proof. By Proposition 4.6.4 in [KMN1] (see also Appendix A), we have
Ch (V(Am)) — e)\m Z EZan{Wt‘ (bn)"'Wt’ (b:))

where the sum ranges over the family By of sequences by, bynt1,... in By such
that b, = b, for n > m and H(b, ® by41) = 1 for any n > m. On the other hand,
we have

Ch (}——m) — ekm Z eZan(Wt (&"}_Wt (bi))

where the sum ranges over the family B of normally ordered by, b1, . .. such that
by, = bS for n >» m. We have

B= {(Z—-am b, z74mHt bm—i—h .- ) ;

By bg1, -+ -) € Bo, @ > Gmy1 > -+- and ap = 0 for n 2> m}.

To obtain (i), it is enough to remark that z has weight ¢.
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The assertions (ii)-(vi) follow from (i) and Theorem 4.2.5. The assertion (vii)
follows from (vi) and

Fi(Z0m b5, A 20 Hb0 A ) = 20 fibS A OIS L A

O

Now we shall define the action of ¢; and f; on F,,.

Taking {¢"L(Fm)}n as a neighborhood system of 0, Fp, is endowed with a so-
called g-adic topology. Since [, ¢"L(F,,) = 0 by construction, the g-adic topology
is separated. Since we use K = (Y(g) as a base field, F,;, is not complete with respect
to this topology. For any p € P, the completion of (Fp,), is Q((q)) ®k (Fm)y-

Proposition 4.3.2. For any vectors Um,Um41, - € Vag such that up = vy
for k> m,
Z 7 (um A Augor) At Atlggr A (4.3.1)
k>m
and
D A Aoy A foug Ati(uggr A ) (4.3.2)
k>m

converge in the g-adic topology to elements of Q((q)) ®x Fm.-

Proof. First note that (e;v}) A |k + 1) = 0 because Ay + «; is not a weight of Fy.
Hence, only finitely many terms survive in (4.3.1).

In order to prove the convergence of (4.3.2), we may assume that uy = v}
for every k > m. Then
Uy Ao Avp_y A fivg Ati(vp A--) = q§""“+‘)v,‘; A Avp_y A fog Ak +1).
Since (h;, Ak+1) takes only finitely many values, it is enough to show that v, A

<~ Aug_y A fivg Ak + 1) converges in the g-adic topology. This follows from the
following lemma. ]

Lemma 4.3.3. Let C be an endomorphism of the K-vector space Vyg of weight
i # 0. Assume that Cz = zC. Then for any m, v, A+~ Avp_; ACvR Alk+1)
converges to O in the g-adic topology when k tends to infinity.

Proof. Write
Cvp =Y ckwGlbry)-

Take N and c as in (4.1.1). Then we have also the periodicity bg+n,, = 2bi,,
and cgen,y = ci,. Hence cp, is bounded with respect to the g-adic topology.
Therefore it is enough to show that v, A---Avp_; AG(bg ») Ak + 1) converges to 0.
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By Proposition 4.3.1(vi), (b,,...,b%_1,bk,,b541,---) is not normally ordered. It
means that either H(by,, ® by, ;) < 0or H(b;_, ®by,) <0. I H(b, ®b3,,) <0
then G(bg,) A |k + 1) vanishes. If H(b,_, ® by,) < 0, then vy, A - 07 A

G(bg,w) A lk + 1) converges to 0 when s tends to infinity by Proposition 4.2.4. By
shifting the indices, v, A --- Avj_; AG(by,,) Ak + 1) converges to 0. 0

Let us set
filmy = fiol, Atilm + 1) + v A fivl o Atilm +2) + - (4.3.3)

Then it is an element of Q((q)) ®x Fom-

Lemma 4.3.4. f;|m) belongs to Fy,.

Proof. Let us take ¢ and N as in (4.1.1). We define the isomorphism v, :
Fmn = Fman BY iy At A+ 25Uy A 2%Upme1 A ---. Then fijm) sat-
isfies the recurrence relation

f1|m> - U1On A ’UZH—I A A (U1On+N—1 A ¢"7l(fi|m>)
= f’i(v'l?n AU?/H—I AR AU{;H—N—I) A tii”n + N> € Fmn.

Hence the result follows from the following lemma. 0

Lemma 4.3.5. For u € P\{\.}, the endomorphism of (F,,), given by w — w—
Vg A1 Ao AU vy Ao (w) s an isomorphism.

Proof. Tt is enough to show its injectivity. We show that w = vy, Avp ; A A
Vpin—1 A Pm (w) implies w = 0.

For by Abmg1 A -+ € B(Fm)us (05— 1,0m,bmt1,...) is not normally ordered
by Proposition 4.3.1 (vii), and hence H(bS,_; ® b,,,) < 0. Proposition 4.2.4 implies
that vS,_, y A+ AVS_1 AG(bm) AG(by +1)A- -~ belongs to ¢L(Fp—xn) for k> 0.
Shifting the indices, we conclude that

’Ufn AREERA USn-HcN—l A ¢sn+(k—-1)N T "pm+N¢'m (G(bm) A G(bm+l) AR )

belongs to ¢L(F,,) for k 3 0. Therefore the homomorphism

C:rwr U?C;z AR U';)}1+RN~—1 A Q.Z)m—&-(k—l)N T wm-%-]\”pm(w)
sends L(Fp), to ¢L(Fy), for k> 0. This shows the injectivity of the endomor-
phism id(z,, —C. (]

)
Now we define

e{vAIm+7)) =evAlm+r),
fiwAlm+r)) = fiwAtiim+ry+ v A film+r) (4.3.4)
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for v € A"Vag. Then e; and f; are well-defined homomorphisms from Fon t0 Fum.
They satisfy

ei(vAu) =e¢v/\u+t;1v/\eiu
filvAu) = fiuAtiu+ovA fiu (4.3.5)

forv € /\rVaff and u € ?mh" In order to see that they define endomorphisms of
Fum, we need to show the following proposition (see Proposition 4.2.7).

Proposition 4.3.6. Assume that b € Bag satisfies {(b) > 1(bS,). Then we have
the equalities in Fp,.

[i(GB)AIm +1)) =0. (4.3.7)
The first equality (4.3.6) follows from the fact that wt (b) + a; + Ap+1 is not a
weight of F,,, (following Proposition 4.3.1 (ii)).
Let us prove (4.3.7). First note that the same consideration on the weight implies
that
if 1(b) > 1(bS,) and wt (b) # wt (bS,) + a;, then (4.3.7) holds. (4.3.8)
Hence in order to prove (4.3.7), we may assume that
wt (b)) = wt (b)) + . (4.3.9)
Sublemma 4.3.7. Under the condition (4.8.9), we can write

G) Avgg A Avgy, =u+ Y albo,...,b)G(Bo) A=~ AG(by).  (4.3.10)

Here u satisfies f{(uAN|lm +r + 1)) = 0, the coefficients a(bg, ..., b,) belong to ¢"A,

and the sum ranges over (by,...,b,) such that
wt (b2 . . or0<j<r
wt (b;) = { ( :"'H) JorO<j<r (4.3.11)
wi (bm+r) + oy f()’f‘ J=r

Proof. We shall prove this by induction on r. Assuming (4.3.10) for r, let us
prove (4.3.10) for r + 1. Since H(b, ® b3, ,,,;) < 0 by Lemma 4.2.2, we can write

G(br) Avpyryr = D ap i G(Y) AG("). (4.3.12)
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Here (b',b") ranges over normally ordered pairs such that

Ubpyarr) SO < U(by),

Uy ypyy) <IQ") <1(by). (4.3.13)
If wt (b") # wt (b9, 4 ,.41) + i, then we have G(0") Alm + 1 + 2) = 0 and fi(G(8") A
Im +7 +2)) = 0 by (4.3.13) and (4.3.8). Therefore fi(G(bo)A---AG(b,_1)AG(D')A

Gy Am+r+2)) =0. If wt (b") = wt (b, ,,41) + @i, then wt (') = wt (b5,.,.).
Moreover Lemma 3.3.8 (i) implies ay p+ € gA. Thus the induction proceeds. O

We resume the proof of Proposition 4.3.6. We have

GO ATm+ 1)) = > albo,-..,by)
(Glbo) A+~ AG(by) A film + 7+ 1)
+ 3 Gbo) A--- AG(bj1) A fiG(bs)A

0<j<r
tGbjg1) A ALG(by) Atilm + 1 + 1)),

There is a constant s such that f;L.gx € q¢*Lag, and film +r + 1) is bounded with

respect to the g-adic topology. Moreover, t;G(bj11)A---AtLG(by)Atiim + 7+ 1) =

ql{hi”\m‘“’*lHN(KT}G(?)J-H) A ANG(b) A|m +7+ 1) and (i, Anyj) is bounded

from below. Hence there is a constant d independent of r such that
(GO AIm +1)) € ¢TUL(F) for every 7.

This implies the equality (4.3.7) in F,,. This completes the proof of Proposi-
tion 4.3.6.

Thus we have defined the action of e; and f; on F,,. Now we shall show the
commutation relations between them.

Proposition 4.3.8. On F,, we have
les, f3] = 035(ts — tfl)/((h - q{l). {(4.3.14)

Proof. First note that (4.3.5) implies
lei, fil(v Aw) = [es, filv Atju+ 870 Ales, filu. (4.3.15)
for v € A"Vag and u € Fpppr. Hence, it is enough to prove that the equality (4.3.14)

holds when it is applied to the vacuum vector. If i # j then [e;, f;]}m) = 0 because
Am + o — «y is not a weight of Fo,.
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Now we shall show [e;, f;] = {t;}:. Here {z}; = (z — ™) /(g — ¢ *).
Since [e;, fi]jm) has weight A, there is ¢,, € K such that [e;, fi]|m) = cm|m).
Then by (4.3.15), we have
les, fillm) = [es, filvd, Atilm + 1) + ¢ 108, Ales, fillm + 1)
= (a2 iy A = Am)ls + 0" T e ) ).
Hence we have a recurrence relation
Cm = ‘Zi(hi’)\mjm[(hi, Am = Amg1)]i + q,{h"”\m*l_)‘”)cmﬂ.
Solving this, there is a constant @ € K such that
em = [(hi, Am)]i + qi“(h"’\"‘)a for every m. (4.3.16)
Namely we have [e;, fiJ(|m)) = ({t;}s + at;')|m). Hence for v € A" Vag
les, fi](w A fm + 7)) = [es, fillv Ati|m + 1) + ;70 A e, fi]lm +7)
= {t:}iwAtiim+r) +t7 v A ({E} +atT ) m + 1)
=({ti}i +at7H) (WA Im+ 7).
Thus we obtain
les, fi] = {t:}s +at ). (4.3.17)
Let us show the vanishing of a.
By induction on n we can see the following commutaion relation

T k-1 ) py-1
n) o{n -k —k - ; ti}; z‘ti
o) f = 3 R g(nb) I1,-o(e [k]%!ﬂraq ) (43.18)

k=0
Setting ¢ = (h;, Am), we have fi(cﬂ)]m) = 0 by Proposition 4.3.1 (iv). Hence
0 = e{™M f{ D m)
+1 v
Lol rar™)
[C + 1}1’
Therefore there is an integer s such that ¢ = —¢f[s];. Then the commutation
relation (4.3.17) can be rewritten as

lessg; ° fil = {g; *t:}i.
Hence e;, ¢; ° f; and ¢; °¢t; form U,(sl;). Then the representation theory of U,(sl)
and Proposition 4.3.1 (iv) implies s = 0. In fact, the string containing the weight
of |m) (with respect to g; *t;) is {¢ — s — 2n;0 < n < ¢}, and hence the symmetry
of a string under the simple reflection implies ¢ — s = —(—c ~ s). O

Thus the actions of e; and f; satisfy the commutation relations. By Proposi-
tion 4.3.1 (ii), for any i € [ and u € P, u+na; is a weight of F,, only for a finitely
many integers n. Therefore 7, is integrable over the U,(sk); = (e, fi, ti, ;).
This implies the Serre relations (see Appendix B).

Thus we obtain
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Proposition 4.3.9. F,, has the structure of an integrable Uy(g)-module.

By Proposition 4.3.1 (i), F, is a direct sum of V(A —kéd)’s. This decomposition
is studied in the next subsection through bosons.
Note that
A /\rVaﬂ" ®fm+r - fm

is U,{g)-linear.

