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On Holonomic Systems of Micro-

differential Equations. Ill

—Systems with Regular Singularities—

By

Masaki KASHIWARA* and Takahiro KAWAI*

Introduction

This is the third of the series of the papers dealing with holonomic sys-

tems(*}. A holonomic system is, by definition, a left coherent (f-Module

(or ^-Modules)(*sS:) whose characteristic variety is Lagrangian. It shares the

finiteness theorem with a linear ordinary differential equation, namely, all the

cohomology groups associated with its solution sheaf are finite dimensional

([6], [12]). Hence the study of such a system will give us almost complete

information concerning the functions which satisfy the system, as in the one-

dimensional case. Actually, analyzing special functions by the aid of the

theory of ordinary differential equations is one of the most important subjects

in the classical analysis. From this point of view, the study of holonomic sys-

tems with regular singularities is most important. However, even though the

theory of linear ordinary differential equations with regular singularities has been

developed quite successfully, the general theory of holonomic systems with regular

singularities was not fully developed in the past, especially compared with the

fruitful success attained in the one-dimensional case. Still it should be worth

doing, and we hope we have established a solid basis for the theory in this paper.

For example, we establish several basic results needed for the manipulation of

holonomic systems with regular singularities, such as the integration and the

restriction of such systems (Chapter V). We also give an analytic character-
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(*} The first one is [6] and the second one is [8].
(*#) g (resp., J^) denotes the sheaf of micro-differential (resp. linear differential) operators

of finite order. See also the list of notations given at the end of this section.
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ization of holonomic ^-Modules with regular singularities in terms of a com-

parison theorem, namely, we show that a holonomic ^-Module Jt is with

regular singularities if and only if &<»t ix(^5 OX)X = ̂ ^SQX(^, ®x,x) holds
for any point xeX and for any j, where SXtX denotes the ring of formal power

series at x. (Chapter VI.) In developing our theory, we make full use of the

technique of micro-local analysis, i.e., the analysis on the cotangent bundle.

We use the language of Sato-Kawai-Kashiwara [24], which shall be referred

to as S-K-K [24] for brevity. Especially the use of micro-differential operators

of infinite order is crucial in our study. Making use of such operators, we

establish an important and interesting result to the effect that any holonomic

system can be transformed into a holonomic system with regular singularities by

micro-differential operators of infinite order (Chapters IV and V). The method

of the proof of this result as well as the result itself is efficiently employed for

establishing basic properties of a holonomic system with regular singularities

mentioned earlier. In the course of our arguments, we also make essential use

of the results of Deligne [3]. Since his results are stated in terms of integrable

connections, we re-interpret them in terms of ^-Modules so that we may apply

them to our problems smoothly. (Chapter II. See also Appendix § C.)

Main results of this paper were announced in [15].

Before stating a more detailed plan of this paper, we show one example,

which exemplifies the most significant result of this paper (Theorem 5.2.1 in

Chapter V, § 2), i.e., the theorem which states that any holonomic system can

be transformed into a holonomic system with regular singularities. We hope

our explanation of this example will show the reader the essential part of the
idea of the proof and help the reader's understanding of our results. We want

to emphasize that such a reduction was not known even for ordinary differential

equations.

Example. Let us consider the following ordinary differential equation:

(0.1) (x2DJC~aXx)=0, (aeC).

If a 7*0, (0.1) is clearly an equation with irregular singularities.

Now consider the following correspondences (0.2) and (0.3).
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(0.2) ; "
-xDxu

(0.3)

Here /,(,)• (f Jg nl

k\(n + k)\ \2
2r-n

where *Kn)= Z 4~ -? with Euler's constant 7 = 0.57721- •• . Note that
k=0 K

operators used In these correspondences are actually linear differential operators

(of infinite order).

Then the correspondence (0.2) (resp., the correspondence (0.3)) defines an

inverse correspondence of (0.3) (resp., (0.2)), and, furthermore, the equation

(0.1) is brought to

( x —a \/ Wi \
= 0.

0 xDx l\ w2 I

Clearly (0.4) is an equation with regular singularities.

It will be worth mentioning how we have found the transformations (0.2)

and (0.3):

We first considered an analytic solution exp ( — a/x) of (0.1) (having x = 0 as

its essential singularity) and a multi-valued holomorphic solution exp( — a/x)-

$ x
Qxp(a/i)dt/t of the equation (x2Dx — a)u = x. The last equation implies

(x2Dx — a)u = 0 modulo holomorphic functions defined on a neighborhood of

the origin. Then we found by direct calculations that these two functions can

be obtained by applying operators used in the transformation (0.2) to a/x and 1
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in the first case and to a log x/x and log x in the second case.

The argument given so far was our starting point and, as a matter of fact,

the essential point of the arguments in Chapter IV consists in performing the

same manipulation in the general case, namely, we first construct sufficiently

many multi-valued holomorphic solutions of the holonomic system in question

and next we try to find suitable transformation by operators of infinite order so

that these solutions are transformed into functions with moderate growth

properties. (See also Chapter IV, § 1 for the idea of the proof.) Needless

to say, performing this idea in general case is a very hard task to do as is seen

below. Of course, our laborious efforts are rewarded not only by this result

itself but also by its fruitful by-products (Chapter V and Chapter VI). Among

them, we like to call the reader's attention to the following results which are

basic and important in applications :

(i) For an analytic subset Y of X and a holonomic Qx-Module Jg with

R.S., 3?ln(^) has R.S. and &% ® (jPfa(jy)) = jf$(& J ®J?) holds for any

k. (Chapter V, § 4.)

(ii) For holonomic #x-Modules ^ and J*r with R.S.,

holds. (Chapter VI, § 1.)

(iii) For a projective map F: X-»Y and a holonomic &x-Module

with R.S., RkF*(@Y^x®<J?) is a holonomic @Y-Module with R.S. (Chapter

VI, § 2.)

The plan of this paper is as follows.

Chapter I. Basic Properties of Holonomic Systems

In Section 1, after an algebraic preparation, we give the definition of a

holonomic system with R.S., which is an abbreviation of regular singularities

(Definition 1.1.16). Some elementary results on such systems are also given.

Note that we define the notion "with R.S." as a property of the system at generic

points of its characteristic variety. However, we prove that a holonomic

system with R.S. has regular singularities along any involutory variety con-

taining the characteristic veriety of the system (Chapter V, § 1, Corollary 5.1.7).

Also the validity of the comparison theorems (Chapter VI, § 3, Theorem 6.3.1.
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and § 4, Theorem 6.4.1) will justify our usage of the terminology "with R.S.".

After defining a holonomic system with R.S., we introduce the notion of regular

part ^reg of a holonomic system je (Definition 1.1.19). It is an <f -sub-Module
of ^00=f<rco ®u? (Proposition 1.1.20). We later (Chapter I, §3) analyze

the structure of Jt on the non-singular locus of its characteristic variety and

find that ^eg is a holonomic ef-Module with R.S. there. We eventually

(Chapter V, § 2) prove that ^reg is actually a holonomic *f -Module with R.S.

The most important result of this article is to prove that <f°° ® ^freg = <f °° ® J{

holds for any holonomic «f -Module Jt (Chapter V, § 2, Theorem 5.2.1). This

is the precise meaning of the statement "any holonomic system can be trans-

formed into a holonomic system with regular singularities".

In Section 2 we prove several Hartogs' type theorems for ^-Modules,

namely, the vanishing of <£W^(^, rf\ <£W|G^f, ^T00) and £^(uT, JT™\JV*}

for j<codimr*xZ — projdim.yr for coherent <f -Modules ^ and Jf (Theorems

1.2.1 and 1.2.2). Here and in what follows, for an «f -Module ./T, ^T00 denotes

(if00 ® JV*. These results will play important roles in our subsequent arguments.
*For example, we often use these results in the following manner (Corollary

1.2.3): Let J! be a holonomic (^-Module. If a section s of Jt™ belongs to

Jt at generic points of Supp Jt , then s belongs to JZ everywhere. (See also

Proposition 1.3.8 in the next section, where we find that supps is an analytic

set.)

In Section 3 we determine the structure of ^°° for a holonomic ^-Module

Jt with non-singular characteristic variety (Lemma 1.3.4). After a quantized

contact transformation which brings Supp Jt to a conormal bundle of a non-

singular hypersurface {xeX; x1=0}, ^°° has the form ® Jtf m with
f in i te

H ----- h«fDn). Several basic properties of ^reg

follows from this structure theorem (Propositions 1.3.5 and 1.3.6). For example :

^freg is a holonomic ^-Module with R.S. on the non-singular locus of the sup-

port of Jt.

We also use the structure of Jt °° studied in this section to show that, for a

coherent <f -Module <Jt such that ^//(^, *f) = 0 for jV, the support of a

section s of ^°° is an analytic set (Proposition 1.3.8). This result often plays

an important role when we want to use the results in Section 2.

In Section 4 we first recall several elementary results on the structure of

<£z>/4C^» 0) f°r a holonomic ^-Module Jt ' . One important property of
<^/i(^, 0) is that it is a constructible sheaf. A naturally raised question is
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how much the structure of Jt is determined by these solution sheaves. Theorem

1.4.9 gives a clear answer to this question: The structure of J(™ =f ̂ °° ® Jt

is completely determined by R^x^^(^, 0). We often refer to this result as

"Reconstruction Theorem", because it asserts that ^f°° is reconstructed from

R^^G^f, (9) (^RjfM^-Cuf00, o)). We emphasize that the use of linear

differential operators of infinite order is crucial in getting such an isomorphism.

In Section 5 we recall the definition of principal symbols for a system of

micro-differential equations with regular singularities, which was given in [18].

Then we discuss more precisely this notion applied to a holonomic system JV

with regular singularities along a Lagrangian submanifold. In this case we can

define a kind of indicial equations (§ 5.2). The order of a section u of ^ is, by

definition, the set of the roots of the indicial equations introduced here. Then

using this notion of the order, we see that there exists a subset Z of C such that,

for any holonomic <sf -Module Jt with R.S., J^^{u^Jf\ ordwcZ} is a

coherent ^-Module, where yl = Supp«^. (Proposition 1.5.8.)

In Section 6 we prepare some elementary results in symplectic geometry

which we shall need in later sections. The main result is Corollary 1.6.4 which

guarantees that any Lagrangian variety A can be brought to a generic position

in the sense of Definition 1.6.3 by a homogeneous canonical transformation.

Chapter II. Holonomic Systems of D-Type

In Section 1 we explain how the notion of integrable connections is re-

interpreted by the language of ^-Modules.

In Section 2 we first recall the definition of (strict) Nilsson class functions

(associated with a locally constant sheaf L of finite rank on X- Y for a hyper-

surface 7). We denote by 3? (resp., J£Q) the subsheaf of ^(L® 0x_y) eon-
c

sisting of sections in the Nilsson (resp., strict Nilsson) class. Here j is the

embedding map from X— Y into X. Note that j*(L® ®X-Y) acquires a
c

structure of ^f -Module canonically. Then the results of Deligne [3] assert

that &Q is coherent over Ox. Hence 3? is coherent over &x. Furthermore &

is a holonomic ^-Module with R.S. on T$X and ^fy](jSf) = 0 holds for any fc

(Theorems 2.2.1 and 2.2.2). It also follows from [3] that a Hartogs' type

result holds for & and J^0 (Theorem 2.2.1 (iii)). Since the results proved in

[3] are stated in a different manner, we give in Appendix C some supplementary

arguments which are intended to fill the apparent gap between the results in [3]
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and our statement of the results. When we introduce the notion of a holonomic

^-Module of D-type in the next section, the properties of 3? stated in Theorems

2.2.1 and 2.2.2 are used as the defining properties of such a system. Here

"D-type" is an abbreviation of "Deligne-type". Using another result essentially

given in [3] (see also Appendix C) and "Reconstruction Theorem" proved in

Chapter I, Section 4, we find in Theorem 2.2.4.

(0.5) S00® J

This result implies that any multi-valued section of L over X— Fcan be obtained

by applying a linear differential operator of infinite order to a section in the

Nilsson class. This result will play an important role in Chapter IV (through

the results in Chapter III, § 4).

In Section 3 we introduce the notion of a holonomic system of D-type along

a hypersurface YaX (Definition 2.1.1). It immediately follows from this

definition and the results obtained in the preceding section that the category of

holonomic systems of D-type is isomorphic to the category of locally constant

sheaves of finite rank on X—Y (Theorem 2.3.2.(i)). We also prove several

basic results on a holonomic system of D-type (Propositions 2.3.3 and 2.3.4).

Among them, the following two results are particularly important.

(0.6) For a holonomic system & of D-type along YaX and a hypersurface

SaX9we have @

(0.7) Let Z be a hypersurface of X. Let Jt be a holonomic @x-Module

with R.S. on T*X such that SS(^)c7c-1(Z) U T$X. Then & =f ^xm(^}

is of D-type.

Actually, (0.6) is the most essential ingredient of the proof of the results in

Chapter V, Section 4. The result (0.7) gives an important link between D-type

equations and general holonomic ^-Modules with R.S. We also prove a result

(Proposition 2.3.7) which characterizes the strict Nilsson class function in terms

of the notion of the order introduced in Chapter I, Section 5.

Chapter III. Action of Micro-Differential Operators on Holomorphic

Functions

In Section 1 we clarify the action of (£(G; D) on holomorphic functions.

Here D is a G-round open set and (£(G ; D) is the space of operators with finite
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propagation speed. (See [19] § 3 for the definition of (£(G; D) etc.) The

action of (£(G; D) is defined in [19] in a purely cohomological way, especially

by the aid of residue maps. So we first chase the residue map concretely by

making use of the Cech cohomology (§ 1.2). Next we consider a subclass of

G:(G; D) which is easy to manipulate and, at the same time, ample enough for

later applications. (§ 1.3.) For an element in such a subclass we can concretely

find its representative as a cohomology class of a cohomology group of a Stein

covering. Such a representation enables us to write down, as an integral

operator, the action of the element on a suitable relative cohomology group with

the sheaf of holomorphic functions as coefficients (Proposition 3.1.5).

In Section 2 we apply the results obtained in Section 1 to study the action of

micro-differential operators on a space of holomorphic functions (Proposition

3.2.1). At the end of this section we exemplify our result by applying it to the

case where micro-differential operators act on the sheaf of microfunctions etc.

In Section 3 we introduce a special class of micro-differential operators which

we call /°°. As we show there, /°° can be identified with a subsheaf of tf00

and, at the same time, it is contained in (£(G; D) for G contained in a complex

line. The sheaves £°° and / play important roles in Chapter IV.

In Section 4 we first review some basic notions concerning multi-valued

holomorphic functions after Sem. Cartan-Serre 1951/52, and next we study

concretely how an element in /*§, i.e., a germ of ^°° at 0, acts on a space of

multivalued functions considered there. We also introduce the notion of the

holonomic ^-Module ^(o) of D-type with singularities along a hypersurface

S and with the monodromy type a for an ideal a of C[n1(X — S)'].

In Section 5 we construct a special resolution of a holonomic <f-Module

whose characteristic variety is in a generic position so that we may analyze the

structure of holomorphic solutions of such a system. For this purpose we

introduce a subring R (resp., .R00) of /0 (resp., /%) which is easy to manipulate

algebraically. Note that the principal symbol of an element in R of order 0

belongs to 0xKi/T,..., £JT]> where (r, x; T, {) is the coordinate system of

T*Z(^T*CW+1). The precise conditions on the special resolution which we

use in Chapter IV are stated in Theorem 3.5.8.
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Chapter IV. Embedding Holonomic Systems in Holonomic Systems of D-Type

In Section 1 we give a precise statement of the embedding theorem ap-

pearing as a title of this chapter. The proof is given in the subsequent sections

of this chapter. The theorem (Theorem 4.1.1) is as follows:

Let J£ be a holonomic gx-Module defined on a neighborhood of p0 e

T*X — T$X. Assume that the characteristic variety A of Jt is in a generic

position at pQ. Then there exist a holonomic @x~Module Jf defined on a

neighborhood of go = 7C(Po) and a &x,q0~Hnear homomorphism cj> from

^P0=f(#x®^)po into ^q0=f(^x®^)q0 which satisfy the following

conditions :

(0.8) There exist an integer r and a holonomic system <£ of D-type with

singularities along n(A) such that <Ar = J?l(Px holds.

(0.9) The homomorphism $ from urj>0 into ^J?0 ® ./fi0 = ̂ p0 ® ^?0 de-
®«Q ®«Q

fined by 0(s) = l®0(s) is an injective $™Q-linear homomorphism.

In Section 2 we prepare some elementary results concerning the geometry

of S = n(A)c:X under the condition that a Lagrangian variety AaT*X— T$X

is in a generic position. Throughout this chapter we assume that dimX = l + n

and take a suitable coordinate system (t, x; T, £) = (*> xl9...9 xn; T, £15..., ^fl) of
n

T*X such that the fundamental 1-form CD equals rdt+ E ^dxf. We deaote
j=i

the point (0; df) by p0 and 7i(p0)( = 0) by q0. The projection from X to <CB

defined by (t, x)^>x shall be denoted by F. We also denote by J3(e, <5) (resp.,

B(e)) the set {(t9 x)eX',\t\<59\x\<s} (resp., {xeCn; \x\<s}. If follows
from the assumption that there exist positive constants S0 and e0 with e0<S0

and an analytic subset H c 5(e0) such that

(0.10) S n (B(sQ, SJ-F-^H)) -£-> B(s0)-H is a finite covering.

We denote by G0 the closed convex cone {(r, x)e€1+n; x = Q9 Im t = 0, Re t^Q}.

In Section 3 we construct the following resolution of Jt :

(f\ 1 1 \ A < _ ./ ^ _ jfN0 < f ° jfNi < _ . . . /r-1 &f$r < _ f\
\\J. 1 1 ) U * tM * 6 x * 0 x - ^ X V9

where Pj are matrices whose components belong to <?Po and are of strictly

negative order.

Furtheremore (0.11) is exact on {(t, x; T, £)e/l; \t\9 |x|«l} and
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is exact on {(r, x; T, {)eT*Z — /I; t^O}. Then we can find a integro-differ-

ential operator X/^, f2, x, DJ defined on {(rls *2s x); IrJ, |r2|<<50, |x|<e0}
so that Pj has the form Kj. Setting D = B(s0, <50), we obtain a complex 9Jlt of

; D)-module by

D)N' < - 0.

We will use this complex to discuss the extensibility of holomorphic solutions

In Section 4 we prove some vanishing theorems for relative cohomology

groups related to Jt so that we may later (§ 6) apply the results to extend multi-

valued holomorphic solutions of Jt across (a family of) non-characteristic

hypersurfaces. Their proof essentially relies on Theorem 4.5.1 of [19].

In Section 5 we apply the method developed in [13] to prove that holo-

morphic solutions of Jt can be prolonged to a multi-valued holomorphic

solutions with finite determination property. In order to clarify the meaning

of "holomorphic solutions of ^", we introduce an <sf£0-module C. An

element ^ in C is represented by a holomorphic function <p defined on V— Z

modulo holomorphic functions on V for an open neighborhood V of q0 and a

closed set ZcC1+n with its tangent cone C€o(Z) at q0 being contained in

{(*, x)eC1+"; Ref^O}. We call the holomorphic function (p a representative

of rj. In the sequel we denote by 3? the set of closed subsets ZcC1+l1 such

that its normal cone at qQ Cqo(Z) is contained in {(£, x) e C1+n; Re f^O}. Then

the main result (Theorem 4.5.2) in this section is as follows:

Let (j) be in Hom<fPo (u^Po, C), s in ^fPo and (p a representative of <£(s) e # '.

Then there exist an open neighborhood of q0 and a multi-valued holomorphic

function $ on V— S such that a branch of q> coincides with cp on F— Z for some

Furthermore, the monodromy property of thus obtained cp is essentially

invariant under the action of micro-differential operator P€#PO (Theorem

4.5.3).

In Section 6 and Section 7 we give the proof of Theorem 4.1.1. We first

describe the structure of Hom^Po(^,0, C) by using the results proved in

Section 4. For this purpose we take a point xt in B(SQ) — H and denote by

PJ (j = 1,..., N) the points in S n F'^XI). Then we have
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(0.12) Hom^0(^Po? C)= 0

In particular, (0.12) implies that Hom^Po(^Po, C) is finite-dimensional.

For generators Sj (1^ j^JV0) of Jt and $eHom,Po(ufPo, C), we denote

by q)j a representative of 0(s j). Then (pj can be extended to a multi- valued holo-

morphic function q>j on B(e1? ^^ — S. Next, for <767r = ^(JB^o, (50) — S) and

0eHom(^"0, C), we define $ff as follows:

For se^J^, take a representative cp of <£(s) and continue cp to a multi-

valued holomorphic function 9 on F— S. Then 0ff(s) is defined by the element

given by a((p) e C.

Thus we obtain a finite-dimensional representation Hom(«^p0, C) of TU.

We define ideals c and a of C[n] by the following :

(0.13) c = {a e C[TT] ; a(<p) is holomorphic near qQ for any 0 e Hom(fPo (u^,0, C)

and any representative cp of any element of 0(^Po)} = {cr e €[TT] ; $ff = 0 for

any <j> e Horn O^0, C)}.

(0.14) a=£(7-l)c.
yen;

We denote by & the holonomic system of D-type with the monodromy type a.

Then & contains 0 as a ^-sub-Module and

(0.15) je<m>9 (

Let <AT denote &\Q. After these preparations, we easily find the following @%Q -

linear map E(</)) from ^^0 to ^T^0 is well-defined for 0 e Hom^Po (u^0, C).

(0.16) For se^^0 we choose a representative 9 of 0(s). Then E((j))(s) is,

by definition, <p mod &qo. Furthermore, if we define a C-linear homomorphism

from uT £ to ^^0 ® ̂ ?0 by

we can verify that F(0) is actually <sf ̂ -linear. (Proposition 4.7.1.) Finally,

we define an $ ̂ -linear map 0 from ^$0 into £%Q ® Jf\Q for a base

0, C) by

and we verify that $ is injective. At last, this completes the proof of Theorem

4.1.1 stated in Section 1.
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Chapter V. Basic Properties of Holonomic Systems with R.S.

In Section 1 we prove several basic properties of holonomic systems with

R.S. which are derived from the embedding theorem proved in Chapter IV. The

first one (Theorem 5.1.1) asserts that a holonomic <f -Module Jt with R.S.

whose characteristic variety is in a generic position is actually a ^-Module;

more precisely, we have the following result :

Let Jt be a holonomic ^-Module with R.S. defined near pe T*X-T$X.

Assume that Supp Jt is in a generic position at p. Then ^p is a finitely

generated ^n^-module. Furthermore we have

rn m /*>&>//lU.l/l 6a \& «"̂ nP

The second main result (Theorem 5.1.5) in this section is as follows:

Let ^ be a holonomic ^-Module with R.S. defined near peT*X-T$X.

Assume that Sup^ is in a generic position at p. Let ^0 be a coherent

£(Q)-sub-Module of J£ . Then J^Qtp is an On(p)-module of finite type,

The third main result (Theorem 5.1.6) implies that, for any holonomic

£ -Module with R.S. Jt , we can canonically construct a coherent ^^-sub-

Module ^0 by the aid of the notion of orders. It reads as follows:

Let cbe a real number and Jt a holonomic ^-Module with R.S. defined

on an open set QcT*X—T$X. Denote Supp^ by A. Let Jt$ be the

subsheaf of Jg given by 17 H-»{S 6^(17); ordp (s)c: {A eC; Re A ̂ c} for any

point p of U n Areg}. Then ^0 satisfies the following conditions:

( i ) J(Q is a coherent <?(Q)\Q-Module.

(ii) ^ = <^f0 and ̂ Q = ̂ A^Q.

(m) For any closed analytic subset W of an open subset U of T*X such

that codim W^dimX+l, we have ̂ (^/^0) = 0-
As an important corollary of this result we find the following :

Let J£ be a holonomic ^-Module with R.S. Let V be an involutory

analytic set containing Supp^. Then Jt has regular singularities along

V-T\X (Corollary 5.1.7).

Theorem 5.1.6 is also used to prove the global existence of a good filtration

of a holonomic ^-Module with R.S. (Corollary 5.1.11).

In Section 2 we give the proof of our main result (Theorem 5.2.1) which
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asserts that, for any holonomic ^-Module Jt defined near p0 e T*X, ufreg

is a holonomic (in particular, coherent) ^-Module, and <f °° ® Jt = $°° ® ̂ reg
£ S

holds near p0. The proof of this theorem follows from Theorem 4.1.1 on

T*X— T$X, while near T$X the proof requires further considerations. As

its consequence we obtain the following result:

Let & be a holonomic system of D-type. Then 5£ is a holonomic 3>-

Module with R.S.

In Section 3 we prove that the restriction of a holonomic <f-Module with

R.S. to a non-characteristic submanifold yields a holonomic system with R.S.

and that the integration of a holonomic ^-Module with R.S. ./f1 along fiber

cp: Y-*X yields a holonomic ^-Module with R.S. <p#^9 if p~ASupp J/°

n w~^(U)-*U is a finite map. The proof again makes essential use of the

embedding theorem. We also use the fact proved in Section 2 that a holonomic
system of D-type is with R.S.

In Section 4 we discuss the restriction of a holonomic ^-Module with R.S.

^ to an arbitrary submanifold, which is not necessarily non-characteristic with

respect to Jt. In the course of the discussion, we obtain some results which are

used in Chapter VI for the proof of several comparison theorems. The main

result (Theorem 5.4.1) of this section is as follows:

Let Y be an analytic subset of X and <J£ a holonomic @x-Module with

R.S. Then we have

(i) e^9[y](t^f) and ̂ ^|y](^) have R.S. for any k.

(ii) &x ® C^mO^O) — ̂ y(^tx ® ̂ } holds for any k.

(ill) @x ® («^[x|y](^)) = «^x|y(^;f ® -^0 holds for any k.

We prove this result first for a holonomic system of D-type. For such a

system, this follows easily from the results in Chapter II, Section 3. The general

case is proved by the induction on the condimension of Supp ^. We note that

(ii) is obtained by Mebkhout [20] for the special case where J£ = 0X. As an

immediate consequence of the result stated above we see that, for a submanifold

Yof X, &~*4X(&Y, J() is a holonomic %-Module with R.S. for any k, if Jt

is a holonomic ^-Module with R.S. (Corollary 5.4.6). In particular, Jt^

=f&Y ® -^ is a holonomic ^y-Module with R.S.

Chapter VI. Comparison Theorems

In Section 1 we prove the following comparison theorem (Theorem 6.1.3).
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Let Jt and rf be two holonomic #x-Modules with R.S. Then

This means that the solutions are not altered for holonomic systems with R.S.
whether we allow the solutions to have essential singularities or not.

We prove this result first for ^-Modules by using Theorem 5.4.1 in the

preceding chapter, and then prove the general case by using the result obtained
for ^-Modules.

In Section 2 we generalize a part of the results proved in Chapter V, Section 3

as follows :

Let F: X-+Y be a projective map and Jt a holonomic &ix-Module with

R.S. Then RkF*(@Y^.x ® uf) is a holonomic ^-Module with R.S. (Theorem
®x

6.2.1.)
The proof of Theorem 6.2.1 is based on the comparison theorem proved

in Section 1. Theorem 6.2.1 improves several results of our previous works

which make use of the integration along projective fibers of a holonomic ^-

Modules, in that we find the resulting holonomic ^-Module to be with R.S.
As an example of such an improvement, we give Theorem 6.2.5, which asserts

n
that the hyperfunction ]Q fsJ+ (Res^O) satisfies a holonomic ^-Module with

R.S. (Cf. [11])

In Section 3 we prove a comparison theorem between formal power series

category and convergent power series category. The theorem (Theorem 6.3.1)
reads as follows :

Let ^ be a holonomic @x-Module with R.S. Then for any point x in

X and any j, the natural homomorphism

(0.18) *-/ir(uT, Ox)x - » Jwi^uf, XtX)

is an isomorphism.

We prove this result by Theorem 6.1.1 by the aid of the duality argument.

In Section 4 we prove the converse of Theorem 6.3.1, namely, we prove the
following :

Let ^ be a holonomic @x-Module. Assume that

holds for any x in X. Then Jt is with R.S.

We prove this result by the induction on the dimension of X. Note that
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this has been proved by Malgrange [21] for X with dimX = l. We make

essential use of his result. In the course of the proof we prove and use the

following result (Theorem 6.4.5), which is interesting by its right.

Let J£ be a holonomic $x-Module with a smooth Largrangian manifold

A as its characteristic variety defined near p e A. Let /(x, £) be a homogeneous

function on T*X of degree 0 such that /(]?) = 0. Assume that df(p) and w(p)

are linearly independent and that df\A^Q at p. Assume furthermore that

the restriction of ^ to Va = {(x, f)e T*X;f(x, £) = «} has R.S. for any a with

\a\«l. Then Jt itself has R.S. in a neighborhood of p.

At the end of this section, we discuss the relationship between the notion of

holonomic ^-Modules with R.S. and the notion of Fuchsian systems introduced

in an interesting paper of Ramis [23]. He defines the notion of a Fuchsian

system for a complex of ^-Modules by using the validity of the comparison

theorem as its characteristic property. Our results show that a complex of

^-Modules is Fuchsian if and only if any of its cohomology groups is with

R.S. in our sense. We emphasize that we have derived comparison theorems

from the micro-local properties of the systems in question.

Appendix

In the appendix we give proofs of the several statements which are used in

this paper and whose reference are difficult to find in spite of the fact that the

results themselves are well-known to specialists.

In Section A we give a detailed recipe how to derive results for ^-Modules

from the corresponding results for ^-Modules outside the zero section (i.e.,

T$X) by adding a dummy variable, namely, by considering 4>(u^)=f^c5(0(§)^

on T*(Cx X) for an ^-Module Jt. We also discuss the monodromy struc-

ture of an $ -Module with R.S. (§ A.4) and a good filiation of a ^-Module

(§ A.5).

In Section B we give a proof of a result on constructible sheaves, as we

could not find a suitable reference for its proof.

In Section C we show how to deduce the results in Chapter II, Section 2

from the results proved by Deligne [3], namely, we prove Theorem 2.2.1 in

Section C.I and Theorem 2.2.3 in Section C.2.
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List of Notations

CX=C-{0}

] c>0}

X : A complex manifold.

MxN : The fiber product of topological spaces M and N over a topo-
L

logical space L.

TX : The tangent bundle of X.

TXX for a point x E X : The tangent space of X at x.

T*X : The cotangent bundle of X. The canonical projection from

T*X to X is denoted by n.

T*X for a point x e X: The cotangent space of X at x.

Cxp for a point p in T*X: The orbit through p of the multiplicative group

Cx by the action of Cx on T*X by C x ac : (x, £)»-*(x, cf) for

7reg for an analytic subset Y of X: The submanifold {xe 7; there exists a

neighborhood U of x such that Y n U is non-singular.}
y — Y— Y^ 1 1reg

TfX9 where 7 is an analytic subset of X: The conormal bundle of 7. If 7

is not regular, the conormal bundle T$X means, by definition,

the closure of rfreg^ in n~l(Y).

P*X : The projective cotangent bundle, i.e., (T*X-T$X)/C*. The

canonical projection from T*X— T%X to P*X is denoted by 7.

pf9 where/is a holomorphic map from 7 to X: The canonical projection from

7x T*X to T*7.

m/5 where / is a map from 7 to X: The canonical projection from 7x
•A
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to T*X. If there is no fear of confusions, we sometimes omit

the subscript/in pf and wf.

CX(S] V) for a point x in a manifold M and S, FcM: The normal cone of S

and Fat x, i.e., {ye TXM\ there exist sequences {xn} in S, {>'„} in

F and {an} in U+ such that {xn} and {yj converge to x and that

flnOn-}7,,) converges to v}.

c% : The fundamental 1-form £ ZjdXj on T*Z.

{/, g} for holomorphic functions / and g on T*X: The Poisson bracket of/

and g.

where jtf and ^ are sheaves of (left) ^-Modules for a sheaf

of rings ^: The sheaf of ^-homomorphisms from jtf to &.

, ) : The right derived functor of jtf*»*( , ).

f , & ) : The j-th right derived functor of ^*^(j*/, &\ ( = The j-th
extension group.)

where jj/(resp., &f) is a sheaf of left (resp., right) ^-Modules: The

tensor product of stf and ^ over ^.

: The left derived functor of ®.

The j-th left derived functor of ®. ( = The j-th torsion group.)

F(17; ^), where U is an open set of a topological space M and &* is a sheaf on

M: The section module of & over U.

FZ(U; ^"), where Z is a closed subset of M: The module of sections of ^

over U supported in Z.

The sheaf denned by 1/^FZ(17; &).

The right derived functors of F and Fz, respectively.

The j-th right derived functor of Fz.

The j-th right derived functor of Fx_z.

The j-th cohomology group of !F over U.

The j-th relative cohomology group of ̂  over U with the support
Z.

i, where Y is an analytic subset of a complex manifold X:

lirq J^ff.^0x(0xl^
m, ^), where Ox is the sheaf of holomorphic

m
functions on X and J is an 0x-Ideal such that Supp (Oxl^) = Y.

RF,

RF[y-j, RF[X|y-|: The right derived functor of F[y] and F[X|Fj, respectively.
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The j-th right derived functor of Fm(J*") and

respectively.

, where (p is a continuous map from a topological space M to a topological

space N and ^ is a sheaf on M: The direct image of & by (p.

The sheaf on N given by ^{seFC/-1^); ^);/|supps:

supp s-+U is proper.}

The right derived functor of cp% and <pi, respectively.

RJ(p%, RJ<p\: The y-th right derived functor of <?# and <p\, respectively.

@x ' The sheaf of holomorphic functions on a complex manifold X .

Here and in what follows, the subscript X is often omitted.

®x,x> where x is a point in X: The ring of formal power series at x, i.e.,

®XjX = ljm&XiX/mk, where m is the maximal ideal of GXtX.
k

®T*x(m) '• The sheaf of holomorphic functions on T*X which are homo-
geneous of degree m with respect to the fiber coordinate.

Qx : The sheaf of holomorphic p-forms.
ox=oi-*
@x : The sheaf of linear differential operators of finite order on X.

The subscript X is often omitted.

The sheaf of linear differential operators of order at most m.

'• The sheaf of linear differential operator of infinite order.

> where Y is a complex submanifold of X of codimension d:

where 7 is a submanifold of X of codimension d:

where a: T*X-*T*X is the antipodal map, i.e., a(x, £) = (x, — 0
def r-^

and n is the projection from the comonoidal transform YX*
onto X (S-K-K [24] Chap. II § 1, Definition 1.1.4).

d=f !* \x |jr r^x =f

The subsheaf of ^y|X consisting of sections of finite order.

&x\xxx ® P2l®x> where j?2 is the second projection from
P-I<PX

XxX onto Z.
^xixxx ® Pl1^^ i-e-> the sheaf of micro-differential

p-i0x

(= pseudo-differential) operators of infinite order on

{*) In S-K-K [24], #x (resp., &x) is denoted by 0>z (resp., |̂). In addition to these changes
of notations, we want to call the reader's attention to the fact that we consider £x and
&*% all over T *X, i.e., including T%X as their domain of definition. Needless to say,
&X\T*X and ff\T+ x are &x and B^ respectively.
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•' ^xixxx ® P~2l®xi i-Q-> tne sheaf of micro-differential
P~1&x

operators of finite order.**)
for an ^-Module IF and an ^-Module ^: Let pj (j=l9 2) denote

the projection from T*(Xl xX2) to T*Xj O' = l, 2, respectively).
Then J^®^ is, by definition, the ^XlX^2-Module

, where ~*f is an & -Module:
«?

°° = ̂ 00 ® ^ or ^°°®^, according as Jt is an <f -Module or ^-Module.

f(uf , ^x) ® Of-1 [dim X] or R .ar«^x (uf, ̂ ) ® Of-1 [dim X]
ox ox

according as J£ is an ^-Module or ^-Module. When Jt is

holonomic, they are £*s*j?\Jt, &x) ® Of-1 or

® Of'1, respectively.
6>x

reg, where ^ is a holonomic «f -Module: The regular part of ^. See
Chapter I, Section 1 for its definition (Definition 1.1.19).

y£x, where /is a holomorphic map from Y to X: tfyiYxx® O£imX. Here
0x

Y is identified with the graph off in Yx X and TJ (Y x X) is iden-
tified with T*XxY. <?yf>x is a (p^V?, t

In what follows, we often omit /in this symbol.

/Y : ^? |yxx®^y i m Y - This is a (wj1^, p71^?)-bi-Module.

#(ni) : The sheaf of micro-differential operators of order at most m.
am : The symbol map from <f (m) to 0T*x(m)» namely, the map which

assigns the principal symbol to a micro-differential operator of
order m.

J!(m), where J( is an <sf (O)-Module : <f(m) ® Jt .
^(0)

SS^ for a ^-Module Jt\ The characteristic variety of Jt^ i.e.,
Supp (^y ® ^).

TC-^X

^°° and £ : A special subclass of micro-differential operators. See Chapter
III, Section 3 for their definitions.

®(G, D) : Hn
G(D xD; 0<°.»>), see [19] Section 3, Definition 3.1.5.

JV, where V is a homogeneous involutory subvariety of T*X — T$X i {P e <^y(l) ;
(T^P) vanishes on V}.

{*5 See the footnote in p. 830.
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$v : The sub-Algebra of &x generated by <?v.

ordu for a section u of a holonomic <f -Module with R.S.: The order of u.

See Chapter I, Section 5.3 for the definition.

ff(u) : The principal symbol of u. See Chapter I, Section 5.3 for the

definition.