Lemma 4.3.10. )
Py = G(FEvS) A jm + 1),

Proof. Tt k > (hi, Apm), then the both side vanish. Assume that 0 < k < (h;, Am).
By Proposition 4.3.1 (iv), there is ¢ € K such that

F9Nmy = cG(FF,) A lm + 1),

t M

We have

e 1my = | P )

On the other hand, by the repeated use of (iii) in (G), we have

Wit = [0 v

Here, - - - is a linear combination of global bases other than v, , which is annihilated
after being wedged with }m + 1) by Proposition 4.3.1 {v). Hence we have

e (G(FEb) Nm + 1)) = (e G(FB)) Alm + 1)

=[]

L 4vfn/\{m+1).

7

Comparing these two identities, we obtain ¢ = 1. O

Let FZ be the Z[g, ¢ '}-submodule of F,, generated by the normally ordered
wedges. Then FZ is a module over U,(g)z by Lemma 4.3.10. Hence by specializing
at ¢ = 1, we obtain a Fock representation of U(g). However, the action of the
bosons on F,, introduced in the next subsection may have a pole at ¢ = 1 and it
cannot be specialized at ¢ = 1 in a naive way.

4.4. The action of Bosons

‘We shall define the action of the bosons B,, (n # 0) on F.
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Proposition 4.4.1. For n # 0 and any tum,Um41, -+ € Vag such that up = v}

fork>»m,
(znum AUpgpy AUupmya A )

+ (Um A 2™ U1 AUmaz Ao )

+ (U A Upmsr A 2™ U2 A +) (44.1)
TR
converges in the g-adic topology.
Proof. Reducing to the case uy = v} for every k > m, apply Lemma 4.3.3.
Lemma 4.4.2. 2™0% Ajm + 1) + 0% A 2™  Alm +2) + -+ belongs to Fy,

The proof is similar to the one for Lemma 4.3.4.

By these lemmas and Lemma 3.3.15, (4.4.1) defines a homomorphism from F,,
to Fm. Since L(Fp,) is stable by the correspondence {4.4.1), it induces an en-
domorphism of F,;. We denote it by B,. It is clear that B, is a Ué(g)-linear
endomorphism of F,, with weight nd.

By the definition, we have

B.(vAu)=z"vAu+vAB,{u) forve Vg and u € Fpy. (4.4.2)
Proposition 4.4.3. There is v, € K (independent of m) such that

[Bn’ Bn’] = 6n+n’,07n'

Proof. (4.4.2) implies

[Bn, Bp'J(v Au) = v A [Bp, Bylu.
Since [By,, Bp:}|m) has weight A,, +(n+n')d and hence it must vanish when n+n' >
0. Therefore [B,,, B,y] = 0 in this case.

Assume n +n' < 0. Write [B,, By/]im) as a linear combination of normally
ordered wedges:

{Bn: B ZCV b1 ,,
Then by, #b2,. Take N and ¢ as in (4.1.1). Then we have

[Bp,Byllm + jN) = Zc,, G(2by ) A -

We have also H(b,, v ® 291 ,) = H(b3,_, ® b1,,) < 0. Hence by Proposi-
tion 4.2.4, v, A~ Awg, iy 1 AG(27°by,) Alm + jN + 1) converges to O when j
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tends to infinity. Hence
[Bn, Bullm) = v, A--- A vfn-‘er—l A [Bn, Bw]lm + jN)

= ZCUU;;.L A A ?)7071+ij1 A G(chbl,x/) AREE
v

converges to 0. Therefore [B,,, By/]|m) must vanish.
Now assume that n +n' = 0. Since [B,,, B_,]|m) has the same weight as |m),
there is vy, n such that [By, Bopllm) = vy nlm). Since

[Bn, B—n”m) = 'Ug; A [BH;B—n“m + 1) = '}'m-{-l,nvfn A lm + 1) = ’Ym+1,nlm>7
Ym.n does not depend on m. Write v, for ¥, n. Now we have [B,, B_,J(vA|m)) =
v A [Bp, B_pllm) = v,u Alm). 0O

Now we shall show that «y,, does not vanish.

Lemma 4.4.4. Let n be a positive integer.
i) 2"vpAlk+1) =0.
(i) vp, AV A AV AT ALk +1) =0 for k> m+n.
(il}) 2"V AV A AV AZTT AR+ ) =0 form <k <m+n.
Here = 1s modulo qL(F,).
Proof. (i) follows from Theorem 4.2.5. In order to prove the other statements, write
b = 27 *b3. Then H(by ® byy1) = 0. We have
Uy AUp g AN AU AZT Mg =
2™ AT A A 22 by A 2P,
Since m < k—n <k — 1, it is zero modulo ¢L{/AVag) by Lemma 3.3.8 (iii).
The proof of (iii) is similar to that of (ii). We have
2" AU g A AR AZTTUR AR A A, =
2l A 2™ A 2T b AT A b A A 2T by
Then it is zero modulo qL{AV.g) again by Lemma 3.3.8 (iii).

Proposition 4.4.5. Forn # 0, v, € K has no pole at ¢ =0 and v,(0) = n.

Proof. We may assume n > 0. Noting that By, sends L(F,,) to itself, let us
calculate the commutator modulo gL{F,,). We have [B,, B_,]|m) = Bp,B_p|m).
By Lemma 4.4.4 (ii), we have

B_,my=z""v  Alm+1) +uv), Az g  Alm+2) + -

= > w AU A AV Az A LR+ D),
m<k<m-+n
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Here = is taken modulo qL(F,,). Hence we have by Lemma 4.4.4 (i) and (iii)

B,B_,|m)

= > (Z U AUy A A2 A Avp_y Az 0R ALk + 1)
m<k<m+n m<j<k
+m)
+ZU;AU;’n+1A-~-/\v,‘;_1/\z“"v,‘;/\vzﬂ/\--~/\z"v;?/\|j+1))
i>k
= nlm).

O

Let H be the Heisenberg algebra generated by {Bn}ncz\{o} With the defining
relations [By, Bn'] = dpin' 0¥n- Then H acts on the Fock space F,, commuting
with the action of Uj(g). Let QH_] be the Fock space for H. Namely, Q[H-] is
the H-module generated by the vacuum vector 1 with the defining relation B,1 =10
for n > 0. Since |m) is annihilated by the e; and the B,, with n > 0, we have an
injective U, (g) ® H-linear homomorphism

tm V() @ QUH_] > Fim (4.4.3)

sending u,,, ® 1 to [m). Comparing their characters (see Proposition 4.3.1 (i)), we
obtain

Theorem 4.4.6. 1y, : V(A,) @ QIH] — F, is an isomorphism.
4.5. Vertex operator

Similarly to the AP case in [KMS], the intertwiner

Qm : %ﬁ"@fm-&l '_>]:m:
vRurr vAu (v € Vag, 4 € Frnp1),
induced by the wedge product is related with vertex operators. Let us describe it

briefly. The proof is similar to [KMS].
Take an intertwiner

By Vag @V i) = V() (4.5.1)

and normalize it by
q)m(v,on ® u)\m+1) = U,

(cf. Appendix A).
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Let
tm * V()\m> ® @[H-]:‘")fm
be the isomorphism in (4.4.3). We define
O Var © V(A1) @ QUH-] = V() @ QIH_]
by requiring the commutativity of the following diagram
Vag ® V(/\m+1) ® Q[H*} Wd® Ve aff & -]:m+1
1 Lm1
19;,, ln . (4.5.2)
V()\m) @ @{Hm} — Fn

tm

We shall write the intertwiners in the form of generating functions. Namely, intro-
ducing an indeterminate w (of weight &), we set for v € Vg

= Z Zlv@wT ",
(W) (v ® 1) = &, (v(w) ® ) Z@m "y @ uyw ",
Qn(w)(v@u) = Qp(v(w) @ u) Zﬂ,n v @uw ",
Q (w)lv @ u) = Q) (v(w) ® u) Z QO Eveuw "

Here u € V(Aps1), Fong1 0f V(A1) @ QQH-].
We define the vertex operator for the bosons by

O(w) = exp Z Boww exp | — Z Bpw ™ . (4.5.3)

nz1 n n>1 Tn

Theorem 4.5.1. Q (w) = &, (w) ® O(w).
As a corollary of this theorem, we have the relations of the two-point functions
of the vertex operators and -, as in [KMS].
Set
Py (w)(w) = @ (w)(v ® u)

for u € Fppi1. For v,v' € Vag, we define (®Y _, (w1)® m(wz}) to be the coefficient
of uy,,_, in (I’,n,,l(w1)tIJm(wz)uAm+1 € V(Am—1). We introduce functions by

wy o {wafwr) = (m — Holw) Av'(wz) Am + 1) (4.5.4)

va,v‘ (’U}g/w}) = (‘b:)n——l (wl )Qm(w))) (455}
and
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8(ws /) = exp (- 3 M) : (4.5.7)

o0 Tn

Here for u € Fpu—1, {(m — lju means the coefficient of jm — 1) in w. Then the
theorem above implies

Proposition 4.5.2. For v,v' € Vg, we have

Wy (Wa /1) = Gy o (Wa fw1)B(wa fw1). (4.5.8)

This formula will be used later to calculate ~,,.

5. Examples of level 1 Fock spaces

In this section we give some examples of the theory developed in the earlier sections.
The case of level 1 type A described in [S,KMS] is first reviewed in the perfect
crystal language. Then we present results for types A:(fn), B,(ll), Agi)_l, DY and
Dfi)_l at level 1, corresponding to the perfect crystals of [KMN1] Table 2.

5.1. Preliminaries

Define [m,n) := {i € Z | m <1 < n}. We label the simple roots by I = [0,n]. We
choose 0 € I so that Wy, is generated by {si}icr\{o} and ag = 1.
We take fundamental weights {A;}icr such that

Q= Z(hj,a,-)/\j + (51',05.
jel
Let s : P§ — PO be a section of cl: P° — P§ such that
so(Pa) C Z Qa; = Z Q(ag A; — a) Ag).
i€I\{0} ieI\{o}
Then we have
s0(A) + a; forie I'\ {0},
A+ cl(ay)) =
so(A+ clfe) {So(/\)+ao—5 for i = 0.

We regard V' as a subspace of Vag by V' O Vi = (Vag)son) C Vag. Then Vg
is identified with Q[z,2z7') ® V. With this identification, the action of U,(g) on
Qlz, 27} ® V is given by

ela®v) = 2900 ® e;v,

fila®v) =2z7%a® f.
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Similarly we identify B as a subset of B,g.
In the examples that we treat in this paper, the action of U,(g) on the lower
global base of Vugr (respectively V') is completely determined by its crystal structure

as we have
e;G(b) = (1 + ;(0)]:G(&D),
fiG(b) = [1+e:(B)LG(fib), (5.1.1)
¢"G () = ¢* G ),

forbe Bug (be B),ie€Iand he P* (h€ Fj).

5.2. Level 1 AV

5.2.1. Cartan datum. The Dynkin diagram for AP (n>1)1is

=
W e QO e D

7n—1

For Ag,,l ) we have

(OA@,OA@)SQ ('LEI)

5.2.2. Perfect crystal. Let J := [0,n]. Let V be the (n + 1)-dimensional Ué(Aﬁll))—
module with the level 1 perfect crystal B := {b;};cs and crystal graph:

bo 1r[)l vag

of lg

bn .
nI 111—3
bn~1 1 bu-2 R bn—B

The elements of B have the following weights

wt (bz) = Ai-i—l —A; (’L < J)
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Let v; := G(b;) (j € J). The action of U;(A%l)) on v; € V obeys (5.1.1).
5.2.3. Energy function. The energy function H takes the following values on B® B
1 fori>j,
H(b; ®b;) =
(b: ;) {o for i < j.

Write H(i,7) for H(b; ® b;) (i,j € J).
The Coxeter number of Asll) ish=n+1=dimV. We take l : B.g — Z to be
1(z™b;) =mh —j (meZ,jeJ).

The functions H and [ satisfy condition (L) (see end of §3.2). The map [ gives a
total ordering of Bag.

5.2.4. Wedge relations. We have
N=U (AN 2®2:1®27,201+1®2] 1 @vo C Vag ® Vag.
The following elements are contained in Uq(Agf) Y v ®@ug CN:

C‘m‘:m@m (iEJ},
Ci,j =1 ® Z_H(i’j)vj
+ gz 0Dy, @ v, ((4,5) € J*\ {(k, k) }res) -
PI‘OpOSitiOﬂ 5.2.1. Idenéz'fy Ci,j with Cbi’z—H(i,j)bj . Then {z’“@zm'Ci,j}mez;i,ng
with the function | satisfies condition (R) of subsection 3.5.
5.2.5. Fock space. For UQ(ASJ)) we have
Buin = B:
(P = {A{Yier,
with
g(bj) = A?: @(bj) = A;L‘—lmod h (3 € J)
Since H(b; ® bj—1) =1 (j € [1,n]) and H(by ® zb,) = 1 there is a unique ground
state sequence given as follows: every m € Z fixes uniquely a € Z and j € J such
that m = ah — 7, then
by, = 2°b; (m e Z),
CI(/\m) == Aj+1 mod A (m S Z)
With v

3

= G(b°

© ), the vacuum vector of 5, is then given by

— © o o
im> = Uy A Um+1 A Utz ARREAAS

with highest weight A,,.



456 M. Kashiwara et al. Selecta Math.

5.3. Level 1 A

5.3.1. Cartan datum. The Dynkin diagram for A;‘fl) (n>1)is
0=1—2— .- —nm-2)—(n-1)=>n.

For Aéi) we have

n
= Qg + Z 20,
i=1

711
c= (Z 2hz) + Ay,
=0

8 fori=210,
(ai,a;) =< 4 forie[l,n-1],
2 fori=n.

5.3.2. Perfect crystal. Let J := [-n,n] and let V be the (2n + 1)-dimensional
U, (A.g})}module with the level 1 perfect crystal B := {b;}ics and crystal graph:

2 n—2 -

by ! by ——— e = bn-1— : bn
ln

0 bo
ln

by =+ 1 b 2 n—2 by n—1 bon

The elements of B have the following weights

n

wh(b) = e =(1+8a)A— Ay (i€ [L,n]),
k=1
wt (bo) =0,

wt (b—;) = — wt (b;) (i € [1,n]).

Let v; := G(b;) (j € J). The action of U(’I(A{;n)) on v; € V obeys (5.1.1).
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5.3.3. Energy function. Define the following ordering of .J
12 n>=0>-n>1-n» -1
The energy function H takes the following values on B® B

1 for (i,7) € {(i',5) € J*|i' < j'}U{{0,0)},

Hbiob) = { 0 for (5,4) € {(i",4) € J* | ' = 7'} U {(k, B) eengoy-

Write H (¢, 5) for H(b; ® b;) (1,7 € J).
The Coxeter number of Agzn) ish=2n4+1=dimV. We take [ : Bog — Z to be

hm+n+1—37 forje[l,n],
1(z™b;) =< hm for j =0,
hm—(n+1+3) forjé€[-n,~1].

The functions H and [ satisfy condition (L) (see end of §3.2). The map [ gives a
total ordering of B,g.

5.8.4. Wedge relations. In Vg ® Vog we have
N = Uq(Agzn))[z ®z,27' @2 2014+1®2) v @up.

The following elements are contained in Uq(A;Qn)) ‘1 ®vy; C N:

Cii =0 ®@u; (te J\{0}),
C’i,_l =1 ® z_H(i’"i)v_i + qsz.l & z“H(i‘“i)v_i_l
+ @ Oy @iy
+ ¢z Oy @0y, (ie J\{-1,0,n}),
Giy = v @ 2~ HGy,
+ ¢z 70Dy g, ((G,5) € P\ {(k, k), (k, —k) }ies) ,

Coo =10 ® z 1wy + *[2Jv_n ® 27 0,
+ q2[2]z“1vn @ v_p + 22 g ® vg,
Cvn‘—wn =Up @ VUon + quo @ Vg + 44/0—72 & Uy,

Cai1=v4® 27l + gtz @y

Notice that each C; ; has v; @2z~ Hd)y; as its first term and a term in 2~ H(6)y; @u;.
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Define the following elements in V.

Ci; for (i,7) € J*\ {{k, —k) }res,

i (=) 1C i for (i) € {(k, = k) }eerim)»
T (= ‘2)"’ FCopx for (i,5) € {(=k, k) benr )y

Coo — ¢*121C-nin for (1,7) = (0,0).

Explicitly for {(¢,7) € {(k, —k)}res, we have

Cij =

Cjmj =0 ®v_j + ¢'v_j ®v; +q(—¢")" v ® v

-¢") Y (=) v @ (j € [1,n),

k=j+1
- 4 _—
Cjj=v-; 82 v +q'z7 v Qv

-1
1-¢")D ()Y 2 o @ vy (j € [1,n]),
k=1
Copo=vo®2" Yoo + %2 Mg ® vp

2200 -g") (=) F o @ v
k=1

Proposition 5.3.1. Identify C; ; with Cy, .-r.y,- Then {z™®2™-Cijtmeziijes
with the function | satisfies condition (R) of subsection 3.3.

5.9.5. Fock space. We have Buin = {bo} and (P); = {AS}. Since H(bg,bo) =1
we have a unique ground state sequence (up to an overall shift by zF (k € Z)):
b, = bp and A, = Ay, (m € Z). Therefore the vacuum vector of the Fock space
Fm is

lm) ;=vo Avo Avg AvgA-e---- (meZ).
We set wt {{m)) = A,

As an illustration of the use of the g-adic topology, let us check Proposition 4.3.8
on |m): i.e. that [e;, fi]-|m) = 51-_ |m). The casei € I'\{n}is trivial. For e,|m),
consider first v, A [m +1) = (=¢%)i (vo)¥ Avy Alm+j+1) (j € N). As j - o0,
the vector vanishes by the g-adic topology on F,,,. Hence

en - |m) = Z(@O)As‘ Afen-vo) Alm +j +1)
j=0
= (2] (00)M A v Afm G+ 1)
F=0
={.
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For f,, we have

Faclm) = (W)™ A(fa-vo) Atulm+j +1)
J=0

= ¢{2] i(vo)’\j ANv_pAlm+35+1)

j=0
oe}

=q[2] Y (~¢*Yvon Alm +1)

=0
=g[2)(1 + A v, Am+1)
=v_p Alm+1).

Then since
€n fn ’ !m> = €ep Vg A lm"“ 1)

=vpAlm+1)

= |m),

and [(hn, An)]n = 1, this completes the check.

5.4. Level 1 BY

5.4.1. Cartan datum. The Dynkin diagram for B! (n>3)is

0—2—3—--- (N =2} —(n—1)=n

For B,{ll) we have
n

§d=ag+ o +Z2a,‘,

i

n—1
c=ho+hi+ (Z 2hé> + A,

i==2
{4 fori e [0,n—1],

QG Q) = )
(e, ) 2 fori=n.

5.4.2 Perfect crystal. Let J = [-n,n] and let V be the {2n + 1)-dimensional
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U, (Bfll))—module with the level 1 perfect crystal B := {b;};cs and crystal graph:

by —Hwbg Lo N
N |
b1 bﬁl I)()
N "
b_2<2_b3 - <—bn—1 .._b_”

n—2 n—1

The elements of B have the following weights

= Zak =(1+6in)Ai — Aioy — di 20 (i€ [L”]):
wt (bo)
wt (b_;) = —wt (b;) (i € [1,n]).
Let v; := G(b;) (7 € J). The action of U,;(Bs,(f)) on v; € V obeys (5.1.1).

5.4.3. Energy function. Define the following ordering of J
12> >n>=0=-n>1-n=->—1
The energy function H takes the following values on B @ B

2 for(' ')—(—1 1),
Hb;®b;)=¢ 1 for( E{(z,j e 2\ {(- 11}}i,<ji}u{(00)}>
0 for(i, e {5 e J* |4 = §'Y U {(k, k) }ees(o}-

Write H (i, ) for H(b; ® bj) (i, € J).
The Coxeter number of B;SLU ish=2n=dimV — 1. We takel to be

hn+n+1-3 forjellnl],
[(z™b;) = ¢ hm for j =0,
hm—(n+1+7j) forje[-n,—1].
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The functions H and [ satisfy condition (L). Note that 1{(z™b;) = I(z™b_;) (m €
Z}, so the map [ gives a partial ordering of B,g.

5.4.4. Wedge relations. We have

N:=UBMN:z®z2: 102 1201+102] v, @v1 C Vag ® Vagr.

The following elements are contained in U, (B,(f)) v ®up C N

C‘i,i:vi@)vi (iGJ\{O}),

Ci,—i = Q Zﬁg(é’—i)v_i -+ q2Ui+1 X Z_H(i’—i}’l}_i_l

+ @ 0y @i

+ gtz 10y @ (te J\{-1,0,n}),
éi,,- = ® Z—H(i’j)vj
+¢*2 0y @, ((0,5) € I\ {(k, k), (b, =R e )

Coo =0 ® 2 v + ¢*[2v_pn ® 2710,
+ 2] o @ vy + g2 27 g © vy,

Cn,—n =V ®U_y +qug B vg + Q4U—n ® Up,

-1

~ -2 2 -
0_131 =v_1®z ‘1 +g¢r T v2®2 1’U2

-1

+ q2z vy & z‘lv_g + q4z“2v1 QU_1.

Each C;; has v; ® 2~ H(49)y; as its first term and a term in 2~ H0)y; @ v;.
Define the following elements in N.

Ci; for (i,7) € J2\ {(k, —k)}rey,

Yo (=g i Ch i for (4,7) € {(k, ~k) }rep,n»
Cij = i:z( 2)3 "C ik for (i,7) € {(=k, %) }eez,n)s

C’o,o - QZ[Q]C-—n,n for (3,7) = (0,0),

Coig -zt @210,y for (4,5) = (~1,1).

Explicitly for (4, 7) € {(k,—k)}xes, we have
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Cj-j=v;®@v_j + (]4'1)_]' ® vj + q(—=q*)" Ty ® vy

n

—(1=q") Y (=)@ (G €1,n),

k=j+1
Cj;i=v-;® Z_l'Uj + q4z‘lv,~ Bv_j

-1

~(1=g")D (Y vy
k=2

— (=Y 0 @ vy v ® 27 ) (j € [2,n)),

- 2_—1
Coo=v®z lvo-{-qz Vo @ Vg

n

+¢?2)(1 = ¢") ) (") 2 o @y

k=2
+PRI=)" T @ v Fu © 27 ),
Cap=v1® 27 % 4+ ¢t ® v,

n
+a(—g)" e e @ — (1= %) Y ()T e @

==
Proposition 5.4.1. Identify C; ; with Gy, .-ni.sy,. Then {2"®2™-Ci j bmezii jed
with the function | satisfies condition (R) of subsection 3.3.
5.4.5. Fock space. For Uq(B,(zl)) we have

Brin = {bla bO: b-——l}7
(PcT)l = {Ail,/\c1 Agl},

with
e(by) = A§, e(bo) = A5, e(b-1) = AT,
o(by) =AY, @lbo) =A%, w(boy) = AF.

Since H(bp®bg) = 1, H(by®zb_;) = 1 and H(zb_, ®b1) = 1, there are two ground
state sequences (up to overall shifts by 2% (k € Z)):

by, =by (meZ)
Am = Ay (771 € Z)
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and

< —
bm -

by form € 2Z,
{ zb_y form € 2Z + 1,
5 _{Al—%5 for m € 2Z,
"l Ao - 2515 form € 2Z + 1.

The vacuum vectors are respectively

Imy :=voAvg Avg AvgA----- (meZ),
with wt (|m)) = A, and
{vl AzZV_1 ANVIA--- - for m € 27,

jm) =
ZU_I AV AZU_ At forme2Z+1,

with wt (|m)) = Ay — 26 (m : even), Ao — 2516 (m : odd).

5.5. Level 1 A2 |

5.5.1 Cartan datum. The Dynkin diagram for Ag“;)_l (n>3)is

0—2—3—------ —{n=2)—(n—1)<=n

1

For Ag‘f)_l we have

n-—1
d=og+a + (Zzai) + ap,

=2

c=hg+ h + (ZZ}L@> s
i=2

2 forie[0,n—1],
4 fori=n.