Chapter I. Basic Properties of Holonomic Systems

In this chapter we shall give the definition of holonomic systems of micro-

differential equations with regular singularities. The notion of the systems with

regular singularities was introduced in [18] in order to investigate the boundary

value problems. We also study the elementary properties of holonomic systems

with regular singularities.

§1.

In this section we extend the notion of regular singularities introduced in

[18]. In order to perform this we start by an algebraic preparation.

1.1. Let X be an arbitrary topological space and jaf a sheaf of (not

necessarily commutative) rings with the unit.

Definition 1.1.1. We say that jaf is Noetherian from the left if j/ satisfies

the following conditions.

(a) jj/ is coherent as a left $0 -Module.

(b) For any point xeX, the stalk jtfx is a left Noetherian ring.
(c) For any open set U of X, a sum of left coherent (s/\ ^-Ideals is also

coherent.

In the sequel, we omit the word "left" if there is no fear of confusion.

Example 1.1.2. (a) The sheaf 0 (resp., 0) of holomorphic functions

(resp., linear differential operators) on a complex manifold is Noetherian.

(b) For a complex manifold X, the sheaves £x and «fx(0) are Noetherian

Rings on T*Z.

As the following propositions are easy to prove, we leave the proofs to the

reader.

Proposition 1.1.3. Let &? be a Noetherian Ring and ^ a coherent $0-
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Module. Then a sum of coherent $$ '-sub-Modules of Jt is also coherent.

Proposition 1.1.4. Let $g be a Noetherian Ring and & an Algebra finitely

generated over Z. Then stf®& is also Noetherian.
z

Proposition 1.1.5. Let jtf = \J j&, be a filtered Ring (i.e., j/.-^j//-! for

any j, j/03l and ^j-j^kdj^J+k). Suppose that j/0 and ©
7=0

are Noetherian and that jtfj is coherent over ^Ofor any j. Then we have

(i) s# is a Noetherian Ring.

(ii) Let J( be an ,& -sub-Module of J/N . Then, J{ is a coherent ^/-Module

if and only if Jf n (^J)N is coherent over ^Qfor any j.

Definition 1.1.6. An j/-Module *Jt is called pseudo-coherent if any jaf-

sub-Module of *J{ that is locally of finite type on an open subset 17 of X is

coherent over 17.

Proposition 1.1,7. Let j&=\}jtfj be as in Proposition 1.1.5. Then any

coherent ^ -Module is a pseudo-coherent jtf0-Module.

Example, Let X be a complex manifold and 17 an open subset of

T*X — T$X. Then any coherent ^l^-Module is a pseudo-coherent ^(0)1^-

Module.

1.2. We shall recall the notion of regular singularities introduced in [18].

Let X be a complex manifold and we shall use the notations in the list of

notations, e.g., &x, £x(
m)> T*X, 0T*x(m), etc. Let V be a homogeneous

involutory subvariety of T*X— T$X. The subvariety V may have singular

points. Let Iv be the sheaf of holomorphic functions on T*X— T$X which

vanish on F, and let Iv(iri) denote Iv n 0r*z(m).

The sheaf {PG^X(1); a1(P)e JF(1)} shall be denoted by Jv. We denote

by &v the sub-Algebra of <^x generated by Jv, and by #v(m) the sheaf $v£(m)

= g(m)£v. Note that >^ = e/F-- -JV is a coherent (left and right) ^(O)-Module
k

for any fc^O.

Proposition 1.1.8. &v is a Noetherian Ring.

Proof. Set j^ = ̂ ,^4 = e/^(m^0), j/m = ̂ (m) for m^O. Then jaf

= U J</m is a filtered Ring and jafm is coherent over a Noetherian Ring J2f0 for

any m. Hence we can apply Proposition 1.1.5 and it is sufficient to prove that
CO 00

© (^m/^m-i) is Noetherian. It is easy to verify that © (^m/^m-i) is a
m=0 m=0
commutative Ring. Let {/!,...,/#} be a system of generators of the coherent
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(^r*x(0)-Module Iv(l), and let Pj be a section of «/F
 such that or

1(PJ.)=/J-. We
define the homomorphism $ from the polynomial ring over <^r*^

0r*x(0)[Tl5..., TJV] into ®(j*Jj*m-i) by 7] j-^Pf. Then <P is a surjective
w=0

homomorphism of graded Rings. On the other hand, if we denote by <Pm the

homogeneous part of 0 of degree m, then Ker <Pm is a coherent

Module. Hence the proposition follows from Proposition 1.1.4 and

Proposition 1.1.5. Q.E.D.

By applying Proposition 1.1.5, we also obtain

Proposition 1.1.9. Let ^ be an ^-sub-Module of (£V)N. If J! n (J$f

is a coherent #(Q)-Module for any /cg;0, then Jt is a coherent #v-Module.

Proposition 1.1.10. A coherent #x-Module is pseudo-coherent over $v.

Proof. Let Jf be an <sfF-sub-Module of a coherent ^-Module J(.

Suppose that Jf is locally of finite type over £v. Let sl5..., SN be a system of

generators of Jf. Let rf' be the kernel of the homomorphism

defined by <p(P^..., PN)= £ PjSj. Since Jt is pseudo-coherent over

JV* n (J$f is coherent over <f (0) for any k. Therefore Jf' is coherent by

Proposition 1.1.5, which implies that Jf is a coherent efF-Module. Q. E. D.

Definition 1.1.11. Let Jt be a coherent ^-Module defined on Q

c T*^ — Tf X. We say that ^ has regular singularities along Fif the following

equivalent conditions are satisfied.

( i ) For any point p of Q, there are a neighborhood U of p and an <fF-sub-
Module ^o of ̂  defined on U which is coherent over «f (0), and which generates

«^ as an <f -Module.
(ii) For any coherent ^"(O)-sub-Module 3? of Jt defined on an open

subset of Q, £V3? is coherent over <f (0).

(iii) Any coherent ^F-sub-Module of Jt that is defined on an open set of

Q is coherent over

The equivalence of these three conditions can be proved in the same way

as in the proof of Theorem 1.7 of [18].

We denote by IR(^ ; V) the set of the points x such that Jt has not regular

singularities along V on any neighborhood of x.

Lemma 1.1.12. IR(J{\ V) is a closed analytic subset of Q.

Proof. The question being local, we may assume that Jt has an g (0)-
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sub-Module ^0
 suc^ that -^o *s coherent over «f(0) and that ^ =

By (i) and (ii) in Definition 1.1.11, Jt has regular singularities in a neighborhood

of x if and only if £v^0 is coherent over <f(0). Set Jtk — J$JtQ for k^l.

Then it is clear that J(k is coherent over <f(0) and that £v^= \J J£k. If
fc^O

j?k — ̂ k_l for some fc = /c0, then ^fe = ^f fe_1 for k^k0. Therefore

Supp (JZk\Jtk-^ is a decreasing sequence of analytic subsets, hence locally

stationary. Set 7= n SuppC^/^.i). Then we have y=IR(uf ; F).

Q.E.D.

Lemma 1.1.13. I/^f has regular singularities along V, then Supp ^cF.

Proof. Take ^0 as in the condition (i) of Definition 1.1.1. Then JyJt$

c^j. Hence Supp (^0/<f(— l)^o) is contained in F. The lemma follows

from this fact because the support of Jt coincides with that of u^0/^(— l)u^0.
Q.E.D.

Proposition 1.1.14. Let

0 _ k //' <? v // & , M" _ k A
\J - > t/ft - > o^WTr - > â :̂ - > \J

be an exact sequence of coherent ^-Modules. Then J£ has regular singu-

larities along V if and only if J£' and ^" have regular singularities along V.

Proof First we shall show that Jt has regular singularities along F if so

are uf ' and Jt ". Let Jf be a coherent <fF-sub-Module of uf . We set Jf"

= i/r(^T) and ^f = (p~1(jr). Since uf" is pseudo-coherent over ^, Jf" is

also a coherent ^V-Module. Hence rf" is coherent over <f (0).

We shall show that JT' is a coherent ^-Module. Let jSf (resp., j^7') be a

coherent «f (O)-sub-Module of N (resp., Jt ') which generates ./T (resp., e^')

as an <^F-Module (resp., ^"-Module). Then Jf' is a union of $v(£(m)&" n

cp~l(J$&)\ and hence ./f" is a union of coherent sub-Modules of Jf. Hence

,/f" is also a coherent ^-Module. Therefore, JV" is coherent over <f(0).

Hence it follows from the exact sequence

o — > ^-' — > ^r — > ^r" — > o
that ^K" is also coherent over <f (0). Thus we have proved that Jt has regular

singularities.

Conversely assume that Jt has regular singularities along F. Then, by

the property (iii) of Definition 1.1.11, Jt' has regular singularities along F, and,

by the property (i) of Definition 1.1.11, Jt" has regular singularities along V.

Q.E.D,
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Proposition 1.1.15. Let X and Y be two complex manifolds, V(resp.9 W)

a homogeneous involutory subvariety in T*X—T$X (resp., T*Y—T$Y) and

let Jt (resp., rf) be a coherent £x-Module (resp., coherent ^-Module) with

regular singularities along V(resp., W). Then J£®Jf is a coherent *fyxy-

Module with regular singularities along Vx W.

Proof. Clearly j?vxwis generated by Jv and J?w, i.e.,

& -- & (N\ $ I JP {(\\ $

Choose a coherent ^(0)-sub-Module ^0 (resp., a coherent <fy(0)-sub-Module

./To) of Jt (resp.,^T) such that Jt = $x^ (resp.,^T = ̂ y^
/'0) and JV^o^-^o

(resp., jV^o^-^o)- Then c^f0 = ̂ b^^o is a coherent <fZxy(0)-sub-Module

of J?®^ and it satisfies the conditions S>
XxY^o = ̂ ®^ and Jvxw^0ci^f0.

Hence Jt®J\f has regular singularities along Vx W.

Q.E.D.

Definition 1.1.16. A holonomic *f-Module dt is said to have R.S. on a

Lagrangian variety A if A n /^(^; y4 — T$Z) is nowhere dense in yi — T$X.

We say that ^ has R.S. if «^ has R.S. on Supp Jt. A holonomic ^-Module

^ is said to have R.S. if <f ® ̂  has R.S.

If Supp«^f is contained in a locally finite union of Lagrangian varieties

AJ9 then JC is said to have R.S. if and only if Jt has R.S. on any Aj.

Note that the notion given in Definition 1.1.16 is different from that given

in Definition 1.1.11. However, we shall prove later (Corollary 5.1.7 in Chapter

V) that, if a holonomic system J£ has R.S., then Jt has regular singularities

along any involutory variety which contains Supp J£.

The following propositions immediately follow from Proposition 1.1.14

and Proposition 1.1.15, respectively.

Proposition 1.1.17. Let

be an exact sequence of holonomic systems. If <Jt is with R.S., then so are

Jt' and <Jt". Conversely, if JK1 and Jt" are with R.S., then so is Jt.

Proposition 1.1.18. If <Jt and Jf are holonomic systems with R.S., then

so is Jt®J/*.

Definition 1.1.19. Let Jt be a holonomic ^-Module. We define the
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subsheaf ^freg of ^°° by assigning

(1.1.1) ufreg(t/) = {se^rGO(l/); for any point x in U, there is a coherent Ideal

J of gx defined in a neighborhood of x such that gx\£ has R.S. and

to each open subset U of X.

Proposition 1.1.20. The sheaf <jfreg is an ^-sub-Module of ̂ °°.

Proof. We first show that Pu e ̂ reg for P e £ and w 6 ~^reg.

If we take Jf as in (1.1. 1), then S' = {Qe£', QPe,/} is a coherent Ideal of

<f and &IS' has R.S. (because <f/«/'c:<f/jO. Moreover, S'Pu = Q. Hence

Pi/ belongs to ~^reg. Next we show that ui+u2 belongs to ^reg? if HI and u2

are in ~^reg. Then for any point x we can choose coherent Ideals Jr
1 and J2

as in (1.1.1). Let </ be defined as the annihilator of 1©1 in g\J^®g\J2,

then gfS has R.S. and Jr(ul +w2) = 0. Hence u1+u2 belongs to ^freg.

Q.E.D.

Proposition 1.1.21. Let f be an ^-linear homomorphism from J£™ to

j\T^ ', where Jt and Jf are holonomic ^-Modules. Then

This immediately follows from the definition.

In this section we will prove that

and ^/^x>z(^, j\r™\Jf} all vanish if j<codim Z~proj dim./rs<*> where ^

and ^T are coherent ^-Modules, not necessarily holonomic. This result

may be regarded as a kind of Hartogs' theorem for ^-Modules (cf. [16],

Theorem 1) and it will be used frequently in our later arguments.

Theorem 1.2.1. Let Jg and J\T be coherent left ^-Modules. Let Z be a

(not necessarily homogeneous) closed analytic subset of T*X. Then

(1.2.1)

holds for j<codimr*x Z — proj dim N.

Proof. (I) The case where Zc T*X— T$X and Z is homogeneous.

(*) jjere proj dim jf means the (local) projective dimension of ^\ i.e., the largest integer
j such that ^J (
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First, by the induction on proj dim J\T^ we shall reduce the problem to the

case where Jf is a free ^-Module. In fact, if proj dim ^T>0, we choose a

locally free ^-Module <£ and a surjective homomorphism

(1.2.2) *!/:& >./r.

Denote by Jf' the kernel of if/. Then we have the following exact sequence:

(1.2.3) •••

because d>xl$x i§ flat over ^y.
On the other hand, it follows from the definition that proj dim ̂ T =

proj dim ,/f' + l. Therefore it suffices to show the theorem when proj dim Jf

= 0, and hence we may assume without loss of generality that Jf is free. Since

&x— ^xixxx by the definition, it is then enough to show that

(1.2.4)

for a closed subset ZaT$(XxX), if j<codimT*xZ=codimr*,(XxX)Z. Since

&x\xxx defines a simple holonomic system supported by T$(XxX)9 (1.2.4)

can be reduced to the following assertion :

(1.2.5) *-/J».2(urf ^°°A/r) = 0

for j<codimr*xZ — dimZ, if Jf is a simple holonomic system and if Z is a

closed subset of Supp ^.

Now we shall prove (1.2.5). If we choose the following exact sequence

(1.2.6) with a free ^-Module J2%

(1.2.6) 0 - > Jf - > & - > uT - > 0,

then we find that if suffices to show (1.2.5) only when Jt is a free ^-Module.

In fact, we may use the induction on j in view of the following exact sequence

(1.2.7) •••

Thus in proving (1.2.5) we may assume without loss of generality that Jt =

Therefore it suffices to show

(1.2.8)
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for j<codimT*xZ — dimX on the condition that Jf is a simple holonomic

system and that Z is a homogeneous closed analytic subset of Supp j^. Fur-

thermore we may assume that N = <gY](X for a non-singular hypersurface Y of X.

Note that Z = n~1(n(Z)) and that codir%*x Z — dim X = codimy n(Z) = codimFZ

holds. Thus we have reduced the problem to the following claim :

(1.2.9)

holds for j< codimy Z, if Z is a closed subset of a non-singular hypersurface Y.

Here *&Y\X an(* <&Y\X are regarded as sheaves on Y.
Next we shall show that we have to consider only the case when Z is non-

singular. In fact, by noting the fact codimyZ^g^^codiniyZ+1 and making

use of the induction on the dimension of Z, we may suppose that

^zsing(^y|x/^y|x) = 0 for j<codimyZsing. If (1.2.9) holds at non-singular

points of Z, then

(1.2.10) Supp^WJV/^ciZ^g

holds for j < codir% Z.

Then, considering the spectral sequence

(^J(*V*m))> we find

1 2 11) ' > <?<codimYZ
/'gV|*)> P = 0, 0<codimrZ.

Therefore we can conclude that

(1-2.12) *i(V?

if j < codimy Z. Furthermore the right-hand side of (1.2.12) is zero by the

hypothesis of the induction.

Now we embark on the proof of (1.2.9) under the additional assumption

that Z is non-singular. First we recall the following commutative diagram:

0 - > 0?lx - > vylx - > ox\Y - > 0

d.2.13) J J ?!
0 . /T7( . (V? _ . /n ^ f\
- > MY]X - > ^y(X - > ^X,y - > U.

This diagram shows that &Y\X/^Y\X i§ isomorphic to ^YIX/^YIX- Hence it
sujfl5ces to show that

(1.2.14)

ing denotes the set of the singular points of Z.
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for j<codimy Z. As we have assumed that Z is non-singular, we may assume

(1.2.15) X = Cx Cl x C"z> 7= {0} x Cl x Cn^Z = {Q} x {O}1 x C".

We shall denote a point in X by (t, x, y)eCxCl xCn. Since there is nothing
to prove if l = Q, we assume /^l. In order to compute
we introduce three families of sets defined as follows :

(1.2.16) X,.. = {(0, ^ j)e 7; <5g|x|g£, \y\£

(1.2.17) JC£ = {(0, x, j;)e 7; |x|ge, |j^e}

(1.2.18) £/,..., = {(0, x, )0e 7; 5-p<|x|ga,

In order to prove (1.2.14), we want to prove

(1.2.19) \mH^KE(KE, 0?}XI0YIX) = 0.

Let &tyj>x be the subsheaf %(m)<5(0 of ^y^. Then &Ylx = \m tftyfa holds.
m

Since KE and KdtS are compact, we have

(1.2.20) HJ
KE_K6>E(KE, 0?lxlarlx)=m H^-K6iB(K^xl@^x)

m

by virtue of the long exact sequence of cohomology groups and the fact that the

inductive limit operation is commutative with the (absolute) cohomology
operation on compact sets. Here Hj

K&_K6 E(KE, *) means Ing HJ
Ke_Ud E (KE, *).

p>0

Since ^Yixl^yix i§ isomorphic to &y\x as sheaves, HJ
KE_Kd^(KE,

&Y\xl&ty\x) is isomorphic to HJ
KE_KdtE(KE, &y\x)- We shall now show that

(1.2.21) #i-K,,e(^,^|x)=0

for j < I. If we prove (1.2.21), then by the Mittag-Leffler theorem ([4]) we find

(1.2.22) lu*HiE_K6iE(KE, 0?lx)=HinK
d>Q

Here we have used the fact that

znx.=n(je. -•£,..)
S<0

In order to prove (1.2.21), it suffices to show that

(1.2.23) HJ
Simt.(V,s, *?,z)=0 for

where Vs .,.. = {(t, x, y) e X ; |f|<e", |x|<e', |y|<e'} and Sd^ = {(t,x, y)eX; t

= 0, |x| £8, \y\ <£'}. However, it is known (e.g. [20]) that

(1.2.24) H'Se<e,(U,,
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holds for 7 + 1^/4-1. This proves (1.2.23), and hence it finally completes the

proof of Theorem 1.2.1 under the assumption that Z<^T*X— T*X and Z is

homogeneous.

(II) General case.
In the sequel, (t, x; T, c) shall denote a point in T*(€x X). Define <fcxjr

Modules J (resp., Jr) by £cd(i)®^ (resp., &c5(i)&JT). Define Z by

{(t, x; T, £)eT*(CxX)', (x, ir^eZ, £ = 0, T^O}. Then we have proj dim Jr

= proj dim ./F+l and codimr*(cx;oZ = codimT*zZ+l. In what follows we

regard T*X as a closed subset of T*(CxX) by (x, f)«->(0> *; 1, 0- Then the
result obtained in (I) proves that

holds if j < codimT*x Z — proj dim ^T.

Hence it suffices to prove

For this purpose, it is enough to prove that

(1.2.25)

and

(1.2.26)

hold for all j. In proving this, we may assume without loss of generality that
^ = jr = (g>Xy because ^ and Jf admit free resolutions.

Let us define the projection F from {(t, x; T, £)e T*(Cx^); r = 0,
to T*X by F(0, x; T, ̂ ) = (x, -r^). Then we have

On the other hand, Z = F~1Z holds in {r^Oj. Hence we have

This proves (1.2.25). The proof of (1.2.26) is the same as this. Thus we have

completed the proof for the general case. Q. E. D.

The proof given above also proves ^f^(^Y\x)=='^z(^Y\x) = ^ holds for
j < L Therefore we have the following

Theorem 1.2.2. Let Jt and J/* be coherent left ^-Modules. Let Z

be a closed subset of T*X. Then
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(1.2.27) ^4XjZ(^r, ,/r)
holds for j< codim^jr Z — proj dim tf .

In this article we often use these theorems in the following form :

Corollary 1.2.3. Let Q be an open subset of T*X and Z a closed analytic

subset of Q. Let ^ be a coherent ^x\Q-Module and JT a coherent £X\Q-

sub-Module of J% .

(I) Suppose that codimr*xZ^dim.X'-f-l.

(i) //seTCO;^00) is contained in Jt outside Z, then ser(&;^).

(ii) // seF(O; ^^f00) is contained in Jf™ outside Z, then s is contained

in r(Q'9 jr™).

(II) Suppose that codimr*xZ^dmLXr + 2. Then any section of Jt™ defined

on Q — Z is uniquely extended to a section of ^°° defined on Q.

§3.

In this section we investigate some basic properties of holonomic systems

with regular singularities. The main tool used here is the classification of

holonomic systems having a non-singular Lagrangian manifold as characteristic

variety.

First we recall the following classification theorem ([9]).

Theorem 1.3.1. Let A be a non-singular homogeneous Lagrangian

subvariety of T*X — T$X and JtQ a holonomic system with support in A and

of multiplicity 1 along A. Let y be the projection from T*X — X onto P*X.

(i) For any holonomic system ^ with support in A, <f^/^(^0, ^R)

= 0 0"=t=0) and jfiH»f(j?0, J?R) is a locally constant sheaf on A. The rank of

JfU*X<^o> ^R} coincides with the multiplicity m of Jt along A and the

canonical homomorphism

is an isomorphism.

(ii) Suppose that A = y~lyA, <^Q = y~iy*^0 and ^f = y"iy^. Then

o, uf*)).

This theorem says that the structure of ^f°° is determined by

We fix one preferred reference system «^0 in our argument.
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Since jf*»»,(-<<lb> ~^K) is a locally constant sheaf on /d and the fiber of 7 is
C— {0}, we can associate an m x m constant matrix Tt (up to inner automorphism)

with l^ni(y~1(y(p))9 p)^Z for peA. Let e be a generator of n1(y~l(y(p)), p).

We call T= Te to be the monodromy of Jt (with respect to the reference system

J?0). Using this terminology, we can restate (ii) symbolically as follows:

The structure of ^°° is determined by the monodromy of J£ .

In what follows we shall explicitly show how ^°° is determined by the

monodromy of ̂ , assuming A has a simple form. The simplifying assumption

on A given there is not restrictive, because any non-singular Lagrangian variety

can be transformed into that form by a homogeneous canonical transformation.

Take X = Cn and let A be given by

(1.3.1) {(x,t)eT*X',x1=S2 = ..-=tn = 0,\x\<s

We set .^o = ffK&Xi + £D2 + • • • + <f Dn) and

Then we have the following

Lemma 1.3.2.

Proof. If m^2, there is an exact sequence

0 - > ^,m- 1 - > -^i,» - ^ ^i.i - ^ 0-

Hence, by using the induction on m and m', we can reduce the problem to

the case where m = m' — 1 . Set ^TA = $cl$c(tDt — X). Then we have

(Cf. S-K-K [24], Chapter II, Theorem 5.3.1. Even though ffi$ is needed

there, $x suffices in our case.) Hence it suffices to show

(1.3.2) ^/ic(^i, ^A') ̂ ^ ^icfi. -^?).

Let t; be the generator Imod ^(xiDl — K) of ^TA/. Then by an immediate

calculation we find

'! f "f'
it A ' — A
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and

; if A - A ' <

Similarly, we can verify

0 if A-A '<

C if A-A'eZ

and

0 if A - A ' <

C if A-A'eZ.

Thus we have verified (1.3.2). Q. E. D.

Under the assumption (1.3.1) the monodromy matrix Tis associated with

the loop e = {(xi {) = (0; eie, 0,..., 0)}0^0i27f Hence we have the following

Lemma 1,3.3. The monodromy of ^>m is equivalent to the following

mx m matrix:

e2nik J

(1.3.3)
••. 1

Proof. We first note

Since ^5 = ̂ 0 and u^*jlfi = ^_A_ l j T O , it is sufficient to study the monodromy

of jr^ /x(ur_A_ l im,^rff).
Set 7= {*!=()} and ̂ g = V$lx. Then ^r^(ur_A-lfm, ^) = {we^?(^

(x1D1+A+l)mM = D2M = ---=D l lM = 0}. Clearly the elements in this space are
given by

^;^w-l), when -A- 1^0, 1, 2,...

and

c t)- /(l^;^'w), when -A-l = 0, 1, 2,... .
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It is then easy to see that this gives the monodromy (1.3.3). Q.E. D.

If we transform the monodromy matrix T of ^ in the Jordan form, we see

that there exist A7- and mj such that T is equivalent to the monodromy of

ffiufA m . Since the monodromy determines the structure of the holonomic

system over ^°° (Theorem 1.3.1 (ii)), we obtain the following lemma.

Lemma 1.3.4. Jt™ is isomorphic to a finite direct sum ©u^5°>mj.

This lemma proves the following proposition.

Proposition 1.3.5. Let A be a non-singular homogeneous Lagrangian

variety and let ^ be a holonomic system whose support is contained in A.

Then

(i) u^-eg is a coherent £x-Module and it has regular singularities

along A.

(ii) ^°°(x)^reg-»^00 is an isomorphism.

(iii) If Jt has regular singularities along A on a non-void open set of

A and if A is connected, then JZ has regular singularities along A on the

whole A.

Proof. Let us first prove (i) and (ii). The question being local, we may

suppose that A has the form (1.3.1). Therefore, it follows from Lemma 1.3.4

that ^°° is isomorphic to the finite direct sum of uf "m's. Therefore, in

proving (i) and (ii), we may suppose that ^ = ̂ ttn. We shall show that ^reg

= Jt holds in this case. This immediately implies (i) and (ii). Since JZ has

regular singularities along A, ^freg contains JZ . In order to show that ^freg

= J{, it is enough to show that we have /G/T) c ^ for any holonomic system

JV with R.S. and an <f -linear homomorphism f : rf -*<,#*. First suppose

that i/F has regular singularities along A. Then, by Lemma 3.7 of [18], N

is a quotient of the system defined by

DBu=0

where A is an A/" x A/" constant matrix and u is a column vector of size IV. By

transforming the matrix A into the Jordan form, we find that this system is iso-

morphic to a direct sum of uf^'s. Therefore j\f is a quotient of ©u^Jjmj.
Then, by Lemma 1.3.2, we find/(,/K)c^.

Now suppose that Jf has R.S. Then Z~IR(^i A)r\ A is a nowhere
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dense analytic subset of A. We have already verified that/(&/f*)ci^' on A — Z.

Hence it follows from Corollary 1.2.3 in Section 2 that/(^T)c:^.

Thus (i) and (ii) are proved.

Lastly we prove (iii). Set IR(JV\ A) = Z. Then Z is a nowhere dense

analytic set of A. We shall show that ^freg^^. Let u be a section of ^.

Then u is contained in ^reg outside Z. Hence Corollary 1.2.3 in Section 2

implies u e ̂ reg. Since it follows from (i) that ex*freg has regular singularities

along A, Jt has regular singularities along A. Q. E. D.

Proposition 1.3.6. Let ^ be a holonomic system with R.S. (We do not

assume that its characteristic variety is non-singular). Then ^reg = *^f.

Proof. It is trivial that ^reg contains <J(. We shall show that ^ contains

^reg. In order to show this, it is enough to show that, for any holonomic

system Jf with R.S. and an *f-linear homomorphism /:^~>^00,/(^r) is

contained in Jt. However, <Jt = -^reg holds in the non-singular locus A' of

A. Hence, for any section u of */T, f ( u ) is contained in Jt on A —A'. Then

Corollary 1.2.3 in Section 2 entails that f ( u ) is contained in Jf. This com-

pletes the proof of the proposition. Q. D. E.

Proposition 1.3.7. Let A be a connected non-singular homogeneous Lag-

rang ian variety and ^ and N two coherent $x-Modules supported by A.

Let (p: «^QO-M/'00 be an &™-linear homomorphism. Then we have the

following:

(i ) The support of the cokernel of <p is A or an empty set.

(ii) The support of the kernel of (p is A or an empty set.

(iii) If (p is surjective (resp., injective), then the homomorphism (p*: JV*™

-+J?*™is injective (resp., surjective).

Proof. By considering ^freg and */Freg, we may assume that „& and rf

have R.S. Therefore there is a homomorphism ^: ^-*^T such that <^) = (f00

®\lf. Since the cokernel of <p is equal to the tensor product of <sf°° and the

cokernel of \j/, we obtain (i). The assertion (ii) is verified in the same way.

Now note that q> is surjective (resp., injective) if and only if \j/ is so. Hence we

obtain (iii).

As an application of the structure theorem (Theorem 1.3.1) of holonomic

systems and Theorem 1.2.2, we can prove that the support of a section of a
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holonomic system is an analytic subset. More precisely we have the following

proposition.

Proposition 1.3.8. Let ̂  be a coherent £x-Module with the characteristic

variety V. Suppose that there is an integer r such that $x>fj$(Jt, <f) = 0 for

j 7^ r. Let s be a section of ^f °° defined on an open set Q. Then supp s is a

union of irreducible components of Q n V.

Proof. We shall prove this proposition in several steps.

(a) In the case where Fis smooth and w|K^0, where co is the fundamental

1-form. In this case, we can transform V to {(x, C); ̂ 1 = --- = cr = 0}. By

the condition of the vanishing of cohomology groups, there is a coherent $x-

Module uT' such that .^e^'00^^00* where & = #l(£Dl + — + fDr)

=f<f u0 (S-K-K [24] Chapter II, Theorem 5.3.7). Hence we may assume from

the beginning that j? = &. Any element s of J^°° is written in the unique form

s = P(x, D")MO, where P(x, D") = £ P/x, D") is a micro-differential operator

which commutes with x1?..., xr. If s vanishes on a neighborhood of a point

p e Q n F, then P vanishes on a neighborhood of j? and hence every p/x, £")

vanishes. By analytic continuation each pj vanishes on a connected component

of Q fl F containing p, and hence 5 = 0 on this connected component.

(b) In the case where F is smooth and r<dimX. Set Z = {peF;

(o}\v)(p) = Q}. Then codimZ^r+1. By the result for the preceding case (a),

supp s n (F— Z) is a union of connected components of F— Z. Hence the closure

S of supps n (F—Z) is a union of connected components of F. We have Sc

suppscSuZ. Therefore, s|F_s gives a section of «#*Z(«^GO)|K-S» which
vanishes by Theorem 1.2.2. Thus we have S = supp s.

(c) In the case where F is smooth Lagrangian. By a quantized contact

transformation, we may assume that F={x1=0, f2 = --- = ^ = 0}. Then, by

Lemma 1.3.4, ^°° is isomorphic to (£Nl£N(xlDl-A) + £ND2 + — +*NDJ«>

for an N x N constant matrix, and hence any element of ^°° is written in the

unique form P(xl9 D2,.-., DB), where P is a vector of micro-differential operators

of length N. Hence we can apply the same argument as in (a).

(d) The general case. In (a)~(c), we proved the proposition when Fis

smooth. Hence supp s n Freg is closed and open in Freg. Therefore supp s

c supps n Fregu Fsing. Note that V — supp s n Freg is a union of irreducible

components of F. If peFs ing-F', then s belongs to ^FsingG'^00)p0. Since

Thereforewe obtain supp
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Evidently supp 5=3 V. Thus we obtain the desired result. Q. E. D.

We conjecture that the following general statement be true.

Conjecture: For any coherent &x-Module Jt and se^/f00, supps is an

analytic set.

In [6] it is shown that, for any holonomic ^-Module

is a constructible sheaf. We shall prove here that these sheaves of the solutions

determine Jl.

Definition 1,4.1. We call a sheaf J5" of C- vector spaces on X constructible,^

if there is a decreasing sequence X = X0 iDX1^X2^-" of closed analytic subset

of X such that r\Xj = (j) and that &\xj-xj+l is a locally constant sheaf of

finite rank.

We first recall the following propositions of constructible sheaves. (See

[25] Expose 7 and Appendix § C of this article.)

Proposition 1.4.2. (i) // J^"' and & are bounded complex of sheaves 'with

constructible sheaves as their cohomologies, then R«#«»c(,^"", ^') has con-

structible sheaves as their cohomology.

(ii) Under the same conditions as in (/), we have

£^t^' 9 £7 j == $^<ffl&m £\j£.<7L&m\& y ^XJ ^^ *^ s XJ

In particular, R.#WC(R.#«»C(«^"", Cx), Cx) = 3sr'. Here and in the sequel

Cx denotes the constant sheaf on X with C as its stalk.

(Hi) Let $?' be a bounded complex with constructible sheaves as its co-

homologies, and let J£' be any bounded complex. Then

where n = dimX, A is the diagonal set of XxX and pt (resp., p2) denotes the

projection from XxX to the first (resp., second) component X.

Proposition 1.4.3. Let ^ be a holonomic @x-Module and Y a complex

Another terminology "finitistic" was used in [6].
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manifold. Let p± and p2 denote the projection from X x Y onto X and Y9

respectively. Then

holds.

Proof. The question being local, it is enough to show that for xeX

and y e Y,

, ,

Let us take a resolution of Jt in a neighborhood of x :

A ^ _ // ,. _ />IVo PO JPNi ^Pi ... sPNr-l JPNr ^ _ AU < - <JH < - <5 % < -- 6 x1 < - < - & % < - U.

Then #t*Sp-i9x(pil*#9 ®x)x is the j-th cohomology group of the complex

and

is the j-th cohomology group of the complex

M' • /flN° PO. ft)Ni pi v ... P*r-i . snNr
^XxY,(x,y)' VxxY,(x,y) - > UX*Y,(x,y) - » - > UXxY,(x,y)'

/\

Since 0XtX is a nuclear DFS-space and ^xxY,(x,y) = ^x,x®^Y,y (^Q completion
of the tensor product of topological linear spaces) and since the cohomology of

(9'XtX has finite dimension, we have

#y(0ixyi(,f,)) =HJ((9'Xi J® 0yf,. Q. E. D.

This proposition immediately implies the following corollary.

Corollary 1.4.4. // Jt' is a bounded complex of @x-Modules whose

cohomologies are holonomic, then

Corollary 1.4.5. Let Jt' be a bounded complex of @x-Modules whose

cohomologies are holonomic and let JV" be a bounded complex of

whose cohomologies are coherent. Then

holds.
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Proof. We may assume that Jt' and ,/f" are simple complexes (i.e.,

complexes consisting of only one non-trivial component). The question being

local, we may assume further that Jf admits a free resolution. Thus we can

assume that Jf = @Y, Then

and

The corollary follows then from Proposition 1.4.3. Q. E. D.

Proposition 1.4.6. Let J{' be a bounded complex of <&x-Modules with

holonomic systems as cohomologies. Then

\L3%y&&t Q x\(9 X) ex^ )——^J&ffl0m£\&&e>m^Qx\*$ , @x)) ̂ "X/

holds.

Proof. Let Y*-Jt' be a complex of injective ^-Modules quasi-iso-

morphic to Jt' and let J" be an injective resolution of Ox as ̂ -Modules. Then

•#*«»0(0jr, J") is an injective resolution of C^, because £»si(0x> ®x) =
g((9X9 J")). Hence we have

and

Rjv0/&£\JRjtf0-t&g\i^l , C/), C* )̂ = 3v0-m-£\3l&t?»g\l , J ) ^

We have the homomorphism

and hence we can define the homomorphism

We shall show that this is an isomorphism. We may assume without loss of

generality that ^' is a single ^-Module ^. It is enough to show that the

homomorphism

(1.4.1)

is quasi-isomorphism for any x e X. For this purpose we recall the following

Lemma 1.4.7. For any bounded complex F" wifft constructible sheaves
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as its cohomologies, we have

where n denotes dim X.

Proof. Let Cx be the sheaf with the support at {x} whose stalk at x is C.

Then

c(F\Cx)9 Cx)x

J C), T7* ).x

Here * means the dual vector space. Q. E. D.

We return to the proof of Proposition 1.4.6. We shall show that (1.4.1)
is a quasi-isomorphism. By [6], we have

Thus, together with Lemma 1.4.7, we can conclude that (1.4.1) is a quasi-

isomorphism. This completes the proof of Proposition 1.4.6.

Proposition 1.4.8. Let Jt' and JV*' be bounded complexes of ^-Modules

whose cohomologies are holonomic. Then

Rjf«*^(uf', ^r'00) = Re^^c(Rjf?^^x(>'"5 ^f'00), C)

holds.

Proof. By [8], we have

where ,d is the diagonal set of XxX and ^'*=

Hence by Proposition 1.4.2 we have

On the other hand, it follows from Proposition 1 .4.6 that

Hence by Proposition 1.4.2 (iii) we obtain
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In the same way we have

R3e*~9xW9 ^"M)=R^^C(R^^(^", ox)9

Thus the required result follows from Proposition 1.4.2 (ii). Q. E. D.

Now we shall show the following theorem which tells us how to reconstruct

a holonomic system by its solutions.

Theorem 1.4.9. Let Jt' be a bounded complex of @x-Modules whose

cohomologies are holonomic. Then

Proof. By the definition of ^A\X^X an(i Proposition 1.4.2 (iii), we find
the following equalities.

r°° = .05

), Ox). Q-E.D.

In [18] we developed the notion of principal symbols for a system of micro-

differential equations with regular singularities. Here we apply it to holonomic

systems whose characteristic variety is non-singular.

5.1. Let X be a complex manifold and A a Lagrangian submanifold of

T*X-T$X.

Let J be an invertible ^-Module such that £®2 = £®£^QA®Q^-1. In
def ^general, such a £ does not exist globally on A ; however, J exists locally on A9

and a local existence of J? is sufficient for our subsequent discussion.