(i) = {

5.5.2. Perfect crystal. Let J := [-n,—1]U [1,n]. Let V be the (2n)-dimensional

U (;(Agij_ 1 )-module with the level 1 perfect crystal B := {b;};cs and crystal graph:

by —2+ by —Swnnn. 2=2p, 1 %=L b,
N
b by n
N A

bogbogeg e ;:"‘bl—n;:—lb—n
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The elements of B have the following weights

wt (bz) = CMH/Q + Z ar=A;— A1 — 51',2/\0 (’L S [1,1’1,]),
kefin—1]
wt (b—i) = —wt (bl) (’L S [1, n])
Let v; := G(b;) (j € J). The action of U(;(Aéill) on v; € V obeys (5.1.1).
5.5.8. Energy function. Define the following ordering of .J

1>=2>-->n>-n>1-—n>--»~-1L

The energy function H takes the following values on B ® B
2 for (i,7) = (-1,1),
Hb; b)) =13 1 for (4,5) € {(',) € P\ {(-1, 1)} | < j'},
0 for (i,5) € {(i",j") € J* 1" = j' YU {(k, k) }ees-
Write H(i,7) for H(b; ® b;) (1,5 € J).
The Coxeter number of Ai(,’zn)h_1 ish=2n-1=dimV —1. We take [ to be
hm +n —j for j € [1,n],
I(z™b;) = N e
hm—(n+1+j) forje[-n,—-1].

The functions H and [ satisfy condition (L). Note that {{(z™b;) = [(z™F1b_1) (m €
Z), s0 1 gives a partial ordering of Bag.

5.5.4. Wedge relations. We have
N=UAD) Ne®z: '@z, 201+1®2] v @v1 C Vag ® Vagr-

The following elements are contained in Uq(A.g‘,zn)_l) ‘v ®uy CN:

Cii =v; Qu; (i ey,
Cii=v;® 2THO Dy 4 quig @ 270y
+gz 00y @i
+ ¢z 0y @y (i € J\ {~1,n}},
éi,j =1; ® Z“H(i'j)vj
+qz B0y, @y ((,5) € TP\ Ak, k), (k, = k) }res)

~ 2
Cn,wn =Un QVepn + G Vo @ Up,

= 2 — _
Cwl,l =y_1 @z " +qz 11)_2@2 1’02

+gz oy 2z g + P27 Qv
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Each C; ; has v; ® 2~ H(:9)y; as its first term and a term in 2~ H#y; @ v;.
Define the following elements in N.

Ci; for (i,7) € J°\ {(k, ~Kk)}res,
Co i S hei(=0)* Ch for (i,7) € {(k, = k) }rep,n),
V) Shaa-ay G for (5,) € {(=k. k) xefz.nl
Coi1—q(z7t ®2"1)Cy 5 for (4,5) = (~1,1).

Explicitly for (i,7) € {(k, —k)}res, we have

Cj,wj =v; Qu_j+ qzv,.j ® vy
7

~(1-¢") 3 (-9 v e (j € [1,m)),

k=j3+1
_ -1 2 1
Ci;=v3R2 v +q¢°2 'v; Qu_;
-1

-(1-)) (o e vy

k=2
- (—Q)j_l(z—lvl QU +v1® ZMLUI) (.7 € [2:”’]))
Coii=v1® z‘zvl + qu“zvl Qv

n

(=) (o e e @2

k=2
Proposition 5.5.1. Identify C; ; with Cy, .~n.ay,. Then {2™®2™-Cijlmeziijes
with the function | satisfies condition (R) of subsection 3.3.
5.5.5. Fock space. For Uq( 2n 1) we have
Bpin = {b1,b_1},
(P ={AT, AG),
with
e(b) = A, e(boy) = Af,
eb) =AY, p(b1) = AF.
Since H{b; ® zb_1) = 1 and H(zb_; ® b;) = 1 there is one ground state sequence:
5 :{b; for m € 2Z,
m zb_y form €27 +1,

) _{Al-—m for m € 2Z,
T Ag - 2518 form €27 + 1.
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The vacuum vector of Fyy, is

im) {vl/\zu-l AUL A for m € 27Z,
m) =
ZU_{AVIANZU_{ Ao forme2Z+1,

with wt (jm)) = Ay — 34 (m : even), Ag — 2516 (m : odd).

5.6. Level 1 Dg)

5.6.1. Cartan datum. The Dynkin diagram for DY {(n>4)is

R s R —n-3)—mn-2)~—n

|

1 (n—-1)

For Dfll) we have

-2

Z 2ai> + p—1 + an,

f==2

5:ao+a1+<

1—2

Cc = ho + hl + (z th) + hn—l + }Ln,

f==2

(ai,ai):2 (iel).

5.6.2. Perfect crystal. Let J := [-n,—1JU[1,n]. Let V be the (2n)-dimensional
Ué(D,(ll))-module with the level 1 perfect crystal B := {b;}ics and crystal graph:

2 — 72
by 2+ by 2w B3 by M52 by
S N\
bl b—l bn b—n
& /1’ \n\‘ A—l
by 5 b_s g ~—by_p+— b1y
n—-3 n—2

The elements of B have the following weights

n—2
wt (b@) = (Z CYI.;) + (an—l + an)/Q
k=i

=A;—Aic1 + 01 A —diphe (i € [1,n]),
wt (b_i) = —wi (l),) (Z € [1,17,])
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Let v; == G(b;) (j € J). The action of U}(D) on v; € V obeys (5.1.1).
5.6.8. Energy function. Define the following ordering of J

12 >n>-n>1-n>- > -1

The energy function H takes the following values on B® B

2 it (4,5) = (-1,1),
Hpiob) =4 1 if (,4) € {(,4) € 2\ {(~1, 1)} | < §'} U{(n, —n)},
0 if (4,5) € {(¢,5") € P\ {(n, =)} | ' > '} U{(k, k) }res-
Write H(i,j) for H(b; ® b;) (4,5 € J).
The Coxeter number of Dy(il) ish=n+1=dimV — 2. We take | to be
hm+n-~j3 forje[l,n],

I(z™by) = { hm — (n+j) for j € [~n,—1].

The functions H and [ satisfy condition (L). Note that [(z™b;) = I(z™**b_;) and
1(z™by,) =1(z™b_,,) (m € Z), so | gives a partial ordering of B,g.

5.6.4. Wedge relations. We have
N:=U,DMz@2: 02 201+1®2] v, @v C Vag ® Vagr.

The following elements are contained in Uq(Dg)) ‘v Q@uy CN:

Cii =0 Qu; (i e J),
C‘i,,i =y ® z_H(“"_")’v_i + quipr ® z‘H(i’“"}vwi_l
+gz 0y, ® Vit1
+ @z 160y oy, (te J\{-1,n}),
éi’j =1; & z'H(i’j)vj
+ 1Dy g v (G.5) € T2\ {(k, B, (K, =k i)

-1 -1
Cn,—n =V, R2Z Ve + QU1 n Q2 VUp_1

+ qZWIvn-l QUi—p + q2z——1

v—ll ®Un,
Coai=0v1® 2720 + qz_lv.,g ® 27ty

+gz vy @z vy + @2 @ v

Each C;; has v; @ 2~ #(:4)y; as its first term and a term in 2~ HODy; @ ;.
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Define the following elements in V.

( Ci; for (i,7) € J*\ {(k, =k)}res,
it (~0)*i G for (i, 7) € {(k, =k) beftn-1),
Cij = 1 o~ C for (i,7) € {(—k, k) }repzn)»
C’,L_n ~ qC1—nn—1 for (1,7) = (n,—n),
{ Coa1—-qz' ®27)Cs -y for (i,j) = (=1,1).

Explicitly for (¢,7) € {(k, —k)}res, we have

Ci_j=v;Qu_j +qv_; Ry
5= =Y j f

n—1
—(1=¢) > (v @
k=j+1
- (_Q)n_j (U ®Vop +V_n ® Un) (Je {1: nD;

- . -1, 2,1, .
Coji=v; Q2 v +q27 v; Qv

j—1
— (1= (~¢ F o oy

=2
— (=g Mz ®@vy v @27 ) (J € [2,n]),
Cn,—n =Up & Z~1U~n + quwl"f—n & Up
n—1
_ (1 _ Q’Z) Z(“‘Q)n_kzulvk ® vy,
k=2

— ()" Mz ®v_y + v @27 ny)

2 2 2 o
C~1,1 =1 ®z2 vy +Hq72 T Qv
n—1

—(1-)) (- @

k=2

- ("Q)n~1(z_1vn ® Z_I'U—n + Z“.lv—-n @ Z~1'vn)-
Proposition 5.6.1. Identify C; j with Cy, .-ni.y,. Then {z™®2™-Ci j Ymezsijes
with the function | satisfies condition (R) of subsection 3.3.

5.6.5. Fock space. For Uq(D,(ll)) we have

Bmin = {bl>b—13 bna b—n}z
(Pg{)l = {AglaAglvA%l—hAfil}}
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with
e(b1) = Ag, p(b) = AY,
g(b-1) = A, @(b_1) = A,
e(bn) = A, e(bn) =AYy,

e(b_n) = Af‘l,‘—l’ o(b_n) = A%)'

469

Since H(by ® zb_) = 1, H(zb_1 ®by) = 1, H(by ® b_,) = 1 and H(b_p, ®b,) = 1,

there are two ground state sequences:

5 _{bl for m € 27Z,

™| zboy form €22+ 1,
Ay~ B0 for m € 27,

A’”"{Ao—m;la for m € 2Z + 1,

and
5 _{bn for m € 2Z,

b, forme2Z+1,
) _{An_l for m € 27,
"l A, forme2Z+1.

The vacuum vector of F,, are respectively

im) {vl/\zv..l/\vl/\ ------ for m € 27,
m) 1=
ZU_ A AUV AZU_L Aree - form € 2Z+ 1,

with wt ([m)) = Ay — 24 (m : even), Ag — 2518 (m : odd), and

) {v"/\v_n/\vn/\ ------ for m € 27,
m) =
V_p AU AU_pg Areeers form e 2Z + 1,

with wt {|m))} = Ap—1 (m :even), A, {m : odd).

5.7. Level 1 D%,

5.7.1. Cartan datum. The Dynkin diagram for D;i)_l (n>4)is

0e=1-2—0~- ... —n=-2)—n-1)=n
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For D,,(izl we have

(5:20[[,

el
n—1
c=ho+ (Z 2h.i> + Ny,
i=1
(as. ) = { 2 for L € {0,n},
4 forieI\{0,n}.

5.7.2. Perfect crystal. Let J :=[—n,n]U {¢}. Let V be the (2n 4 2)-dimensional
Ué(Dfigl)-module with the level 1 perfect crystal B := {b;};cs and crystal graph:

bl 1 bg 2 n-—2 N bn—l n—1 bn
OT ln
bs bo
OI ln
b 1 bz 7 n—2 bi-n n—1 bon

The elements of B have the following weights

wt(b) = ax=(1+d8,)A - (1+81)A1 (i €[Ln])
k=i

wt (bg) =0
wt (bd)) =0
wt (b—;) = —wt (b;) (i € [1,n]).

Let v; := G(b;) (j € J). The action of U}(D'7),) on v; € V obeys (5.1.1).
Let Jo := J\{¢}. Let V, denote that subspace of V spanned by {v;};cs,. Then,
Vage decomposes into two Uq(foll)mlodules:

Vag = (Vo ® T2, 272 + vy ® 227, z7?])
o (Vo® 2022, 27 + vy @ Cl22, 27%).
5.7.8. Energy function. Define the following ordering of J

12 »n>=0r-n>1-n> - >-1>¢ (5.7.1)
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The energy function H takes the following values on B® B

2 for (i,5) € {(i",5") € J§ | ' < 5"} U{(0,0),(¢, )},
Hbi@bj) =9 1 for (i,j) € {(k, 9),(8,k) € J? | k€ T\ {¢}},
0 for (i,5) € {(&",5) € S |i' = j'} U{(k, k) }ren{o,6}-

Write H(i,7) for H(b; ® b;) (1,5 € J).
The Coxeter number of Dgﬂll ish=n+1=§dimV. We take ! to be

hm+n+1-j forje[l,n],
1(z"bj) = ¢ hm for 7 € {0,4},
hm—(n+1+3j) forjé€[-n,—1].
The functions H and [ satisfy condition (L). Note that I{z™bg) = I(2™by) and

1(zb;) = 1(z™Vb;—p,) (m € Z and i € [1,n]), so | gives a partial ordering of Byg.
(I gives a total ordering of each of the crystals of the two irreducible submodules.)

5.7.4. Wedge relations. In Vg ® Vag we have
N = U,,(D.ffll){z Rz, '@z 201+102] v ®u.

The following elements are contained in UQ(DS_{),I)[Z ®z,27'®@z71-vy®v CN:

Cii=1v0u (te J\{0,¢}),
C’i,_i =@z HE=Dy ;¢ Pvipr ® 2 HE=Dy
+ q2z_H(i"i)v_i_1 ® Vi1
+ qqz_H(i’_i)v_i ® v; (2 e J\{-1,0, (b,n}),
Cij = v ® 2z H0Dy; 4 g2~ 1Dy, @ o
(G,7) € P\ A{(k, k), (B, k) hies),
Coo =1y ® 2 %ug + ¢*[2v_p, ® 2720y,
+@?[2]2 720, ® v + 27 20p @ vg,

On,—n =Up Ve +qUg @ vg + q4U—n ® Vg,

Yop ® 271y + ¢*2 %0 ® vy,

é—l,l = Y.-1 o34} 2-2’01 + QZ_
Co.6 =5 ® 2 %05 +¢°[2)27 vy ® 271w,

+ @2z tvo ®@ 27 oy + PRy @ wy.
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Notice that each C; ; has v;@2~H 49y, asits first term and a term in z~H@Dy; ;.
Define the following elements in V.

Ci; for (1,7 € J*\ {(k, —k)}res,
: i(— Z)k_iék ~k for (i,7) € {(ka’"k)}keh,n],
Ciy = "? —?VRC for (i,5) € {(—=k, k) }rep s
Co,o - (1‘[ 1€ for (1,7) = (0,0),
j) =

é(f%(ﬁ - qu](z_l & Z“I)Ol,*l for (Za (¢7 ¢)
Explicitly for {¢,7) € {{k, ~k) }res U {¢}, we have

Ci i=v;@v_; +¢v_; ®v; +q(=¢*)" o ® vy
33 T Yj J § Y

n

—(1=-g") ) (=) v eu (G € [1,n)]),
k=j+1
Cojj=v-j @205 +q"2 20 @ v +q(=¢") 7127 vy @ 27w
j-1
- (1 - q4) Z(__QZ)j—kzm‘ka vVt (] € [l,n]),
k=1

Copo = 10 ® 2 2vg + ¢>2 20y @ vo + ¢[2](—¢*)" 2 vy @ 27 g

k13

=210 =)D ()P @ v,

k=1
Cop = Up ® 2 204 + ¢*2 20y ® vy + q[2)(—¢%)" 2 0o ® 27 g

n

- [2J(1 —4¢") Z(—qz)jzhlv—j ® 2" lw;.

k=1

Proposition 5.7.1. Identify C; ; with Cy, .-nw.iy,. Then {2 ®2™-Cyjtmezijes
with the function | satisfies condition (R) of subsection 3.3.
5.7.5. Fock space. For Uy(D n+1) we have
miu = {b07b¢>}7
(P = {A,AGY,

with

e(bo) = Aff, e(bg) = A,
(P(bo) 717 Qo(bdl) = ABI
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Since H(bp ® 27 1hg) = 1 and H(bs ® 2z7'bs) = 1, there are two ground state
sequences (see also the remark at the end of §6.6):

by, =2""by (m€Z),
cd(An) = A, (m € Z),

and

b, =2""by (me€),
cl(Am) = Ao (m € 7).

The vacuum vectors of F,,, are respectively

m) == z""ug Az " g AT R A - (m € Z),
with wt {jm)) = A,, and
[m) == 27 vg Az g AzT T Iy A (meZ),

with wt (|m)) = Ag.

6. Level 1 two point functions

In this section we calculate the boson commutation relations using the decompo-
sition of the Fock space vertex operator into a product of a U,(g)-vertex operator

and a bosonic vertex operator (Theorem 4.5.1), for level 1 Agj?, B, Agl}_l, p
and D,(izl. The two point functions of the level 1 U,(g)-vertex operators that we

use are due to Date and Okado [DO] (except for type D(na)_l which is given in
Appendix C).

6.1. Summary

In the following table we list the dual Coxeter number hY := } . a/, p :=
q(@0»20)/(2a8) and ¢ = (=) —1p"" forg= ) of types AL, Agff, BY, Agi)__l and
D&Y
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Lo [ AV AR B [ A [ pP
hY n+1 2n+1 2n —1 2n 2n —2
p q ¢ ¢ q q
3 qn—H _q‘2(2n+1} q'Z(Zn« 1) __q'}.‘n q2n—‘2

Propesition 6.1.1 [KMS]. For A at level 1, we have

1 — £2m

Tm = ml — q2m~

See [KMS] §2 for the proof.

Let g = X be of type A.‘ZE,B, BY, A.(Zi)_l or DY, Let lg) be one of the vac-
uum vectors of the U, (g)-Fock modules described in the previous section. For each
type, direct calculations of B, - B_,, - |g) for small m, suggest the following re-
sult.

Theorem 6.1.2. Forg= X,(f) € {A(g} Bfll),Aéi)_l,fo)} at level 1, we have

2n

1 + ﬁ'ln,
1 — p2m ’

’Yﬂl =1m

In this section we prove this theorem case-by-case using Proposition 4.5.2. We

also give a corresponding result for level 1 D,(fll.
For this boson commutation relation, the boson two point function (4.5.7) is

(w2 /w15 €)oo (P*Ewa f w15 €)oo

Blwfun) = (PPwa/wi; €)oo (bwa /w15 €)oo

(6.1.1)

Let us introduce the operator Z(t,d) € End (Vog ® Vag) defined by
Z(td) =2 @20 462t > d)2 2 — 52t < d)f @2t (t,d€ Z).

Note that Z(t,d) is a symmetric Laurent polynomial in #®1 and 1 ® z, so we have
Lemma 6.1.3. Z(t,d) - NCN (t,de Z).

6.2. Type A(zi)

Recall we have A\, = A, and b3, = bg (m € Z). So the level 1 intertwiner maps

B, Vag ®V(An) = V(Ay) (m € Z).
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From [DO], (up to a factor of a constant power in w/w;) we have in our nota-
tion (4.5.5)

v
¢Un,vo(w2/w1} = (1 "'ph +1‘w2/wl)
Vo v v v
(P Pwa /wi; PP oo (=P wa /w1 PP oo

X - .
(=p"" 2wz fw1; PP Yoo (PP w2 fw1; P oo

Define
git) i={m—-1v;Az""v_jAlm+1) (jeJ;tel).
Note that go(0) =1, g—;(0) =0 (j € [1,n]) and g;(t) =0 (j € J; t € Z o).

Proposition 6.2.1. go(t) satisfies the following recurrence relation

go(t) — (0* = p" )go(t — 1) —p" *2go(t —2) =
S0 — (L+p" ")ou1 +p" +16,0. (6.2.1)

Proof. The proof for n > 1 goes as follows (the exceptional case n = 1 is similar).
First note that any element in N, that is generated by C; _; (j € J), gives rise to a
linear relation of some g, (t) (k € J, t € Z). For example (2@ 1+1& z) - Cp o gives

90(1) + ¢*g0(0) + ¢*[2](1 = ¢*) Y (—¢*)*Fgx(0) + go(0) = 0.
k=1

From Cy,_ (k € [1,n]) we get
9(0) +g(—¢*)" " go(0) = 0.
Combining these two relations, we get
9o(1) + (1 = ¢* + " + ¢*"*)g0(0) = 0,

which is (6.2.1) with ¢ = 1.
The recurrence relation in the general case (¢ € N) comes from

A :(Z(t, 1) ——phv+1Z(t -1, 1)) . Cg’o
+2)(1 =) (=p)"" D _((-p) 7 2(t - 1,0) - Cj —;

i=1

—(-p)Z(t-1,1)-C_;;).
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Let A} denote the image of Ay in Vag A Vag. We have:
(m—1HAAm +1) =
v
g0(t) — (" ' = p)go(t — 1) — p* 2 go(t — 2)

n

+2)(1 = p){ = (=P (gt~ 1) = (=p)" Hgy(t - 2))

=1

+Z Y (g (t - 1) + pPg_j(t - 1))

(=" — (=p)
p

T elt=1)

- g
_ n—H Z ](t 1)

-Z ) (g (E 1) + pPg;(t - 2))

—(1- pz)phv“ Z(_>n~j[n — j]pgj(t - 2>}+

+6(2t > 1)ge(l — t) — 8(2t < 1)go(t)
— p" T (8(2 > 3)go(2 — ) — (2t < 3)go(t — 1)) = 0.
All terms in g4 (k € J \ {0}) cancel and the proposition follows. ]
The two point function of Fock intertwiners (4.5.4) is given by
Corollary 6.2.2.
(1= wa/wi)(1 = p" Tlwyfwy)
(1 = pPws /wy (1 + p" wa fwr)

Wy vy (’LUQ/H)l) =

Proof. Note that wy, v, (w) = Y ,cyw'go(t). Multiplying both sides of (6.2.1) by
w! (w := wz/w;) and summing over non-negative ¢ we get

(1 — (p* =" w = p ) Z w'go(t — (1 + p" Ty + p Tl?
teN
from which the result follows.
Hence
W wo(Wa/w1)  (=p" 2w fw1; P ) oo (wa /w1 PP oo
g v (w2 /1) - (P2w2/w1;P%V)oo(“thwz/wl;thv)oo
in agreement with (6.1.1).

Y
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6.3. Type szl)

Recall that we have two ground state sequences (x = 0,1)
o :{bm form € 27,
m z%b_,, form € 27 + 1,
and

\ { (1—r)An + w(Ay ~ F0) for m € 2Z,
"L (1= KA, + K(Ap — 2518)  for m € 2Z + 1.

From [DO], (up to a factor of a constant power in ws/w;) we have in our
notation (4.5.5)

v
¢v§l_l,v,';l (wz/wl) = (1 +ph +1w2/w1)5,¢,9

oLV 22
(P 2wy Jwi; pP* Vo (0P wa J w1 PP oo

(PP 2w fwr; PP ) oo (M w2 fwis PP Yoo

By a diagram automorphism, it is sufficient just to consider the case when m is
even. Let m € 2Z. Define

git) = (m—12" Az Am+ 1) (€ J;t€Z).
Note that g_.(0) =1, g—j(—«) =0 (j € [1,n]) and g;{t) =0 (j € J; t € Z ).

Proposition 6.3.1. g .(t) satisfies the following recurrence relation

gon(t) = (0 = " Yot = 1) = p" F2g_(t - 2) =
S0 — (1 - 5n,ophv+l)5t,1 - 5n,0phv+16t,2- (6.3.1)

Proof. The proof is like the proof of Proposition 6.2.1 for type A‘(?i)} but using

A i=(Z(t, 1+ k) +p 00 Z(t + 5 — 1,1+ &) Copo
+[212(¢ - 1,5)((=p)"C1,-1 + 1 - p°) Z(—p)”““jc'j,~j)
=2
+2p ™ (1 - P2+ - 11+ 8) D (=p)"TITIOy,
J=2
e (—-p)nZ(t + K, 2+ K?)C._l,l).

The two point function of Fock intertwiners (4.5.4) is given by
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Corollary 6.3.2. Let m € 2Z.

Woyo o (wa/wy) = (I —wy/w)(1 +th+1w2/w1)é“‘”
i (1 = p2wy fwi)(1 — ph wafwy)

Proof. Note that wye e (w) = 3,y w'g—x(t). Multiplying both sides of (6.3.1)
by wt (w := wy/w;) and summing over non-negative ¢ we get

. v Vg . :
(1 _ (pz . ph )w _ ph +2w2> Zwkg_ﬁ(t) —
teN

1—(1— 5H,ophv+l)w - 6K,0phv+1w2,
from which the result follows. 0

Hence

ws, s, (Wafwi)  (p" 2wy frg; p? Yoo (we frr; PP

bue o (Wajw1)  (PPwaf/wi; PP ) oo (P w2 /wr; PP ) oo

)oo

¥

in agreement with (6.1.1).
6.4. Type Aéi)_l

Recall that we have

Ay -6 for m € 2Z,

I —
Ag — L’—‘—.Z:ld forme2Z+ 1.

m

{ by for m € 2%, {
and A, =
zb_y forme2Z+1,
From [DO], (up to a factor of a constant power in wy/w;) we have in our
notation (4.5.5).