Let &' be another invertible ^-Module such that ^/®2^O^1®Of-1,

then there is locally an isomorphism cp: £-*£' such that (p(s)®<p(s) = s(x)s as a

section of Oyl®Of~1 for any se J. If ^ is such an isomorphism, then any

isomorphism cpf satisfying the same condition as <p must be either cp or —<p; in
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fact, we have <p(s)®2 = (p'(s)®2 for any se J. Therefore J is uniquely deter-

mined up to sign.
n £)

Let & be the vector field defined by £ £j ~^~ • Then 3E does not depend
j=l OC,j

on the choice of local coordinate systems. Since A is homogeneous, #" acts on

O^®Df -1 as a derivation, and hence SC acts also on £ as a derivation by the

formula: 2s®#(s) = #(s®2) for se J.
Let j/ be the sheaf of linear differential operators of finite order from J

into j£. Although J does not exist globally, jaf is canonically defined and

exists globally because J is uniquely determined up to sign.

For an integer m, we shall denote by <stf(m) the subsheaf of j/ consisting of

all homogeneous differential operators from 3. into J homogeneous of order

m ; in other words, $#(m) = {P e j* ; [#, P] = mP] . We shall denote by 0A(m)

the sheaf of homogeneous holomorphic functions of degree m defined on A.

The Algebra J3f(0) contains 0^(0) as a sub-Algebra and we have the following

relations :

In [18] we defined the homomorphism L(m)^*) from <? A(m) =

into jaf (m) as follows

(1.5.1) L(

for P = PM+1(x, D) + Pm(x, D)^--^^. Here dx = dxl A ••• A^x / r This ho-

momorphism is uniquely extended to a homomorphism from £A(m) into jtf (m)

under the condition

(1.5.2) L^\Pl}Um^(P2) = L^+m^(PlP2)

for PiE£A(mi) and P2ES'A(m2). One can check easily L(m>(^1(m-l)) = 0.

In fact, we have a more precise statement.

Lemma 1.5.1. The sequence

0 - > ̂ (m - 1) - > ^(m) _l£!U j/(m) - ^ 0
is exact.

Proof. By multiplying an invertible micro-differential operator of order

( — m), we can reduce the statement to the case where m = 0.
{*} In [18] this homomorphism is denoted by L(m+l} instead of L(m}.
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Let us denote by JA(k) the intersection JA n &T*x(k)- Then, for any k9

we have

where 5fc signifies the k-th symmetric product. On the other hand, if we denote

by OA(l) the sheaf of homogeneous vector fields on A, and if J^(0) denotes the

sheaf of homogeneous differential operators from £ into J of order ^fc, then

we have j/fc(0)/j34-i(0) = Sk(0A(l)). Since the Hamiltonian map H induces

an isomorphism from JA(l)l(JA fl $r**(l)) onto ®/i(l)> ^(0) also induces an
isomorphism

In particular, we have

./S n KerL(0>c(^-i n KerL<°>) + <^(-l) for any fc,

which implies Ker L<°> c ̂ ( - 1). Q. E. D.

Let 9 be a section of SA such that I/0)(0)=3r. As is easily seen, 9 is
characterised by the following conditions (1. 5.3) ~ (1.5.6):

(1.5.3) 9 = 9l(x, D) + 90(x, D)-\ — is a micro-differential operator of order 1.

(1.5.4) 0^ = 0.

(1.5.5) d0!= -comod JAQ^X-

on

We then find the following properties of 0.

(1.5.7) For any P e &A(m\ [0, P] = mP mod ̂ (m - 1).

(1.5.8) Let P be an invertible micro-differential operator of order m. Then,

for any polynomial g(9) of one variable, we have

Pg(e)P'i = g(8 + m) mod *A( - 1) .

The property (1.5.7) immediately follows from Lemma 1.5.1 and (1.5.8) is

an easy consequence of (1.5.7).

5.2. Let J? be a coherent ^-Module with regular singularities along a

Lagrangian submanifold A. In particular, the support of Jt is contained in A

and hence Jf is a holonomic ^-Module.

Let JtQ be a coherent ^-sub-Module of ^. Since Jf has regular

singularities, J£$ is coherent over <f (0). We denote by JKQ the quotient sheaf
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^0/c,^o(— 1). Then ^0 is endowed with a canonical structure of

Module, and Jt§ is a coherent ^(OyModule. Since j/ ® ^0 =
_ ^(0)

04 ® -/f0 is an jaf -Module coherent over @A, we can apply the theory of
0,1(0) _

systems of linear differential equations and &A ® *^o i§ locally isomorphic
0,1(0)

to a finite direct sum of copies of J as an j^-Module. In particular,

(9 A ® ^Q is a locally free d^-Module of finite rank, and hence JtQ is a
<Pyl(0)

locally free ^((yj-Module of finite rank.

Let 3? be the C.-Module 3P*»*J(GA ® jf^ J) = e^^^(0)(^, ^).
^(0)

Then IF is a locally free C^-Module of finite rank and we have an isomorphism

&A ® -A ^ tf+iHCA^* &) °f ^f-Modules. Since C[0] is the center of
CU(O)

j/(0), J5" is endowed with a structure of C[0]-Module. One can check easily
that

(1.5.9) J?~Q^»

Since J5" is a locally free C^-Module of finite rank, there exists a non-zero

polynomial b(6) such that b(0)^ = 0. This condition is equivalent to the

condition 6(0)J^"=0 by the isomorphism (1.5.9). We shall denote by b(9: u?0)

the monic polynomial b(9) with the smallest degree such that fc(0)^0 = 0. The

above investigation assures the existence of b(9i ^4f0).

For A e C, we define J^<A> and

(1.5.10) jF<A> = {se^;(0-A)*s = 0 for ]V»0}

and

(1.5.11) J^<A> = {seu^;(0-A)Ns = 0 for ^»0}«

Then, three conditions J5"<A>=0, ^0
<(^> = 0 an(l K^-J ^b)^^ are obviously

equivalent. We have also

(1.5.12)

(1.5.13)

(1.5.14)

(1.5.15)

Lemma 1.5.2. 6(0 ; uT0(fe)) = 6(0 - fc ; uT0) .

Proof. Let P be an invertible micro-differential operator of order fe.

Then, for a polynomial b(0), by (1.5.8), we have the following chain of equivalent
statements :
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Thus we have the desired result. Q. E. D.

Lemma 1.5.3. // Jt$ is a coherent #A-sub-Module of a coherent $A-

sub-Module Jt^ of Jt. Then 6(0; uf£) is a divisor of b(6; uf0)6(0 + l; ^0

o)for some N.

Proof. There is N such that ^ n uf0(-N-l)c:ufo(-l). We have

6(0; uf0)&(0 + l;

c=6(0; ur0(-
c6(0;^0(

and hence we obtain

This gives the desired result. Q. E. D.

Lemma 1.5.4. Le£ ̂ 0 6e a coherent &A-sub-Module of Jt which gen-

erates JK as an <?x-Module. Let cp(9) be a polynomial prime to 6(0 — k; ^0)

for any /c=l, 2,... . Then we have

Jt$ — {s e Jt\ ^(0)5 e e^"0} .

Proof. Let s be a section of ^ such that <p(0)se«^f0. There is N such

that sG^o(JV). By the induction on N, we shall prove that s belongs to e^0-

If JVfgO, then there is nothing to prove. Suppose that JV>0. Then

6(0; uf0(N)) = b(0-N; uT0) and ^(0) are prime to each other. Therefore

6(0 ; uf0CN)> e ̂ 0(^ - 1) and q>(0)s e ̂ 0(N - 1) imply s E ̂ (N - 1 ). By the
hypothesis of induction, we obtain s e ̂ 0. Q. E. D.

Lemma 1.5.5. Let ^'0 be a coherent ^-sub-Module of a coherent

#A-sub-Module ^0 of J{ . Then, for any AeC, ufo^)-*^^) ls injective

i/6(A + /c; ̂ 0)^0/or fe=l, 2, 3,....

Proof. In order to prove this lemma, it is sufficient to show that for any

s e c^f o n ̂ 0( - 1) and an integer m(0 - A)ms e ̂ o( — 1) implies s e ̂  Q( - !)•

Let us take N such that uTonur0(-W'-l)ci^o(-l) and set 6(0) = 6(0;
uf0(-l))-&(0; uT0(-N)). Then we have b(9}^Q(-l)c:^0(-N-l) and

hence 6(0)s e uf0( - N - 1) n ̂ o c uTo( - 1). Since 6(0) and (0 - A)m are prime
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to each other, we obtain s e ̂ Q(— 1). Q. E. D.

Lemma 1,5.6, Lei J^ be a coherent £A-sub-Module of <J{ and let 1 be a

complex number. Choose a polynomial b(9) and a non-negative integer N

so that b(B\^Q) = b(&)(Q-XY with b(A)^0. Let ^ be the kernel of Jt^

Then b(9; ^o) is a divisor of b(9)(9 - A + 1)]V '.

Proof. If N = Q, then e^f0<A>=0 and hence ^0 = ̂ '0. Therefore the

lemma is obvious.

Suppose N^l. We have ^0 = ̂ o<A>© {se^0; 6($)s = 0}. Hence

fe(0)(u^o/^0(-l))=0, or equivalently, b(0)j?QC*#0(-i). Now, we shall
show that (0-A + l)*Z<0).^c=uf£(-l). We have (0-A + l)Nfe(0)^ci

0- Since 0->^(-l)-^^0(-l)-^(^0(-l))<A-l> is exact

uro(-l))<A>=OX0-A+iyr^o(-l) is contained in ufi(-l).
Thus we obtain the desired result. Q. E. D.

5.3. Let n be a section of ^ . A root of b(0; £Au) = Q is called an order

of u and the set of roots of u will be denoted by ord u. It is easy to see that

ord (Pu) = ord u + ord P, if a micro-differential operator P satisfies a(P)\A^0.

A solution of the system of linear differential equations for 9 e J

(1.5.16) LjPV = 0 for any Pe<^ satisfying Pu = Q

is called a principal symbol of w and the linear hull of principal symbols of u

is denoted by a(u). The space of principal symbol is nothing but

<%?**K^(0)(£Aul£>
A( — V)u, £). If m is the multiplicity of #xtt, then ^Aul^A( — \)u

is locally isomorphic to Jm and hence a(P) has dimension m. If P is a micro-

differential operator such that a(P)\A=£Q, then a(Pu) = o(P}a(u).

Let e//0 be a coherent «fA-sub-Module of ^ which generates ^ as an

^-Module and let A^..., A^ be the roots of fc(0; ^0) = 0. Then, by Lemma

1.5.2. and Lemma 1.5.3, any order of any section has the form Aj — v for some

j and veZ. By Lemma 1.5.3, any order of any section of ^0 has the form

Aj — v for some j and veZ+ . More precisely, we have the following lemma,

which is an immediate consequence of Lemma 1.5.5.

Lemma 1.5.7. Let ^0 be a coherent ^-sub-Module in Jt and let

{Al5..., Ajy} be the set of roots of fe(A; ̂ o) = 0. Then for any section u of the

kernel 0/t^f0-»t^Q<A>, ord u has either the form ^1 — v(v = l, 2,...) or the form

l j-v(j = 2,...,]V, v = 0, 1,2,...).
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Proposition 1.5.8. Let Z be a subset of C satisfying the following three

conditions:

(1.5.17) If zeZand /ceZ+ thenz-/ceZ.

(1 .5.18) For any z e C, there is k e Z such that z + k e Z.

(1.5.19) For any zeC, there is fceZ such that z + /c<£Z.

Then Jf = {ueJt\ orduciZ} is a coherent #A-Module.

Proof. Let ^0 be a coherent ^-sub-Module of Jt such that Jt^fiJt^.

Let {At,..., A#} be the set of roots of fc(A; ̂ 0) = 0. Let m,- be the maximum of

{meZ; A^ — meZ}. By replacing ^f0 with ^Q(N) for JV»0, we may assume
that mjgrO. Hence there is an integer JV^O such that the following condition

(1.5.20)* holds:

(1.5.20)^ There is a coherent ^-sub-Module ^0 of ^ such that fiJt^JZ

and that, for any root A of ft(A; ̂ 0) = 0> A + 1<£Z and A-JVeZ.
We shall prove (1.5.20)^ implies (1.5.20)^.! for N^l. Let A!,..., A^ be

sets of roots of fe(A; ̂ o) = Q such that A^Z. We define J£3 as the kernel of

•^•-i->^j-i<A7-> (.; = !,. ..,/). Then, by the repeated application of Lemma
1.5.6, we can easily see that fe(Ay; ^)/0(l^jgO and 6(A; ufi) = 0 implies

either A = Ay - 1 (1 ^ j g /) or fo(A ; uf0) = 0. Hence b(A ; uTz) = 0 implies A + 1 £ Z

and A — (AT— l)e Z. Thus (1.5.20)jv-i holds. Therefore, by the induction,
(1.5.20)N holds for iV = 0, i.e., there is a coherent ^-sub-Module Jt$ of Jt

such that &<JfQ = Ji( and that b(A; ̂ f0) = 0 implies AeZ and A + l^Z.

Now we shall show that ^T = ̂ 0. Lemma 1.5.3 implies Jf^Jt^. We
shall show the converse inclusion relation. Let u be a section of jV* and let
b(Q) = b(0\ £Au). Further let {Al5..., A^} be the set of roots of 6(A; ̂ 0) = 0.
Then A; is not a root of 5(A - v) = 0 for v = 1 , 2S . . . . On the other hand

for /t»0.

Hence Lemma 1.5.4 implies that u e ̂ 0. Q. E. D.

In the course of the proof of Proposition 1.5.8, we also obtained the fol-

lowing proposition.

Proposition 1.5.9. Let Z and Jf be as in Proposition 1.5.8, and let Jt$

be a coherent #(G)-sub-Module of ^ which generates Jt as an tf-Module.

Then the following two conditions are equivalent



HOLONOMIC SYSTEMS. Ill 859

(i) ./r = ur0.

(ii) Any root A o/b(A; ̂ 0) = 0 satisfies AeZ and A+l^Z .

Before ending this section, we shall remark the following. If ^0 is a

coherent ^-sub-Module of Jt defined on £>, then Jf^/«^(0)(^0, ^) is a locally

constant sheaf. Hence the raonic polynomial b(9) with the smallest degree

such that b(9)(J?o)p = Q(peA ft O) does not depend on p when A f t Q is con-

nected. In particular, for a section u of u^ defined on an open set Q, ord w is

well-defined on each connected component Ai of A n £2, which we shall denote

by ord^. (u) (or ordx(t/) for x e yl£.).

§6.

In this section we prepare some geometric results in symplectic geometry.

Even though they might be well-known, we include their proofs for completeness.

These results will be frequently used in our later discussions.

Proposition 1.6.1. Let (V, E) be a (2ri)-dimensional symplectic vector

space(*} and let A be an isotropic homogeneous analytic subset of V. Then

there is a Lagrangian (linear) subspace A such that A ft Ac{0}.

Proof. We shall prove by the induction on n. If n = l then all lines are

Lagrangian and dim A^l. Therefore the proposition is evident. Suppose

n>i. Then, there is a line p. such that ^n/lci{0}. Then ^u1 n A-*JJL-L/I.I= V

is a finite map. Let A' be its image. Then A' is isotropic in V (see Proposition

4.9 in [7]). By the hypothesis of the induction on n, there is a Lagrangian

subspace A' of V such that A' n A; c {0}. Then the inverse image A of A' by the

map \nL-*V' satisfies the required condition. Q.E.D.

The following corollary is an immediate consequence of Proposition 1.6.1.

Corollary 1.6.2. Let (F, E) be a symplectic vector space, A a homogeneous

isotropic analytic subset of V, and X(V) the space of all Lagrangian sub-

spaces. Then Y={leX(V)i A n A<£{0}} is a proper closed analytic subset

ofX(V).

In order to state another corollary of the proposition (Corollary 1.6.4),

we introduce the following notion.

(4£) This means, by definition, that V is a In-dimensional vector space and E is a non-
degenerate skew-symmetric form on V.
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Definition 1.6.3. Let A be a Lagrangian variety of T*X-T$X. We say

A is in a generic position at a point p in yl — T$X if and only if A n rc~1(7c(p))

= Cx
jp in a neighborhood of p.

Corollary 1.6.4. Let X be a complex manifold, p a point in T*X — T$X,

AJ (j = l,..., N) Lagrangian manifolds of T*X and A a Lagrangian variety of

T*X. Then we can find a homogeneous canonical transformation $: (T*X, p)

-*(T*X9 p) such that <P(A) is in a generic position at p and that <&(Aj) is the

conormal bundle of a smooth hypersurface Sj of X (j = l,..., n).

Proof. Set ft=Tp(C*p) and F=ju
1//xcz Tp(T*X)lfi. Then V is a symplectic

vector space. By [19] Proposition 10.4.1, Cp(A\J\jAj)/fjL is a Lagrangian

variety of V. Therefore we can find a Lagrangian subspace A of Tp(T*X) such

that A:^ and that (A/ju) n Cp(A U \jAj)/p = Q. If there is a homogeneous can-

onical transformation 3> such that $(X)=Tpn~1n(p)/ii, then, by replacing A and

AJ with <I>A and $Aj respectively, we may assume that

and

T9n-in(p)[\TpA^n 0 = 1,..., n)

hold. Then we immediately find the desired results. Therefore it suffices to

show the existence of such <P. This is an immediate consequence of the following

lemma.

Lemma 1.6.5. Let X be a complex manifold, p a point of T*X—T$X,

H=Tp(C*p) and g a symplectic transformation of Tp(T*X) such that g\^

= id^. Then there is a homogeneous canonical transformation (P: (T*X, p)

-*(T*X, p) such that Tp$ = g.

Since the proof of this lemma is easy, we omit it.

Chapter II. Holonomic Systems of D-type

Let X be a complex manifold, Y a hypersurface (possibly with singularities)

of X and j the inclusion map from X— Y into X. In [3] Deligne proved the

correspondance of locally constant sheaves on X— Y of finite rank with integrable
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connections with regular singularities along Y. We shall re-interpret his result

by the terminology of ̂ -Modules.

Let X be a complex manifold, 0X the sheaf of the vector fields and Q%

the sheaf of the Jc-forms. Note that @x contains Ox. We write Qx for £2^imX.

In what follows n denotes dim X.

Let fF be an 0^-Module. Remember that an integrable connection on

^ is a map ®x® IF Bv®s*-*P vse^ satisfying the properties
c

for v, vl9 v2 e ®x, s, sl9 s2 e & and a e Gx.

Then it is easy to see that we can endow & with the structure of ^-Module

so that Pv(s) = vs and that the structure of 0^-Module on $? coincides with that

induced from the structure of ^-Module, namely, an integrable connection

is nothing but a ^-Module. Let F be an integrable connection on & and

consider the associated de Rham complex

O \ ^\ ^5" <Vi O' • 35" d ^ ^- /o\ Ol d -. <& (3\ O2 d ^ ... d ^ azr fi* O" v O^^. i t l y t^ \£y &ftjf . tx^ - - > tjr \g) &£x - > tjr v^y ""X - - "^ ^^ "^X - ^"
(?X C'X <?X <?X

Here the operator is defined so that the following relations (2.1.2) are

satisfied by the aid of a local coordinate system (xl5..., xn).

ds= ^ P_d_s®dXj for
j-i a*,

a) for seJ5"®^ and

Here S A W , for example, is considered as a section of &
<?x

On the other hand, we can consider the following resolution of Ox as a

^-Module :

(2.1.3) 0 < - Ox < - % +-$— % ® 0X <^— % ® A 0X <-L-
fi'x ^x

... < d ^x® A Ox< - 0.
Ox

Here the homomorphism &x->&x is given by P*-*Pl and (5 is defined by
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(2.1.4)

Then we find that .F ® Q'x is nothing but je^^^x (@x ® A
0X 0X

sidering their cohomologies we also find

(2.1.5) tfk(& ® Q'X) = £^X(&X9 JF).
e>x

111 other words, we obtain

(2.1.6) Rjtfn~Sx(0X9 &) = & ® Q'x.

§2.

Let 7 be a hypersurface of a complex manifold. Let L be a locally constant

sheaf of finite rank on X— Y (i.e.s locally free C^__r-Module of finite rank).

Let j be the inclusion map from X— Y into X. Then j^.(L® &X-Y) has ca-
c

nonically a structure of ̂ -Module. Fix a non-singular point y0 of Fand choose

a local coordinate system (x1?..., xn) in a neighborhood 17 of j;0 so that y0=Q

and that 17 f) Y is defined by x1==0 in 17 and I7 = {x; |x|<l}. Set L7± = {xel7;

±Rex1> — llmxjl}. Then L is a constant sheaf on 17*. Let f± be the iso-

morphism L\V±-*CV± and f±ii (/ = !,..., m) be the composition of f± and the

f-th projection: Cu±-*Cv*. We say a section s of j*(L®&x-y) at ^0 is in a
c

Nilsson class (resp., in a strict Nilsson class) at y0 if there are C>0, N>Q and

s > 0 such that

(2.2.1) |/

(2.2.2) (resp., \f± jf

for xeL^i with |x|<e and for any i = l,..., m. This notion does not depend

on the choice of local coordinate systems.

For any section seT(l7; j^(L®^x_y)),/±ji(s) can be prolonged to a multi-

valued function on 17—7 with finite determination. Therefore we can
IV

write /±sf(s) in the form £ £ ^Aj(x)xi(l°gxi)J» where / is a finite
Ael j=l
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subset of € such that l-n&Z for /L^e/ and a^(x)er(V -Y\(9X}. Then

the condition (2.2.1) is equivalent to saying that fl^/x) are meromorphic
functions with pole along Y. Therefore f± ti(s) satisfies a holonomic system of

linear differential equations whose characteristic variety is contained in T$X

U T$X. Furthermore the holonomic system is with R.S. Hence s itself satisfies

a holonomic system of linear differential equations with R.S. Conversely, if

s satisfies a system of linear differential equations withR.S., then so does/±>l-(s).

Therefore the condition (2.2.1) is satisfied.

More generally, we say that a section ofy!i.(L(H)^x_y) is in the (strict) Nilsson

class if so is it at any non-singular point of Y. We shall denote by ^ (L) (resp.,

&o(Lj) the subsheaf of j*(L®Gx-y) consisting of the sections in the (resp.,

strict) Nilsson class.

The following theorem is proved in [3] Chapter II (Proposition 5.7,

Theoreme 6.2 and Theoreme 4.1. See also Appendix § C of this article). For

brevity, we shall write & and J^0 for jg?(L) and &0(L).

Theorem 2.2.1. (i) &0 is a coherent Ox-Module.

(ii) JSf = Jrp^,n(jSf0) and ^|y](^) = 0 for fc^O ; jr£y](J2?) = 0 for
any k.

(in) Let s be a section of j*(L®&x_Y) on an open set U of X.

Suppose that s belongs to 3? (resp., J^0) outside a closed analytic subset of U

of codimension at least 2. Then s belongs to jgf (resp., &0).

This theorem immediately implies the following theorem.

Theorem 282.2. (i) & is a coherent @x-Module, and, moreover, £? is

holonomic.

(ii) 3? is a system with regular singularities along T*TegX.

Proof. It is clear that &x&o ls a coherent ^-Module and holonomic
on X-Y. Therefore ^ = ̂ xm(^x^Q) is also holonomic ([8]). The

assertion (ii) is clear.

In [3] the following theorem is also proved. (See also Appendix § C of

this article.)

Theorem 28293. R<^^X(0X, jgf ) = R/*(L).

This theorem combined with Theorem 1 .4.9 of Chapter I, Section 4 implies

the following theorem.
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Theorem 2.2.4. <e™ =j*(L® Ox_ Y) .
c

Proof. It follows from Theorem 1.4.9 that

On the other hand we have

c(Rjt(L)9 Cx)=Rji(L*),

where L* is the sheaf on X—Y defined by Jf^c(L, Cx_y), because

RjT«*c(TR/iL*, Cx) = Rj+L. Thus we obtain &«> = RjP»»>c(Rj i(L*)9 0X)

Q.E.D.

§3.

In this section we first introduce the notion of a holonomic system of D-

type, and, then we investigate some of its basic properties.

Definition 2.3.1. Let Y be a hypersurface of X. A holonomic system 3?

of linear differential equations**) on X is said to be of D-type with singularities^

along Y if it satisfies the following conditions:

(2.3.1)

(2.3.2) X has R.S. on TfX.

(2.3.3) ^fy](jSf) = 0 for any /c.

We saw in the last section that, for a locally constant sheaf L of finite rank

defined on X— Y9 &(L) is a holonomic system of D-type.

Conversely, suppose that & is of D-type along Y. Then L=

3#*»*iiX(@x> &)\X-Y i§ a locally constant sheaf of finite rank on X—Y. Con-
sider the ^-linear homomorphism ^: jS?-»/si!(L®0x_y). The homomorphism

^ is an isomorphism on X—Y. Since the kernel of \l/ is contained in 3F$(&)

= 3? py](J20, ^ is injective. By condition (2.3.2), ^(j§f) is contained in j§f(L).

Since iK<^) an^ &(L) coincide outside 7, the condition (2.3.3) implies that

Thus we have obtained the following theorem.

In the sequel we shall simply say "holonomic system <g of D-type", namely, omit "linear
differential equations". We also often omit "with singularities".
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Theorem 2,3.2. (i) The category of holonomic systems of D-type along

Y and that of locally constant sheaves of finite rank on X—Y are isomorphic

under the correspondences J£*-*<%?***gx(&x, J§f)|z_y and LH-»JS?(L).

(ii) If a holonomic system J? is of D-type along Y, then we have

(iia) ^^jj-1^

and

je$(3'00) = Q for any k.

(lib) If the support of a section s o/^f00/^ is contained in an analytic

set of codimension^2, then s is zero.

(iii) For any coherent Ox-sub-Module <& of <£ and an analytic subset

Z of codimension>2, 3?\x\z{&} is a coheretn 0x-Module.

Proof. All assertions have already been proved except (iii). Let us prove

(iii). Suppose that Y is defined by/=0. Then, by Hilbert's Nullstellensatz,

& is contained in f~N&0 for JV»0. Since ^px|z](^o) = °^o (Theorem 2.2.1

(iii)), Jf gy|z](#)is contained mf~N&09 and thus coherent. Q. E. D.

In the rest of this section we show several basic properties of a holonomic

system of D-type.

Proposition 2.3.3. Let & be a holonomic system of D-type along a hyper-

surface Y. Let S be a hypersurface of X. Then

(i) |̂S](^) = 0 for k^Q

and

je gx|s](J2?) is of D-type along So Y.

(ii) (^fs](j^))00 = e^|(^00).

Proof. The assertion that ^ffX|S](«S?) = 0 for /c^O is obvious, because S

is a hypersurface. Let us prove that J2?' = tf PX|S](^) *s of ^-type along S U Y.

The condition (2.3.1) in Definition 2.3.1 is clearly satisfied. We show that the

condition (2.3.3) in Definition 2.3.1 is satisfied. By (1.2.7) of [8], we have

(2.3.4) Rr[SUy]Rr|-X|S-j(^f)=Rr|-X|S]Rr[SUy](«^f).
On the other hand, we have the following commutative diagram:

(2.3.5)
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Since Rr[n(^) = 0, we have Rr[Sun(^) = Rr[S]Rr[n(^) = 0. Hence (2.3.5)

implies

(2.3.6) Rr[

Therefore we have by (2.3.4) and (2.3.6)

Since Rr[S](.Sf ) is supported by S, this clearly vanishes. Thus we have verified

the condition (2.3.3).

Next let us prove that £?' has R.S. on Tfsuy)X. We write S = S0 U Si so
that S0 and S1 are hypersurfaces and that S0c7 and S1 n Y is codimension

greater than J. Since <e' = 3? on X~Si7 &' has R.S. on TfX. Let us prove

that jg?' has R.S. on T^X. Let x be a non-singular point of Si — Y. Then, in

a neighborhood of x, 3? is isomorphic to a direct sum of finite copies of ®x.

On the other hand, tf\x\sd®x) nas regular singularities along T|XX in a
neighborhood of x. This implies that jg?' has R.S. on

Now, we shall prove

First note that Theorem 2.3.3 (iia) entails that

RFSU y(Rr[X|S](^f)°°) = 0

holds, because <£' = Rr[X|S](^) is of D-type along Su Y. Therefore we have

Thus we have

Rrs(j^) = RrsRrsuy(j^«)^

Q.E.D.

Proposition 2.3.4. Let Jt be a holonomic @x-Module, Z an analytic

subset of X, and Z0 the union of irreducible components of Z of codimension

1. Assume that ^ has R.S. on T%0X and that SS(^)c=7r-
1(Z) U T$X.

Then JSf = ^px,Z](«^) is of D-type.

Proof. We may assume that Z is a proper analytic subset. Let ZL be the

union of the irreducible components of codimension greater than 1 . Let i be

the imbedding from X — Z into X — Z0. Let L be the locally constant sheaf

x_z. Then Jt is isomorphic to L®(9X on X — Z. Since Zl
c
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has codimension greater than one, L = /*L is also a locally constant sheaf on

X — Z0. Let 3?' be the holonomic system of D-type with singularities along Z0

corresponding to L. Then we can construct the homomorphism if/: ^-+3?'™,

because ^/w=j*(L®0xlx-z)=J*(^lx-z) holds. Here j denotes the im-
bedding of X — Z into X. Since ^ has R.S. on T%0X, the image of \j/ is con-

tained in 3?' . Thus we obtain the homomorphism Jt-+3?' , which is an

isomorphism on X — Z. Therefore JSf = «^px|z](«^) is isomorphic to <£'

'). Q-E.D.
Proposition 2.3.5. Let <g be a holonomic @x-Module of D-type along a

hypersurface Y, and let s be a section of Jg700. If s satisfies a holonomic system

of micro-differential equations with R.S. at each point on TfresX — T$X, then

s belongs to 3? .

Proof. Let s denote the section l®s of #«> ® TT1^00. Then s

belongs to (^®^)reg on TfregX-TJX. Since jg? has R.S. on r'X-Tr1

®
(*sing)> we have (^®^)reglr*jf-1r»i(y8inB) = (^®-^)lr*jf-ic-i(rsing)- Therefore
s belongs to ^®^f on T*X-irl(Y. ,-..)- T%X. Then we can apply Theorem

a
1.2.1 to conclude that s belongs to <f ®JSf on T*X-iCl(Ysin ). Therefore s

31

belongs to JS? outside Ysing. The desired result then follows from Theorem

2.3.2 (iib). Q.E.D.

Proposition 2.3.6. Let & be a holonomic @ -Module of D-type with

singularities along a hypersurface Y. Let s be a section of <£™ and s = l®s

the corresponding section of <f °° ® ^°°. Suppose that supp (S) fl (T$X - T$X)
3>°°

is a nowhere dense subset ofT$X — T$X. Then @s is a holonomic ^-Module

locally isomorphic to a direct sum of finite copies of (9X.

Proof. By the preceding proposition, s belongs to &. On 7reg, this pro-

position is evident. Hence @s is a holonomic ^-Module locally isomorphic to a

direct sum of finite copies of (9 on X-7sing. Set L = JfU*s(05 ^s)|x_ysing.

Then L is a locally constant sheaf on X-Ysing. Since n1(X) = ni(X- Fsing),

L can be extended to a locally constant sheaf L on X. Set j^ = Ox®L. Then
c

Jf is isomorphic to @s outside Fsing. Hence an injection j: ^l^-ysing-*

•^Ix-rsing can be prolonged to J: ^r->^°°. Since ^rSing("O =
^®^ysing(^) = 0, there is a section s of Jf such that s=j~l(s) on X-7sing.

0

Hence J(s) = s on ^~7sing, which implies s = s. This shows that @s is a quo-

tient of jV and we obtain the desired result. Q. E. D.
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Let 3? be a holonomic ^--Module of D-type with singularities along Y.

Then & = g'(L) for a locally constant sheaf L. We call a section s of JSP00 is in

the strict Nilsson class if 5 belongs to 3fQ(L). Now fix a non-singular point
N

y0 of 7 and define/+ t as in Section 2. Then/+ t(s)= X Z ^A /W^iOog^i)-7?
AeJ 7=0

where I is a finite subset of C such that O^ReA<l and a^(x)E(9(U— Y).

Then 5 is in the strict Nilsson class if and only if axj(x) e &(U}. Thus we have

Proposition 2.3.1, A section s of g is in the strict Nilsson class if and

only if ordr*yreg*(s)c:{AeC; ReAg-1/2}.

Proposition 2.3.8. Let & be a holonomic @-Module of D-type with

singularities along {x1 = 0} and J^0 the subsheaf of <£ consisting of the sections

in the strict Nilsson class. Then the following properties hold.

(i) (XiDJ&oC&toDj&^&o 0/ = 2,.. . ,n).
(ii) There is a polynomial b(X) such that D1fo(x1D1)=S?

0c:e^f0 and any

root X ofb(X) = Q satisfies O^ReA<l .

Proof, (i) is obvious. Let us prove (ii). There is a finite set I of {A e €;

O^Re A< 1} and an integer N such that for any section s of J^0

/± ,;(*)= S
Ael 7=0

for some

Set fo(s)= n (s-%)N. Then it is easy to check that xr16(x1D1)s is in the strict
AeJ

Nilsson class. Hence we have

Q.E.D.

Chapter m. Action of Micro-differential Operators

on Holomorphic Functions

The main purpose of this chapter is to clarify the action of (£(G; D) on

holomorphic functions. In the course of the discussion we introduce a special

class / of micro-differential operators and prove several basic properties of &

(§ 3 and § 5). These materials will be effectively used in Chaper IV. We

also recall some basic facts concerning multi-valued holomorphic functions for

our arguments in later chapters. (§ 4)
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§1.

As shown in [19], operators in G(G; D) act on the relative cohomology

groups with the sheaf of holomorphic functions as coefficients. On the other

hand, [10] and [2] show explicitly how micro-differential operators act on a

space of holomorphic functions. The purpose of this section is to discuss their

relationship.

1.1. The action of (E(G; D) is defined in [19] in a purely cohomological

way, especially by the aid of residue maps. Hence we begin our investigation

by the study of residue maps. Let X and 7 be two complex manifolds of

dimension n and 771, respectively, and let / be a smooth holomorphic map

from X to Y. One can define the residue map

Here Qx (resp., QY) denotes the sheaf of holomorphic n (resp., m)-forms on X

(resp., Y). Let us recall how this homomorphism is constructed. Let &(/>q^

(resp., ^(/'3)) denote the sheaf of (p9 g)-forms having hyperfunctions as their

coefficients (the reader can replace here hyperfunctions with infinitely differ-

entiate functions). Then we have the flabby resolutions of Qx and QY:

n O <3tf(n,Q) d ^ 6%(n,l) d tf2f(n,n) AU - > S,£X - > ^f x - > ̂  x - > - > ^0 x - > U

and

0 _ > QY _ > J>(/I'0) -L+ ^(
y

m'l} g > ... _JL» ^Crn.m) _ , 0.

On the other hand we have

) - > 0<Y
m>k-» for

by integration along fiber. It is easy to see that this gives the homomorphism

of the complexes

0

i
0 - > "• - > 0 - >

and hence we obtain the homomorphism

If g : Y-+Z is another smooth map of fiber dimension r, then the homomor-
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phism ^a(g°f)\&x\l + r]-*Qz coincides with the composition

and Rgf!R/!Dx[/ + r]->R^jOy[r] obtained from R/?Ox[/]-»Oy by applying
the functor R0|[r],

1.2. We shall calculate the residue map when the cohomology group
^

Rlfi(Qx) is given by the Cech cohomology.

Let us consider the special case where the fiber of /is of dimension 1.
Let us suppose that there is a closed subset Z of X proper on Y and suppose

that X is Stein. Then

Suppose that the section of R^^Qx) is given by a section <peF(X — Z; Qx)

through the homomorphisms

F(X~Z- Qx) — * mz(X- Qx) — * H°(Yi R/*RF2(0*)[1]) — » ̂ (7; R^QX) .

Let us calculate the corresponding holomorphic function on Y. Consider the

exact sequence of the complexes

0 - > rz(X; #£•••>) - > F(X; ^i».->) - , r(AT- Z; *£.•>) - > 0 .

The homomorphism F(X-Z; Q^-tH^X; Qx) is derived from the homomor-
phism H\r(X-Z\^(^}))^H\rz(X\^^)). If we choose an element $

of T(X; Jf^'0)) such that ^ coincides with (p on X-Z, then 50 eTz(Z; Jr^«1))

gives the element of Hl(rz(X\ 3$(
x
l>')) = Hl

z(X\ Qx). Hence the corresponding

holomorphic function is given by the integral

along the fiber.
Take an open subset D containing Z with a smooth boundary. Then,

by Stoke's theorem,

\50 = \ 5<p = \ 9.
J JD JSD

Thus we obtain

Proposition 3.1.1. Let the fiber dimension be 1 and Z a closed subset of

X proper on Y. Let cp be a section of Qx on X — Z, and [cp] the element of

Hl
z(X\ QX) corresponding to (p. Then the corresponding element of H°(Y; QY)

is given
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where y is a cycle in the fiber f~l{y) around Z n f~1(y}>
V

In what follows we shall use relative cohomology groups of covering (Cech

cohomology groups). See e.g. [20] for the definition of the relative Cech

cohomology groups.

The following Corollary 3.1.2 is an immediate consequence of Proposition

3.1.1.