2hY 3nY

B B A\ B v
(" 2w fw1; " oo (42" wa /w13 " o
(=" 2wy fwi; 2P Yoo (@ wa fwi; P oo

Pus, 05, (W2/w01) =

By a diagram automorphism it is sufficient just to consider the case when m is
even. Let m € 2Z. Define

g @)= (m -1z Az Alm+1) (e JiteZ).

Note that g_1(0) =1 and g;(t) =0 (j € J; t € Z<o).
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Proposition 6.4.1. g_;(t) satisfies the following recurrence relation
g-1(t) = (@ = 4" )g-1(t = 1) = ¢" T2g_1(t = 2) = 8o = .

Proof. The proof is like the proof of Proposition 6.2.1, but using
A = Z(t, 1)(2: ® 2)0_1,1

k13

+Z(2)(1-¢%)) (-9 Cy,
i=2

~Z(t-1,1)¢" (Cr1 + (1 - ) 3 (=)' 705 5).

=2

The two point function of Fock intertwiners (4.5.4) is given by
Corollary 6.4.2. Let m € 27Z.

B (1 — wa/wn)
Wee, e, (w2/wy) = (1 - waf/w )1+ ¢ wafwy)’

Proof. Note that wys _ 4o (w) = 3,y w'g-1(t). Multiplying both sides of (6.4.1)

by wt (w := ws/w;) and summing over non-negative ¢ we get
(1 (¢~ qhv)w _ th+2w2) Zwk9—1(t) =1—uw,
teN
from which the result follows. O
Hence

woe, e, (W2/w1) (=" *?wa fw1; ¢ Yoo (w2 /w1; ¢ ) oo
bue_ vz (w2/w1)  (Pwa/wi; ¢ Yoo (=g w2 /wi; g7 ) oo

in agreement with (6.1.1).
6.5. Type DS)

Recall that we have two ground state sequences (k = 0,1)

b =

m

{ brs. o+18..1 for m € 2Z,
2%bng, 0—16,, form €2Z+1,
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From [DO], (up to a factor of a constant power in wy/w;) we have in our
notation (4.5.5)

Vo B \ ' ¥
bor (wafwy) = (@ 2wsfwi; P ) oo (P wa /w1 ¢** ) oo
v, 1,05 (W = A ~ : : :
et (@ 2w 1015 7 Yoo (@7 w2 15 07 Yoo
By diagram automorphisms, it is sufficient just to consider the case when x = 0
y & J
and m is odd. Let k =0 and m € 2Z + 1. Define

g;(t) == (m — lzv; Az7 o Alm + 1) (jed;tel).
Note that ¢,(0) =1, g—;(0) =0 (j € [1,n]) and g;(t) =0 (j € J; t € Z<o)-

Proposition 6.5.1. g,(t) satisfies the following recurrence relation
gnlt) = (@* = 0" )gn(t = 1) = ¢" Fgu(t = 2) = 8 — b
Proof. The proof is like the proof of Proposition 6.2.1, but using
As = Z(t,1)Cnn — 4" Z(t—1,1)Ccn,

n—1

+2Z(t-1,0)((-9)" ' Cr + (1 =) D (~)" 7 Cj )

j=2
~(=)" (2t -1,0)(z® 2)C_1,

n—1

+(1-¢)Z(t-1,1)> (=g 7'C-j ).

s
The two point function of Fock intertwiners (4.5.4) is given by
Corollary 6.5.2. Let m € 2Z + 1.
(1 —wa/wy)
1= @wy/w)(1 — ¢ wafuy)

wye e (Wwa/wy) = (

Proof. Note that wye | ue (w) = 2oten wig,(t). Multiplying both sides of (6.5.1)

by w' (w := wy/w;) and summing over non-negative ¢t we get
(1 — (2= ¢ w - q"v”wg) Zwkgn(t) =1-w,
teN
from which the result follows. 0
Hence
wos,_ s, (W2/w1) (g 2wy fwi; P Yoo (w2 /15 4P oo

vafm_l 08, (w2 /wr) - (GFwa/wy; ¢ )oo(qhv wa fwi; > )oo

H

in agreement with (6.1.1).
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6.6. Type D,(i)_l

This type is somewhat special because of the fact that V,g is not irreducible. The
v

dual Coxeter number is hY = 2n. We define p = ¢% and £2 = p"".

Recall that we have two ground state sequences {(k = 0, ¢)

by, = 27 "by.

By a diagram automorphism, it is sufficient just to consider one of the two cases
k € {0,¢}. We choose k = 0.

The boson commutator ym = [Bn,, B_n] is given as follows:
Proposition 6.6.1.

(1+€™)
Y = 2T form. € 2, (6.6.1)
m form € 2Z + 1.

This corresponds to the following boson two point function
(€0 €)oo (PP Ew? €)oo
(£2w? €)oo (P2 600

flw) = (1 —w) (6.6.2)

From Appendix C we have
Lemma 6.6.2. Let w = we/w;.
(€% €)oo (PP ;€)oo
(w5 €)oo (PP W2 E4) o0
It is sufficient just to consider the case m = 0. Define
gi(t) = (=1 Az s ALY (€ Jit e Z).
Note that go(0) =1, g—;(0) =0 (j € [1,n]) and g;(t) =0 (j € J; t € Z o).
Proposition 6.6.3. go(t) satisfies the following recurrence relation
go(t) — (0* + %) go(t — 2) + P*€go(t — 4) =
6,0 — 61,1 + pEoy 2 — p€28, 5. (6.6.3)
Proof. The proof is like the proof of Proposition 6.2.1, but using
A =(Z(t,1)(z®2) + p" 1 Z(t - 1,3))Coy0
+2Z(t = 1,1)[2(-g(-p)"(z @ 2)Cs,

+ (1= (=P C )

=1

- Z(t-1,3)2(1-p) D) _(-p)"HC_y,;

j=1

¢21_"‘1}0,z“mv() (wQ/wl) = (1 +p52w2)

The two point function of Fock intertwiners (4.5.4) is given by
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Corollary 6.6.4.

(1 — wy/wy) (1 + p€*(wa /wi)?)
1 — p?(wa/wi)?)(1 — E2(wa [wy)?)

Wzvg,vg (wQ/wl) = (

Proof. Note that w.y, v, (W) = 3 ,cn w'go(t). Multiplying both sides of (6.6.3) by

w! (w 1= wa/w1) and summing over non-negative ¢t we get

(l - (p* + EHw? —p2§2w4) zwkgo(t) =1 —w + p&2w? — p&uw?,

teN
from which the result follows. ]
Finally we have ;—”—‘fﬂ’—%% = (6.6.2), which proves Proposition 6.6.1.
zvg,vy

Remark. It is possible to work in an irreducible component of Vg, say V5" =
Vo ® Cl2%,27% + vy ® 2Cf2%,272]. On V" @ V" the energy function takes
only even values. The condition H (b3, ® b3,,,) = 1 for a ground state sequence
{b%, }mez should then be replaced by H(b3, ® b3, ,,) =2 forallm € Z.

The ground state sequence in BE™" is given by b, = by for all m € Z. The

Fock two-point function can be shown to be given by

(1 — w?)(1 + p&w?)
(1-&w?)(1 - pPw?)’

wUU sY0 (’UJ) =

where w = w; /ws. Comparing with Lemma 6.6.2, we find that ,, is now given by
the same formula as in Theorem 6.1.2

1+ £2m

7. Higher level example: level k Agl)
7.1. Cartan datum

I = {0,1}. The Dynkin diagram for A§” is

0

We have
§ = ag + oy,

c=hg+ hy,
(aiaai):2 (ZEI)
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7.2. Perfect crystal

Fix k € Zso. Let J := [0,k]. Let V be the (k + 1)-dimensional U} (A{")-module
with the level k perfect crystal B := {b;};ecs and crystal graph:

1 i 1 1
bo 5 > by 5 by 5 S 5 by .
The elements of B have the following weights
wt (bj) = (k/2 - j)au
=(k~2)(Ai—Do) (GEJ)

Let v; := G(b;) (j € J). The action of U,;(Agl)) on v; € V obeys (5.1.1).

7.3. Energy function

The energy function H has the following values on B® B
H(b; ®b;) = min(i, k — j) (i,j € J).
Write H(i,j) for H(b; ® b;) (¢,5 € J).
The Coxeter number of Agl) is h = 2. We take
{(z"b;))=2m—3j (meZ,jeJ).
H and [ satisfy condition (L). Note that {(2™b;) = 1(z™T1b;45) (m € Z and j €
[0,k — 2]), so ! gives a partial ordering of Bag for k > 1.

7.4. ¢g-binomials

Define the ¢-binomial coefficient [ZL} (m,n € Z) by

(m]w{[m][m—ll--{mwﬂl men>0

o= dnjin—1]---[1]
0 : otherwise.

We will often write sums involving g-binomial coefficients as sums over all integers.
The advantage is that we can then freely change variables without worrying about
the range of summation. The following result is widely used in the sequel:
Lemma 7.4.1.

(i) For anyn € C(q) and n € Zy, we have

S () m = [ -n.

jEZ 3=0
(ii) The sum in (i) vanishes if 1 = ¢™ with m an integer lying in the range
[-n+1,n—1],. Here [a,a + 2b}; means {a + 21;0 <17 < b}.
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7.5. Wedge relations

Define the vectors C; ; € N (i,j € J) by
o _Jce 2)=el f9) (v @ ve) i+ 4 <k,
L = (ki) p(k—3) o
e; ' fs (v ® v) ci+ 7> k.
Explicitly, we have

i gk=3) =b)+(k—t)a [i} [ ] g @ 27wy i+ <k
Cij=
Zi’,j’,a,b ¢ (k=B [ } { } 2% @z %y i+ >k
(7.5.1)
The summation in both cases is over ¢/, 5’ € J and a,b > 0 with
i+ =147,
a+b=H(i,j).

Proposition 7.5.1. Identify C; ; with Cy, .—n.py,- Then {2m@2"Cjtmeziijes
with the function | satisfies condition (R) of subsection 3.5.

7.6. Fock space

We have

Binin = B

(PH)k = {A5 + (k= DA }ie,

with the bijections

e(b;) = (k— HAG + jAT,

p(b;) = GAG + (k = AT
Fix k € J and let ' = k — k. We have H(z~'*=2p, @ z~Hk-2)=r+lp ) =
Hb, @ be) — 6 +1 = 1. H(z =20 t1p, @ ;= (BHDE-2p ) = 1 and so the
following is a ground state sequence (¢ € Z)

b3y = 2z 1 p

7.6.1)
SK — Z——@(k—-‘z)—n—}—lbﬁ” (
with A ‘A if m is odd
K + k' A1 it m 1S odd,
) = { N o
&'Ag +rA; i mis even.

With v, = G(b2,), the vacuum vector of F,, is
lm> - ’U /\ Um—H A vm-}—2 ASRRRRE

with weight A,;.
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7.7. Two point functions
A priori vy, = [B,,, B_,] may depend on the choice of k. However, we find that it
is independent of .
Theorem 7.7.1.

1-¢*
1— q'Z'n - q4n + q2(k+1)n '

Tn =1

The theorem follows by applying Proposition 4.5.2 to Proposition 7.7.2 and
Corollary 7.7.4 below.
From [IIJMNT] we have

Proposition 7.7.2.
( 2(k+2 KZI
Pz ) = q“)oo ,;) P}’
where w = wa /W .
Without loss of generality, we can choose £ = 0. Define

gu(t) = (=12t A 271 Ry ATH) (teZ;j€J).

Note that g.(t) = é;,0 for t € Z<o by Theorem 4.2.5.

Proposition 7.7.3. g,.(t) satisfies the following recurrence relation

ooy Eaaeaeien fE e 2[4

aEZ
=0 (7.7.1)
Corollary 7.7.4.
TS g
rfi[5)
H]” (1 - q2.7w p::() p
where w = wa fw;.
Proof. We have
J
we ,
wo,wp (W) = D (&E[) 9x (7). (7.7.2)
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Multiply both sides of (7.7.1) by w! and sum over all £ > 0. After relabelling of ¢
and using (7.7.2) we obtain

aik kad o !