Corollary 3.1.2. Let X, Y and Z be as in the preceding proposition, and

let <% = {Ui}ieI be an open covering of Y, ^/ = {^rJi6/o
 a subcovering of ^ and

T=Y- U Ut. Let % be the open covering (f~l(Ut)-Z)ieI of X-Y and %'
ie/o

Z}ielQ the subcovering of 3t. Let ((pi0i.m^r) be a relative cocycle

Zr(% mod $' ; Qx). Then the image of

Z'(® mod #' • Qx) - > H'f-1(T}(X-Z; Qx) - > H?-\mnz(X'9 Qx) - >lPr(y ; QY)

is the image of the cocycle {\l/i0t .._>£r} e Zr(W mod W ; QY) by the homomorphism

Zr(® mod <%' ; QY) - > Hr
T(Y\ QY) ,

where

for a cycle y in the fiber of f around Z.

Corollary 3.13, Let X, Y, Z, W, W9 $ and $' be as in the preceding
~ Si X

corollary. Let $ be the open covering of X given by {Ua^, Ub^}iel9 where

£/a(.):=/-i(Lr.) and Ub(l}=f-l(U^-Z, and %' the subcovering

{Ua(i)}ielo U {^(0}fe/.

Let cp be a cocycle in Zl<+1(^ mod ^'; (9X). Then the image of <p by the map

Z^H^modf'; Qx^H?-\tT}nz(X; Q^H^Y^ QY)

is given by the cocycle \l/ 6 Zr(W mod °tt' ; QY), where

$i0,...,ir~ Z (-1)V + 1\ <Pa(i0),...,fl(iv)J&(iv),...,6(»V-n)'v=0 Jy

where y is a path in the fiber of/ around Z.
~

Proof. By taking a refinement of ^, we may assume that I7fl(j) and C/fc(i)

are Stein open subsets. If cp is the image of an element 0 in Zr(4r mod ^'; Q%)
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by the homomorphism Zr($ mod <^'; Qx}-*Zr+l(% mod 4'\ Qx), then we have

and other ^'s are zero.

It is easy to see that if (p is a coboundary then so is \//. On the other hand,

Hr($mod$f; Qx)^Hr(<&mod$'', Qx) = Hr
z
+^f-im(X; Qx) and hence

'; Qx)).

This proves the corollary.

By the repeated application of the preceding corollary, we obtain the

following corollary.

Corollary 3.1 A Let Ybe a complex manifold, <% = {Ui}i€l an open covering

of Y and ^' = {Ui}i6lo an open subcovering of W and T=Y- W I//. Let X be
ie/o

an open subset of Yx Cl, f the projection from X to Y and Zj a closed subset

of 7x€(j = l, ...,/). Suppose that Z = Z± x ••• xZ^YxC1 is a subset of X.

Set Vj = X-CX'"xCxZjxCX"'XC. For p,qeZ with p^q, let \j>, q]

denote the set of integers in such that p^i^q. Let ifr* be the open covering

t^(j,o}a,06[i,nx/9 where W(Li) = F,- n Ut. Let ifr1 be the subcovering of W

consisting of WUti} with ze/0 . Let cp be a cocycle in Zr+l~l(^ modifr*'; Ox).

Then the image of cp by the map

is given by the image of the cocycle $ e Zr(<% mod W ', 0y) by the map

'i 6y)-»Hr
T(Y\ 0Y). Here <f> is given by (up to sign)

r+l
where k= ^ ^(v)(a(v) — a(v— 1)) and y,- is a path in (FxC)x(j;} around

v=2 Y
Zj (j = l,..., /). Here the summation is over the set of (a, /f) such that a is a

nondecreasing surjective map from [1, r+J] to [1, /] and /? is a nondecreasing

surjective map from [1, r+/] to [0, r]. (Note that we may assume that (a(v),

j8(v))-(a(v-l)s j8(v-l)) is (0, 1) or (1, 0); otherwise <p = 0.)

Proof, We shall prove this corollary by the induction on I.

We may assume that X=YxCl. Let ifr" be the open covering

{r(j,o}Moj]xj and &' the open covering {^a,0}Mo,nxj0u[/5nxr5 where PF(0s0

=/-1l/£. Consider the image of <p by the map Hr+l~l(i^ modW', Ox)
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-»Hr+l(^ mod^"; <9X). Then the image is given by \l/EZr+l(^

&x), where

r(Q,il),(ji,il),...,(jr+i,ir+i)

= -9lj..'.),...OV,i,tn)» if

and i// takes the value zero otherwise. Let Xl be defined by YxC1'1, g the

projection from X onto X^ defined by (y, tl9..., tl)-^(y, f i , . . . , ^-i), /i the

projection from J^ onto Y, and Z t=^(Z). Let or1 = {^iai0}OV)6[0iZ_1]x/

and -)Ti = {l^io-,0}0-,0e[o5/-i]xj0u[U]x/ be the open covering of X± and its
subcovering defined in the same way as ^ and ifr" . Let if ± be the covering

of X given by ^^==^-1^^= WJti (where ^lov) = C/.x C'^-Cx ••• x€

x Zj x € x - - - x €) and Frbl/f0 = ̂ -! Wl(jti) n 7, = ^o.fi) n Fz for j e [0, / - 1 ] and

ie/, and ^! the subcovering {^flO-,0}o-j0e[o^-i]xj0 U {WbU}i)}(j>i)eLOil.1}XI.

Then F7a(i/j0 c Wjti and ^Ffe( j)i} c Witi. Hence, by the preceding corollary, the

image of \j/ by the map

is given by the cocycle $ EZ^1'1^^ mod^i; 0Xl), where

^(JO.io) . . . . . ( J r + l - l , » r + l - l )

= Z (— l)v \ ^ao,io),...,(7v,»v)a»v),...,(Mr-M-i
V JVj

Therefore <^=0 unless j'M^0 except one /z, and

Therefore $ is the image of <p e Zr+l~2(ir1 mod y^"i ; @x) given by

^0'i,ii)...OV+i,ir+i)

= Z (- 1)V \ ^(ji,ii)...OWv)(Uv)...(MV-M)'
V J7Z

Therefore, by the induction of /, <j) is given by

0io,...,fr=S (""l)^ \
^ V i X ' " X y j _ j

= S(-l)fc+V \
,/ 7 1 x «"X 7 j
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r+l-l
where k = £ /?(/4)(aQO - a(^u - 1)). Set &(JJL) = a(/0(^ g v) and a(^) = / for fi > v.

Since a(v) = /— 1, and ^(fj) = ̂ —l for /x>v (other terms do not give any con-

tribution),

Z (500 - *Gi - D)J8QO = t («00 - *G* - l))i»0*) + j»(v + 1) s fc + (v - / + 1) ,
M=2 fi=2

we have the desired result. Q. E. D.

1.3. We shall consider the action of (£(G; D) in the following special case.

Set X = Cn and let c and a/j = 2,..., n) be positive numbers.*** Set

(3.1.1) Z = Z(a2,...,an;c) = {z6C«;aJ|z1|^|zJ.|

for j = 2,..., n, cRez j^ l Imz j l }

and let G = G(a2,...9 an\ c) be the convex hull of Z, i.e.,

(3.1.2) G(a2,. ..,*„; c) = {zeC

for j = 2,..., n and

The dual cone of G is given by

Set

Z = {(z, w)6C"xC«; w-zeZ}

and

G = {(z, w)eC w xC"; w-zeG}.

For a G-round(**) open set D, (£(G; /)) is defined by

([19], §3). The elements of H%(DxD; Oc2n) being difficult to express ex-

plicitly, we shall consider

instead of the relative cohomology group with support in G.
~ n

Clearly C2n — Z has an open Stein covering \J Vh where K- = {(z5w);
j=i

cRe(w1-z1)<|Im(w1-z1)|} for 7 = ! and 7y = {(z, w); aylzi-w^lzy-w,!}

for j = 25..., n. Hence, if D is G-round and holomorphically convex, then

(*) Actually c and a} may be zero.
(**) ^ Open set /> js caned G-round if (D-f G)n(^+Gtt)==A where
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Hn
z(D x D; 0) = 0( ¥.• f| D x D)/( Z 0( r\ Vj n D x D)) .

7=1 fc=l 7**

Set K= n F7- = {(z, w); cRe(w1-z1)<Im(w1-z1)!, aj|21~w1|<|zj-wj.| for

7 = 2,..., w}.
Any holomorphic function /(z, w) defined on Fn DxD determines an ele-

ment in JfJ(DxZ); 0) and hence an element in ffi(G; D), which we shall denote

by [/(z, w)].
Let Oj and Q2 be two G-open and holomorphically convex sets such that

Q! => Q2 and Qj - Q2 a c D. Then <E(G ; D) operates on H^a2(Q1 ; 0) =

G(O^I<9(Q^ = G(O2 n D)l(P(Ql nD). In the next subsection we shall write

down this operation explicitly.

1.4. Let c' be a positive number greater than c9 and let I be a line in C

such that { w j e / ; e'|Re wj — llm wj} is compact. Let a and ^ be two points

on I such that Ima>ImjS. We define L = {we€w ; W j e J } , L±={weC"; Wj

eJ + R*} and L0 = {weC"; \vl e [a, jS]}. Here [a, j8] means the segment joining

a and /?. We shall denote by G' the closed cone G(a2,...s aw; c') defined by the

formula (3.1.2). The cone G' contains G. We shall assume further that D

is holomorphically convex and G;-round. Let J3 be the open subset {zeD;

(z + G)nLczL0nD,(z- |-G')nLc: JD, c /Re(a-z1)>Im(a-z1)>cRe(a-z1) and

c'Re(^-z1)> -Im(j8-z1)>cRe(^~z1)}. One can easily verify that D is

also holomorphically convex.

Let/(z, w) be a holomorphic function defined on V n D x D and Q a G'-open

subset of Cn. We shall define a homomorphism

Ki(f) : o(Q n D) — > 0(0 n 5)
by the formula

Here idw^ means the contour integral along the cycle

-he} with 0<e«l.

Let us verify that K^(f} is well-defined. For a holomorphic function

w(w) defined on O n D, we put

g(z9 w1) = )Jw2"-i)Jwn/(z, w)w(w).

For (z, Wj) € C" x C, we define
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T(z, w1) = {(w1, w')eC»; ̂ -z^^K-zJ for j = 2,..., n}

Then it is obvious that g(z, wj is defined at (z, wt) if zeD, cRe(w1 —
|Im(w1-z1)| and T(z, w J c z O n D .

Wj —plane

Fig. 3.1.1

Consider a path y in the w^plane as figured in Fig. 3.1.1, that is, y is a path

starting from a and ending at ft and y is contained in

{wj; |w1-z1|=e, cRe(w1-z1)<|Im(w1-z1)|}

U {wx; w

U (w t; w

for 0<e«l. Such a path y can be described in the wrplane because zeD.

We define

Hence, in order to see that K^(f)(u) is defined on £2 n 5, it is enough to verify

that T(z, wJcO n D and cRe(w1 —z1)<|Im(w1 — Z j ) | if zeQ n 5 and w1 ey.

The second condition is satisfied because w^ ey. T(z, Wj) is contained in any

neighborhood of z if wx is sufficiently close to z. Hence we may assume that

W1 = z1 + f(a~z1) or W1 = z1 + ^(j5-z1) with 0<£:gl. Then T(z, wj is con-

tained in (z + GO n Li. Hence T(z, WA )cz + G; c Q n (D + G'). Moreover we

have T(z, w^ci^z + G') n L) + G / f lc=D + G'fl. Hence we obtain T(z, Wj)c
/ a )n(D + G/) = D. Thus we have shown that "££(/) is a well-defined
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homomorphism from G(Q n D) into 6(Q n 5). Q. E. D.

Proposition 3.1.5. Let Q} =3 Q2 be two G'-open subsets such that Q^ — Q2 € D

and that Q^D and Q2r\D are holomorphicaUy convex. Then for f e ( 9 ( V

n D x D), the action of the corresponding element [/] in 6(G; D) on H^x_ f l2 •

(Q1 ; @x) coincides with

Proof. Let (^ — £22)G, be the topological space Q1—Q2 endowed with the

G'-topology. Then the action of [/] on U^_02(jQ; Ox) is a sheaf endomorphism

of the sheaf Q — Q2\-*HQ_Q2(Q', 0X) on (£2X — Q2)G'. The endomorphism induced

from K^(f) gives also a sheaf endomorphism of the same sheaf on (Ql—Q2)G
r'

If they coincide on an open basis of (Q^ — Q^o^ tnen tney are equal. Thus it
is enough to show that, for Q = z0 + (Ini G'), the action on H^_0z(O: Ox) of [/]

and that of K^(f) coincide. Then O n Q2 and Q are holomorphicaUy convex.

Hence we may assume from the first that Q1 and Q2 are holomorphically convex.

The action of H|(D x D; Oxxx) on H}2l_n2(Ql ; 0X) is given by

i n D) x (Q1 n D) ; oxxx)

Here a is the cup-product and /? is the residue map.

Let u be a holomorphic function defined on Q2 n D and [u] the corre-

sponding element of //^l_D,(O1 ; d?x) = 0x(O2 n D)/(9x(Ql n D). We shall express
V

the image of [/]®[«] by a using Cech cohomology.

Take a Stein open covering ifr = {Wj}j^t_iVl of ((Q{ n D)x(Q1 n D)-Z)

U (Oj n D) x (O2 n D), where M/
0 = (f31 n D) x(O2 n D) and 14^=^. n (^ n /))

H

x ((2t n D) for j = l, 2,..., 77. Then f ( z , w)w(w) e d?( A Wj) determines a coho-
j=i

mology class in Hn(iT ; &xxx) = (9( A W/)/( Z ^(A W*)), which we shall
j = 0 k=0 j^k

denote by [/(z, VV)M(W)]. Then a([/]®[w]) = [/(z, w)w(w)] holds if we identify

Hn(^ ; ̂  x x) = Hn((Q, nD)x(QinD)-Z)o ((Q, n D) x (Q2 n D)) ; ̂  x x)

with
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For any holomorphic function CP(Z, w) defined on r\ Wh let us denote by
j=o

the corresponding element of HSo1n(flinJ»x(o1-i22)((Oi n D) x (f^ n £); 0Xxx)

Thus, in order to prove the proposition, it is sufficient to show

(3. 1.3) for any <pe0(A Wj),

f f f\ dwl &> dw2 • • • § dwncp(z, w) modulo (P(Qi n D)
^y J J

coincides with the image of [#>] by ft. Here 7 is the path from a to /? given in

Fig. 3.1.1.

Since Z n (Ox n D) x (^ - Q2) = 2 n (Ot n D) x (C" - O2)5 we can apply the

excision theorem for relative cohomology groups and we obtain the isomorphism

D x ! n Z>; Ox*x .

Let ^" = {Wfj}j=0i_in be the Stein open covering of ((Ql n D)xCw-Z)

U (O! n D) x O2 given by

^ = (O tnD)xfi2 , W ^ ^ K y n C O i n ^ x C " for j = l, ...,n.

Then we have the isomorphism

Hence we have

r r r
We shall show that, if <pe(9(r\ Wj) for some /c, then \ dw1 4> dw2'~ <P dwn

_ J^fe Jy J J
cp(z, w) is holomorphic on Ql n D. If fc = 2,..., n, then Cauchy's integral formula

implies

®dwkcp(z, w) = 0

f c c f c rand hence \ dw1 i dw2 • • • cb dwn(p(z, w)=0. If fc=0, \ dwj d> dw2 • • • & rfww(p(z, w)
Jy J J Jy J J

is holomorphic on Qi n D by the argument employed in order to prove the

holomorphic character of K%(f)(u).

Now, let us suppose that cp is holomorphic on r\ Wj=(Qi f|D)x(O2 C\D)
n J^l

n r\ Vj. As was shown earlier, the holomorphic function
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g(z, w1)=<bdw2---*dw l l^(z, w)

is holomorphic if z e Ox n D and T(z, Wi) = {(wl5 w')eCn ; |wj —

for j = 2, . . . , n} c: Q2 n D. Let y J be the straight path joining a and /?. Then for

z e Q2 n 5, we have

\ 0(z, w1)dw1 = \ 0(z, w^dw!.
Jy Jyi

We shall prove that the second term is holomorphic on z e Ot n 5. In order to

prove this, it is sufficient to show that, if zeQ^ n 5 and wx eyj , then T(z, wt)

c &2 n D. Since z e 5 and wl e yi, we have

c' Re (wx - zj ^ |Im (wt - zt)|

and hence T(z, w1)c=(z + G/) n L. Therefore we have T(z, wjc:^ n D. On

the other hand D n L = <£. Hence we obtain T(z, wOc:^ n (D-5)c=O2 n 5.

Therefore, in proving (3.1.3), we may assume from the first that (p is holo-
AI

morphic on r\ W'}.j=o
Let us take a sufficient large positive number R such that |Re(w1 — z^\^

for w, zeO1-Q2. Set Z0 = {(z, w)eZ; Re^-z^^K}. Then

x (c»-o2)=Z n (Qi -Q2)
 x (Qi -^2) is a closed subset °f zo n (fi, -O2) x cn.

Hence the residue map

n D) x C-;

decomposes into

D) xC«;

We put Fi = {(z, w ) e C B x C B ; Re(w ]~z1)>^ or

and Vj = Vj (j = 2,,..,n). Then {F^^o, _ ?n is a Stein open covering of Cn

x Cn-ZQ. Let ^ff = {Wrf
J}J^ ..... B be the Stein covering of ((Qj n D) x CM-Z0)

U ( O 2 n D ) x C M given by JF5 = (Q2 nD)xC" and ^ = 7} n (Ox n D)xC"

for jf = l,..., n. Then we have

D) x C- -Z0) U (O2 n D) x

i nD)xC- ; d?xxj)

and y induces the homomorphism
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H -(IT; 0XXX) - - H»(W"- 6W=^W AQ W"j)l( ]Lo&xx

n
Let \l/(z, w) be a holomorphic function defined on r\ W", which represents

j=o
y([<p(z> w)]). Then it follows from Corollary 3.1 .4 that the image P'°y(i(p(z, w)])

= P'([\l/(z, w)] is given by

\l/(z, w)rfw modulo 0(Qi n 5) .
x . . - x y n

Here yj(j = 2,....) n) is a cycle in the w^-plane around {vv;-; |w7- — Zj\^aj\wi — zx |}

and 7! is a cycle in the w^ -plane around (w x ; Re(w1 — Zj)^^, cRe(w 1 — zt)

^|Im(w1 — z1)|}. Now, we shall investigate the relation between cp(z9 w) and

i/f(z, w) in order to show that

1 f f fdwl<$dw2--§dwn(p(z, w)= \ i/r(z, w)dw modulo
: J J J V I X " - X V H

Let ^ = {^}J-=0,...,n-t-i be the Stein covering given by UQ = V{ n (Q± n D)
xQ2, [7J.= 7 J . n ( ^ 1 n D ) x C B ( j = l,..., n), and l/II+1=(O2 n D)xfl2 . Then ^r

is also a Stein covering of ((Ot n D) x CB-Z0) U (Q2 n D) x CB, and ^ is a re-

finement of iT' and W at once.

Since 170 c Pf^5 I/,- c FF}( j = 1 ,. . ., n) and l/B + 1 c ^, the image of [<p(z, w)]

in HS+^o^n^xcnCCO! n D)xC»; ^XxX) is expressed by {<pio ..... J eZ»(^; ^XxX),

where q>io ..... in(i0 <•-•< in) are given by

hiwiin = 0 otherwise.

In the same way, we have U0aW^ Uj<=W'$ 0 = 1,..., n) and L/ n + 1 c=P

Hence [^(z, w)] is expressed by {^z-0j...,ij eZ"(^r; ^XA-), where ^Oi...,in (z'o
• • • < iw) are given by

• O j > jin = 0 otherwise.

As {^i05...sin} and { -̂0 ..... fn} give the same cohomology class in Hn(Qt\ &x*x)->

{(Pi0i,.,>in — ̂ i0 ..... tj is a coboundary. Hence there are holomorphic functions

0/k(0 / fc = ~0fcj) defined on n I/,- (j, /c = 0, 1,..., n + 1) such that
i¥=J,fc

<3^(z, w)= Z^B+iCz, w) on n l/~(^i n D ) x O 2 n A VJ9
i ' i^n+1 j=l
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and

\l/(z, w)= - E &1(2, w) on n u~(Q2 n />)xo2 n A F;. .
i ' i¥=l j = l

For zeO2 nl) and wx such that T(z, wjc^,

By Cauchy's integral formula, we find

^Wi0t,n+i(z> w) = 0 for i = 2,...,n

and hence we obtain

Since 00 n+ j(z, w) is holomorphic on 7 n (&x n D) x Cw,_ n

(z, w)^/w is holomorphic on Qi n 5. Here 7 is the path from a to ft given in

Fig. 3.1.1. Hence we obtain

(3.1.4)

<p(z, w)dw= \ 01>n+ t(z, w)dw modulo 0(Oj n 5) .
'

Similarly, by using Cauchy's integral formula, we find

However, again by Cauchy's integral formula,

(A* 0(z, w)dw = 0 for

because 0ij0(z
5 w) is defined on (£22 H D) x Q2 n n F;. Thus we obtain

j=2

Together with (3.1.4) it suffices to prove

0i,ii4 i(zJ w)rfw= \ ^ lsM + 1(z, w)Jw modulo

The function 0i>n+i(z, w) is holomorphic on A l/e^Oj n D)xQ2 n
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n r
C\ V'j. It is easy to see that h(z, w1) = \ cf)1 n+1(z, w)dw' is holo-
7=1 d e f j y z x - x y n

morphic if zeQl n D, T(z, wjc^ and w1-

Now let / be the path from fi to a described in Fig. 3.1.2.

w, — plane o

Fig. 3.1.2

If z 6 Q2 n 5 and v^ e y U 7', then T(z, wjc O2 and hence

\ h(z, w1)dwl — \ /i(z, w^dw^ = \ /i(z, wj^w, for
Jvi Jv Jy'

Next suppose that z e Ql n 5 and Wj e /. Then c' Re (wx —

llmCWi-zJI, and hence T(z9 wl)ez + G'ciQl. Since DnL7 = ̂ , T(z,

c:Q1 n L + c O i — 5cjQ2. Thus \ /i(z, w^rfw! is holomorphic on 6^ n
Jy'

This completes the proof of Proposition 3.1.5.
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§ 2̂.

The results in the preceding section yield the explicit formula for the action

of micro-differential operators on the sheaf of microfunctions etc., as described

in [10] and [2].

Let us first recall what is the kernel function of a micro-differential operator

(see S-K-K [24], Chapter II, §1.4). Let 4>A(t) be a holomorphic function

defined on T e C— R7 given by

where we choose a branch $A( — 1) = F(A). It follows from the definition that

$A has a pole at A = 0, — 1,... . We define by convention

for n = Q, 1, 2,..., where y = 0.57721... is the Euler constant. Then

in a neighborhood of A= — ft, where F(A, T) is holomorphic if A is in a neigh-

borhood of — n and T e C— R+. Thus we have

For a=(a1,..., aj, and z=(z1,...) zs), we set

^(z) = ̂ 1(z1)-^n(zn).

Let P(z, Dz) be a micro-differential operator defined in a neighborhood of

(z°, dzj). Then, we can expand P as a power series in Dl9...9 Dn;

E fl^z)/)|.
aeZ"

a;^0 0 = 2,..., n)

We set

where ^ = (1,..., 1).
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Then K(z, w) has the form

K(z, w) = K0(z, w) + -j—-rKl(z, w)log(w1—z1) + X2(z3 w),

where

a=(a l 5a')

K-l

Here (5' = (!,..., 1), z' = (z2v.., zn) and w' = (w2,..., wn). Then there are positive

numbers aj (j = 29...,n) and a neighborhood D of z° such that

(3.2.1) KQ(z, w) is holomorphic on {(z, w ) e D x D ; Zj^Wj (j = i,..., n)} and

Xi(z, w) and X2(z, w) are holomorphic on {(z, w) e D x D; [z^ — Wj| >aj\zl — wj

We shall define Z, G and Fas in Section 1.3 and use the same notations as

those used there with c = 0. This means, in particular, Z = G = {zeCn;aj\z1\

^\Zj\ for j = 2,...,n and Imz1 = 0, Rez^O}. Then K is holomorphic on

Fn D x D. Therefore K determines an element of H%(D x D; @XxX) and hence

thatof <£(G;D).

Set

PO(Z,D,)= Z floOOa;.
«i^0

Then P0(
Z3 ̂ z) is a differential operator of infinite order.

Set

A(z, w1? D,,)= E
a i<o

a=(ai,a')

For any c'>0, we take a, ^, G' and 5 as in Section 1.4.

Proposition 3.2.1. (i) // v(w') is holomorphic in a neighborhood of

{w'eC""1; \Wj — zj\^aj\z1 — w1\9j = 29...,ri}, then A(z,wl9 Dz)v(z') is well-

defined in a neighborhood of (z, WA).

(ii) Let QL and Q2 be G'-open subsets such that Ox— Q2<^5 and u(z) a

holomorphic function defined on Q2 fl D. Then the function K%(K)(u) is equal to

(3.2.2) (P\(u) = P0(z, Dz)u(z) + A(z, w1? DJu(

modulo &(Q± n5).
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Proof. The first assertion is obvious, because

A(z, w1? DJvtz.) = - \ K^z, wMw')dW,
J y 2 x - . . x y n

where yj = {vyJ-eC; \wj — zj\ = aJ\zl — w1\ + £} for 0<e«l.

Let us prove the second assertion. Clearly K%(K2) is holomorphic on

Q^nD.
On the other hand, it follows from the definition that

(K0(z, W) +JL-K^z, w)log(z1-wJ)Mw)dw,
y 2 x - " X y n «£/U

where y is the path from a to ^ described in Fig. 3.2.1.

Fig. 3.2.1

Let yf be the straight path [/?, a] from /? to a. Then we can easily verify

\ (X0(z, wJ + ̂ K^z, w)log(z1-w1)Mw)dw
J y' xy2

x '"xl ;ii ^./t*

is holomorphic on Ql r\ D. Thus

\ J^0(z, w)w(w)Jw= \ KQ(z, w)u(w)dw
J y x y 2

x - " x V , i J ( y + V ' ) x 7 2 x » . x y l l

modulo 0(Qi n 5) and the last term is equal to P0(
z> ^z)u(z) by Cauchy's integral

formula.

On the other hand, we have

-j- \ K&, w) log (w2 - z2)w(w)Jw
-n i J ( y + y ' ) x y 2 x - . . x y n

\ ^Z? wi' ^zOwC^i, z') log (wx - zjdw! .
Jy + y'y + y'

Taking the difference of the branch of log (wx — z^, we find that this equals
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l A(z, wl5 D,OW(WI» z')dWl. Q. E. D.

This proposition can be effectively used to clarify the action of micro-

differential operators on various sheaves, as we see below.

Case 1. Let cp be a real valued real analytic (or C1) function on an open set

W of Cn and S = 9~1(0). Suppose that Q = {ze W\ cp(z)<0} is pseudo-convex

and d(p does not vanish on 5. Set ^S\W = ̂ W-Q(^C»)\S anci (TjW)+ =
{(z, kdz(p)e T*C"; fc>0, zeS} and let n+ be the projection from (Tf JF)+ onto

S. Then <f°°|(r|jn+ acts on K+1 Vs\w. Let p be a point in (T$W)+. By an
affine transformation, let us assume that p = (0, dzj. Let P be a micro-differ-

ential operator defined at p. Then we can take {#;} and an open neighborhood

D of 0 such that the condition (3.1.1) is satisfied. Defining G as in Section 1.3,

and shrinking D so that D is G-round, and taking /, a and f$ sufficiently near to

0 and c' sufficiently large, we may assume that D is a neighborhood of 0. Hence,

by Proposition 3.2.1, we find that P operates on &(Q(}D)/&(Q) by the action

(P)a defined by the formula (3.2.2). Since ^s\w,P *s an inductive limit of
0(IJ n Q)/&(U), where U runs over the set of neighborhood of 0, P operates on

&s\w,P by the action (P)a with 0< -a«l.

Case 2. Let 7 be a non-singular complex hypersurface of a complex mani-

fold X. We defined in S-K-K [24], Chapter II, Section 1.1, the sheaf V$lx

on S$X (or T$X — T$X). This is an <f °° -Module. Let us choose a coordinate

system z = (zl5..., zn) of X such that Y is given by z^O. At # = (0, dzj the

action of a micro-differential operator P is given as follows: Set Qd = {zeCn;

llmzj}. Then V?lXa= Ito @(U n Qd)IO(U). Thus, in the same
1 1/30, 5>0

way as in Case 1, P acts on &Y\x,q as O^X wi*h 0< — a«l.

Case 3. Let M be a real analytic manifold and let X be its complexification.

Let <£M be the sheaf of microfunctions. The sheaf ^M is defined on TffX and

«ff acts on <£M. Let us choose a coordinate system z = (zl3..., zn) such that

M = {zeCm, ZjeR9j = l,...,n}. Consider a point g = (0, ̂ / — l dz^. Then

^M^ is an inductive limit of H%6(U; 6) with Td = {zeCn, — ̂ Imz^ Imz^

for j = 2, . . . , n and — 6 Im z t ^ — (Im z2 H ----- h Im zn)} and £7 is a holomorphically
n

convex open neighborhood of 0. Then we have U—Td= \J U n Vj(6), where

{-5Imz1<ImzJ.}, ; = 2,..., n, and F1(^) = {-(5Imz1< -Im

Hence
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7 = 1

Let P be a micro-differential operator defined on a neighborhood of #. Choose

corresponding G and D as before. Since the action of P as an element of
®(G; D) is local with respect to G-topology, P acts on ^ 'Miq by the action of

( /0«on0(t /n A 7/5)) and 0(17 n A 7/3)) (fc =1,..., w).
=

§3.

As seen in the preceding sections, operators in (£(G ; D) has a local property

with respect to G-topology, or, roughly speaking, operators in ffi(G; D) have
influence domain to the direction G.

We shall here introduce the class of operators where G is contained in a
complex line.

Let X and Y be complex manifolds, and let F be a smooth holomorphic map

from X to 7. Assume the fiber dimension of F is one. Set ?t = dim Y and

The 2(1 + n)-dimensional manifold XxX contains XxX

and the diagonal set X. If we employ a coordinate system (t, y) = (t, 3^,..., yn)

of X and y = (yl,..., yn) of y such that F is given by (t, y)*-+y9 then

{(f l f y, r 2 , / ) ; j = /}, and ^ = {(tl5 y, r2, /};r1 = r2, 3;
= /}. Note that Jf xJf is of codimension n in XxX and that Z is a hyper-

Y
surface of X x X. Let p, and p2 ^e ^e first and the second projections from

Y
XxX onto X, respectively. Consider

Here Ox is the sheaf of (1 + n)-forms on X. If we fix coordinate systems

(*> y\ y = (yi>~-, yn) and (f l 9 t2, y)

of X, y and XxX, respectively, we can identify 3T with the sheaf of all linear

differential operators (of infinite order) defined on X x X that contains neither

Dtl nor Dt2.

Now we employ the same procedure as that used in constructing the sheaf

&Y\x m S-K-K [24], Chapter II, Section 1.1, replacing the sheaf Ox used there
with the sheaf tf introduced above. Let S$(XxX) be the conormal sphere

bundle, X x Z* the comonoidal transform of X x X with center X and n the
Y Y
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projection from (X x X)* onto X x X. Set
y y

Then, in the same way as in S-K-K [24], Chapter II, Section 1.1, we obtain

exact sequence

0 - > ^i(JT) - > /°° - > -#1* - > 0 .

On the other hand,
n f/n /v^ n~i o ^\yxxx $9 P2 **x)

Hence we obtain

0 - > &% - > /°° - > JT|X - > 0 .

Next we shall identify ^°° with a subsheaf of g^ - Let y be the projection

from T*X-Xx T*F onto jsr. Then /°° can be considered as a subsheaf of
y

y*(^?lr*x-*xr*y) as follows:

The section s of /°° is given by

(3.3.1) S =

where K belongs to Jf and Pe^f . Therefore, by expanding K(t1? ̂ 25 y, Dy)
00 1

into the form J^ —Kj(tl9 y, Dy)(t1 — t2)
J, we assign the micro-differential

operator

P0(t, y, Dt, D,)- f, Kfa y, DV)D;J
j=o

to s. In S-K-K [24], Chapter II, Section 1.4, for any micro-differential

operator P(t, y, Dt, Dy)= X aj,*(t, y)D{D^ defined in a neighborhood of
JeZ,aeZ +

(0, 0; df), we associated to it the kernel function

(3.3.2) K(tl9 12, y, /)= ( ,1T)H

where ^=(1,..., 1) and

Then P gives a section of <f°° on {t, y; i, Q; f=j=0, |T|> S flj
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if K(tl9 t29 y, /) converges for 0<\yj-y'j\<aj\tl-t2\ 0" = 1,.», n).

We set

(3.3.3) P0(f, y, Dt9 Dy)= £ <*j,Jlt, y)D{D*
(j,a)eZl+1

and

(3.3.4) K(ll9t29y,Dy) = Z f , / - n f M
j<0,aezl ^ J }'

Then P is a section of /°° if and only if K(tl9 t2, y, y') defined by (3.3.4) con-

verges for tl^t2. This is equivalent to saying that K(tl9t2, y, y') given by

(3.3.2) converges for y^y'j and t^t2. Hence, by this correspondence, /°°

can be identified with a subsheaf of J^X\T*X-XXT-Y)- Therefore it also
Y

implies that, for any Ge = {(f, x)eC l + n ; x = 0, tee2nieR+}y an element of £°°

defines an element of C£(G0, D) for some D.

The advantage in introducing the sheaf </°° lies in the fact that the action of

(f °° on holomorphic functions is local with respect to y-coordinates (but not

local with respect to f-coordinate).

This enables us to define the action of operators in /°° on a special kind of

multi-valued function. (See § 4.)

We shall call the pair (P0(r, y, Dt, Dy)9 K(ti9 t2, y9 Dy)) given by (3.3.1) the

kernel of 5e<f°°. We denote by / the subsheaf /°° n y#(#x\(T*x-x)*T*Y)
of/00.

In this section we first review some basic notions concerning multi-valued

holomorphic function after Seminaire Cartan-Serre 1951/52 (Seminaire sur les

fonctions de plusieurs variables). Then we prepare some results needed in

Chapter IV.

4L A pair (Xr, c) is called a manifold etale over X if X' is a complex

manifold and c is a local isomorphism from X1 to X. A manifold (Xr, c)

etale over X is called a covering space of X if for any point x in X, there is a

neighborhood U of x such that X' n t~^(U) is isomorphic to a disjoint sum of
the copies of U, Hereafter we assume that X is a connected complex manifold.

Let F be a connected subset of X and <p a germ of a holomorphic function

on F (i.e., (p is a holomorphic function defined on a neighborhood of F). We
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say that cp is continued to a multi-valued holomorphic function defined on X

if there are a holomorphic function <p on the universal covering CQ: X-+X and

a connected set F in X such that C0(F) = F and the germ of 9 at F equals the

pull back of (p.

For the germ of any holomorphic function (p, there is a maximal continuation

((X\ c), F', cpf) in the following sense: there is a "largest" connected manifold

(X'9 c) etale over X, a closed subset F' of X' and a holomorphic function cpf on

X' such that F' is homeomorphic to F by £ and that the germ of <p' at F' equals (p.

This means: if (X", c'), F" and cp" satisfy the same conditions as (X', c\ F' and

cpf, then there exists a unique morphism c" from X" to J*T' such that c' = c°c",

c"(F") = Ff and <p" = (p'<>c". Hence q> is continued to a multi-valued holomorphic

function on X if the maximal continuation in this sense is a covering space over X.

Proposition 3.4.1. Let Zv and Z2 be two disjoint closed sets in X. Suppose

that X-Z19X-Z2 and X-(Z1[j Z2) are connected and that nl(X-(Z1 U Z2))

-*ni(X — Zj) is surjective (7 = 1,2). // a germ of holomorphic function cp

at a point x0 eX — (Z1 U Z2) is continued to a multi-valued holomorphic function

on X — Z^ and to a multi-valued holomorphic function on X — Z2, then (p is

continued to a multi-valued holomorphic function on X.

Proof. Let ((Xf, c), XQ, (p') be the maximal continuation of (p (in the

sense defined above). Let Xj be the connected component of X' n c~1(X — Zj)

containing x'0 O' = l, 2). Then it follows from the assumption that Xj is a

covering space of X — Zj. By the condition on the fundamental groups,

X'j n rl(X-(Zl U Z2)) is connected.

Since X( n X'2 is a covering space of X — (Zl U Z2), we have

X'j n r\x^(z, u Z2))=*i n X'2 0=1, 2).

Thus we obtain

x\ n r1(x-(zl u Z2))=x'2 n rl(X-(zl u Z2».

This implies that X{ U ^2 is a covering space of X. Hence (p is continued to a

multi-valued holomorphic function on X. Q. E. D.

Proposition 3.4.2. Let Y1 and Y2 be closed analytic susbets of X such that

the codimension of 7X n Y2 is strictly greater than 1. Let (p be a germ of a

holomorphic function at x0eX — (Y1 U Y2). Ifcp is continued to a multi-valued

function on X— Yj for j = l, 2, then cp is continued to a multi-valued holo-

morphic function on X,
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Proof. By the preceding proposition, <p is continued to a multi-valued

holomorphic function on X- F, where Y= Yl n Y2. Since nl(X—Y) = nl(X)9 if

X -i5_> X is the universal covering of X9 then ^(X— y) is a universal covering

of X— y. Any holomorphic function on X — ̂ o1(^0 ls continued to a holo-
morphic function on X, because codim CQ1(Y)^2. This implies the desired

result. Q.E.D.

Let X be a connected complex manifold, n the fundamental group of X

and X the universal covering of X. Then 7E acts on X and X = X/n. A holo-

morphic function on X is called multi- valued holomorphic function on X.