Wye |8 (’IU) Z (“quW) [a:i = (1 - ’LU) Z ((];H"z’w)t [':] [Fz :‘ . (773)
aEZ t=0

From Lemma 7.4.1 {i) we have

> (=d )" m =11

a€Z 7

k .
(1 - qzjw)v

thereby proving the result. O

Only Proposition 7.7.3 remains to be proved.
7.8. Proof of recurrence relation
Let Z(t,d) be the operator defined in §6.1:
Zt,d) =2 @297t + 62t > d)2?t @ ' — §(2t < d)2t @ 24 (t,d € Z).

For t € Z, define

. - s ) k—1 .

A = _githyk—i-& 7“""2){2:‘[ }Zi* ,“"’l‘?’lﬁ)l’i‘lC*i,‘.

: eEZJ( g thEiTRg o A R )Cr—i,
~EZ

We split the proof into three parts. Define
ZW(t,d) = 2t ® 247,
ZA(t,dy = -2t @ 24745(2t < d), (7.8.1)
ZO,d) = 2%t @ 246(2t > d).

Then Z(t,d) = ZD(¢t,d) + 23 (t,d) + ZC)(t,d). Define AV (i € {1,2,3}) by

replacing Z by Z( in the definition of A;. Then A; = A" + Aﬁ” + A£3). We will
deal with each A{” separately. Note that A" ¢ N (i € {1,2,3}), only A, € N.

7.8.1. Agl). From (7.5.1) we obtain

Clss = 3 g~ ib+D k(=D [k _Jz: ) b] [’“ . 7} Aicky @ by,
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Substituting into (7.8) and performing a change of variable b —» v+ k — 1 — q,
followed by i — ¢ + v we obtain

TR L T ki
AE” _ Z (-q"+1)’” PRI grrtkat(i F+v) (k—7) {?‘*7} [ i 'Y}
, Y k=7
4,7, 0€Z
jed

j k'—_? t—o ) okl ’
* [a—’r} [k—i—a}z Vp—j B 2 v;. (7.8.2)

Let us now argue that only the j = k — k terms contribute in the above sum. Recall
that our convention for ¢-binomial coefficients implicitly defines for us the upper

and lower limits of summation in formulae like Agl). For instance, the constraints
on i are

max (0,7 — @) <i < min (k - &,k — ). (7.8.3)

Let us assume first that j <k — x — 1. The strategy is to recast the sum over ¢
in (7.8.2), more specifically,

B=[ 0 | S ey [ L A asa

i€Z

into a form such that Lemma 7.4.1 applies. Consider the case j < o < k, so
that according to (7.8.3) we have 0 < i < k — x. By manipulating the g-binomial
coeflicients we obtain

.
= o wllln— AT
% ]:;: (_qk—ﬁ—n—l)i [k ; KZ:] [] j—;’l’yJ [k;i;’)’] . (7.85)

Now treat the product of the last two g-binomial coefficients in I; together with
(=g*=97%=1)" as a polynomial in ¢'; the powers of ¢* which appear can be seen to
lie in the range [k — x — 1 — 2j,k — x — 1];. In fact, due to the assumption on j
the range is [1 — k + &,k — k — 1]5. Therefore I; is a finite sum of sums for which
Lemma 7.4.1 (ii) applies and thus vanishes.

For the other three remaining cases (a) j,k <, (b) j,s>aand (¢} j>a > &
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we use, respectively, the identities for /;:

it S [l )

k——z—w
di ]
_ [k — 1) Y
b= [J‘—a+ﬂ![n-w]1[k—hc—j+a]!mz_a(“‘]A )

« k—rk—-—jJ+al|t+y| lk—i—-7
1—j+ta ¥ -y

kox \ . .
Z L]nl) .k.*J ity lk—i—y '
oyt 1]+« Y K=y

In each case I; vanishes by application of Lemma 7.4.1 (ii).

We have proved that the sum over j < k — « in (7.8.2) vanishes. The sum over
j > k — x vanishes for similar reasons. Keeping only the j = k — & term we arrive
at

A(l) Z (_Q)k_ﬁﬁ)y q2’y+ka Ik—n Zt&a”h’, & Z_t+a_ﬁ+l'i)n’ (786)
v, a€Z

where Ij,_ is given by (7.8.4). Once again, we have the constraint (7.8.3) and have
to treat the four cases separately. We consider in detail only the case k—x < o < &,
using the form (7.8.5) for I_,. The other three cases are similar. We proceed as
before but now find that the powers of ¢’ lie in the range [-1 —k + &, =1+ k — &]».
By Lemma 7.4.1 (ii) only the term whose power of ¢* is —1 — k + k survives. In
other words,

k—r —(3 ey i by —
_[x Z(—q_l)i k- q(+v)q(+7 1)...qut7qkzv1.‘.
08 e { [k—k—a+9]! [ —9]!

( )k Ko+
- o

Applying Lemma 7.4.1 (i) and simplifying we find

A R R O R RV !
=[5 (525 o) () 7 o
Substituting into (7.8.6) we obtain

A = Z (—gh )T (—grt)” {"“} [k - “} 2o, @ pT Ty,

=, v] la—vy
(7.8.7)
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We now note the identity

S e’ [FL8] [ S oo |5 -

3ez YEL

k
1=

(1-2) = 3 (-a+12)" | £].

1 o€L

which follows from the ubiquitous Lemma 7.4.1, to perform the ~-sum in (7.8.7)
with the result

AEI) - Z (_qk+1)a [2] LAy, @ pmtratlony
«€Z

7.8.2. A§2). The only difference between Aﬁ” and A?) is that the latter has a
negative sign and an additional constraint

i<y—2t+k-r+1 (7.8.8)

on the sum (denoted by prime) due to the definition of Z():

2 ' ki ey 2yl ey |2+ Y| (=i~
AP = N _ R kmim ey 2 (i ) (k=) {Z } [ }
t Z 1>;£f2( ") q oy K-y

J k—j t—o, —tta-ktl,,
) [a—v] {kﬂ‘—a]z Uk—j ® 2 v;. (7.8.9)

Furthermore we are now interested in dropping terms that annihilate the vacuum.
Using Theorem 3.5 this means that we require

H (Z—i+a—nl(k—2)—n+lbj ® Z—-(?R—%—I}(&—Q)bn)
=t—a+k—-k+1+min(j k- k) > 0. (7.8.10)

Let us assume first that j > k — k. From (7.8.10) we need o —t < 0. Now from
the last g-binomial in (7.8.9) and (7.8.8) we have

jli+a<(a-t)+{(y-t)+k-r+1 (7.8.11)
Thus we have k —k < j < vy—t+k —-x+1 and so v — ¢ > 0. But this means

v > t > a which contradicts the requirement v < @ coming from the third ¢-
binomial in (7.8.9).
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Next assume that 7 < k — k. From (7.8.10) we now need j > k— K+ a —t and
thus a — t < 0. But again we have (7.8.11), and so

i<la—-t)+(v=-t)+k-r<{(y—-t)+k—=k

Thus we have k—x+a—t < j < y—t+k—« and 30 o < v which again contradicts
v < «. Hence we must have
j=k— K. (7.8.12)

According to (7.8.10) we need o — ¢ < 0. But again (7.8.11) is required, which
leads to 0 < (@ — £} + {y — t) < v —t. Therefore a <t < v which together with
~ < « from the third g-binomial in (7.8.9) makes mandatory

a=vy=t. (7.8.13)

This means that (7.8.8) can be rephrased as ¢ < —t + &k — x. But from the last
g-binomial in (7.8.9), together with (7.8.12) and (7.8.13) we must have also

i=—~t+k—rk (7.8.14)

Substituting (7.8.12), (7.8.13) and (7.8.14) into (7.8.9) we arrive at

v ' ! -
A =~ (qkﬂ)t b} ['z } Ve @27 e -

7.8.5. A§3). One argues in the same way that

3) _ 42y i1 K &' — K-
B K TR
Let A denote the image of A, in V,¥. Adding the three parts together, the relation
(—1]AP A1) = O gives us Proposition 7.7.3.

Appendix A. Perfect crystal

Let V be an integrable finite-dimensional U, (g)-module with a perfect crystal base
(L, B) of level . We assume that it has a lower global base (i.e. satisfies (G)).
In [KMN1], we proved that the “semi-infinite tensor product” B® B® --- is iso-
morphic to the crystal base B()) of the highest irreducible module, provided that
the rank of g is greater than 2. In this appendix, we prove the same statement
for any rank. In [KMN1], the proof is combinatorial, and here it is by the use
of a vertex operator. Let us take a ground state sequence (---,b7,,by ,1,+-+) in
Bag. Set vy = G(b3). For an integral dominant weight A, we denote by V(}) the
irreducible U, (g)-module with highest weight A and highest weight vector u,, and
by (L{A), B(}\)) its crystal base.
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Proposition A.1. B® B(A,) = B(An-1).
This proposition implies the following result.

Proposition A.2.

B(Am) = {(bm, bmt1,-+); b € Bagr, H(bi @ bry1) =1 for any k > m
and by = b}, for k> m}.

The following lemma is proved in [DJO].
Lemma A.3. Hom y, (g (Vat ® V(Am), V(A1) = K.

Let & : Vig ® V(Am) = V(Am=1) be a Uy(g)-linear homomorphism. We
normalize it by
(V1 ® U, = U,y

Then the following lemima is also proved in {DJO] in the dual form.
Lemma A.4. ®{L.g ®4 L(A)) C L(Apm-1).

Let ® : (Lag®AL(An))/a(Lag®aL(Am)) = L(Ap-1)/qL(Am—1) be the induced
homomorphism.
The following two lemmas are easily proved.

Lemma A.5. Let M; be an integrable U,(g)-module, and (L;, B;) a crystal base
of Mj for j =1,2. Let ¢ : My — M, be a Uy(g)-linear homomorphism sending
Ly to Ly. Let®) : Li/qLy — La/qLy be the induced homomorphism. Set B =
{b € Bi|¢(b) € By}. Then B has a crystal structure such that ¢ : B — B, and
) : B — B, are strict morphism of crystals.

Here a strict morphism means a morphism commuting with €; and f;.

Lemma A.6. Let A be a dominant integral weight. Let B be a semi-regular crystal
(i.e. i(b) = max{n € Zxq|elb # 0} and v;(b) = max{n € Zyo|f]'b # 0}). We
assume further that B is connected.
(1) If ¢ : B(X) = B is a strict morphism such that ¥(B()\)) C B, then ¢ is
an isomorphism.
(ii) If Y : B = B(X) is a strict morphism such that ¥(B) C B()), then ¢ is
an isomorphism.

Let B’ be the connected component of Bag ® B{},,) containing b3, ; ® uy,,.
Then ® sends B’ to B(A,—1). Hence B' is a subcrystal of B,y ® B(Ap), and
Lemma A.5 implies B' = Bag® B{)\;;) and B' - B()\,,,_1) are strict morphisms.
Moreover any b € B’ is not mapped to 0 by the morphism B’ — B(An_1). Hence
by Lemma A.6, B’ is isomorphic to B(An-1). Hence we obtain a strict morphism
B(Am-1) = DBag ® B(Am). Composing it with B.g — B, we obtain a strict
morphism B(A,—1) = B ® B(\,).

The following lemma is proved in [KMN1].
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Lemma A.7. B ® B(\,) is connected.
Thus B(An—1) = B ® B()\,;,) is an isomorphism by Lemma A.6.

Appendix B. Serre relations

Let U,(g) be the algebra associated to a symmetrizable Kac-Moody algebra with
the same generators and the defining relations as the quantized universal enveloping
algebra except the Serre relations. Let Uy(g); be its subalgebra generated by e;, f;
and tf‘”l. In this appendix, we prove the following proposition.

Proposition B.1. Let M be a U,(g)-module. Assume that M is an integrable
U,(g)i-module for every i. Then the action of U,(g) on M satisfies the Serre
relations.

Hence M has the structure of a U,(g)-module.

Let M and N be integrable U,(g);-modules. We endow the structure of U, (g);-
module on Hom (M, N} such that Hom (M, N)® M — N is U,{g);-linear. Namely
for z € U,(g); with A(z) = Y 2z ® 2(2), 2 acts on ¥ € Hom (M,N) by
z(yha(z(2))-

Recall that an element 1) of Hom (M, N) is called locally U,(g);-finite, if it is
contained in an integrable U,{g);-submodule.