Since the fundamental group n of X acts on the space 0(X) of holomorphic

functions on the universal covering X of X, 0(X) is a module over the group

ring C[TI] of TC. Let a be a left ideal of C[TT]. We say that a holomorphic

function / on X has monodromy type a if a/=0. We say that / has finite deter-

mination if / is of monodromy type a for a left ideal a such that dim^ (C[V]/a)

<oo.

4.2. Let X9 Y and F be as in Section 2. That is, X is a complex manifold

of dimension (1 + n), Y a complex manifold of dimension n and F a smooth

holomorphic map from X to Y.

Assume furthermore the following conditions :

(3.4.1) F is topologically trivial locally on Y, and Y is connected.

(3.4.2) F admits a section, i.e., there is a submanifold I of X such that I is

isomorphic to Y through F.

(3.4.3) All fibers of F are connected.

Let X and Y be a universal covering of X and Y, respectively. By Hurewicz-

Steenrod isomorphism, we have an exact sequence.

U2(X) - > 7i2( Y) - > ^(F-Hv)) - » *i(X) - > *i(Y)

for yeY. Since F admits a section Z, 7i2(X)-^n2(Y) and 7T1(X)->7r1(y) are

surjective and hence the sequence

is exact. Set X'^X/n^Z) and let t' be the natural projection from X' onto X.

The map £'~1(Z)-»II admits a section, which we shall denote by the same letter

I. By applying the same argument to F' = F - c ' : X'-*Y9 we have an exact
def

sequence
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On the other hand, n1(X') = nl(Z) = nl(Y) and hence 7i;1(F
/~1(3;)) = l. This

means that any fiber of Ff is simply connected. Also, one can easily show that
X^X'xY.

Y

We shall assume further
(3.4.4) F decomposes into X —1—> Cx 7—£-» 7, where p is the projection from

Cx 7onto 7and i is a local isomorphism.
Hence there exists a canonical map from X' x X' into C x C so that X1 x X'

Y Y
is etale over C x C x 7. Let rj denote the projection from X' x X' onto 7 and

^ the sheaf n*@x'xxf->Y- Then ^ has a structure of sheaf of rings (without
Y

the unit) in the following way: Let us denote by (tl9 t2, )>)eCx Cx Y a local

coordinate system of C x C x 7 or X ' x X f . For P = P(tl9t29 y 9 D v ) and Q
Y

= 6(*i> *2> y, Dy), the product R(tl9 f2s y, Dy) of P and Q is

R(ti9 t29 y, Dy) = ̂ 2 ^3^1, *3> J>, 0y)Q(*3> '2, 3;
? £y)>

Then this is well-defined because any fiber of Z'-»7is simply connected. The

Ring ^ operates on F'^0X' by

3tBP(tl9 t2, y, Dy): cp(t9 y) i—> ̂ (f, j/)5

where

This integral is well-defined, but this action does depend on the choice of I. We

shall denote by P v this action of P e £%.

Let I' be another section of F'. Then we have

P^(p(ty y) — Prcp(t, y) = \ P(f, s, y, Dy)(p(s, y)ds

and hence this is a function defined on 7. Therefore Ps(p does not depend on

£, as a section of F*0X'/0y.

4.3. Let F be the projection from C1+w onto Cn defined by (t9 x)

= (t,xl9...9xn)*-+x = (xl9...,x^). Let S be a hypersurface of C1+n containing
the origin. Suppose that the origin is an isolated point of SftF~l(Q). Let

B(e, (3) and J5(e) denote the open sets {(f, x)eC1+n; \t\<59 |x|<e} and {xeCn;

|x| <e}, respectively. Then there are positive s0 and §0 such that the following

hold:
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(3.4.5) S n B(&0, do) is a closed hypersurface of B(e0, 60),

(3.4.6) Sfl {(*,*): \t\ = S0, \x\^e0}=0

(3.4.7) SnF-1(0)nB(80,50) = {0}.

For <5>0, let s($) be inf {|x|; there exists I such that (f, x) belongs to S

nB(s0,50)-B(s0,S)}. Thenlime(<5) = 0. By (3.4.6), S n B(e0, c50)-^B(e0) is
<54 -0

a finite map. Let H be the subset of B(e0) consisting of the points over which

S n B(s0, <50)-»B(e0)
 is not a local isomorphism. Then H is a closed analytic

subset of B(sQ) with codimension greater than zero. We shall set X = B(eQ, <50),

7=B(c50) and S0 = (S U F'^HJ) fl X.

By replacing e0 with a smaller one, we can assume further

(3.4.8)

— S0 are isomorphisms up to homotopy.

Let X - S0 and Y- H be a universal covering space of X - S0 and Y- H,

respectively. Let TC (resp., TTO) denote the fundamental group of X-S0 (resp.,

7-/0- % using the section {(f, x); / = A, ;ce T-H} of F3 where ^eC such

that 0<(50-|A|«1, TTO can be regarded as a subgroup of TT. Let 7^ be the

fundamental group of a fiber of X - S0-» 7- H. Then ni is a normal subgroup

of TT and TC is a semi-direct product of T^ and TTO.

Set X' = (X^S0)ln0 and we define c, ^5 a, a0, al5 a2 and F as in Fig. 3.4.1.

The map F commutes with the action of n.

x-st

(X-S0) x Y-H
Y-H

1
Y-H « ^2 Y-H

Fig. 3.4.1

We denote by X" the fiber product XxY-H and by /J the projection

from X" onto Z--F~1(H) (hence a is the restriction of j8). Set

u °

and
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(3.4.10)

where U ranges over a fundamental neighborhood system of the origin of

C1+n. By definition, G is identified with a subspace of F. Clearly n acts on F,

G and F/G.

Lemma 3.4.3. Let u(t, x) be a holomorphic function on X — S0 and x0

a point of Y—H. Let y be a closed cycle in F~1(x0). Then we have

Jy

Proof. Since the fiber of F is simply connected, this lemma is obvious by

Cauchy's integral formula. Q. E. D.

Let (p be a holomorphic function defined on a~l(B(e, $) — S0) for e and d

such that 0<<5^<50 and 0<e<s0, e(<5). Let P(t, x, Dt, Dx) be an element of

@%(B(e, d)) and let K(tl9 12, x, Dx) be an element of ^gxx->y({0i, h> x); M,

\h\ <e> M <<5})- Then jU = (P, K) determines an element of /Q .

We choose a section I of

r '(*(«, fl- S0) - >B(e)-H.

We define the action of /z on cp by

(3.4. 1 1) fep(/i) = P(/, *, Df, D,)^^) + T ^ft ^^ x> Dx)<p(q)ds ,
- -

where a(g) = (s, x) and the integral is calculated along the path in F~i(F(p))

which starts from aj1^) n F~1(F(p)) and ends at jp. The preceding lemma

guarantees the right-hand side of (3.4.11) is well-defined on a~1(JB(e, S) — S0).

By defining the action of \i e /ff in this way, we obtain the following

Proposition 3.4.4. F/G is an /$ -module.

Proof. It is easy to see that the definition (3.4.11) does not depend on the

choice of I modulo G, and that, for q>£(9x»(P~l(B(£, 5) — F"1 (#))), fiz(p belongs

to <9X4P~1(B(B9 S) - F-^Jff))). (See the preceding subsection 4.2.)

Set G0 = {(t, x); x=0, f^O}. Then /g5 is a subring of (&=\m®(G0i D),
def £>

where D ranges over the set of G0-round neighborhoods of the origin.

Now, F/G is identified with a subspace of

K = I
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where U (resp., V) ranges over a neighborhood system of the origin of C1+"

(resp., Cn), and ^v is the sheaf on Y— H associated with the presheaf

w i— > Ht,nP -.(Rr)n(So+G.)(tf n F- W); ®x} -
Since we can take a neighborhood system of the origin of C1+w formed by U

such that U n (S0 + Gg) is a locally closed open susset of D with respect to the

G-topology, C£(G0; D) acts on ^ and hence on K. Thus K is an (^-module, in

particular, K is an ^-module. By Propositions 3.1.5 and 3.2.1, the action of

<?Q °n ^ coincides with (3.4.1 1). Thus we obtain the desired result. Q. E. D.

Remark that the action of g5 on ^/G commutes with that of n.

Let a be an ideal of C\n\. Set

(3.4.12) F(a) = {(peF'9 0-(cp) = 0 for any erect}

and

= GflF(a).

Suppose further that dimcC[V]/a<oo. Let L(a) be the locally constant

C^-So-module defined by (C[7t]/a)*; namely, for any open set U of X-S0,

F(17; L(a)) = {^; ^ is a C-linear map from C[it]/a into the space of locally

constant function on orl(U) such that \l/(ya)(x) = \l/(a)(y~lx) for crGC[7c]/a,,

y67i and xeorl(U)}. Let <&(a) be the associated holonomic %-Module of

D-type with singularities along S0. Hence, for any Uc:X9 r(U; -^(a)00) is the

space of holomorphic functions (p defined on a"1(l/ — S0) such that a(cp) = Q

for a e a. Therefore we have

(3.4.13) F(a) = J?(a)$.

We call & (a) the holonomic ^-Module of D-type with singularities along

S0 and with the monodromy type a.

Let a' be the image of a by the map C[7c]->C[7r1(Z-F-1(H))] = C[7i1]

and let ^(a) be the holonomic ^-Module of D-type with singularities along

¥~l(H) and with the monodromy type a'. Then we have ^(a)c^"(a) and

(3.4.14) G(a) = *(a)g>.

Now, we shall show that /f(F(o)/G(a)) is contained in F(b)/G(b) for

some b such that dim C(V]/b < oo.

In order to show this, we shall prepare several lemmas.

Lemma 3.4.5. Let n be a group generated by finite elements and a a
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left ideal ofC[n]. If C[7i]/a is finite-dimensional, then a is a finitely generated

ideal of C[n].

Proof. Suppose that n is generated by G0 = l, cr l5..., cr# as a semi-group.

Let Aj (; = 0, 1,...) be the subset of C|>] defined by A0 = {1}, Aj= £ M/-J

(j^l). Then C[n}=\j Aj. Since C[n\la is finite-dimensional by the as-
j

sumption, there is an integer m such that C[n~] = a + Am. Let y1,..., yr be a base

of the C-vector space Am+l. Then there is y(, in Am such that y v — y'v is contained

in a (v= 1 ,..., r). We shall show that

Let a' be the right-hand side. We shall show that a n Akaa' by the induction

on k. If fcrgm, this is evident. Suppose k>m. Let s be an element of a n Ak.
r

Then we can write s= ^ svyv with sveAk_m^l. Hence
v=l

5= Z svy
f
v+ i: sv(^-y;)=£sv/vmoda'.

v=l v=l

Since ^svy
f
v is contained in Ak_ t n a, this is contained in a; by the hypothesis

of induction. Q. E. D.

Lemma 3.4.6. Let n be a group generated by finite elements and let c^

and o2 be two left ideals such that C[7r]/av is finite-dimensional (v = l,2).

Then C[7t]/a1a2 is also finite-dimensional.

Proof. By the preceding lemma, a2 is finitely generated. Let yl9...,yN

be a system of generators of a2. We have an exact sequence

> 0 .

Since a2/o1a2 is a quotient of (C[^]/o1)
N by the homomorphism (5l3..., 5^)

N
*-* Z ^y, 02/0^2 is finite-dimensional. Since C[n~]/a2 is finite-dimensional,

€[7r]/a1a2 is also finite-dimensional. Q. E. D.

Lemma 3.4.7. For any left ideal a of C[n\ such that C[n^la is a finite-

dimensional C-vector space, there is a left ideal b of C[7i0] satisfying the

following properties:

(3.4.15) dimc€[>0]/b<oo.

(3.4.16) Let e and d be positive numbers satisfying 0<<5:gc>0 and 0<e<e0,

s((5), and let I be a section of rl(B(&, (5)~S0)->jB(e)-H. Then, for any
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multi-valued holomorphic function u on B(e, §) — S0 with the monodromy type

a and for y]5 y 2 G7r ,

"""" ""^ ' ( q } u dt (qeB(e^H)

is a multi-valued holomorphic function on B(s) — H with the monodromy

type b.

Proof. Let C[7r/7T0] be the vector space generated by TU/TIQ. We denote

by Fthe C-vector space C[7r/7i0]®C[7r/7r0]®(C[7r]/a), and we endow V with
c c

a structure of Ti-module by

7(7i®72®w) = 77i®772®7w

f°r 7t> 72 e rc/TTo, 7 e ft and w e €JM/a- We denote by W the C-vector subspace
of V generated by (y1®y3(x)w — 7i®72®vv — 72®73®vv, 7i®72®w + 72®7i®w

and of(7i®72®w) — 7i®72®w for y1? y2, y3en/n0, weC[?i]/a and aen^. The

vector space W becomes a Ti-submodule of V.

We now claim that V/W is finite-dimensional. In fact, since n is a semi-

direct product of nl and 7r0, F/VF is generated by 7i®72®w (yl9 7 2e7r l 3

w 6 €[7i]/a) as a vector space. On the other hand, we have

and

W.

Hence, if {y1? ...,y^] is a system of generators of 7cl5 then y_/®l(8)(C[7r]/a)

generate F/WK

Moreover Tti acts trivially on V/W. We shall define a homomorphism

H) by

yiar 1 ( i )n l ? ~ 1 («)

for y1? y2e7C/7T0, C T G T U .

Then it is easy to see that ^ is a well-defined 7i0-linear homomorphism. Then

b = {a e C[TCO] ; <r(VIW) = 0} satisfies the required property. Q. E. D.

Lemma 304o8. Let a be a left ideal of €[71] such that dim€[7i]/o<oo.

Then there is a left ideal a' of C[n~] such that dimC[n]/a' <oo and that F(a)
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Proof. Let u(t9 x) be a multi-valued holomorphic function defined on

B(s, d) — S for some e, 5 such that Q<d^d0, 0<e<e0, e(d). Suppose that u

is with the monodromy type a. We choose a section I of c~l(B(s, 6) — S0)

-+B(e) — H, and define a multi-valued holomorphic function v(p) defined on

B(e, <5)-S0 by

udt (pea-l(B(s9d)-S0))

Then, for y e TC, we have

CP
= \

Ja-

Hence, if b is a left ideal of C[TTO] satisfying the conditions in the preceding

lemma and if a' denote the inverse image of b by the map €[V|-»C[7U0], then

(yv)(p) equals \ yudt modulo G(a'). Therefore we have cr(t;)eG(a')
Ja^CDnf-Wp))

for a e a. Hence we obtain v e F(a'a). Thus a'a satisfies the required condition.

Q.E.D.

Proposition 3.4.9. Let a be a left ideal ofC[n\ such that dim€[>]/a<ao.

Then there is a left ideal b of C[n~] satisfying the following properties:

(3.4.17) dim C[?r]/b < oo and be a.

(3.4.18) Let a be the homomorphism from /$ ® (J&?(a))£ into /$ ®
SX,0 ®X,Q

(^(b))^ and ft the homomorphism from (^(b))^ into /$ ® (£>(b))$. Then
^x,o

the image of % is contained in that of p.

Proof. Let JZ be an arbitrary holonomic ^-Module. As shown in

Section 3, we have the exact sequence

0 /5>oo _ . jp<x> _ v '̂ 'i _ . n- > @x - * £x - > ̂  \x - > U

Here Jf is a sheaf isomorphic to 9xxXl(®x*xDtt+
Dt*®xxx) and ( ri» r2> *)

Y Y Y

= (tl9 12, xls..., xn) is the coordinate system of X x X such that (rls ?2, ̂ ^(^i* *)
c»

(resp., (r2, x)) is the first (resp., the second) projection from XxX onto X.
cn

Hence we have the exact sequence

^J ® J! - > /°° ® J£ - > Jf|^ ® Jt - > 0 .
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We shall identify XxX with CxX by (tl9 f2, x)*-+(tl9 (t2, x))eCxX. Then
cn

/®x*xDt) ® ̂  = (^0^)°°. Hence we have
y y s>x

Thus we obtain the following diagram for any left ideal b of C[TT] such that

dimC[7i]/b<oo.

> &?lDt£"?\x - > 0

where ^! = ̂ c(§)^(a) and ̂ f2 = ^c

In order to show Proposition 3.4.9, it is sufficient to prove that

y: (&?IDt2&?)\x-+(&?IDt2&?)\x is the zero map at 0, i.e., (^f)cDt2(j^J)0.
By the definition, (&?)0 (resp., (^2))0) is the set of multi-valued holomorphic
functions defined on F— CxS0 with the monodromy type a (resp., b) for some

neighborhood V of (0, tyeCxX. Hence, by the preceding lemma, we have

&$)0 for some b. Q.E.D.

Corollary 3.410. For a left ideal o of C|>] such that dimC[>]/a<oo,

there exists a left ideal b of €\jt\ such that dim€[>]/a<oo and /f(F(a)/G(a))
c:F(b)/G(b).

Proof. Let b be an ideal of C[n] satisfying the conditions in the preceding
proposition. Consider the diagram

^ ® F(a) -^g%® F(b) > FIG .
®% ®o

Then the corollary immediately follows from the fact that a(/o) ® F(o)) is
®%

contained in j8(F(b)). Q. E. D.

§5.

The purpose of this section is to construct a special resolution of a holonomic
g-Module whose characteristic variety is in a generic position. This result
will be effectively used in Chapter IV.
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5.1. Let X be C1+n. We denote by (t,x) = (t,x1,...9xn) a point of X.

Let (r, x; T, £,) = (t, x1?..., xn; T, £15..., {„) be a coordinate system of T*Z such

that the canonical 1-form is rdt+ £ {.d*,. Let E be the subset {(f, x; T, 5);

of T*X. Then, as shown in Section 3 of this chapter, & is a subsheaf of

Let us denote by H (resp., jR°°) the ring of micro-differential operators P

in &Po (resp., ef^) satisfying the following condition:

(3.5.1) P is a polynomial in Dx, i.e., there exists an integer N such that

We denote R n <fPo(m) by K(m). Then

We denote by 0 the sheaf 0xKi /?>•••>£«/<] on X. Hence £(0)/R(-1) =

The ring .R (resp., £°°) is a subring of ffiqo (resp., /J0).

We set

Aco = {PeRco; [xj9 P]=0 for j = l,...,n}, A^00^ and

Then A and ,4(0) is a Noetherian ring (Chapter II, § 3 of S-K-K [24]) and

A(0)IA(- 1) = 0Wo. The ring ^ (resp., JJ(0)) is generated by D^D"1 (j = 1,..., n)

over A (resp., ^4(0)).

Hence, by using Propositions 1.1.4 and 1.1.5 of Chapter I, Section 1, we

obtain the following

Lemma 3.5.L A9 R, A(0) and R(0) are Noetherian rings.

Moreover, R (resp., R(0)) is a free A (resp., ^4(0)) module with a base

(D;cD71)a (aeZ£), and hence we have

Lemma 3.5.2. R (resp., R(QJ) is faithfully flat over A (resp., ,4(0)).

Using these results, we prove the following

Lemma 3.5.3. Let d and r0 be an integer and M a left submodule of

Rr°. Then there exist integers rly...9rd+1 and homomorphisms /}: R(Q)rJ+1

-*R(Q)rJ (j = 0,..., d) such that the following sequences are all exact.

(3.5.2) o < — #(oy°/(&(oy° n M)

(3.5.3) 0 < _ Rr°/M < _ Rr°

(3.5.4) o
for

Proof. Since R(0) is Noetherian, we can find an exact sequence (3.5.2).
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Since R(m) is isomorphic to £(0) for every m, R is flat over J^(0). Hence (3.5.3)

is exact. In order to prove the exactness of (3.5.4), let us consider the following

diagram :

(3.5.5)
0 0 0 ••• 0

° n Af)

i I
0 0 0

Since all columns and the first two rows are exact, the row in the bottom is also

exact. On the other hand, 0T^ci + ntp is flat over SqQ. Hence the sequence

is exact. This is the symbol sequence of (3.5.4). Therefore, by combining

Theorem 3.4.1 (a) and Proposition 3.2.7 of S-K-K [24] Chapter II (cf. p. 405

of S-K-K [24]), we find (3.5.4) is exact. Q. E. D.

Corollary 3.5A $p is flat over R for any p E E f] TC~I(^O)-

Proposition 3,5,5. Let ^ be a holonomic £x-Module and <J?0 a coherent

<0(Q)-sub-Modiile of ^'. Suppose that the support of ^l is in a generic po-

sition at p0. Then the stalk ^Po (resp., ^O,PO) °f ^ (resp., ^0) at p0 is a

finitely generated left A-module (resp., A(Q)-module), and satisfies the fol-

lowing :

?Pn for
( J . J . / J ~p ^ — pQ -p^ ~'"VQ \n r

00 00 00 )""fO ^(3.5.8) gp ® JfpQ = ffP® J?PQ = \^ c_ _-r,~lir-is x rXn1 n L(q0)-L p0.

Proof. We may assume ^ = <f«^f0. The 0(0)-Module ur0/uT0(-l) is

a coherent 0(0)-Module whose support is contained in Supp^. Hence

l))Po is a finitely generated 0^^-module. Since p0 is an isolated
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point of Supp^ n n~l(qo) n {T = !}, ^V/T operates on
0 X , < J 0

as a nilpotent operator for v=l,...} n. We choose a set of elements {Uj}jssltmmmtd

of (~^O)PO suck ^at ti16 m°dule class [Uj] of w7- in

forms a base of the finite-dimensional vector space

Since (^(— 1) + Z Xv^(0))p0 *
s contained in the maximal ideal of the local ring

v=l

o, Nakayama's lemma entails

(3.5.9) ur0

Let U be the column vector with ul9...,ud as components. Since £V/T acts on

(^0/^(-l)c^f0)Po (x) C as a nilpotent operator, there is a dxd matrix y4v(£, x)
^ X . ^ Q

of holomorphic functions on X such that (DVD~1— Av)Ue^0( — 1)^0 and

^4V(0, 0) is a nilpotent matrix. Hence we obtain (£>v — AvDt)U G(^Q)P^ By

(3.5.9), there is PveMd(<f(0)Po)<*> (v = l,..., n) such that

(3.5.10) (Dv-AvDt- ?,)!} = $ for v = l,...,n.

Next we shall show that there exist Bl9...9 BneMd(#(l)Po) such that

(3.5.11) Bv is free from Dl5..., Dn, i.e., [DM, 5V] = 0 for v, 0=1,—, n

(3.5.12) CDV-BV)17 = 0 for v=l , . . . ,Fi

(3.5.13) ff1(flv)=^v(f,x)T for v = l,..., n.

For this purpose, we consider the following condition :

(3.5.11),, 5V is free from D!,...,/)^ for v= !,...,«.

We shall prove the existence of Bl9..., BneMd(^(l)Po) satisfying (3.5.11)^,

(3.5.12) and (3.5.13) for ^ = 0,..., n by the induction on \JL. This is true for /x = 0.

For 0^/<i<n, let us suppose the existence of such Bv satisfying (3.5.11)^, (3.5.12)

and (3.5.13). By Spath-type division theorem for micro-differential operators

(S-K-K [24] Chapter II, § 2.2, Theorem 2.2.1), we divide Bv by D^ + 1-jB^+1;

Bv = Sv(DM + 1-^+1) + Sv where SveMd(<?(tyPo) and BveMd(<?(l)Po) such

that Bv is free from DIJL+l. The uniqueness of the division implies that Bv is

also free from D l9. ..,!),,. We have also G1(Bv) = G1(Bv) = Av(t, X)T. Thus we

Here and in what follows, Md(*) denotes the set of dxd matrices whose components
belong to #.
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see that Bv satisfies (3.5.11)^^^ (3.5.12) and (3.5.13), and the induction proceeds.

This completes the proof of the existence of Bv satisfying the required

conditions (3.5.11), (3.5.12) and (3.5.13).

Hence the Spath-type division theorem entails

(3.5.14) *(0)<0 = ± (
v=l

(3.5.15) Sfo= ± (^
V=l

and

(3.5.16) *« = t (*?0
v=l

This implies ^0,Po = Z ^(0)p0if/= Z A(0)Uj and ^//Fo= Z £PoUj = Z ̂ w,.,
7=1 7=1 7=1 7=1

and hence ^Po (resp., ^0jPo) is finitely generated over A (resp., ^4(0)).

Next we shall show (3.5.7). The relation &P®^PQ — £P® u^0 = 0 for
R '~«0peEnn~1(q0)~CxpQ immediately follows from (3.5.12) and (3.5.13), because

,4V(0, 0) is a nilpotent matrix and DV — BV is invertible at p.

Let us consider the following homomorphisms :

•A, -*-+ <?Po ® -*Po -^ -*PO>
R

where / and g are defined by gf(s) = l®s and /(P®s) = Ps. It is clear that

/o# = id. Hence the surjectivity of g will imply that both/ and g are isomor-

phisms. Again by (3.5.15) we find <?Po ® ^Po = #p ® (Z^/)= ^<?p ® uj
R R R

for peCxp0. In the same way, we have
*~V0

= ̂ Po. Hence we obtain (3.5.7). The property (3.5.8) is also obtained in

the same way, by using (3.5.16) instead of (3.5.15). We leave the detailed

arguments to the reader. Q. E. D.

Corollary 3.5.6. ^J?0 = /f0uTpo •
d

In fact, ^PQ= £ ^p0Wy, and (3.5.16) shows the desired result.
7

Corollary 3.5.7. Any R-submodule of ^Po is an #Po-module.

Proof. Since ^Po is finitely generated over &, any J^-submodule N of

is finitely generated. Let sl9...,sr be a system of generators of N. Then

is contained in Z ^(Q)s/5
 an(i hence JV0 is a finitely generated

7=1 7=1
y4(0)-module. Let M J 9 . . . , wd be a system of generators of JV0 as an ̂ 4(0)-module,
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Then there is BveA(l) (v = l,...,n) such that (DV-BV)U = Q, where U is the
n

column vector with ul9...,ud as components. Since #p0= Z ^p0(^v~Bv)
v = l

+ Ad, the division theorem entails £ ^p0
Mv=Z Auv = N. Hence N is an

^-module. V * Q.E.D.

5«28 Let Jt be a holonomic ^-Module defined on a neighborhood U

of j?0- Suppose that the characteristic variety A of J[ is in a generic position

at p0. Hence p0 is an isolated point of Ar\n~1(q0)r\ {T = !}. Therefore, by

shrinking 17 if necessary, we may assume that A is a closed analytic subset of

n~1(V)—T$X for a neighborhood Fof q0, and yl n n~1(q0) = Cxp0. Moreover

Jt is defined over icl(V)-T$X with Supp uf = /L

Theorem 3.5.8. There exist integers r0,..., r2n+1, P /eM(r / + 1 , r,.;

(j = 0,..., 2w) and a homomorphism F: #r
P°0-*^Po such that the sequence

(1 ^ 1 7^ O ^ JF x^O „ jPo jP»"l Pi ... P2n- l jP*"2n ,^2n jtf"*2n+l v A
^J. 3. 1 I ) U < - ix^ < - & ̂  < - <5 ̂  < - * ' < - 0 x < - ® ̂  ^ - ̂

is exact on E n 7i~1(F) /or some neighborhood V of q0, where E={(t, x\ T, £)

Proof. Let u^...,ud be a system of generators of u^0 as an jR-module.

Setting d = r0, we have an exact sequence by w l 5 . . . , wro: 0«-^0«-jRro. Let M

be the kernel of Rr°*-^Po. Then, by Lemma 3.5.3, there is an exact sequence

0<-R(Q)r°l(R(Q)r* n M) <-£(0)r° <-^- ^(0)^ < ---- < p 2 n " 1 K(0)^« .

Let JV be the kernel of JR(0)P"» -^^> R(G)'*«-i. Set Pj = (R(Q)/R(-l))®Pj

and ]V = N/R( - 1)N. Then the sequence

(3.5.18) Sr
q% ̂ - 0V0 ^~ ••' < - ^on <- — JV ^ - 0

is exact. Since the global cohomological dimension of 0€o is 2n + l, JV is a

projective <^g0-module. On the other hand, by Grothendieck's theorem in

j£-theory (e.g. [27] Chapter XII. § 3), we can find an integer r such that N@&r
qo

is a free ^0-module. Then by replacing r2n with r2n + r and P2«-i wi*h

P2n- 1 ©0, respectively, we may assume from the first that N is a free 0qo-module.

Let y !,..., tv2n+1 be a set of elements of N such that the modulo classes [yj,

..., [X2n4 J form a base of JV. Let P2n be the r2B+ 1 x r2n matrix determined by

t?!,..., ur2n, and set P2R = (

Here and in what follows, M (r, r'; *) denotes the set of r x r' matrices whose components
belong to *,
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(3.5.19) 0>0 **2- 0>0 <— - «— 0>0. «**L <p>0-+« ^— 0

is an exact sequence. Since (9 is a coherent sheaf on X,

(3.5.20) 0r° <-^- 0P1 4^- ... «£HL 0r2»+ i < o

is exact on a neighborhood of q0. Since ^r*ci+n|£ is flat over 0, the sequence

(1 Z ")1\ /flfo ?o /nri P2n / n f*2n+ i A
^ J . J . Z I J C/T>r£;l + n < C/T+cl + n < < C/j*£;l + n < U

is exact on £ n 7c""1(F) for a neighborhood F of g0- Since this is the symbol

sequence of the sequence.

(3.5.22) <fr° <-£2_ <fi < ... «*1»L ^r2B + i ?

the sequence (3.5.22) is exact on £ n rr\V). Let ^' be the cokernel of

<fo _Z°^ ̂ r t> sjnce j?po<-Rr0 4Z2_ ̂ i is exact, we have ^0 = «fPo ® ̂ Po = ̂ Po.
R

Hence uf' is a coherent ^^-Module defined on £ n n~\V) such that ^fPo

= ̂ PO-
Let U be the column vector with w l 5 . . . , wro as components. Then it follows

from the proof of Lemma 3.5.1 that there exists BvEMro(R(l)) (v = l,..., n)

such that

(3.5.23) J3V is free from Dx. and its principal symbol 0*1 (Bv) is nilpotent at

(r,jc) = (0,0)

(3.5.24) (DV-SV)17 = 0.

The property (3.5.24) asserts that we can find a homomorphism Qv: R
r°^Rri

such that Dv —5v = P0o<2v. Hence the support of Jt' is contained in {(f, x;

T, C); det^-cj^BJ^, x, r)) = 0 for v = l,..., «}. The property (3.5.23) implies

that Supp^' is a closed analytic subset of n~l(V') n T$X for a neighborhood

F; of qQ and Supp^f' n 7i~1(^o) = ^'XPo- Since J£ = Jt' on a neighborhood of

Po, Jt = Jf' on TT'HV") n £ for a neighborhood V" of g0. Q. E. D.

Chapter IV. Embedding Holonomic Systems

Holonomlc Systems of B-type

The purpose of this chapter is to prove a theorem which asserts that any

holonomic system whose characteristic variety is in a generic position can be

embedded into a holonomic system of D-type. Since holonomic systems of

D-type have a rather simple structure, we can study properties of an arbitrary

holonomic system by this embedding.
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§ 1. Statement of the Results and Outline of the Proof

Our main result of this chapter is the following theorem.

Theorem 4.1.1. Let ^ be a holonomic #x-Module defined on a neighbor-

hood of p0£ T*X — T*X. Assume that the characteristic variety A of ^ is

in a generic position. Then there exists a holonomic @x-Module Jf defined

on a neighborhood of q0 = n(po) and a &% \q0-linear homomorphism $ from

<^?0
 = (*x ® «^)PO into ^?o = (®x ® ->O«o satisfying the following conditions :def fx def ^x

(4.1.1) There exist an integer r and a holonomic system £t? of D-type with

singularities along n(A) such that j^ is isomorphic to the quotient ^\0r
x.

(4.1.2) The homomorphism from ^™Q into £$Q ® ^qo = <?™0 ® ^?0 defined
®«0 *r0

by 5i-*l® (j)(s) is an injective $™Q-linear homomorphism.

The idea of the proof of this theorem is as follows : Let C be the space of

holomorphic functions defined on some cone whose apex is the origin modulo

holomorphic functions defined on a neighborhood of the origin (see Section 5

for the exact definition of C). Then F=Hom(f~ (^J?0, C) is a finite dimen-

tional vector space (Proposition 4.6.1), and this space is sufficiently ample, in

the sense that the homomorphism ^f^0-»Homc(F, C) is an injective map

(Proposition 4.6.2). Therefore ^^0 is embedded into C1 for some />0. Let

s lv.., SN be a system of generators of Jt and {0V} a base of V. Let cpjiV be a

holomorphic function whose modulo class is 0v(s7-). Then we can prove that

<pjtV is a multi- valued holomorphic functions defined on X — n(A) with finite

determination (§ 5, § 6). Hence all cpj>v can be considered as a section of J§?°°

for a holonomic ^-Module & of D-type. In Section 7 we prove that the map

from ^^Q to jgf J0
Z defined by Sj*-+((pjtV)v is the desired embedding of ^°°.

Sections 3 and 4 are devoted to the preparation for making V explicit, and

Section 5 is to prove that <pjiV are multi-valued holomorphic functions defined on

X-n(A).

§ 2. Geometric Preparations

Let X be a complex manifold of dimension 1 + n (n 2> 1), A a closed homo-

geneous Lagrangian variety in T*X — T$X,p0 a point in A and ^0
==7r(Po)-

Suppose that
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(4.2.1) Ann-i(qo) = C*Po.

Then S = n(A) is a closed hypersurface of X on a neighborhood of q0 and A = TJX

on a neighborhood of q0. Let F be a holomorphic map from (X, q0) into

(Cn, 0) (i.e., F is a holomorphic map from a neighborhood of q0 into Cn such

that F(g0) = 0). Suppose that F is of maximal rank and the restriction of the

covector p0 on the fiber F"1^) does not vanish. Then there is a local co-

ordinate system (t, x) = (t, x !,..., xn) of X at q0 such that p0 = (0; df) and F: (r, x)

H-»X. We shall take the local coordinate system (£, x; T, £) = (f, x l5..., xn;
n

T, £!,...,£„) of T*X such that the fundamental 1-form o> equals rd£ + £ £jdx7-.
j=i

For e, (5 > 0 we shall denote

(4.2.2) £(e, «) = {(*, x); | f |<5, |x|<e}5

and

(4.2.3) B(e) = {x€C»;|x|<8}.

Lemma 4.2.1. For any p>0, there is a neighborhood U of q0 such that

St\Uc{(t,x); \t\gp\x\}.

Proof. S is the projection of {(t, x ; T, £) e /I ; T = 1 } in a neighborhood of

q0. Hence, if the lemma were not true, there would be a path p(A) = (£(A), x(X)i

1, f(A)) in /I such that p(0) = Po and \t(X)\>p\x(X)\ for 0<A« 1. Since o> = 0 on
/I, we have

=0, .e.,

Set

with (f0, x0)^0. Then |r0|^p|x0|. Since £(0) = 0, we have

~\ = 0 modAm

and hence we obtain t0 = Q. This is a contradiction. Q. E. D.

By this lemma, there are positive numbers e0 and <50 satisfying the following

conditions.

(4.2.4) 0 < e0 < <50, B(g0, 50)c:X,

(4.2.5) S n jB(e0, 80) is a closed hypersurface of B(s0, e50),
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and

(4.2.6) SnB(e0, 80)c{(t, x)e£(e0, 50); \t\*\x\} .

The property (4.2.6) implies that F \ SnB(£o,50) : S fl J3(e0, (50)-»5(e0) is a finite map.

Hence there is a closed analytic subset H of £(e0) satisfying

(4.2.7) S fl GB(e0, $o) ~ F-^H)) -*L-> JB(e0) - H is a finite covering .

Since A n n~1(q0) = Cxp0, we may assume also

(4.2.8) {(t, xi T, {)eyl; (f, x)eS(e0, 50)}c:{(r, x; T, {); |{|£|T|}.

Throughout this chapter G0 always denotes the closed convex cone {(f, x)

eC1+"; x = 0, Im f = 0, Re f ̂ 0} of C1+'J. We also denote by Gg the antipodal

set of G0, i.e. {x = 0, Imf = 0, Ret^O].

Lemma 4.2.2, For any p>05 there exists a point x1 of B(SQ) — H which

satisfies the following conditions:

(4.2.9) \Xl\<p,

(4.2.10) For any point p of F^fa) n S n B(e0, (50),

B(e0, o0)nSn({p} + G0) = {p}.

Proof. Let x2 be a point of 5(e0) n B(p) — H. Then, by (4.2.7), there are

a neighborhood W of x2 and holomorphic functions q>j(x) (1^ j^m) defined on

FF such that

JB(e0, 50) n S n F-i(WO= U {(t, x); ?/*) = *, xe ^}
7 = 1

and (Pj(x)^cpk(x) for j^k,xeW. Note that (Pj(x) — (pk(x) is not a constant

function for j^k (otherwise, SxS should contain {(tl9 t2, x); tl — t2 = c} for
C"

and this would contradict (4.2.6)). Therefore there is a point x1 of FFsuch

that (p/Xj) — ̂ (xJ^R for j^k and that I x j — x2 |<p — |x2|. This XL satisfies

the required conditions. Q. E. D.

§3. Resolution of Jt

We shall keep the notations of the preceding section. Let Jt be a coherent

^-Module defined on a neighborhood of p0, whose support is contained in A.

Hence we can extend Jt into a holonomic <f-Module defined on a neighborhood

of n~1(q0)—T^X9 whose support is contained in A. Therefore, in the sequel,
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we assume that ^f is a holonomic ^-Module defined on a neighborhood of

n~l(<lo)-T$X, and Supp(uf)c/l.
In Chapter III, Section 5, we proved that „$ has the following resolution

(4.3.1) on a neighborhood of p0:

(4.3.1) 0< - Jt < - g\» +*°- <?%> < - -•• < Pr~l < f g r < - 0,

where Pj are matrices whose components belong to / and are of order <0.

Moreover (4.3.1) is exact on {(f, x; T, £)eT*X', \t\, |x|«l, t^O}. Each Pj

can be expressed by a matrix of integro-differential operators Kj(tl, t2, x, DJ

(Chapter III, §3). Hence, for some sl and 31 such that 0<e1^51, S^SQ an^

c^rgcSo, all Kj are defined on {(tl5 t2, x); I f J , | J 2 l < ^ i > W< e i} an(^ tne sequence
(4.3.1) is exact on {(f, x; T, f)er*X; (^ x)e5(el9 5^, r^O}. Hence, by

replacing e05 ^o with e^ ^1? we may assume from the beginning

(4.3.2) All X/r l5 *2, x, DJ are defined on {(rl9 t2, x); |^|, |r2|<^0, |x|<e0}.

Hence Kj gives an element of (£(G0; D) with D = B(&0, 60) and G0 = {(t, x)

eC1+"; x = 0, r^O}. Note that D is G0-round. Thus we may assume the

following :

(4.3.3) Pj is given by Kj.

(4.3.4) Let 9)1 m be the following complex:

0 < - C(G0, Df° ̂ 2. - <^^- C£(G0, Df" , - 0 .

Then <f* ® SD1 is quasi-isomorphic to u^J for peAnF~1(D) and
(g(G0;l>)
9JI is exact for pe{(t, x; T, S)^^5 T^°, 0> x)eD}.

§ 48 Vanishing Theorems

In the preceding section, we constructed a resolution 9JZ. of ^p, where 9M.

is a complex of C£(G0; D)-module. Hence we can apply Theorem 4.5.1 of [19].

We note that we can replace the condition (c3) in Theorem 4.5.1 of [19] with

the following weaker condition :

. is exact for p = (x, £) such that xeQi-Q0 and <^3 2(x)><0.

The same proof in [19] can be also applicable under this weaker condition.

Thus we have the following proposition in our case.

Proposition 4AL There is a G0-open neighborhood U of qQ contained in

D = B(£0, <50) which satisfies the following condition:
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Let Q1 and Q0 be two open subsets of Cl+n satisfying the following con-

ditions:

(a) Q1^Q0 and Ql — Q0 C U.

(b) There is an open convex cone R in TU such that R => U x (G0 — {0})

and that Q1 and QQ are R-flat on V.

(c) There are an open convex cone Q of TU and a ^-function g defined

on a neighborhood of Q^ — Q0 satisfying the following conditions:

(Cl) {(p,v)eTU; <i

(c2) QI — &o *5 Q~flQt in a neighborhood of Ql — Q0 .

(c3) For any point p = (t, x; T, £) in T*U, if (^,x)eO1 —O0 and if

Re(TW + <<^, y»<0 for any (t, x; w, f)eg, then p does not belong

to A.

Then Q^ — QQ is locally closed in D with respect to G0-topology and

RHome(Go;D)(aH., R/V^fli; ^»^)) = 0.

In this proposition and in the sequel, we denote, by cp the continuous map

from J3(e0, <50) into B(s0, <50)Go, where B(e0, ^0)Go is the topological space jB(e0, 50)

endowed with the G0-topology.

By using this proposition, we shall prove various vanishing theorems for

the cohomology groups RHom(9Jit, (p*@).

In the sequel, for a > 0, let G(d) denote the following convex cone:

(4.4.1)

Then {G(d)}a>0 is a decreasing family and we have G0= A G(d).
a>0

Proposition 4.4.2. Let Q^ and Q0 be two G0-open subsets ofC1+n satisfying

the following conditions:

(ii) (Q1-Q0)nS=0.

Then we have

RHom(5(Go;D)(
sD^, RrQi,Qo(Q1i <p#0x)) = 0.

Proof. The G0-open subset E = {(t, x); R e t < — e 0 } does not intersect U.

Replacing Oj and Q0 with Q1 U E and Q0 U £, respectively, we may assume from

the first that

(iii) QoftQt^E.

In order to prove the proposition, it is sufficient to show that
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RHomg(Go.D)(9)^, 'Rrnl-ao(<p*0x)) is quasi-isomorphic to the zero complex of
the sheaves on (Q1 — QQ)Go. On the other hand, open subsets Q of Ox satisfying
the three conditions:

O=D£, Q — Q0ciQl ~jQ0 and Q is G(0)-open for some

form a base of open subsets of (Q1 — QQ)GQ. Hence it is sufficient to show

RF(O; RHomG(Go;1))(Stt., RFo,-o0(^*^x))) = 0

for such an Q. By replacing Q^ with Q, we may assume from the beginning

(0') Q^ is G(a)-open for some a>0,

(ii') (G1-Q0)nS = 0,

(iii) Q 0 nQ, i3E .

For fr>0, we set f20(5) = {x; x + G(b)aQ0}. Then Q0(b) is a G(6)-open

set and contains E. We shall prove that

(4.4.2) 0,^0= W C f l i f l
b>0

and

(4.4.3) n Oj - G0(6) = Q1 - Q0 .
b>0

Let us prove first that

^ n O o d U (Q l
b>0

Let p be a point in Ql n ^0- Then (p + G0) — £ is contained in Ql n O0. Hence

(p + G(b)) — E is contained in Ql n O0 for some b>0, because {(p + G(b)) — £}&>0

is a decreasing family of compact sets whose intersection is (p + G0) — E. This
shows peQ0(b) for some b>0. Thus we obtain (4.4.2). Let us prove that

(4.4.3). It is obvious that C\ Ql — Q0(b)^Q1 — Q0. We shall prove the con-
6>0 _

verse inclusion relation. Let p be a point outside Q1— Q0, and we shall show

/?<£ A Q1—Q0(b). Since p^Q1— O0, there is an open neighborhood V of p
b>0

such that Fn^cOQ. Therefore QQ^((V(] Q1) + G0) U E. There are also a
neighborhood F' of p0 and £»0 such that, for any pr in V, we have

' + G(a)) n F) + GO) U E = p' + G(6) .

Thus we have Ox n F'c^0(b). This implies that p^Ql-QQ(b). Thus (4.4.3)

has been proved.
Since {Ql — Q0(h)}b>Q is a decreasing family of compact subsets, we have
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Ql-Q0(b)ciU and Q1-Q0(b) n S = 0 for b»l, a. Hence, if we prove the

proposition for Q1 and Q0(b), then

b

Thus we may assume from the first

(0") Q1 and O0 are G(#)-open for some a,

Now we can apply Proposition 4.4.1. Set Q = R = 17 x Int G(a) and

g= — Re t. Then all conditions in Proposition 4.4.1 are satisfied and we obtain

Q.E.D.

Proposition 4.4.3. Let Ql and QQ be two G0-open subsets of C1+" and W

an open subset of J3(e0). Assume the following conditions:

(i) Oi-Oocl/.

(ii) SHF

we have

(a) ^ny cohomology group of R(F|fiJ*RHom(9J?i? Rrfll«0o(<30*^)) zs a

locally constant sheaf on W. Here F \ Ql is the restriction ojF to Ql (and hence

F\0l is a map from Ox to Cn).

(b) R(F|fll)*RHom(9M., RT^.n^^))!^ does not depend on the

choice of Ql and Q0. More precisely, if Q[ and Q'Q are two G0-open subsets

satisfying the conditions (i) and (ii), then

R(F |fil)*RHom(TO , RTo,.^*^)) | w
and

R(F | fi;)^RHorn (SW., RFfll_^(c^x)) | ̂

are canonically isomorphic.

Remark. F|fl l gives a continuous map from ^IGO to Cn, where O1Go is

endowed with the G0-topology and C" is endowed with the usual topology.

Hence the above statements make sense.

Proof. First we shall show (b).

We shall consider the case where Q0 = Qf
0 and QliDQf

1^>Q0. Then it is

enough to show
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R(F 1 0l),R Horn (2R., Rrfll _fl;(<p*^)) | w = 0 ,

because we have the triangle

R(F| Dl).R Horn (93?, Rr0l_fll(

R(F| ai)Jt Horn (SB., RFQl_D>^x)) | w
— R(F| «;)*RHom (SW ,

For any open subset FF' of W, we have

In fact, since F~l(W) n (^ -0i)cz 17 and (F-1^') fl (Qi -£',)) n S = 0, we can
apply Proposition 4.4.2.

Secondly, we shall consider the case where Ql = Qf
i^>Q0^Qf

0. Then, for

any open subset W of W, we obtain

RHom(SR, RT^.^CF-H^') n QQi ̂ *^))=o
by applying Proposition 4.4.2 and hence, by the same way as in the preceding

discussion, we have

R(F | fil)*RHom (2)1, R^0_^,^)) | w = 0

and hence

R(F 10l)*R Horn (9JI, RFfil -Oo(<p*0x)) \ w

= R(F 10l)*RHom (SR., Rr0l_oG(^^x)) | ̂ .

Now we shall prove (b) in general. We may assume Q^QQ and Q\nQ'0.

Set QJ = Q! n Oi and Oo = ^o U O'0. Then we have

R(F I fil)

= R(F | Dl

= R(F | oj^RHorn (SK<S RTnr -

by using the preceding results. In the same way

R(F | fl;)*R Horn (9W.,

= R(F | o;0*RHorn (SW., RTor .flS(^*^)) I w.

Thus we obtain the desired result (b).

Next we shall show (a). The question being local on W, we may assume

that S []F~1(W)c:Ql — Q0 by replacing W with its relatively compact open

subset. Set £ = {(t? x); Re t< — s0}. Then £ is a G0-open subset disjoint from
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U. Replacing Q1 and Q0 with Q1 U E and Q0 U E, respectively we may assume

that Ql fl QQ => F. Let V be an open subset of U such that

' and

x|)}. Since(t7' + G0)

g)=l7, we have

(4.4.4) (E7' + G(6))n(C/'4-G(6)fl)cz[/ for b»\ .

Then £i=([/' + G(fc))u E and ^ = C"+1--(E7' + G(fc)fl) satisfy the conditions (i)

and (ii). Hence, by replacing Qj and Q0 with Q\ and Q'Q respectively, we may

assume from the first

(0') Q1 and Q0 are G(Z?)-open for some b>0 and Q1 {]Q0=>E,

For XjG W9 denote by W(xl9 r) the open ball centered at xl with radius r.

We shall show that

(4.4.5) R Horn (TO, RrQ^Qo(F^(W(xl9 r)) n QI;

sRHom(SW., RTfll_Qo(F-H^(xls r') n Ot;

for 0 < r' ̂  r and W(xl9 r) c Pf.

Set, for a>0,

Ufa, a, r) = {(r, x); Re r<ar-8

Then we have

[7(xl5 a, OnL/czF-H^X!, r)),

C/(xls a, Onl/czl/Cx!, a', r")nl/ for

and

F-^xJn UcL/lXj, a, r7) for arr>2s0.

Note that |Re r| <e0 on U. We now have the following

Lemma 4.4.4. RHom (9ft., RrQl_fio(Ql n t/(x1? a, r'); 0X))

., RTo^^fl! n U(xl9 a, O;

RT^.^O! n l/(xl9 a', r');

arf>2s0.

Proof. It is enough to prove
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(4.4.6) RHom(9W , RTi,(»lia.onii1-(floU^1.a^))(Qi n U(xl9 a, r"); ^)) = 0,

and

(4.4.7) RHom(3M., RT(7(JClfllV,)n0l-(0oui7(*liafr'))(Oi n U(xl9 a', r'); ^)) = 0.

Take an open set Uf such that S n p-l(W)^U' and EJ'c^-O) n U.

Choose a">a'9 b, 1 and define R=Ux{(w, t;)e€1+"; Re w< -2a"(|Im w|

+ \ v \ ) } , g ( t 9 x ) = Ret-a"\x-xi\ and 2 by jR U {(r, x; w, u)eTt/; (t, x)eC/',

x^x, and Re(<(w, i>), dg(t, *)>)=Re(w-^-(/, x)+ t ^^M^ ^))

< - f i ( | I m M ^ | + |t;|)}
for 0<e«l. Then Q is a convex cone. If peUf—U(xi, a, r') and if (T, ̂ )

eC1+" satisfies RC«(T, 0, 6 n T~1(p)»<0, then (T, £) is very near to R+dg(p)

(0<e«l). Since

we have |t| < |{|. (In fact, we have |£| ^>(a" — e) Re T and |Im T| ge Re T. Hence,

if a">e + (l + £2)1/2, we have |r|<|^|). Therefore (p; (t, <J)) is not contained in

/I by (4.2.8). Thus the conditions in Proposition 4.4.1 are satisfied for

U(xl9 a, r) n flt -(G0 U U(xl9 a, r')) and U(xl9 a'9 r) n Ox -(G0 U U(xl9 a, r))
for these Q9 R and g. This implies (4.4.6) and (4.4.7) and completes the proof of

Lemma 4.4.4.

Now let us return to the proof of (4.4.5). Since W (U n U(xl9 a, r))
a>0

= U n F"1(W(xl9 r)), we can apply Mittag-Leffler's theorem, and we obtain

Ext' (SW , RT^.^CF
= lim Ext' (SB., RT^.^CC/Cx!, a, r) n G^ (?x))

a

= Um Ext^ (SW , RTfl.-ft.CUCx!, «, r') n fl^ <PT))
a

= Ext' (SW., RT0l-0o(F-*(W(xl9 r') n GO; ^)) -

Thus we find (4.4.5). Hence, if we put

then we have

HJ(W(xl9 r); &') ^» W(W(xl9 r7); ^') for any j .

Note that we can take a representative ^' such that ^ =0 for j <0. Then the

property (a) in Proposition 4.4.3 follows from the following lemma.
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Lemma 4.4.5. Let ^' be a complex of sheaves on an open set A of Rn

such that J5"-7 = 0 for j « 0. Suppose that for any y0EA and r such that

A(yQ, r)=f{yERn; \y-y0\<r}<=A,

we have

Hi(A(y09 r); &') ̂  H*(A(y0, r'); &')

for 0<r':gr and any i. Then any cohomology group of &' is a locally con-

stant sheaf on A.

Proof. First we shall consider the case where J5"" is a single complex, i.e.,

^f /(jr') = o for jVO. In this case, the lemma follows from the following sub-

lemma.

Sublemma 4.4.6. Let ^ be a sheaf on A. Suppose that ^(A(y09 r))

-^^r(A(y09 r')) is an isomorphism for any y0, r and r' such that A(y0, r)c=^4

and 0<r'gr. Then & is a locally constant sheaf on A.

Proof of the sublemma. The question being local on A, we can assume

A = {y; \y\<l}. It is enough to show that ^r(A)-^^r
yo is an isomorphism for

any y0eA, or ^r(A)-^^r(A(y09 r)) is an isomorphism for any y0eA and any r

such that 0<r<l-\y0\. Set At = A(ty0, l-t\y0\). Then A0 = A, A1=A(y09

1-LVol) and At-=>At. for O^f^ f ' ^1 . If l-(3f'-20|y0l>0, then At=>Ar

=>A(ty0, !-(2t'-t)\yQ\)=)A(try09 l-(3tf -2f)\yQ\). Hence we have a diagram

o9 l-(2t'-t)\y0\))

Since j<>i and k°j are isomorphisms by the assumption, i is an isomorphism.

This shows that &(Ad = &(AQ). Since &'(A1) = &r(A(y0, 1- 1^0|))^ ^(A(y0,

r)), we obtain the desired result. Q. E. D.

We resume the proof of Lemma 4.4.5. Suppose that 3SP j(^ ") = 0 for j<k.

Then there is a triangle

with & such that 3fJ(&') = 0 for j ^ k and jf^') = &*(&') for j > fc. Then we

have

Hk(A(y0, r); &') = r(A(y0, r);
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Hence ^f k(^"*) is a locally constant sheaf by Sublemma 4.4.6. Hence

This implies that

Hence ^f fc+1(^"') = Jf &+1(^') is a locally constant sheaf on 4. By repeating

this procedure, we can prove Lemma 4.4.5,

Thus we have completed the proof of Proposition 4.4.3.

§ 5. Multi-valued Holomorphic Function Solutions of J{

Now we shall investigate holomorphic solutions of Jt and we shall prove

that they are prolonged to multi-valued holomorphic functions with finite de-

termination property. In order to make our discussion smooth, we shall

introduce the following module, which is similar to the space of microf unctions.

(See S-K-K [24] Chapter I for the theory of microf unction.)

Let & be the set of closed subsets Z of Cl+n such that the normal cone

Cqo(Z) of Z is contained in {(*, x); Re *^0}. We define

(4.5.1) C=

Clearly any Ze^ is contained in some Z'e& such that Cl+n — Zf is convex in

a neighborhood of q0. Hence we have

(4.5.2) ta-#^(0ci-)«o = 0 for k^1

by Oka-Cartan's theorem.

Set W(a) = {(*, x) ; Re t < - a(\lm t\ + \x\)} for a > 0. Then W(a) n Z = <)> in

a neighborhood of q0 for any a>0 and

Lemma 45.1. The vector space C is canonically endowed with a structure

of #*Q-module.

Proof. Set G(fl) = {(r, x); Re^-a(|Imr| + |x|)}. Then <f*0 is, by the

definition, the inductive limit of G(G(fl); D'), where D' runs over the set of

G(a)-open neighborhoods of q0. For any Z in £T, there is Z'e^ containing Z

and G(a)-closed in a neighborhood of qQ. Hence «?f z'(^ci+»)«0
 nas a
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of ffi(G(a); D')-niodule. Taking the inductive limit, we obtain the desired

result. Q. E. D.

Each element of C is a modulo class r\ of a holomorphic function defined on

V— Z for some open neighborhood Fof q0 and some ZE&. We shall call this

holomorphic function a representative of r\.

We shall make explicit the action of operators in & qo on C. Let P be an

element of £qo and r\ an element of C. Let (P00, x> AcX K(tl9 t2>
 x> Ac)) the

representative of P and q> a representative of rj. Then, for 0< — A«l, (P)A<P

= P0(t9 x, Dx)(p(t, x)+\ K(t, s, z, Dx)(p(s9 x)ds gives an element of C. This

element equals P?; by Proposition 3.1.5 and Proposition 3.2.1 in Chapter III.

See also Case 1 discussed in Section 3, Chapter III.

Theorem 4,5.2, Let $ be an element of Homffp (^Po, C), s an element of

^Po and cp a representative of <£(s). Then there are an open neighborhood V

of qQ and multi-valued holomorphic function <p on V—S such that a branch

of <p coincides with <p on V—Z for some

Now we note that we can choose ZE££ and an open neighborhood Fof q0

so that (p is defined on V— Z. Moreover we can assume that Jt is generated by

s. Hence by Corollary 3.5.7 in Chapter III, Section 5, ̂ PQ = ̂ /(^Pl + --+ P£N)

with PjG/q0. Further we can assume that Pj are of order <0, and hence Pj is

represented by the kernel Kj(tl9 t2, x, Dx). Then, as has already been noted,

the integral

T Kfi, s, x, Dx)(p(s, x)ds (0< -A«l)
J A

gives Pj's and hence this function is a holomorphic function defined on a neigh-

borhood of q0 for j = l,..., N.

When these additional conditions are satisfied, we can employ the same

arguments as in [13]. Here we do not repeat the detailed arguments but leave

them to the reader.

Set n = n1(B(s, d) — S) for 0<e«(5«l. Then n does not depend on the

choice of e and 5. By replacing e0 and 30 with smaller ones, we may assume

(4.5.3) 7r = 7T1(5(e, <5)-S) if 0<sgs0, 0<d^dQ and e<d.

Theorem 45.3. Let 0, s, cp and <p be as in Theorem 4.5.2. Let a be the

ideal of C[n] consisting of ere €[71] such that a(cp) is holomorphic on a neigh-

borhood of q0. Let P be a micro-differential operator (of infinite order)
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defined on a neighborhood of p0 and \l/ a representative of 4>(Ps). Then if/ is

also continued to a multi-valued holomorphic function \j/ defined on V — S for

some neighborhood V of q0. Moreover cr($) is holomorphic on a neighbor-

hood of qQ for any ere a.

Proof. We can assume from the beginning that ^{ = £s. Then ^Po is

generated by s over /qo by Corollary 3.5.7 in Chapter III, Section 5. By

Corollary 3.5.6 there, ^¥0 = ̂ f0^Po9 and hence J/20 = #%0s. Thus we can
assume that P belongs to /%0. If P is a linear differential operator, then this

theorem is obvious because \l/ — Pq> is holomorphic on a neighborhood of q0.

Since any element of /$0 is a sum of a linear differential operator and an integro-

differential operator K(tl9 t2, x, Dx)9 we may assume from the first that P is

given by K(ll9 t2, x, Dx).

Assume that cp is holomorphic on B(s95)—W(l) for 0«e«<5«l and

K(tl9 t2, x, Dx) is defined for 1^1, \t2\ <o, |x| <e. Take a real A such 0< —A<e .

Then, by the definition of the action of P on C (cf. Propositions 3.1.5 and 3.2.1

in Chapter III), \l/(t, x) — \ K(t9 s, z, Dx)cp(s, x)dx is holomorphic on a neigh-

borhood of the origin. Hence we can assume, without loss of generality,

ib(t, x) = \ K(t, s, x, Dx)(p(s, x)ds.
J A

Hence, as shown in Chapter III, Section 4, if/ is continued to a multi-valued

holomorphic function on B(e9 S) — F~1(H) — S.

Hence, in order to show that \j/ is continued to a multi-valued function on

J3(e, 6) — S, it is enough to show that if/ does not have singularities on F~1(H).

We shall now employ the same method as in p. 127 of [13]. We take

another fibering F', where F' is the map from X to Cn defined by (t9 x^(x1 +12,

x2 + t3,...,xn + tn+i). Let H' be the image of the points of S where F'\s: S

->CW is not a local isomorphism. Then, by the same argument as above, if/ is

continued to a multi-valued holomorphic function on F—S —F'"1^') for a

neighborhood V. Hence, if we can prove that F~l(H) n F'~l(H') has codimen-

sion ^2, then F-1(H) n F'~1(Hf) is a removable singularity and we can continue

\l/ to a multi-valued holomorphic function on V—S (Proposition 3.4.2 in Chapter

III, §4.).

Lemma 4.5.4. F'l(H) n F'"i(Hf) has codimension ^2.

Proof. If not, there is a hypersurface T which is an irreducible component
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of F-^H) and F'-^H') at once. Tis a union of fiber of F (resp., F'). There-

fore the vector fields d/dt and ̂ -2^^f" -3r2-gf ------ (n + 1)fB~5F~ are

tangent to F. Hence any vector field in the Lie algebra generated by these two

vector fields is tangent to V. However, this Lie algebra contains d/dt, d / d x l 9 . . . ,

d/dxn. This contradicts the fact that Tis a hypersurface. Q. E. D.

Thus we have proved that \j/ is continued to a multi-valued holomorphic

function on V— S for a neighborhood Fof q0.

In order to prove that o(\j/) is holomorphic on a neighborhood of qQ for

0-ea, we shall use the results in Section 4 of Chapter III. Let [cp] and [^] be

the elements of F/G (given in (3.4.6) and (3.4.7)) corresponding to (p and \[/9

respectively. Then we have [^] = P[<p]. Since the action of C[TT] on F/G

commutes with that of &%0, we have o"([^]) = P(o-([9])) = 0. This means that

a(\l/) is a multi-valued holomorphic function defined on V—F~\H) for a neigh-

borhood F of q0. On the other hand, a(\ji) is continued to a multi-valued

function on F— S. Hence a(\l/) is holomorphic on a neighborhood of q0 by

Proposition 3.4.2. This completes the proof of Theorem 4.5.3.

§ 6. Proof of Theorem 4.1.1.

Now, let us investigate the structure of the group Hom,p (^PQ9 C).

Since <f£_ ® SO? is quasi-isomorphic to ^fn by (4.3.4), we have
g(G0;D)

(4.6.1) Hom^o (^P09 C) = Home(Go;1)) (3K., C).

The module C is, by the definition, liiq H^(Vm, Ox), where F ranges over a
Ze^,F

neighborhood system of ^0- Since S + Gge &9 ZU (S + Gg) belongs to # for

any Ze JT. Hence we may assume that Z contains S and that Z is G0-closed.

Hence we have

Po(^Po, C)= Ins RHom@(Go;D) (SR., RrB(e>,)nz(^(6, (5);
Ill

0<e<<5

By using Proposition 4.4.3, we find that, if J5(s, <5)c: U

(4.6.2) RHom@(Go;I)) (SK., Rr5(£j,)nz(B(£, (5); ̂ )

Cs, (5); 6?)),

where W(i) = {(t, x); Rer<-( |Imf| + |x|)}.

Take 0<e1<51 such that B(si9S1)c:U. Then Proposition 4.4.3 shows
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that the both sides of (4.6.2) are independent of e and 8 if 0<e<c>, B^SI and

Thus we obtain

(4.6.3) Hom,po(uf, Q-Ext1 (931., RTB(BlM.W(l)(B(sl9 6J', &}}.

Let us take a point xl of JB(el9 5 t )— Ff(l) such that the condition (4.2.10) is

satisfied. For Q<r<e1 — \xl\9 we denote by V(r) the open ball centered at xt

with radius r. Then, by Proposition 4.4.3, we have

Ext1 (S»., RF^^.^OB^, (5^; 0))

= Ext1 (SB., RTF-1(K(r))nB(8li,l)_llr(1)(F-1(7(r))nB(e1, ^); 0)).

There are positive numbers r0, p0 and holomorphic functions hj (1^ jrgN)

defined on F(r0) such that Q<r0<e1-\x1\9 F'l(V(r0)){]B(e1i9 51)r\S =

U {(f,x);xe7(r0), f = Ji/x)} and that \lm(hj(x)-hk(x))\>2pQ for xeF(r0)
j=i
(jVfe). We denote by S7 the hypersurface {(f, x); xeF(r0), f = fc/x)} (j = l,...,

N). For 0<p<p0 and 0<r<r0 , set

Oi(r, p)= U {(r, x); |x-x1|<r, |t
j~i

and define O0(r, p) by

00(r, p) = fl!(r, p)- U ({(*, x); |x-X!|<

The open sets Q^(r9 p) and O0(r, p) are the union of disjoint IV open sets. Then

again by Proposition 4.4.3, we have

(4.6.4) Exti (3K , RTr -.(K(r))nJK.,.*,)-ir(i)(^-1(n'-)) n 5(6^ ^); <P))
=Ext' (2tt., RTo.^.^^^O^r, p); <P)) .

Let £, denote the point (hfai), xt; 1, -grad., hj(xj) of T|Z (; = !,..., JV).

Then we have

p); ffx))= ® Vj\x.p [-1] .
j = l J

Finally we obtain the following

Proposition 4.6.1. Hom/p (urPo, C)= 0

This implies, in particular, that Homfp (^Po, C) is finite-dimensional be-

cause so is each .#**», (^, &*\X)PJ -

Proposition 4,6.2, Let s be an element of ^^Q. If <£(s) = 0 for any 0
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eHom^ (uTJ?0, C), then s = Q.

Proof. Since uf£0=^£0 ® uT?0 (Chapter III, §5, Proposition 3.5.5), we
/?„

have

Hom,-o M70, C) = Hom;-o (uTJ?0, C).

By (4.6.3), we have

Hom;-o(urj?0, C) = Honv-~oU70, C'), where C = ^c^n.W(l}(Ox\Q.

Note that C' is an ^J0 -module because W(l) is G0-open. Since C' contains C
as a submodule, we have $(s) = 0 for any 0eHom^« (^?0, C'). Let M I V . . , w#0

be the system of generators given in Section 2. Then «^?0 = £ ^?0Wy by Corol-
J

lary 3.5.6. Hence we can express s=£ PjMj with P/e<f J0. There is a Go-

round open neighborhood D' of #0 such that Pj is considered as an element of
(£(G0; D') and also as a section of <f°° on {(r, x; T, {); t^O, (t, x)eD'}. Now,
set JDTs: Jf0(G(Go; i)') ® 9H ) and denote by s, (j = 1,..., AT0) the elements of

S(G0;D)
2R' corresponding to the base of 9^0 = e(G0, D)N°. Let 5 be the section £ Pyny

of ^°° defined on {(t, x; T, {); *^0, (t, x)eD'}. Since Hom;-o (ufJ^/C') is
finite-dimensional and C'= Imj Hi(B^)_w-(1)(5(6, (5); ^x), there is 0<e<<5 such

that ZPj0(^)=Ofor 0eHo°m^0,D')(^'} ̂ ic^-^D^fe «); ^))«
Now let us take xleB(d)9 SJ9 Qi(r9 p), O0(r, p) and pj as before. Then, by

(4.6.4), the map

HB(E,d)-w(i)(B(£, «); 0*) - > ̂ (^.^(^(Q^r, p); Ox)

induces an isomorphism

Homtt(Go;1)0(aR', ^(Ej5)_^(1)(jB(e, (5); ^)
^^> Home(Go;DO (W, H^rt-a^^Q^r, p); ^x)).

Hence we obtain ]£ PJ.^(s_/) = 0 for any 0 in

R', fl^c^-^^CQ^r, p); ̂ )).

Hence, by taking the inductive limit on r and p, we have 2Pj0(sj) = 0 f°r

any 0 e Home(GojI)) 00T, © ̂ f,!^, or equivalently, 0(g) = 0 for any 0e

Hom^ (uTJ^, Vsjix*)' By Theorem 1.3.1 of Chapter I, J?R = £R®JK is

locally isomorphic to a direct sum of copies of ^§j\x at Py» and hence we obtain
s = 0 as an element of uff^. Since u^J^ is contained in *S~*J9 we have spj = Q, i.e.,
supp l^jpj. Since suppS is a union of irreducible components of A D n~1(Df)
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by Proposition 1.3.8 of Chapter I, supps = </> and hence 5 = 0. Q.E. D.

Let s j,..., sNo be the system of generators of ^ given in Section 3 of this

chapter. Let $ be an element of Hom^ (^Po, C), and q>j a representative of

(f)(Sj). Then, as is shown in Theorem 4.5.2, there is an open neighborhood V

of q0 such that q)j can be continued to a multi-valued holomorphic function

defined on V— S. Since $ ranges only over a finite-dimensional vector space,

we may assume that V does not depend on 4> (for a suitable choice of (pj). We

can take V as B(sl9 5t) for 0<e1<51«l. Let c be the projection from the

universal covering B(el9 d^ — S of B(el9 S^ — S onto B(el9 d^ — S and let us fix

a section p of c over B(sl9 &i)—W(]). Let <pj be an analytic continuation of

9,.0/J"1. Then we have the following

Proposition 4.6.3. For aen = ni(B(c0, 50) — S) = n1(B(sl9 <5i) — S), the map

(ff((pj))°f} defines an #yo-linear homomorph ism from ^%0 into C.

Proof. By Section 2, Sj satisfies the fundamental relations

with PijE/q0 such that ordPfj-<0. Since 0 is <f ̂ -linear, for 0<— A«l,

i9j is holomorphic on a neighborhood of q0. (Proposition 3.1.5 and

Proposition 3.2.1 in Chapter III.) On the other hand, <y(X (Pjj)9j) i§ equal to

Z (Pij)i.ff(9j) modulo multi-valued holomorphic functions defined on

V'-F-l(H) for a neighborhood V of q0. (Chapter III, §4.) Hence

JZ(Pij)*?(<Pj) 1S a multi-valued holomorphic function defined on V — F~\H)
j

for a neighborhood V of q0.

If we apply the same argument for the fibering F' (cf. the proof of Theorem

4.5.3), ^(Pij)iff(<i)j) is seen to be homomorphic on V — F'~l(H'). Therefore

Z (Pijj^Vj) is holomorphic at the origin. Q. E. D.
j

In what follows, we denote by 0ff the map defined in the above proposition.

§7. Proof of Theorem 4.1.1 (Continued)

In order to prove Theorem 4.1.1, we shall make full use of the results of

Chapter III, Section 4.

Let c be the subset of C[TC] consisting of O-G€[TT] such that a(cp) is holo-

morphic on a neighborhood of q0 for any <£e Horn f («^fPo5 C) and any repre-
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sentative (p of any element of 0(^Po). Then c is a two-sided ideal of C[TC], and
the vector space C[TT]/C has a finite dimension. In fact, c is the kernel of the
homomorphism

C[>c]3<7 I— (0~0*)eEndc(Hom,Fo(ufPo, C)).

Set a= £(y — J)c. Then, by Lemma 3.4.6, C[V]/a is also finite-dimensional.
yen

Let g be the holonomic system of D-type with singularities along S and with

the monodromy type a, i.e., JS?^0 (resp., J^0) is the set of multi-valued holo-

morphic functions cp defined on V— S for a neighborhood V of q0 such that
a(cp) = Q for any GECL (resp., and in the Nilsson class). Let & be the coherent

^-sub-Module of & such that &q is the image of OqJ&JP*«*9((99 &)q0-*>&q0c
defined by/®x' — >*(/)•

Since 3#*»*a (0, &)qo = C, such a ^ exists and & is isomorphic to (9. More-
over je+»*a (0, 0>)qo ^* jf*~9(0, &)qo. Set JT = <e\0>. Then we have

(4.7.1) jf^(

Let 0 be an element of Hom,p (u^0, C). Let s be an element of ^*0 and
let cp be a representative of $(s). Since 0-(<p) is holomorphic at qQ for any a EC,

acp = 0. Hence <p belongs to ^^0. Since cp is determined up to holomorphic

function defined on a neighborhood of q0, the homomorphism s*-+((p mod «^J0)

is a well-defined €-linear map from ^^0 into ^rf0. We shall denote this map

by E((j)). This homomorphism £($) is evidently ^£>0 -linear.
Let F(<£) be the SJ0 -linear homomorphism from ^^0 into <^0 ® JV™0

®«o
defined by s^l®£(^)(5).

We shall now prove

Proposition 4.7.1. F(0) is tf^-linear.

At first sight, this proposition might seem obvious. However, this is far

from obvious, and, as a matter of fact, this proposition is one of the most es-

sential steps of the proof of Theorem 4.1.1.

In order to prove Proposition 4.7.1, we prepare some lemmas.

Let X' (resp., Y') be the universal covering of B(el9 d1) — S — F~l(H) (resp.,
B(s1)-H) and c (resp., K) the projection from X' (resp., X" =f B(el9 5X) x Y;)

onto B(sl95l)-S-F-1(H) (resp., B(el9 SJ-p-^H)). Set F = lm0*,(r1(U
u

-S-F~l(H)) and G = Hnj 0Xn(K~\V -F~l(H))\ where 17 ranges over a neigh-

borhood system of q0. Then, as was shown in Chapter III, Section 4, the
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quotient F/G is an <f J0-module. For any left ideal b of C[TT] contained in a

such that dimC[7i]/b<oo, let j£?(b) be a holonomic system of D-type with
singularities along S U F"1^) and the monodromy type b. (See §4.3 of Chapter

III). Then <e is a sub-Module of jgf(b) and JS?(b)J0 is contained in F. Let

^(b) be the ^-sub-Module of J^(b) consisting of sections which do not have

singularities on S, i.e., ^(b) is a holonomic ^-Module of D-type with sin-

gularities along F~J(/f) and with the monodromy type b. We have ̂ (b)*0 fl :S?"0

= 3?qo, because a function in ^(b)^0 n J^Jo has singularities neither on S nor on

Therefore we have

(4.7.2) ^fo/^ro (—

Since Pe#%0 operates by (P)A on C and on F/G, we have the following:

(4. 7. 3) The homomorphism j°/°£(0) : .^70-»F/G is /J0-linear.

Lemma 4B7.28 T/iere exists a left ideal bca ofC[n] satisfying the follow-

ing conditions

(4.7.4) dimcC[7r]/b<oo

(4.7.5) uf?0

defined by s H^ 1 (g) jo£(0) (5) /s /^-linear, where i is the homomorphism from

into

Proof. By Proposition 3.4.9, there exists a left ideal bca satisfying (4.7.4)

and the following condition :

(4.7.6) The image of the homomorphism from /%0 ® J^(a)J0 into
®«o

is contained in the image of the homomorphism «^(b)^0 into &™
^^0

Let s be an element of J^Q and P an element of /yo. By (4.7.6), there

exists u e (^P(b)/^(b)) ̂ 0 such that P®/o£(0)s = l(g)M holds as an equality in

^?0 ® (-^(6)/^0>))?0. Therefore we have P®joicE(^)(s)=l®j(u) in /» ® (F/G).
^~0 . ^^0

By applying the homomorphism <f^0 ® (F/G)BQ®v*-+QvEF/G, we obtain
S«o

Pj°ioE((f))(s)=j(u). Since joio£(0) is /J0-linear, this shows j°i°E(<£)(Ps)=j(w),
and hence i<>E(<l>)(Ps) = u. Thus we obtain P ® io£(0)s = 1 ® fo£(0) (Ps), and

Lemma 4.7.2 is proved. Q. E. D.

Now, let us prove Proposition 4.7,1. Since u^-*/^ ® (^(b)/^(b))^0 is
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/%Q-linear by the preceding lemma, the homomorphism obtained by tensoring

(defined by P®s>-»P®£(0)(s)) is <f^0-linear. On the other hand,

is an (f ̂ -linear isomorphism by Proposition 3.5.5, and hence the homomor-

phism

•^PO * ̂ ?o ® ^?o (defined by SH* l®s)

is also ^-linear. This implies that

«^?o * ̂ To ® (°^(fr)/^(k))?o (defined by s*-* \®E(^))s)

is an ^j?0-linear homomorphism. On the other hand, Jf^ is a submodule

of (oSf(b)/^(b))9o by (4.7.2), and hence ^0 ® ^T^0 is a submodule of

<f^0 ® (j5f(b)/^(b))J0. This shows that F(0) is ^^0-linear, which completes

the proof of Proposition 4.7.1.