Lemma B.2. Let M and N be integrable U,(g):-modules. Assume that a weight
vector ¢ € Hom (M, N) satisfies
fTly =0 for somen > 0.
Then 1 is locally Uy(g)i-finite.
Proof. Assume t;10 = ¢J™. It is enough to show

el = 0. (B.1)

Here s = max(n — m + 1,0). In order to see this, we may assume that M is finite-
dimensional. Replacing N with the U,(g);-module generated by (M), we may
assume that N is also finite-dimensional. Hence Hom (M, N is finite-dimensional
and hence integrable. In this case it is a well-known fact that fi”Hz/) = 0 im-
plies (B.1). 0

Proof of Proposition B.1.. Let ad : U,(g) —>__End(Uq(g)) be a gq(g)-module
structure on U,(g) such that the multiplication U,(g) ® M — M is U,(g),-linear.
We have

ad (t;)(a) = tiat; (B.2)
ad (e;}{a) = e;a — t;latiei (B.3)
ad (f:)(a) = [fs, alt7" (B4)
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for a € Uy(g). Let X : Uy(g) = End(M) be the homomorphism given by the
U, (g)-module structure on M. Let i # j. Since [fi,e;] = 0, fiX(e;) = 0. Since
X (e;) has weight (h;,a;) with respect to U,(g);, the preceding lemma implies

e X(ej) =0, (B.5)
where b = 1 — (h;, ;). On the other hand

el X (e;) = X(ad (e})e;)

b
=X (Z(“l)kq;k(bJ) [lﬂ ,eg_ktfkej(tiei)k)

k=0

=X (i(q)*’ [ZL&;‘%@) .

k=0

This along with (B.5) gives the Serre relation

X (Zb:(—-l)"c {Z]ie'{_kejef) =0.

k=0

By applying the automorphism e; — f;, fi = e; ¢" = ¢ "(h € P*) of U,(g),
we obtain the other Serre relations

X (i(—-l)’“ m f-"‘*‘f-ff’*) =0
k.7t Jdi -
k=0 :

Appendix C. Two-point function for Dfﬁl

In this appendix we will sketch the calculation for level 1 D,(f 4317 of the two-point

function ¥(z1/2z3) = (Anléﬁzv"’(zQ)@‘k:V‘ (z1)|Ay), for the intertwiner @g‘v(z) :
V(A) — V(u) @ V., by solving the corresponding ¢-KZ equation it must satisfy.
The corresponding calculations for the other cases in this paper have been done
in [IIJMNT] and [DO]. For the theoretical background the appendix in [IIJMNT]
should be consulted. To conform with their conventions, we will use here the upper
global base and corresponding coproduct Ay, in contrast to the main text of this
paper.

Recall the total order > on the index set J defined in (5.7.1). Extend the natural
definition of minus on J \ {¢} to all of J by defining —¢ = ¢. Let
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=7, —j=2n+1-j, i=1,...,n
=n, ¢ = 2n.

Denote, as usual, by Ej;; the matrix acting on {v;}jes as Ejv; = vy, The
R-matrix R(z) with normalization R(z)v; ® vy = v; ® v; is then given by

Ol w0

|

2 2
— q°(1—z°
R(z) = Z E;; ® Ey + ——(‘“Tz;% Z E;; ® Ej;

i#£0,¢ (1-q i#f,—j
+M( Z SR e+ 22 %5 B @ Fas
(1 ¢*z?) Z70 B ® Lji + 2 Z z ij ® Eji)
i —d i, iE—j
+ Zaij(z)E” QR F_; —j
where
{ 1 :ifi=¢orj=4ao,
Qg ==
’ 0 : otherwise,
(1= 2°)(¢" = €22%) + 8;,—i(1 - ) (¢ + 2*)(1 — €227) =,
aij(2) = § (1= g*){2% (22 = sij (=2~ + 85 (1 - €22%)} i g,
(1—g"22{E22725 (22 = sy (—q?) 7 + 0i (1~ €22%)} i<,
and

sio = —msgni) (i£9), s =—[Usgnl) (i #9),

2]
8w=§%w> (£0),  ss=2en() G £0),
S0¢ = Sgo = —1, sij = sgn(é) sgn(j)(z,j # 0, ¢).

Also we have £2 = ¢*. The expression for R(z) is given in [J] in a different basis.
Let {v}}jes be the canonical dual basis of the upper global base. The following
isomorphism of U, (g)-modules

C:Veor, — (Vo)*°
v = sgn(f) (a2 v, (5 € J/{0,4})

1 el
v = ——(—¢*)° g

2]

Loy -1,
’Ud;’—)"—é l(_q.l)¢7 1U¢

2]



Vol. 2 (1996) Perfect Crystals and g-deformed Fock Spaces 495

gives rise to crossing-symmetry for the R-matrix
(R712)" =B=)(C@DREENCOD™, (C.1)
with

(1= g
S e T e

(C.2)

The image R* (21/22) = v, ® 7y, (R') of the modified universal R-matrix R’ also
satisfies {C.1) with z = z1 /23 and §(z) = 1. Therefore we have

(g*2%6Y) 00 (222 62 (¢ 6 2% 6N o0
(225600 (g72E22% £ )00 (4162275 €4) oo (€122 6Y) 0

R*(2) =¢2 R(z).

The two-point function satisfies the ¢-KZ equation
B2 2) = R (P 2) (g @ 1)(2), (C.3)
where k = 1 is the level and ¢ = 2A%! + 25! and, as a consequence, also
(my., ® mfm)A'(ei)u‘"’\"}“@(z} =0, wt ¥(2) = 0. (C.4)
It can be shown that
w(z) =(1+ 2°¢*€*)vo ® vo + q[2)(—¢°)" 204 ® vy

7
—g) ()" v @v_i + 220" P @ v) (C.5)
i=1

solves (C.4) and satisfies

_ o (1-¢'¢2)(1 - ¢'2?)

R(@°&2) (¢ ? @ L)w(z) =¢ (1= BPei22)(1 — ¢*€522)

w(g®&z). (C.6)

Letting ¥(z) = ¢{z)w(z) and substituting (C.6) into (C.3) one gets a scalar ¢-
difference equation for ¢(z) which can be solved to obtain the final result

4022, ) (652% €4)o
o) = EZ4§2§2;§4§00§§4§2;54300

w(z). (C.7)
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Appendix D. The limit ¢ — 1 for the U,/(A(Z',?) Fock space

In this appendix we will show how to recover the known classical (i.e. at ¢ = 1} Fock
space Felass for g = Agi) at level 1. This involves reduction of the Fock space F
defined for generic ¢ by means of an invariant inner product on F. To facilitate the
discussion we shall make a transcription from the semi-infinite wedge description
of F to one involving Young diagrams or, synonymously, partitions (the so-called
“combinatorial description”).

Define the following subspace of Vyg:

V;f_f = (2*1@{:5“1} ® V) & @<U~1 PR ,’U‘n,'b’g). (Dl)

In any normally ordered pure wedge in F it is clear that only bases in V:f% appear as
components. Recall the single-valued function ! on Bag in (5.3.3). To the normally
ordered pure wedge u = G{u1) AG(u2) A+ - AG(u) Avg Ave A- -+ let us associate
the sequence Y (u) = [—l{uy), =l{uz), ..., —1{uy)},0,0,...], whose tail of zeros we
shall ignore. Now, —/ takes non-negative values on V.. Also, the sequence ¥ (u) is
non-increasing because of the normal-ordering rules. Furthermore, the only integers
allowed to repeat belong to hN, where h = 2n + 1, because of the rule v; Av; = 0
if i # 0. Thereby we have the identification

F = Q@Y }vepr,, (D.2)

where DPy, is the set of Young diagrams whose rows are allowed to repeat only if
their length is 0 mod k. In this notation, DP is the set of Young diagrams with
no repeating rows, i.e., the set of Distinct Partitions.

The action of Uy(g) on F can be transcribed to the Young diagram setting.
The generators ¢; act diagonally, of course, while f; (respectively e;) act by adding
(removing) one box in the following manner. Let the Young diagram Y be denoted
by [y1,. .. ,ym]. Fory € Zsq, let ay(y) denote the number of occurences of y in
Y. Define the functions §; for i = 0,1,... ,n by

+4 y€hZEn

Poly) = { 0 : otherwise
+2 :y€ehZFnt(i-1)

Bily) =< F2 y€hZFnki t=1,...,n—-1)
0 : otherwise

+2 y€ehZ¥Fl
0 : otherwise

Bnly) = {
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Then the action of U,y (g) on Y is given explicitly by
t; - Y = ng Bily; }+8i,n v

fir Y= ) qEee B0 [y e+ 1) (i #n)
yr€EAN+nti
Ye—17Yst1

fn Y = Z q2j>k5n(yj)+l Wi, U+ 1,00 Ym)

yrEAN-1
Yr—1FYr+1

+ Z qzjbk'@n(yj) (1 - (_q2)aY(yk)) [y17 oYkt 17 v >ym]

yr €EAN
Y 17Yk 1,k

+5(ym £ 1){91’“- :ymyl}

6 Y= Y e [y =1, ) (i #n)
yu €CANGFn+-144
Ye417Yr—1
e, Y = Z Q—Zi%ﬁ"(’»’f) i, e =1, o0 Yml
yr €AN+1
Yer15yr—1
4 Z q—zj<kﬁn(yj)_1 (1_(_q2)a\’(yk)) [yl’_‘_ ayk'_]'?"‘ ,ym]-

yr €AN
Yo+1Z YR~ 1LYk

Note that all Young diagrams appearing on the right-hand side belong to DPp. In
other words, the corresponding pure wedges are already normally ordered. The
factors (1 — (~q2)°“’(yk‘)) come from normal ordering and summing up Young dia-
grams which arise when Y has repeated rows. Note also that the vacuum vector is
the empty Young diagram § and f, - = [1]. This combinatorial description is in
the same spirit as that for Uq(Ag)) given in [MM].

Let us now introduce an inner product { , ) on F. We shall require that the
normally ordered pure wedges, or equivalently Young diagrams in DPy, form an
orthogonal basis with respect to (, ). We shall also require that with respect to (, )
the adjoints of the generators satisfy

fl=qget,
6:[ =i fi tz'_17
t =t

These conditions are natural for a U,(g)-module V because then on the module
V ® V with induced inner product given by (v ® va,u; ® us) = {v1,uy) (v, us) we
have A(f;)T = ¢;Ae;)A(t;), ete. Using the explicit description of the U,(g) action
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on F one can show that the squared norm of an arbitrary Young diagram Y in DP,,
is given by

ay (y)
wir=wy)= [[ IJ 0-¢. (D.3)

yehZ~g i=1

From calculations for small & we conjecture that the boson operators satisfy
B!, = B;.

As at the end of §4.3, we denote by F@ the Q[g, ¢ !]-vector space generated
by the pure wedges. Set F; = F2/(q — 1)F2 Then the action of Uy(g) on F
induces an action of U,(g) on F;. The inner product { , ) on F< induces a Q-
valued inner product on Fy, which we also denote by {, }. The adjoint of operators
in g is then given by eI = fi, filr = ¢; and hl = h;. Define the subspace Fy =
{u € F1: (u,F1) = 0}. The reduced Fock space Freq = F1/Fo is a U(g)-module.
From (D.3) we note that Fp is the Q-span of Young diagrams with seme repeated
rows. It follows that Freq is the Q-span of Young diagrams in DP,. This is
isomorphic to the well-known classical Fock space Feiass ~ Q@i ]ren,,, [KKLW],
[DJKM]. In fact, the action of the generators on Freq and at g = 1 reduces to a
known classical action [JY]. Furthermore we recover the known decomposition of
Fetass = Qerlien, . \aN O QT hi ren, ., as a U(g) @ Q[H - }-module. Here we identify
bosons xpr ~ B_j for k € Nyga. The even boson commutators v, for & € Noven
have a pole at ¢ = 1. After appropriately rescaling we find that such B act as 0
on Freq at g = 1.

In most of the cases considered in this paper, the boson commutator v has a
pole at ¢ = 1 for some k. We take this to indicate that similar Fock space reductions
to the one considered in this Appendix are necessary to recover any known classical
Fock spaces.
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