Now we are ready to prove Theorem 4.1.1. Let {0lv.., $r} be a base of

Hom^p (urPo> C). Set

Then ^ is a ^^0-linear-homomorphism. Let !P denote the ^^0-linear homo-

morphism J?f0-+£20 ® ^TJ0 defined by SH->l®^(s). We shall show <P is injec-
go

tive. Let s be an element of J{^Q such that $(s) = 0. Hence, for any 06

Hom^ (^?0, C), ^(s) = 0. Therefore, by Proposition 4.6.2, s = 0. Therefore

!F is injective. This completes the proof of Theorem 4.1.1.

Chapter V. Basic Properties of Holonomic Systems with R.S.

In this chapter we prove several basic properties of holonomic systems with

R. S. In Section I we derive several important properties of holonomic systems

with R. S. from the embedding theorem proved in Chapter IV. In Section 2 by

the embedding theorem we prove our main theorem which asserts that *f f ® Jt
#x

= #x ® ̂ reg holds for any holonomic S -Module ^. In Section 3 we show
$x

that the application of the integration procedure and the restriction procedure
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to holonomic systems with R. S. yields hoionomic systems with R. S. under

moderate conditions. Here we essentially use the embedding theorem again.

In Section 4 we discuss the restriction of holonomic ^-Modules with R. S. to

an arbitrary submanifold. In the course of the proof we prove some results

which are basic for the proof of comparison theorems given in Chapter VI.

§1.

In this section we first prove the following Theorem 5.1.1. This result is

interesting and basic and it will be often used in our later arguments. Next we

construct a special <f (O)-sub-Module of a holonomic $ -Module with R. S. by

using the notion of orders. (Theorem 5.1.6). Then using this result we prove

Corollary 5.1.7, which clarifies the relationship between the notion of holonomic

systems with R. S. and the general notion of systems with regular singularities

along an involutory variety. We also use Theorem 5.1.6 to prove that a holo-

nomic ^-Module with R. S. has a good filtration.

Theorem 5.1.1. Let ^ be a holonomic gx-Module with R. S. defined on

a neighborhood of a point p in T*X—T%X. Suppose that the characteristic

variety A of „# is in a generic position at p. Then JCp is a finitely generated

and we have

= 0 for pren-1n(p)-T$X-C*p.

Proof. Set q = n(p) and Y=n(A). By Theorem 4.1.1, there exist a holo-

nomic system £g of D-type with singularities along Y, a holonomic sub-Module

& of <£ isomorphic to a direct sum of 0 and a ^°°-linear homomorphism

such that the composite of if/ with (^/^)^-»^?,p ® (&/0>)™ = (?%ip ® &q is
®X,q ' ®X,q

an injective *f ̂ -linear homomorphism from J(™ into ^x,P ® &q- We shall
&x,q

show that \l/(^p) is contained in £?\0>. Let u be a section of ^ and v a section

of ^P°° such that \l/(u) is v modulo <^ = ^Z)00. Since u satisfies a system of micro-

differential equations with R. S., v also satisfies a system of micro-differential

equations with R. S. in a neighborhood of p. Hence v belongs to 3? at a generic

point of 7. Therefore v is a section of J^. (Chapter II, §3, Proposition 2.3.5.)
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Thus ^p is a finitely generated ^^-module. Let if/': J£p-*(&l0>)q be the

restriction of \//. Since i//' is injective, l®\l/':£p ® ^fp-+£p ® (&/0>)q is

injective. Consider the diagram

(5.1.1)

where (p and <£ are defined by cp(P®u) = Pu and 0(«)=1®^'(M)> respectively.

Since <£ is ^-linear, the diagram (5.1.1) is commutative. Hence cp is injec-

tive because l®i/^ is injective. On the other hand, the surjectivity of (p is clear.

Therefore (p is an isomorphism, namely, £p ® <Jfp = <J?p.
® X , q

Lastly we shall show that

6 . ® ^p = 0 for p'E7i-l(q)-C*p-T%X.
®X,q

Let ^ be a coherent ^-Module defined in a neighborhood of g such that

^ ^ = ̂ p. It is enough to show that the characteristic variety A' of !F is con-

tained in A U T\X. Since £®& is a sub-Module of <T ®(^/^), /!' is contained
^ 9

in TJ-X'U7c~1(y). Since tf®^ is ^ in a neighborhood of p, we can write
®

A' = A() T$X()A"9 where /I" is a closed Lagrangian variety such that p&A"

and >l//c=7r~1(y). Then Lemma 5.1.2 proved below implies that A" is void, i.e.,

A' = AUT$X. Q.E.D.

Lemma 5.1.2. Let A be a closed homogeneous Lagrangian variety of

T*X—T*X and let p be a point of A. Assume that A satisfies the following

condition:

(5.1.2) 7i-1

Let A' be another closed Lagrangian variety such that p^A' and that n(A')

an(A). Then A' n n~1(n(p}) = 0.

Proof. We shall prove this by a reduction to absurdity. Denote n(p) by

q and denote n(A) (resp., n(A')) by y(resp., Z). Suppose that A' n n~~

Then Z should contain n(p). Since A' is a homogeneous Lagrangian variety,

A' contains T%X. On the other hand, since y contains Z by the assumption,

T%X contains W=={ T$X n n~l(Z — Z1) for some nowhere dense analytic subset

Zi of Z. Here we note that (W- TJJSQ n 7c-1(^f)^0. Since IF- TJZ is con-
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tained in A, (W— T$X) fl n~1(q) is contained in Cxp. Hence W should contain

p. Therefore A' should contain p. This is a contradiction. Q. E. D.

In the course of the proof of Theorem 5.1.1, we have obtained the following

Theorem 5.1.3. Let J£ and A be as in Theorem 5.1.1. Then there exist

a holonomic system g of D-type, a holonomic & -sub-Module ^ of ^

with SS(3?}c:T%X and an injective @Xjn(p}-1inear homomorphism $: <^p-*

The following theorem follows immediately from Theorem 5.1.1.

Theorem 5 A A, Let ^ and A be as in Theorem 5.1.1. Then there exists

a holonomic ^-Module ^ with R. S. which satisfies the following conditions:

(5.1.3) ^(p) = ̂ p

(5.1.4) $ ® ^ — ̂  holds in a neighborhood o f p .
Tl-lQ

(5.1.5) SS(Jjr) is contained in A U T$X is a neighborhood of Tr^

In what follows, we shall prove several coherency properties of the sheaves

related to holonomic systems with R. S. The key point in our arguments is the

coherency over Ox of J^0, the sub-Module of 3? consisting of the sections in the

strict Nilsson class. (Chapter II, §2.)

Theorem 5.1.5. Let Jl and A be as in Theorem 5.1.1. Let ^0 be a

coherent $(®)-sub-Module of */// '. Then e^f0j/7, the stalk of ^0 at p, is a finitely

generated @x>n(p)-module.

Proof. Let us use the same notations as in the proof of Theorem 5.1.1.

Let o^o be the sub-Module of <£ consisting of the sections in the strict Nilsson

class. Let/ be a holomorphic function on X such that /~1(0)= 7. Then there

exists m e Z such that Re (ord u) < m for any section u of ^0 defined on an open

subset of Areg. Let u be a section of ^0 and let v be a section of 3? whose

modulo class in £>/0> is \l/(u). Then Re(ord/m+1t;)< -1 on T^regZ. Hence

Proposition 2.3.7 in Chapter II entails that/m+1y belongs to JS?0. Hence \l/(u)

belongs to /~m~1J^?
0/^- Therefore we see that ^Ojp is a submodule of

(f~m~l^Ql^\(p}. Since both &0 and & are of finite type over Ox, we obtain

the required result. Q. E. D.

Theorem 5,1.6. Let c be a real number and Jt a holonomic £x-Module

with R. S. defined on an open subset Q of T*X—T$X. Let A be the support of
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Jf. Let *JQ denote the sub sheaf of */£ given by assigning {se^0(U)i ord^s

c:{AeC; Re /I ̂ c} for any point p of U n ATes} to U. Then the following hold:

( i ) J£Q is a coherent $ (0) \Q-Module.

(ii) .jf = <sf^0 fl«d JtfQ = &Aj?0.

(iii) For a«_y closed analytic subset W of an open subset U of T*X such

that codim ff^n + 1, we have jf ^(uf/uf0) = 0.

Proof. The property (ii) of ^f0 is clear. The property (iii) follows from

the fact that ordp u is locally constant in pe/lreg. To prove (i), we shall employ

a quantized contact transformation. There is a finite subset F of C such that

ordscF + Z for any section s of ^. By a quantized contact transformation,

we may assume that c= — 1/2 and for any AeF + Z, Re A ̂  —1/2. Let p0 be a

point of A. Again by a quantized contact transformation, we may assume

that A is in a generic position at p0. Set qQ = n(po). Then we may assume that

O = ^:~1([/)— T$X for an open neighborhood U of qQ and /I n 7c~1(g0) = Cxjp0.

Let ^ be a coherent ^-Module such that ^0=^0. Then, by Theorem
5.1.4, J5" is a holonomic %-Module with R.S., SS(^)c:yl u T$X9 and uT

= ^®^. Set S = 71(4). Then we have
£2

(5.1.6) A n TT-'CS^ r|regz-
We have

(5.1.7)

In fact, ^' = jf^) is a holonomic Sx-Module such that SS(^r/)c:(^ U

n 7c"1(S). Hence «^"lsreg is locally isomorphic to a direct sum of copies of

•^Sregfx- Since an order of a section of <f ® &src%\x \A *s a half integer,
= 0 on r|regZ- TJ^. Hence we obtain

ss GF')c(7ri(s) n r*^) u (^ n ic\s.in$ .

On the other hand, since

dim(7r-1(S) n TJX) U (/I n 7rJ(

we have SS (^') = 0. Thus (5.1.7) has been proved. Let ^ denote

Then J^f is a holonomic ^-Module of D-type by Proposition 2.3.4 in Chapter

II, and 3? contains 3? as a sub-Module. Let jg?0 be the subsheaf of ^f consist-

ing of the sections of & in the strict Nilsson class. Then we have

(5.1.8) jSf0 = {We^; ordri
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where H=<AeC; Re Ag — 44. Since ^Q is a coherent ^-Module, & n J^0

is also a coherent 0X- Module. Let ^Q be the ^(O)-sub-Module of «^f generated

by & n =2V Then ^Q is clearly a coherent ^(O)-Module. We shall prove

j?Q = jjf'Q on n~1(Stes). Let ^ be a point of Sreg and we shall take a local

coordinate system (x l5...,xn) around g such that Sreg is given by x1=0. By

the definition of ^0, 3?0 contains x^D^Q, D2J^0,...9 Dn^0 and hence we have

^0 n j^x^O^o n ̂ )+D2(^0 n &)+--+Dn(3>Q n ^).

Since ^ is generated by x1D1, D2J..., A» over ^(0), ^Q is an ^-Module on
7C"1(S'reg)' ^y Proposition 2.3.8 in Chapter II, there exists a polynomial
satisfying

(5.1.9) D

and

(5.1.10) any root A of b(X) = Q satisfies -4-^

This shows that

and hence

Hence we obtain

Therefore we obtain ^o = «^o on /lreg by Lemma 1.5.7 in Chapter I. Set

Pf = A n ?r KSsin)- We shall show

(5.1.11)

By the definition of &0, we have

In general, for an (f (O)-Module uf, we denote by ^(A:) the ^(O)-Module ^(/c) (x) Jl. If
/(O)

^f is an ^(O)-sub-Module of an ^-Module ./f, then ^r(A:) coincides with



932 MASAKI KASHIWARA AND TAKAHIRO KAWAI

(J2?0 n ̂ k = Ito {sejF(F); ordpself for any peTr^F) n T$TegX}

for any peTT^F) n ̂ lregv

where F ranges over a neighborhood system of q0. Hence (j£?0 n J5")^ is an

(f(0)Po-module. Therefore we have ^Q,PO = (^O D <^%0, and ^ojPo= linj {se
1/3PO

^(£7); ord pseH for any pe[/n^i reg}3 where 17 runs over a neighborhood

system of p0. Let P be a micro-differential operator of order 0 such that

cr0(P)|!/rnyl = 0 and cr0(P) is not identically zero on any irreducible component

of A. In order to show (5.1.11), let us take a section s of ^o(l) on a

neighborhood 17 of pQ such that s\v-we^'0. Since ^o(l)/«^o *s a coherent

0(0)-Module, there is an integer m such PmuG^ff
0. Hence we find that

ord Pmu e H for any p e U n /treg. On the other hand, ordp P
mu = ordp u +

ordpPm = ordpw. This implies we^o,p0 and hence we obtain (5.1.11).

Since ^(^o(l)/^0) is a coherent 0T*x-Module, J^^(^r
0(l)l^

f
0) = 0

holds on a neighborhood U of p0. This entails further that

^^(^o(k)/^f
0(k-lJ)\u = Q for any k, because uri(fc)/uf[>(fc-l) is locally

isomorphic to ^o(l)/^o- This implies ^^(^^(kj/^'o) \ v = 0 and hence

(5.1.12) ^U-*/-*o)ltf = 0.

Now we are ready to prove ^0 = ̂ o. In fact, ^o = ~^o outside TF and ^o

c uT0. Therefore we find uT0/^d ̂  ^"^(uf /uTd) = 0.

Since c^o is a coherent «f (0)-Module, this proves (i). Q. E. D.

As an immediate consequence of Theorem 5.1.6, we obtain the following

important corollary.

Corollary 5.1.7. Let Jit be a holonomic £x-Module with R, S. and V a

homogeneous involutory analytic set containing Supp Jt . Then ^ has regular

singularities along V—T^X.

Proof. The sub-Module J?Q of Jt given in Theorem 5.1.6 is an #v~

Module which is coherent over <f (0) and generates Jt as an £ -Module. Hence

Jt has regular singularities along F— T$X. Q. E. D.

By the aid of Theorem 5.1.6, we can also prove the following

Theorem 50L8. Let Jt be a holonomic ^x-Module with R. S. Let W be

a closed subvariety of an open subset QaT^X—T^X such that codim W

1. Let Jf be a coherent £(Q)-Module and let Jf' denote the subsheaf
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given by assigning (se^(t/); s\v-.wG^(U)} to U. Then Jf' is a coherent

Proof. First note that rf'<^€Jf. In fact, we have jfft{uf/^./r) = 0 and

hence we have

G/r + ffjr)l&Jir c je^rW + gjf}\g<Ar} c ̂ (jtigjr) = o .

Therefore, by replacing Jt with $Jf, we may assume from the first that J£ =

Let JC§ be the subsheaf of Jt given in Theorem 5.1.6. By considering
for sufficiently large m, we may assume without loss of generality that rf is
contained in ^0. Let J be the defining Ideal of W and denote ffol(J) by ./.
Here <70 designates the symbol map from <f(0) to @T*X. Define ^ by Jf and

^ (fc^l) inductively by

Evidently {^Tk}k^0 i§ an increasing sequence of <f(0)-sub-Modules. Denote
U ^k by Jf". Then it is clear that

(5.1.13) Jf"

holds.

Let us first prove that jV" is a coherent ^(O)-Module. In order to prove

this we show, by the induction on /c, that J\fk is coherent. In fact, choosing
Pye«f(0) so that

holds, we see that the following sequence is exact.

(5.1. H) o — + .^M'U — ^ (fl ..... Pi)

(5.1.14) combined with the induction on k clearly entails that J/*k is coherent.

Since Jf is contained in ^0, j^k (/e^O) is contained in <JfQ. Therefore Jf"

= \J Jfk is a union of coherent «f (O)-sub-Modules of ^0. This implies that
fc^O

j\r" is coherent over <f (0).
On the other hand, it is clear from the definition of J/"k that ^k = ̂ y holds

outside W. Hence JV" = JV holds outside W.

Now we shall show j\T' = Jf". It follows from (5.1.13) that

(5.1.15)
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Then, by the same argument as that used in the proof of Theorem 5.1.6 for the

proof of (5.1.12), we can conclude from (5.1.15) that ^(ufA/T^O holds.

Hence we find

Thus we conclude that Jf" = jV". Therefore JT' is a coherent «f(0)-Module.

Q.E.D.

We next apply Theorem 5.1.6 to prove the existence of a good filtration for

a holonomic ^-Module ^ with R. S. (See Section A.5 in Appendix A for the

definition of a good filtration.) Before proving the result (Corollary 5.1.11)

we prepare the following elementary lemma.

Lemma §01.98 Define a complex manifold X' by CxX and identify X

with the submanifold {0} xX of X'. Let p be the canonical projection from

XxtT*X' onto T*X. Let ^ be an #x-Module defined on an open subset Q

of T*X. Denote gx,<_x ® p~lJ[ by rf. Then we have the following :
p-**x

( i ) J/* is a coherent ^-Module on p~l(O) if and only if ^ is a coherent

£x-Module on Q.

(ii) Jf is a holonomic #x>-Module on p~l(&) if and only if JZ is a holo-

nomic #x-Module.

(in) Let Vbe a homogeneous involutory subvariety of Q—TXX. If ^ is

a coherent #x>-Module with regular singularities along p~l(V) on a neighbor-

hood of peXxfT*X', then Jt has regular singularities along V on a neighbor-

hood of p(p). Conversely, if ^ has regular singularities along V9 then Jf

has regular singularities along p~l(V) on p~1(Q—T^X).

(iv) ^ is a holonomic ^-Module with R. S. if and only if Jt is a holo-

nomic #x-Module with R. S.

Proof. The proof of the assertion (i) is given in Appendix A. (Propo-

sition A.2.) In order to prove (ii), it suffices to show

This immediately follows from the fact that &X'<-x i§ faithfully flat over p~l$x*

(S-K-K [24] Chapter II, §3.)

(iii) Let us prove the first assertion. Let t denote a coordinate of C.

Then £X'*-x = #X'l#x>t. We denote by lX
f*-x the section of #x>*-x given by



HOLONOMIC SYSTEMS. Ill 935

I E £ X , . Let cjf0 be a coherent <f(0)-sub-Module of ^. Define a coherent

<fx,(0)-Module ^T0 by ^Y'«-x(0) ® "^QJ where ^x'*-x(^)= &x'(tyl&x$)t

( = ffX'(0)lx'*-x)- Then it follows from the assumption that ^p-^v^o i§

coherent over <f^'(0). We shall prove

If (5.1.16) is proved, then the coherence of &V^Q over ^(0) can be derived from

that of ^p-i(V)^b over ^x'(O) by the same reasoning as in the proof of Propo-
sition A.2 in Appendix A. The assertion (5.1.16) follows from Sublemma

5.1.10 proved below. In fact, it is clear that &X'^xW) ® ^v^fQ is contained

in #p-i(V)^o> while Lemma 5.1.10 entails

for fe=l, 2,.... Here «/"F (resp., ,/p-i(F)) denotes {Pe#x(l); (71(P)e/F}

(resp., {Pe^x,(l); cr1(P)e/p-i(K)}), where IF (resp., Ip-i(F)) is the sheaf of

holomorphic functions on T*X (resp., T*X') vanishing on V (resp., p~1(F)).

Clearly (5.1.17) implies that &0-\(v\Nv l* contained in <£
/x(0)

Thus we shall be finished if we prove the following

Sublemma 5.1.10. Sp-ny)£x' *-jf (0) = ^y *

Proof. It is obvious that ^x'«_x(0)./F is contained in ^p-i(K

Hence it suffices to show that «/p-i(F)<^W;r(0) is contained in &X

Take a local coordinate system x of X, (x, <J) of T*X and (f, x; T, f) of

Then for Pe«^p-i(F), we can find f ( t , x; T, 0, flfk(f, x; T, ̂  and ftk(x; £)

(1 g k^N) which are of homogeneous degree of 1, 0 and 1 with respect to (T, £),
JV

respectively, so that hkelv and cr1(P)=/r+ Z ^/c^fe holds. Hence there exist
fe=i

F, Gke£x, and Hke£x with al(F)=f, <r0(Gk) = gk and al(Hk) = hk so that

(5.1.18) P-Ff- Z GfcHkE^(0)
fc=i

holds. Since it follows from the definition that #x'*-x(ty = £x'(0)lx'<-x holds,
c/p-i(F)^^_x(0) = «/p-i(F)lx^x holds. Since Hk is in Sv, (5.1.18) entails

Therefore we conclude that Plx><-x is contained in #x'*-x(0)Sy. This com-

pletes the proof of Sublemma 5.1.10, Q. E. D,
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Let us return to the proof of the second assertion in (iii). Suppose that Jt

has regular singularities along V. Then there exists locally a coherent ^-sub-

Module JtQ of J% such that ^ =£X^Q and ^O = £V^Q. Then ./F0

jff&x'+-x(ty(lx'+-x ® -^o) is a coherent ^(0)-Module which generates Jf as

an ^-Module. Furthermore Sublemma 5.1.10 asserts that ^T0 is an #p-i(vr

sub-Module. Therefore jV has regular singularities along p~1(F). This com-

pletes the proof of the second assertion of (iii).

(iv) Denote Supp JV by A. Then Jt is isomorphic to 0Jf for some integer

m on a neighborhood of T$X-A. Hence ^T is with R. S. on p-^TJX). Let

us next prove that <J{ is with R.S. on A — TXX if and only if JV* is with R.S. on

p~\A-Tf X). It follows from (iii) that p'1 IR (J{ \A-TJX) = IR (JT ;

p~1(A — T$X)). Hence lR(^i p~1(A—T^XJ) is a nowhere dense subset of

p~1(A — T^X) if and only if IR(^; A — T%X) is a nowhere dense subset of

A-T$X. Therefore Jf is with R. S. on p"1^- T$X) if and only if JK is with

R.S. on 4-TJX. Q.E.D.

Now we have the following

Corollary5.1,11. Let Jt be a holonomic @x-Module with R.S. defined

on X. Then there exists a good filtration {^k}keZ of ^ defined on X.

Proof. We shall use the results and the notations of Appendix A. By

Lemma 5.1.9, ^T = ̂ (^) is a holonomic ^-Module with R.S. defined on a

neighborhood of V. Let ^Q be the sub-Module of N consisting of the sections

s of jV such that ordsc{AeC; ReA<0}. Then, by Theorem 5.1.6, ^ is a

coherent <f(0)-sub-Module of jV satisfying ^F^T0cz^/*0 and jV — fiJ/*^ Hence

we can apply Proposition A.8 in Appendix A to see that {Jo1^/b(^c) H ̂ }kez
is a good filtration of Jt. Q. E. D.

§2.

The purpose of this section is to derive the following Theorem 5.2.1 from

Theorem 4.1.1 proved in Chapter IV.

Theorem 5.2.1. "Let ^ be a holonomic #x-Module defined on a neighbor-

hood of p0eT*X. Then J£^% is a holonomic (in particular, coherent) $x-

Module and

(5.2.1) /
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holds on a neighborhood of pQ.

Proof. First we consider the case where p0^T$X. In this case, applying

a suitable quantized contact transformation (Chapter I, §6, Corollary 1.6.4),

we may assume without loss of generality that A ~f Supp ^ is in a generic posi-

tion at pQ. Let q0 denote n(p0) and let S denote n(A). In what follows, n

designates dim X. Here we note the following

Lemma 5.2,2. There exist a holonomic #x-Module Jf with R. S. defined

on a neighborhood of p0 and an ^^-linear homomorphism h: i/T00-^00 such

that hPo: jryo-+jr?0 and A*0= f *WJ;(/i, ^}®Q®~^: V/*; -̂ *0°° are injective.

Proof. We apply Theorem 4.1.1 in Chapter IV to the dual system Jt*

= : ̂ ./j (Jd $v)®Q®~1 of e^f. Then we can find a holonomic system <£' ofoei <" x^- **•' •*

D-type along S and an (f°° -linear homomorphism q>'\ J£*™-*(£®£?'y° defined
S!

on a neighborhood of p0
 sucn that (p'Po: *#*"-> #™0 ® £"qQ is injective. Apply-

z*^
ing Theorem 4.1.1 to Jt ', we can also find a holonomic system j£? of D-type? a

^-sub-Module 0> of & isomorphic to a direct sum of copies of Ox and a ^x,qQ~

linear homomorphism 0: ^0->(j2Y^)^0 such that £(0): ^0-><^0 ® (^/^)?0

*«0

is an injective ^^0 -linear homomorphism. Hence £(0) is the germ of an <f °°-

linear homomorphism $: tx^00^^00®(j5f/«^>) defined on a neighborhood of p0-
3>

Let us now consider the map % from 6^® 3?*™® ((9, J£%0 to j£?€o by assigning

(p(s) to (s, <p). Let J be the coherent ^-sub-Module of <e such that £qo is the

image of %. Since dimc 3^*™$ (0, &)qQ is finite, such a J exists and it is iso-

morphic to a direct sum of copies of 0. Furthermore it follows from the

definition of J that ^^(0, J)^0 is isomorphic to tf+»*a (0, J£%0. Hence, by

replacing & with J if necessary, we may assume from the first that c?fWs(0, 0>)qo

is isomorphic to 3F*™Q (0, J^%0.

By taking the dual of cpf, we obtain an <^°° -linear homomorphism

(p = (p'*i ^®<e'*-^jr.
®

We shall now prove

(5-2.2) 0o^o(l®^*)c:(^/^o.

Let s be a section of j£"* defined on a neighborhood of ^0- Then s satisfies

a holonomic system of linear differential equations which has R. S. on TfregZ.

Since assigning </xp(l®s)to s defines a ^°° -linear map, ^<pPo(s)e^^0/^^Q also

satisfies a holonomic system of linear differential equations which has R. S. on
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TjregX. Hence, by Proposition 2.3.5 in Chapter II, 5 is contained in ^qj^qo.

Thus we have verified (5.2.2). Hence we can find a ^-linear homomorphism

\l/: 3"*->&l0> such that <T°®^: <fM® J^'*^<fM®(j^/^) coincides with $<p.
Si 3>

Denote by ,/T the image of i//. Then (^°°®^)Po is contained in u^j?0 as a sub-

module of (X00 ® (J2fY^))Po. Hence we find that <f°° ® JT is a sub-Module of uf °°

near p0. On the other hand, SS(^r)cSS(JSf")- Let A' be the closure of
SS(J^)-A-T$X. Since SS(^T) is contained in A = $upp^ on a neighbor-

hood of p0, the Lagrangian variety /!' does not contain pQ. On the other hand,

n(A') is contained in the closure of 7i(SS (j§? ') — TfZ), and hence in S. Hence by

Lemma 5.1.2 in Section 1, we see that A' = 0. This implies that SS(yT) is con-

tained in A U T*X . Therefore rf is with R. S. Furthermore we know that the

homomorphism ft: ^00®^-^t^f00 is injective at p0. Since &'*-*j\T is surjec-

tive, j£"«-c/f** is injective. Hence <f °° ® 3"*-g™ ® ^T* is injective. Therefore
<f <?

ft*: ̂ *°°->(^00®^')*00 is injective at p0. This completes the proof of Lemma

5.2.2.

We now resume proving Theorem 5.2.1. Applying Lemma 5.2.2 to

instead of ^, we can find a holonomic <f -Module jV" with R.S. and an £"%-

linear homomorphism fe: Jt™-*jV™ such that kPo and /c|0 are injective. It

follows from Proposition 1.1.21 and Proposition 1.3.6 in Chapter I that kh(Jf)

c./f". Since (kh)Po is injective, q>=fkh \^: Jf-*Jf' is injective on a neighbor-

hood of p0. In the same way, 9*: jV"*-*jV* is seen to be injective on a neigh-

borhood of PQ. Since * is an exact functor which is an involution on the cate-

gory of holonomic systems, cp is an isomorphism. This implies that both kPo

and hPo are isomorphisms. Since ./T °°, ^/0° and ^°° are <^°°-Modules locally
of finite presentation, k and ft are isomorphisms on a neighborhood of p0.

Then, by Proposition 1.3.6 in Chapter I, we find ̂ reg^^T. This completes the

proof of Theorem 5.2.1 when p0£T%X.

Now we consider the case where p0eT%X. Denote CxX by X' and

identify X with the subset {0} x X of X'. Denote by p the canonical projection

from X xT*X' onto T*Z. Let Fbe the involutory submanifold {(r, x; T, {)

£ = 0, TT^O} and denote by j0 the inclusion map from X into V defined

by JoW = (0, x; 1, 0). Let & be the <fx,-Module gx.\gx,t and denote by ^

the ^.-Module (P(^) =fc^f ® p~1ugr(*). By what has been proved so far,

.x/reg is a holonomic ^.-Module with R. S. on a neighborhood of V and it

Here we use the same notations as in Appendix A.
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satisfies <ff' ® j? = g'%, (x) ̂ reg there. Since Corollary 5.1.7 guarantees that

uTreg has regular singularities along F, ̂ /=Jo1^(-/reg)
(*) ( = ̂ ^/x-(^, -/reg))

is a coherent ^-Module. Since *tf\T*xX is a coherent ^-Module by the

assumption, the monodromy of Jt in the sense of Appendix is the identity.

(Proposition A. 5 of Appendix A.) Therefore it follows from Proposition A.9

of Appendix A that the monodromy of ̂ reg is also the identity. Hence Propo-

sition A. 6 of Appendix A asserts that

(5.2.3) & ®J?'=Jreg.
3iX

Hence it follows from Lemma 5.1.9 in Section 1 that Jt' is a holonomic £tx-

Module with R.S. Furthermore (5.2.3) implies that &™ ® J£' = £%> ® Jf
QX #x'

= J^700 (x) ^ holds. On the other hand, Proposition A. 10 of Appendix A asserts

that

and

Hence .^f00 and ^/00 are isomorphic. On the other hand, JV is with R.S.

Therefore ^®^ /^^freg holds. This completes the proof of Theorem 5.2.1
s>x

Q.E.D.

As an important consequence of Theorem 5.2.1, we find the following

Theorem 5.23. Let J? be a holonomic system of D-type along a hyper-

surface S. Then & is a holonomic ^-Module with R.S.

Proof. It follows from Proposition 2.3.5 in Chapter II, ^reg is a sub-

Module of &. On the other hand, Theorem 5.2.1 asserts that 0°°®.S?reg

= ^°° ® & holds. Since ^°° is faithfully flat over ^ (S-K-K [24] Remark 2,

(2) in p. 406), we conclude that J5freg = j^ holds. Therefore & is with R. S.

Q.E.D.

§3.

In this section we first show that the restriction of a holonomic <f-Module

with R. S. to a non-characteristic submanifold yields a holonomic system with

R. S. By a quantized contact transformation, this result proves the correspond-

Here we use the same notations as in Appendix A.
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ing statement for the integration along finite fiber. These results are also ex-

tended to ^-Modules.

Theorem 5.3.1. Let (p: Y-»X be a holomorphic map and Jt a holonomic

$x-Module v^ith R. S. defined on an open set U in T*X—T$X. Let V be an

open set in T*Y-T$Y such that tn-^Suppuf) n P~l(V)-» V is finite. Then

(p*J? = p*(<?Y->x ® tu"1^) is a holonomic &?\v-Module with R. S.
e w'tfx

Proof. It suffices to prove the results when (p is imbedding and when q> is

smooth, since the general case can be dealt with as a combination of these two

cases. In case (p is smooth, the result is obvious, because <p*Jtf is a system ob-

tained by adding the de Rham equations along fibers to Jit. Hence it suffices

to show the theorem when cp is imbedding. Therefore we may assume without

loss of generality that Y is a submanifold of X of codimension 1. Furthermore,

by a suitable quantized contact transformation (Chapter I, §6, Corollary 1.6.4),

we may assume that X is an open set in C", Y= {xeXi xl = 0} and that Supp Jit

is in a generic position at peSupp Jt ' . Let S denote ;r(Supp Jt — T$ X) and let

q denote n(p). Let ,/F be a coherent ^-Module such that ^q = JVp. (Theo-

rem 5.1.1 in §1.) Then Jf is a holonomic ^-Module with R. S. such that

SS(^T)e Supp^U T$X. Let $: jyp-+(&/&)q be an injective 0^-linear

homomorphism satisfying the conditions in Theorem 5.1.3. Then we have an

injection $: N-+&\&>. On the other hand, it follows from the definition that

Hence it suffices to show that ^\Y?=f@Y-»x ® ̂  is a holonomic ^y-Module
e ®x

with R. S. In view of Lemma 5.1.9 in Section 1 combined with the following

isomorphism ([8] Propositions 4.2 and 4.3.)

(5.3.1) ^Y®(^|y) = ^W^
QY

it suffices to show that ^Cl is with R. S. Here and in what follows, ^TJCl etc.

denotes, by definition, ^fx|yi(^) etc- Since the localization procedure is an
exact functor and since the localization &Xl of 3? is of D-type (Theorem 2.3.3 in

Chapter II), J2fxi is with R. S. (Theorem 5.2.3 in § 2.) Since the quotient of

holonomic systems with R. S. is with R. S., ^XJ^XI is also with R. S. (Propo-

sition 1.1.17 in Chapter I.) Therefore jyxi is with R.S. This completes the

proof of the theorem. Q. E. D.

By applying a quantized contact transformation we obtain following
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Theorem 5.3.2 as an immediate consequence of Theorem 5.3.1.

Theorem 5.3.2. Let cp: Y-^X be a holomorphic map, U an open set in

T*X-T$X and Van open set in T*Y- T$Y. Let Jf be a coherent ^-Module

defined on V. Assume that Jf is a holonomic ^-Module with R.S. Assume

that p"1 (Supper) n w~l(U)-+U is a finite map. Then (p*^ = w*(#x+-Y ®
p~1^Y

p~1^) is a holonomic (?x \ ̂ -Module with R. S.

Theorem 5.3.1 and Theorem 5.3.2 also hold at the zero-section of T*X,

namely, the following theorems hold:

Theorem 5.3.3. Theorem 5.3.1 holds for a pair (U, V\ where U (resp., V)

is an open set of T*X (resp., T*Y).

Theorem 5.3.4. Theorem 5.3.2 holds for a pair (U9 V), where U (resp., F)

is an open set of T*X (resp., T*Y).

Since the proofs of these theorems are the same, we prove Theorem 5.3.3.

Take a coordinate system x (resp., y) on X (resp., Y) and let (t, x) be a coordinate

system on X' =fCxX. Set Y' = Cx Y and define a map (p: Y'-*X' by (p(t, y)

= (t, 900)- Denote by jt the ̂ -Module ^(^) d== (^W^x'O®-^- Tlien
?

 bY
Lemma 5.1.9 in Section 1, Jt is with R. S. Hence it follows from Theorem 5.3.1

that J?=f(p*^ is with R.S. near {(t, y, t, ^)er*7'; T^O}. Since Jf

= (^r/^yO ® (9*^), again by Lemma 5.1.9 in Section 1 we have cp*jV is with

R.S. ^ Q.E.D.

§4.

4.1. In [8] it is proved that for a holonomic ^-Module ^ on X,

and «^[j|r]MO are holonomic for any k and any analytic subset Tof X. Using

this result, we proved there that 0Y ® ̂  is holonomic for any submanifold Y of
Ox

X and any holonomic ^-Module ^ on X.

We shall prove in this section that these cohomology groups have R. S.,

if J[ has R. S.

Theorem 5.4.1. Let The an analytic subset of a complex manifold X and

^ a holonomic &x-Module with R.S. Then

(5.4.1) ^fr](^) and JPfamW) haveR.S.for any k.

(5.4.2)
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and
f ?#>k ( J/\\°Q _ %j0k ( y/^\vy* [*|T]ir*AJ —jrx\T\<^ )>

where ^°° = ̂ f ® Jt .
®x

We shall prove this theorem by reducing it to the case where ̂  is of D-type.

First let us recall the exact sequences

0 - > ^pT]UO - > J( - > ^pxinMO - > ^hMO - > 0

and

0 - > JT§.(uf °°) - > ̂ °° - > ^rfX00)

Hence the isomorphisms

^7[x|r](^) = ̂ m1(^) for

and

show immediately that the statement on «^fT](^f) and the statement on

^cx|T](^) in Theorem 5.4.1 are equivalent. Hence we will concentrate our

attention to 3? [T]MO in what follows.

Next we reduce the situation of the theorem to the case where T is a hyper-

surface.

Lemma 5.4.2. Suppose that for a holonomic ^-Module J£ with R. S. on

X Theorem 5.3.1 holds for any hypersurface T. Then Theorem 5.4.1 holds for

Jt and any analytic subset T.

Proof. Any analytic subset T is locally an intersection of finite number of

hypersurfaces Tl5..., 7). We shall prove by the induction on /. If / = 0 (i.e.,

X= T), there is nothing to prove. If / = 1, then this is nothing but the assump-

tion. Suppose that J>1. Set T = T2 n ••• fl T,. Then, by the hypothesis of

induction, Rr[r](^f) and RT[riUr](u^) have holonomic systems with R. S. as

their cohomologies and

and

hold. On the other hand, we have triangles
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and

Therefore Rr[r](^)oc = Rrr(^
00) holds and RT[r](uf) has holonomic systems

with R. S. as its cohomologies. Q. E. D.

By this reduction, we immediately find the following

Lemma 5.4.3. For a holonomic system ^ of D-type the statement of

Theorem 5.3.1 holds.

This is an immediate consequence of the preceding lemma Proposition

2.3.3 in Chapter II and Theorem 5.2.3 in Section 2.

Lemma 5.4.4. Let J? be a holonomic system of D-type along a hypersur-

faces S and Z an analytic set. Assume that Z is locally of complete inter-

section of codimension I outside S. Then we have

and the statement of Theorem 5.4.1 holds for ^ = 3? [%}(&) and for any analytic

subset T. Furthermore, for any proper analytic subset Z' of Z, 3ff

holds.

Proof. Since & = &$ outside S, Jf£z](jg?) vanishes outside S for

Hence we have

~~ 0

Since Rr[X|ZJ(^) = ̂  and Rr[Z]Rr[X,S]=Rr[Z|slRr[Z] hold,

- 0 -

This proves the first statement of the lemma.

Next let us prove the second statement. It follows from the definition of

uf that
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holds, and hence 3? (riMO nas R- S. by the preceding lemma.

Now we shall prove (5.4.2) for ^ = 3fl
m(&). The preceding lemma

entails

^ lor ^ = ̂

Hence we have

= (RT[T](Rr[Z](j2?)[/])

Therefore, by considering the cohomology groups, we obtain (5.4.2).

Now let us prove the last statement, i.e., ^pZ']G^[zj(^)) = 0- Let Z" be

an analytic subset of Z which contains Z' and is of locally complete intersection

of codimension / + 1 outside S. Then we have

0. Q.E.D.

4.2. We shall prove Theorem 5.4.1 by the induction on the codimension

of the support of ^. In order to facilitate the induction, we shall consider the

following situation. Let X be a complex manifold of dimension n, 7 a complex

manifold of dimension n — I and F a smooth map from X into 7. Let Z be an

analytic subset of X such that the restriction of F to Z gives a finite map from Z

to 7. Let Jt be a coherent %-Module such that SS (uf)c= TJX. Since J! is

(locally) a union of increasing sequence of coherent 0z-Modules, we have a

homomorphism

where Ox/y = Ox ® F'H^f"1) ([5]). Applying the functor RF[Z] to it and
F~10Y

considering its 0-th cohomology group, we get a map

uf - >^z](0jr ® ̂ -^(fijr/y
F- l<Py 0

We have the canonical homomorphism @x-*@x-*? an(i ^x/r"^^r*-x- Hence



HOLONOMIC SYSTEMS. Ill 945

we obtain a homomorphism

(5.4.3) uT - >^\zi^x^ ® F-^F^Y^®^)).
F-l£2y 2X

Then we have the following

Lemma 5,4.5. When Z-+Y is an isomorphism, then (5.4.3) is an isomor-

phism.

Proof. Since 3? [Z](^x->y) = ° for k=£l and since ^[Z](^W) = ̂ x ® $z
0x

is flat over F"1 ,̂ e^^jf7* (^x_r ® F'H^y*-* ® ̂ )) *s an exact functor
F^Sy 0x

from the category of coherent ^-Modules with support in Z to the category of

^--Modules.

The question being local, we may assume that Jt = @x ® @z. Then

F*(&Y+-X®^) = @Y holds and hence ^[Z](^W ® F^F*^^ ® ,̂ ))
2>K F-IQY six

= @x® @z holds.
0x

Remark. We can prove that (5.4.3) is injective.

430 We now prove Theorem 5,4.1 by the induction on the codimension

of the support of J£.

Set / = codimSupp^. Then we can find locally an analytic subset Z of

complete intersection of codimension / and a smooth map F : X-^> Y to an (n — I)

dimensional complex manifold Fsuch that Z-» Y is a finite map and Z=> Supp ̂  .

Set ^r = F*(%^®^). Then by Theorem 5.3.4 we find that ^ has R.S.

There is a hypersurface S of Y such that SS(yT)=T?7 on Y-S. Set &

). Then & is of D-type along S. Let <p be the composition of the

homomorphisms

Let Z0 be the union of Z n F~l(S) and the subset of Z where Z-> 7 is not a local

isomorphism. Then codim Z0 ̂  I + 1 . Since ^ = ̂  outside S, <p is injective

and ^-linear outside Z0 by Lemma 5.4.5. On the other hand, it is obvious

that &X-*Y ® cJ5f is a holonomic system of D-type along F~1(S). Hence
®Y

^pzo]^[Z](^x-»y® J^) = 0 holds. Therefore <p is ^-linear. Let J{' and
QY

Jt" be the kernel and the image of <p, respectively. Since <p is injective

outside Z0 by Lemma 5.4.5, Supp^J" is contained in Z0. On the other hand,

we have an exact sequence
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(5.4.4)

and a commutative diagram

(5.4.5)

f(^'T^^n^

«fc-i | <*k] « f c j «fc| «fc + J

Set ^" = ̂ [Z](^W ® &) and let JT' be the cokernel of cp. Since JT has
Sy

R. S. by Lemma 5.4.4, JT7 has also R. S. Since ̂ x_,y ® j^ is of D-type, jf £r](jf)
^y

has R. S. for any fe and jPfoC^r)00-* Jf £(jr°°) is an isomorphism. We have also

exact sequences

(5.4.6) ---- > ^

and

(5.4.7)

^^^^(jro^^^n^O^^^
k-i\ p'k-i\ «d

We shall prove that jf fr](uf) has R. S. by the induction on k. Suppose that

MO has R.S. for fc<fc0. Then ^rfr](jr
;) has R.S. for /c</c0 because

Supp jf'cZ. Hence it follows from the exact sequence (5.4.6) that jf^^uf")

has R.S. On the other hand, Supp^'c=Z0. Therefore, by the induction on

/, Jf^G^f') has R.S. Then the exact sequence (5.4.4) entails that tf^-faf)

has R. S.

Next we shall prove that

OC^ I e/t r J-T^tx^ ) - * e?fc J-^e/^ _)

is an isomorphism by the induction on k. By the induction on /, we may

assume that a£ is an isomorphism for any k.

Suppose that ak is an isomorphism for k<k0. Since

j8i : Jffr](jf
 /)°°->-^'r(-^"ao) is an isomorphism for k < fc0. Since

^f ^(JT00) is an isomorphism for any fc, it follows from (5.4.7) that aJ0 is injec-

tive. Since a^: ^^^(uT")00-*^^"1^"00) is an isomorphism by the
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hypothesis of the induction on k, ako is injective by the diagram (5.4.5). Thus

we have shown that afeo is injective for any holonomic system Jt with R. S.
supported in Z. Applying this result to Jf ', fif

ko is seen to be injective. Thus

by the exact sequence (5.4.7) and the bijectivity of /^0_1? we find that a£0 is

surjective. On the other hand, Supp^'cZ0, a'k is bijective for any k by the

hypothesis of the induction on /. Hence it follows from the diagram (5.4.7)

that ako is surjective. Q. E. D.

Corollary 5.4.6. Let Y be a submanifold of X and J£ a holonomic &x-

Module with R.S. Then f*4x(0Y, -O is a holonomic ^-Module with R.S.

Proof. Set / = codim Y. Then

and this has R. S. by Theorem 5.4.1. Therefore ^J*(0y, j?) has R. S.

Corollary 5.4.7. Let Jt and Jf be two holonomic @x-Modules with R.S.

Then &+*%x(jr, J^} has R. S.

Proof. Since ^4X(^, ^) = ̂ 4XXX((9X, ^®jf), this is an immediate

consequence of Corollary 5.4.6.

Corollary 5.4.8. Let F: Y-+X be a holomorphic map and Jt a holonomic

&x-Module with R. S. Then J-^F
k~

l@x((9^ F'1^) has R. S.

Proof. Since f»>Z~l'x(0Y, F~ * J?) = &"**%** *(0Y, ̂ ®&?\ this follows from
Corollary 5.4.6.

Chapter VI. Comparison Theorems

The purpose of this chapter is to prove several comparison theorems for

holonomic systems with R.S. As a by-product, we prove in Section 2 that

holonomic ^-Modules with R.S. remain holonomic ^-Module with R.S.

under the integration procedure with projective fibers and the general restriction

procedure. In Section 4 we also show that the validity of comparison theorems

is a characteristic property of holonomic system with R. S.

1.1. We first show the following Theorem 6.1.1 as a consequence of
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Theorem 5.4.1. In the next subsection we generalize the result to «f-Modules.

Theorem 6.1.1. Let ^ and Jf be two holonomic @x-Modules with R. S.

Then

M.JV&&&QIx\t/^'5 *W) * J^^o-n^Qx\tM5 «/r } .

Proof. We shall use the diagonal process.

We have

where

and

Set jg? = .

Since

we have

Since ^* has R. S., Rrx(j5f*00)=Rrm(j5f *)°° holds by Theorem 5.4.1. Hence

we have

(6.1.1)

= R^^XXX(^XX3 RTm(jS?*))[2ii] .

In order to calculate the right hand side of (6.1.1) we prepare the following

Lemma 6.1.2. Let Jt and J\T be two holonomic @x~Modules. Then for

any analytic subset Z of X, we have

Proof. By Theorem 1.2 of [8], we have
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® Rr[Z]pr)

Q.E.D.

Proq/ 0/ Theorem 6.1.1 continued. Applying this lemma to (6.1.1), we

have

This completes the proof of Theorem 6.1.1.

1.2. We shall generalize the result in subsection 1.1 to «fx-Modules.

Theorem 6.1.3. Let Jt and Jf be two holonomic &x-Modules with R. S.

Then

Proof. At the zero section, this theorem is nothing but Theorem 6.1.1.

Therefore we shall prove this theorem outside the zero section. Since

and

holds, we may assume without loss of generality that the support of Jf is a

non-singular Lagrangian manifold and that ^ has multiplicity 1.

By a quantized contact transformation, we may assume that Supp J( is in

a generic position and Supp Jf is a conormal bundle of a smooth hypersurface

7 of X and J^^^YIX- Now, there is a holonomic ^-Module ^ with R. S.

that J? = gx® Ji. Therefore it is enough to show

Since <^F|x/(^y|x = ^y|A:/^>y|x? tms follows from the isomorphism

^ ^ /®°o \
x^cx^ s ^ y|x/ •

.E.D,
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The purpose of this section is to extend the results obtained in Chapter V5

Section 3 under the additional assumption that Jt is a ^-Module.

2.1. Let F: X-+Ybe a projective map (i.e., F can be embedded in 7x PN

-»Y). Let Jt be a holonomic ^-Module with R. S. By Corollary 5.1.11 in

Chapter V, Section 1, Jl has a good filtration {«^}fc6Z defined on X. (See also
L

Appendix A.) Therefore RF^(^y<_j ® J£) has holonomic systems as co-

homologies. ([11] Lemma 5, [7] Theorem 4.2.) In this section we will show

that they are actually with R. S. if so is «^, namely we will prove
L

Theorem 6.2.1. Under the condition above RkF#(@Y<-x ® ^) *s a holo-
nomic Sty-Module with R. S.

2.2. Let F: X^Y be a smooth projective map with fiber dimension /.

Let ^ be a Sx-Module and £? a coherent .^-Module. Then we have the

following

Proposition 6.2.2.

(ii)

Proof. Since the problem is of local character on Y, we may assume that

«£? has a free resolution. Thus we may assume that jS?=^y. Therefore it

suffices to show

Since

and



HOLONOMIC SYSTEMS. Ill 951

we get the isomorphism (i). The second one can be obtained exactly in the

same way as above. Q. E. D.

Proposition 6.2.3. For a coherent @x-Module Jt such that there is a

coherent (9X sub-Module ^0 of ^ with <J? = @X^Q, we have

This result can be proved in the same way as in [7], Section 4. We omit

the details.

2.38 Let X be a complex manifold and <J?' a bounded complex of &x-

Modules. Assume that all cohomology groups 3? k(^') are holonomic.

Proposition 6.2.4. Assume that

M.J^CL&t g X(JZ , ̂  ) - > Me^^Cî ^^J f̂ , ̂  )

holds for any holonomic ®x-Module £? with R.S. Then ^ffcpO is with

R.S.for any k.

Proof. Suppose that e^fcpf') = 0 holds for fc>fc1 or k<k0. We shall

prove the proposition by the induction on k^ — kQ. If ki<k09 then the propo-

sition is trivial. Suppose that k^k0. Set jg? = jek°(^'\eg. We have

and •

Thus we have

It is clear that

holds.

We shall apply these isomorphisms to jSf = ^fco(e^f')reg. The isomorphism
^°°^^rfeo(^-)oo comes from the homomorphism i: J^-»^ffc°pO- Thus

J^^e5ffe°(^") holds. This implies Jf fc°(^') has R. S. Let Jf° be a complex

such that there exists a triangle
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Then Jf* satisfies the condition of the proposition. Furthermore

<%?k(jV")^3?k(J['} for

and

hold. Thus, by the hypothesis of the induction, jek(J^') has R. S. Q. E. D.

2<,4 We now embark on the proof of Theorem 6.2.1. We first embed

F: Z->7into a smooth projective map F: X'-*Y. Then

®
six

Since @X
f*-x ® ^ has R. S. (Lemma 5.2.9), we may assume from the first that

Six L
F is smooth and projective. Set ^'=RF*(&Y+_X ® ^). In order to show

«§>x
that ^K' has holonomic Sy-Modules with R. S. as its cohomologies, it is enough

to show that for any holonomic system <£ with R. S.

y(j2
7, ^T'00) . (Proposition 6.2.4.)

On the other hand, we see by Proposition 6.2.2 that

and

Since ^-*y ® ̂  an(i ^ have R. S., they are isomorphic.
@Y

This completes the proof of Theorem 6.2.1.

Remark. Theorem 6.2.1 enables us to improve several results obtained

earlier by using the integration of ^-Modules along projective fibers so that

we may conclude that the resulting system is with R. S. As an example of such



HOLONOMIC SYSTEMS. Ill 953

results, we state the following

Theorem 6.285o Let fj (j = l,...3 ri) be real-valued real analytic functions

defined on a real analytic manifold M. Let Sj (j = i,..., n) be complex num-

bers with non-negative real part. Then there exists a holonomic ^-Module
n

Jt with R. S. which the hyperfunction I~I/ /+ solves. (Cf. Theorem 1 and
j=i

Lemma 5 of [11].)

§3.

In this section we use Theorem 6.1.1 to prove that cohomology groups

considered for formal power series coincide with those considered for convergent

power series, if the holonomic system Jt in question is with R. S. Theorem

6.3.1 below is, actually, a dual statement of a special case of Theorem 6.1.1.

(See [17] and [28] for related topics.)

We first recall some basic facts about the topological vector spaces needed

here.

Let X be a complex manifold and x a point in X. We shall denote by m

the maximal ideal of 0XiX and by Sx>x the completion of Ox^x by m-adic topology,

i.e.,

First note that 0X)X (resp., SXjX) has the natural structure of DFS- (resp., FS-)

topological vector space and that &™x}\x (resp., &{x}\x) has the natural structure

of FS- (resp., DFS-)topological vector space. Furthermore (9X>X and Qx ® &™X}\x
* ' OK

(resp., &XfX and Qx ® &{x}\x) are mutually dual vector spaces.
Qx

Our main result in this section is the following

Theorem 63.1. Let ^ be a holonomic &x-Module with R. S. Then, for

any point x in X and any integer j, the natural homomorphism

is an isomorphism.

In [6] we proved the following result.

Proposition 63.2. For a holonomic &x-Module J£ &*>sjQX(^9 0x,x)

the dual vector space of ^^~X
J (^£* , &™x}\x}* Here n = dimX,
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This proposition was proved by using the fact that &®&™X}\X is the dual
vector space of &x>x and the fact that dimc £&sjgx(^, 0XfX) is finite. We know

that dimc^/^(^9 &{X}\x) is finite and that Q®&{X}\X i§ tne dual vector
space of SXiX. Thus the same argument works and we obtain the following

Proposition 6.3.3. For a holonomic @x-Module ^, &a>ss
Sx(Jtf9 0XfX) is

the dual vector space o

Then Theorem 6.3.1 immediately follows from these propositions com-

bined with Theorem 6.1.1.

§4.

In this section we shall show the converse of Theorem 6.3.1.

Theorem 6.4.1. Let ̂  be a holonomic @x-Module. Assume that

(6 A.I) jur*~,x(«*9 0x)x**jr*~9x(jr, £XiX)
holds for any x in X. Then Jt is with R. S.

We shall prove the theorem by the induction on the dimension of X. In

the course of the proof we abbreviate SXiX to Sx for brevity.
First let us prove the theorem when dim X is equal to one. In this case,

this theorem is essentially proved by Malgrange [21]. By a result of Bjork [1],

^ is generated locally by one element. Therefore we may assume that ^

= ®\J for a coherent left Ideal J. Since Jt is holonomic, J is not equal to

zero. We may assume that X is a domain in C and SS (^f) c Tf0]X (J T$X.

Let P = x"Dm + a1(x)Dm~1H ----- H0m(x) be a section of J such that n is minimal.

Set Jf = &I&P. Then we have an exact sequence

0 - > & - > JT - > JC - >0,

where 3?=J\QiP. Furthermore we have the following

Lemma 6.4.2. SS (jg?) c T$X .

Proof. Set p = (0, dx). It is enough to show that

^c^P.

Let g be an element in «/. Then, by a division theorem (S-K-K [24],

Chapter II, Theorem 2.2.1), we can write

Q=TP + S
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with T, S£(?P and (ad£)"S = 0. Since S in «fp«/, we have S = 0. In fact, the

symbol Ideal of g «/ at p is x". Q. E. D.

Therefore «3? is isomorphic to a power of (9. Thus

holds for any point x.

Therefore we have

withx = 0.

Let us now recall the following result due to Malgrange [21].

Theorem 6A3e The equation Pw=0 is with R. S. if and only if

dim Ker (P; 0x-»0J-dim Coker (P; 0X-*0X)

= dim Ker (P ; 6X-+0X) - dim Coker (P ; 0,-> Sx)

holds.

By virtue of this result we find that rf is with R. S. Hence Jt is also with

R.S.

Now we discuss the case where dim X > 1 .

Lemma 6.4.4. Let Jt be a coherent &x-Module and Y a submanifold of

X which is non-characteristic with respect to ̂  at a point xeY. Then

where <^Y
 = @Y ® ^ ' -> i-e-> the restriction of Jt to Y.

Ox

Proof. By the technics we used in S.K.K. [24], Chapter II, Section 3.5,

we may assume that Y is a hypersurface and that ^ = ̂ /^P for a differential

operator P. Hence we may assume that

y={xn = 0} and P = D'-+fpj(x,Dl,...,Dn
J = l

where PJ is of order ^ j. Then P: 0X^0X^ is surjective and the Cauchy

problem Pw = 0, (d/dxn)
Ju\Xn=Q = Vj (j = 0,..., m — 1) has a unique solution u in

SXiX for any Vj e d?y>jc. The same result holds for the pair (Ox,x^ ®Y,X)- Hence
we have the required result. Q. E. D.

Now, let Jt be a holonomic ^-Module satisfying the condition (6.4.1) and



956 MASAKI KASHIWARA AND TAKAHIRO KAWAI

Y a submanifold of X non-characteristic with respect to Jit. Then, by the

preceding lemma, the restriction Jt^ also satisfies the condition (6.4.1). Hence,

if dim Y <dim X, <JfY has R. S. by the hypothesis of the induction.

We shall now show that if u0y has R. S. for a generic hypersurface 7, then

J! itself has R. S.

We shall first formulate this claim in a micro-local way.

Let X be a complex manifold, V a regular involutory subset of T*^ of

codimension /. Then locally the set of bicharacteristics of V is a symplectic

manifold. Therefore there is an (n — l) dimensional complex manifold T*Y

and a smooth map F : V-> T* 7 so that any fiber of F is a bicharacteristic of V.

Let us fix a right ^-Module & = u£ with characteristic variety V such that

& = &IS and that the Ideal of symbols of operators in J coincides with the

Ideal of holomorphic functions vanishing on V. Then ^W(j^) is isomorphic to

F- Vy. Note that g is uniquely determined locally (S-K-K [24], Chapter II,

§5.3), and the isomorphism &~e/ fx(&)^F~l&Y is unique up to inner auto-

morphisms of ^y by a section in (fy(A) for some complex number A. Let Jt

be a coherent ^-Module. Suppose that Supp^n F-»T*7 is finite. Then

F*(& ® Jt) has a structure of <fy-Module. In [24] we showed that F*(& ® Jf)
#x #x

is a coherent ff y-Module and ^*j£*(jg?, Jt) = 0 for k =£ 0. Note that

^F'1^ and F*^00 ® uf) = ̂ ? ® ̂ (jgf ® ̂ f). Therefore we can determine
<?X <?Y $X

F*(<£ ® u^) modulo quantized contact transform of (T*7, *fy), which we shall
#x

denote by Jitv.
Now let Jit be a holonomic ^-Module with a smooth Lagrangian manifold

A as its characteristic variety defined near peA. Let /(x, £) be a homogeneous

function on T*^T of degree 0 such that/(p) = 0. Suppose that

(6.4.2) df(p) and co(p) are linearly independent .

Then, for any aeC, Va={(x, ^)er*^;/(x, £) = a} is a regular involu-

tory hypersurface of T*X in a neighborhood of p. Assume that df\A does not

vanish at p. Then we have the following

Theorem 6.45. Consider the problem in the situation described above.

Assume in addition that JfVa has R.S.for any a with |a|«l. Then Jt itself

has R. S. in a neighborhood of p.

First let us show that we can transform the geometric situation into a very

simple one by a contact transformation.
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Lemma 6A6. There exists a homogeneous canonical transformation of

T*X in a neighborhood of p which makes f=xn and A = {(x, £); ^2 = "' = ^n

= ^=0}.

Proof. By the condition (6.4.2), n = dimX>l and p(£T$X. Fix a fiber-

ing F: F0->T*7as in Chapter I, Section 4. Then F(V0 {} A) = A0isa Lagrangian

manifold of T*7. Therefore by a contact transformation of T*7, we may

assume

Take a homogeneous hypersurface Z containing A and {peF; CFof/n)""

such that Hf(p)<£TpZ.

Then we solve the initial value problem

f {/,0»}=-l

I 0,lz = 0-

Next we solve the initial value problem for gf l 9 . . . , #n-i and /i,...,/B-i

/-!F = V^ (; = !,..., ii-l).

We also define /„ by/. Then gf7. are homogeneous of degree I,/} are of degree

0 and, furthermore, they satisfy the following :

f {£„,{/, <7j}}=0 (7 = 1,..., «),

I {9n,{f,fj}} = 0 (7 = 1,-., n).

Hence we can find a contact transformation which makes ^J- = CJ- and fj = Xj.

Since /lc:f-i(0) and /I n {xB = 0} c{t2 = ... = £H = Xl =0}, >l = {^ = ... = cll = x1

-0}. Q.E.D.

Now let us prove Theorem 6.4.5. We may assume that the geometric

situation is as in Lemma 6.4.6. Set Yfl = {x; xn = a}. Then, by the assumption

the restriction ^Ya lias R- S. for any a. By Lemma 1.3.4 of Chapter I, Section 3,

there is a system 3? given by CX^D!— A)u = D2u = --=Dnu = Q,> where u is a

column vector of N unknown functions ul9...,uN and A is a constant matrix of

size NxN and c^°° is isomorphic to ^°°. Let <p: e^00-^^00 be this isomor-
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phism. It is enough to show that <p(^)c:j^. Any section v of J$?°° is written

uniquely in the form

(6.4.3) i? =£ Pv(x29...,xH9Dl)uv
v = l

with Pve«f°° such that [Pv, Xj]=0 (1< j£ri) and [Pv, D^O. Clearly v

belongs to J^ if and only if any Pv belongs to &x. Let w be a section of Ji '.

Set v = <p(w) and write v in the form (6.4.3). Since w| Y a (i.e. w mod (xn — a))

satisfies a holonomic system of micro-differential equations on 7 with R. S.,

v\Ya belongs to &Ya
 anc^ nence Pv(

x2>-'-> xn-i> a-> ^i) *s °f finite order for any
a. This implies that Pv(x2,..., xn, DJ is of finite order. Therefore i; belongs

to 3? . This completes the proof of Theorem 6.4.5.

Let us now resume the proof of Theorem 6.4.1. By the reduction done

before, we may assume that dimX>l. Set SS(^) = W T$X. If dim Yj

= dim X, then Jt has R. S. on Tf.X by the definition. We shall prove that J£

has R. S. on TfjX if dim 7^0. We can choose a local coordinate system

(xl5..., xn) of X around a non-singular point of Y} so that 7^ = 1^; xl = --=xl

= 0} with l^l<n. Since SS(uf) n 7r-1(7J-reg) is isotropic, SS(^) n 7r-1(7J-reg)

is contained in TJ X. (Sublemma 3.3 of [6].) Set Zfl = {x;xn = a}.

Then Zfl is noncharacteristic with respect to Jit. Therefore JtZa has R. S.

as seen before. Applying Theorem 6.4.5, we find that Jt has R. S. along Tf.X.

Hence there is a hypersurface Z of X such that Jt has R. S. on T%X and

SS(«^)c:7r-1(Z)U T$X. Then ^ = ̂ x\zi^} is a holonomic system of
D-type and hence with R. S. (Corollary 4.1.2 of Chapter IV, § 1).

Let J£" be the image of Jit in jr. Then Jit" has R. S. Let Jit' be the

kernel of Jt-*^" . Then Jit' satisfies also the condition (6.4.1) and Suppug"

cZ. Thus by replacing Jit with Jt' * we may assume from the first that the

support of Jt is contained in the hypersurface Z.

Lemma 6.4.7. Let F: X-*Y be a smooth map and let Jt be a coherent

@x-Module such that Supp J£-* Y is finite. Then

RF*Rje»~9x(jr, 0x)^'RjP+i~ar(F*(&Y^x ® Jl\ 0Y) [dim 7-dim X]
®x

and

® uf); SYiF(x))[dim F-dim X~\ .

Proof. By the induction on dim X — dim 7, we may assume that 1 = dim X
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-dim Y. Then choosing a local coordinate system so that X = Cn, 7=€"~1,

F(x1,..., xn) = (x2,..., xn-i)
 and the support of *Jt is contained in {xeX;f(x)

= 0} with f(x) = x^ + al(x1,..., xll-1)x™"1H — . Then we can assume that

^ = ®xl®xf> and we may assume x = Q and /"^(O) n F~1(0) = {0}. Then we
have F#(&Y<-x <g) j?) = @1$ and hence it suffices to show that

= 0

and

These assertions immediately follow from Spath's division theorem. Q. E. D.

Now, let us resume the proof of Theorem 6.4.1. We may assume that

Supp^ is contained in a hypersurface Z. Let Y be a manifold such that

dim Y=dimX — 1 and let F: X-*Y be a smooth map such that Z-+Y is finite.

Then by the preceding lemma ^ = F*(@Y+-x ® ̂ ) satisfies the condition (6.4.1).
®x

Since dim Y <dim X, Jf has R. S. by the hypothesis of induction.

Now we shall employ Theorem 6.4.5. We can take a local coordinate

system (xl9..., xn) of X around p so that p is the origin 0, d/dx1eCp(Z) and

dxn£S$(<Jf)-T*X. Let Fa be the projection x*-*(x29...,xn-l9

Then Ffl|z: Z->F=C"-1 is a finite map. Hence ^ d=f Ffl ̂ (uf ) is with R.S.

(Theorem 5.3.2 in Chapter V, §3.) On the other hand, setting /=^/^

and defining Fa by f~\a\ we find <fF ® ̂  = (^®uT)| F . Therefore Theorem
<2y

6.4.5 asserts that <f ®^ has R. S. on T*X. This completes the proof of Theo-

rem 6.4.1. Q.E.D.

Remark. We have the following theorem, which can be proved in the

same way as Theorem 6.4.1.

Theorem 6.4.8. Let Jt be a holonomic @x-Module. Suppose that

= Z (- IV dimc

/or any xeX. Then ^ has R. S.

Remark. We can generalize Theorem 6.4.1 as follows:
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Let X be a complex manifold and Jtm a bounded complex of ^-Module.

Assume that ^k(^) is a holonomic ^-Module for any k and

for any x. Then all cohomology groups J^k(^) have R. S.
In fact, we can reduce the problem to the case where dimX = l by the

same argument employed in the proof of Theorem 6.4.1.
Suppose that dim^ = l and c^fe(^) = 0 for k<k0. By the induction on

fc0 it is sufficient to show that 3fko(^m) has R. S. By the theory of spectral

sequences, we have

Horn (*%0(uf.), Sx/Vx)=Hk°(RHom (uf, 0,/0,))

and

Ext1 G#%0(ur), 0xl0x)ciHko+l(R Horn (^T , 0^/0,)) .

Since the cohomology groups of RHom(u^, ^/^J vanish by the assumption,
we obtain

Horn (jr

This implies that

J=0

= E (- 1)' dim Ext'(*%0(ur.), 4) -
j=o

Hence J^kQ(^f) has R. S. by Malgrange's theorem.

Ramis [23] called a bounded complex Jtm of ^-Modules Fuchsian if u^
satisfies the following conditions

(6.4.4) Jffc(^p) is a holonomic ^-Module for any k,

(6.4.5) Rry(,«O = (Rr[n(^))°° for any analytic subset Y of X ,

and

(6.4.6) RjT^C^f , ^)|rsR^«^(ur, ^/y) for any analytic set Y of X9

where 0x/y = lim d?x/«/k for the defining Ideal J of 7.
k

Ramis showed that (6.4.5) and (6.4.6) are equivalent under the condition

(6.4.4). The above remark shows that these two conditions are also equivalent

to
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(6.4.7) ^(X) has R.S. for any k.

Appendix

A.I. In this paper, in proving some statement on ^-Modules, we some-

times reduce the problem to that of <f -Modules outside the zero section of the

cotangent bundle by adding a dummy variable.

We shall give the detailed discussion about this method in this section.

A.2. Let X be a complex manifold and let Xf denote CxX. We shall

take local coordinate systems x = (xl9...9 xn), (t, x\ (x, £) = (xl9..., *„; £19...? £„),

(t, x; T, £) of X, X', T*X and T*X', respectively.

Let us identify T*X' with T*C x T*X = CxCx T*X by (t, x; T, £)

<->(f, T, (x, £)). We embed T*Z into T*X'-T$,X' by j: pi-»(0, 1; p) and X

into T*X'-T$.X' by;0: x.-»(f, x; T, Q = (0, x; 1, 0).

We define 7={(f, x; T, £)eT*X'i t = Q, r^O} and let F be the projection

from V onto T*Z. Let J^7 be the sheaf £r/£x,t on V. The sheaf JS? has a

structure of (^y,, F~1^z)-bi-Module. Let u0 be the section of & given by

le^y, modulo gx,\. Hence & is generated by u0 as ^-Module. Any section

of J^°° (resp.5 &) can be written in a unique form P(x, Df, D.x)n0 f°
r Pe^x'

(resp., ^x.) such that [Dt9 P] = 0. We shall define the right ^^-linear homo-

morphism pk: JQ1
tg"x-+@x (keZ) as follows. For a section P(x, Dt, Dx)u0

of jo1^00, we expand P(x, Dt, Dx)=J£Pj(x, DJDJ with P7-e^f? and we
define

We have the exact sequences

(A.2.1) 0 - > @%u0 - > 3?™ -*-> J^f00 -E^j^&S - > 0

and

(A.2.2) 0 - > %w0 - *&-^>Xl=i* J0^x - > 0 .

Ao3. For an «fx-Module ̂ , we define the sf^-Module cP(^) by

and, for an ^.-Module Jf with support in V, we define the ^-Module
by
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(A. 3.2) W(JT) =j~l^^Sxf(^e, JIT) .

For a ^-Module ^, let pk(^) be the homomorphism from JQl$(Jif) to

Jit defined

Proposition A.I. For an ^-Module JK,

Proof. ^L3f*™Sx,(<e, #(<^0) is quasi-isomorphic to j-^fX) -J

Since j"1 JSP —*->./" ̂  is quasi-isomorphic to £x—2->@x in the category of

^-Modules by

\P-1

Hence j~l$(J!t) — -*-> j"1^^) is quasi-isomorphic to

.^ _ o v M\ .,
^ - * *M\T*XX •

Thus we obtain the desired result by taking the 0-th cohomology. Q. E. D.

Remark. By the same reasoning as above,

Proposition A.2. Let Jt be an $x-Module. Then Jt is an £x-Module

locally of finite type (resp., a coherent £x-Module) if and only if ^(^) is an

^-Module locally of finite type (resp., a coherent #x,-Module).

Proof. If J( is locally of finite type (resp., coherent) over #x, then there

exists locally an exact sequence 0<-^<-^ (resp., 0<-e^f«-<;f$0<-(f$1)- By

tensoring &, we obtain an exact sequence 0<-^(«^)<-JifjV = ̂ (^^) (resp.,

0<^$(jy)+-&N°+-&Nl). Since & is coherent over &x.9 $(J?) is locally of finite

type (resp., coherent) over gx,.

We shall prove the converse. Suppose that (P(«^) is locally of finite type

over #X'. Then there are sections sl9...,sN of ^(^) which generate $(j?)

(locally). Since Sj is a finite linear combination of UQ®V'S (ye^), we may as-

sume that there exist sections vl9..., vr of Jt such that u0®vl9...9 u0®vr generate

(P(^). Let <p be the ^-linear homomorphism from £ r
x into Jit defined by

vl9...,vr. Then <P((p); 0(£r
x)-+<P(^) is surjective. Since & is faithfully flat

over <fx, (p is surjective. Thus we have proved that Jit is locally of finite type.

We shall next prove that Jit is coherent if 3>(Jt) is coherent. Since ^(Jf)

is locally of finite type, Jit is locally of finite type as we have already shown.
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Therefore Jt is a quotient of $\. Let J£' be the kernel of the homomorphism

(p : £\-*Jt. Then <£>pf') is the kernel of $((p) : &N-+®(^). Therefore <f>(^')

is locally of finite type. This implies that *JC is locally of finite type, and hence

~# is coherent. Q. E. D.

Proposition A.3. If J£ is a coherent (£x-Module, then ®(<Jf) is a coherent

^-Module with regular singularities along V.

Proof. A quotient of a coherent ^-Module with regular singularities

along V has regular singularities along V. Since JV is a quotient of $\, 0(^f)

is a quotient of $(<f *) = &». Q. E. D.

Proposition A.4. Let ^ be a coherent &x.-Module with regular singu-

larities along V. Then, for any integer k, JQ1 #&s^ x>{3? ', Jf) is a coherent

@x-Module and

(^c°9 JIT").

Proof. Let us prove this proposition at a point XQ of X. As proved

in Theorem 3.2 [18], Jf is a quotient of ^0, where ./F0 has the form

*x-l*x'(tDt-A(x9Dxy) for an N x N matrix A(x, Dx) of linear differential
operators on X, which satisfies the following condition.

(A.4) A(x, Dx) has the form (Atj(x9 Ac))i£i,j£r> where Atj(x, Dx) is an N f x N j
matrix of linear differential operators. If i>j, Atj = Q and Ait is a matrix of

functions on x, and AU(XQ) is A£/Ni for A feC. Furthermore we have ^4^ = 0 if

A^A;.

Suppose first that the claims are true for such jVQ. Let ^1 be the kernel

of ^VQ-*^. Then we have the exact sequence

We shall prove the first assertion on coherency by the descending induction on

k. If k 7^0, 1, then £*/*(jg?, ^T) = 0. Hence the claim is evident. By the hy-

pothesis of the induction, Jo1<^//c+1(^7
5 -^i) is coherent. Since joV^C^, «^o)

andjo1^/^"^1^ , J^0) are coherent by the assumption, Jo1<^/k(c^f, ^T) is locally

of finite type, and hence so is Jo^^C^ -^i)- Therefore jfo1^/^.^?, ^T) is a
coherent ^--Module.

Let us prove the second claim also by the descending induction on k. If

, 1, then <f^fe(-S?, ^Tco) = (^/fc(^J ^T) = 0 and hence the claim is evident.



964 MASAKI KASHIWARA AND TAKAfflRO KAWAI

Consider the following diagram:

, -/TO))"

By the hypothesis of the induction, d is an isomorphism. We assumed that

j8 and s are also isomorphisms. Hence y is surjective. By applying this to J^1

instead of Jf, a is also surjective. Hence y is an isomorphism.

Let us prove the claims for jy0. By decomposing J^0 into the direct sum,

we may assume that At = • • • = Xr.

Then, by Theorem 3.11 [18], if Ax is not an integer, then <£*/*(«£?, ^0)

= <£Wfc(jSf, ^TO>) = O. Hence the claim holds. Let us assume that 1^ is an

integer. Then by the same theorem, we have

Hence the proposition immediately follows from these equalities. Q. E. D.

A.4. In Theorem 3.8 [18], we defined the monodromy of a coherent

^.-Module with regular singularities along V. Let us recall the definition.

Let A be the submanifold (Tf0}C- T£€) x T%X of F.

For any coherent ^/-Module Jf with regular singularities along V, we can

define the ffx, \ ̂ -linear automorphism M(Jf}\ Jf \ A-+ Jf \ A functorially. If

tf is the cokernel of tDt-A(x, Dx): *$.-*£$., where A(x, Dx) is an NxN

matrix of micro-differential operators such that A has the highest order gO.

Then we have the commutative diagram

Proposition A.5. If Jt z's a coherent @x-Module, then the monodromy of
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is the identity.

Proof. Jt is a quotient of a free Module @N and hence <P(^) Is a quotient
of $(&N) = £'N. Since the monodromy of &N is the identity, we obtain the

desired result.

Proposition A.6. If JV is a coherent ^x--Module with regular singularities

along Vwith the identity as its monodromy. Then $W(JS°)^,^.

Proof. We shall prove first the following lemma.

Lemma A.7. If^V is as in Proposition A.6, then Jf \A is locally a quotient

of a direct sum of the copies of & \A.

Proof. We shall consider on a neighborhood of J0(0). By Theorem 3.2

[18], rf is a quotient of

where B(x, D) has the form described in (A.4). Jf = ^

£x'l(£x'(tDt-B) + &x'(e2lliB-V)). By the assumption on ,/T, rf is a quotient

of ^T0/M(^r0)^r0. Hence we may assume without loss of generality that

^ = ̂ 0/M(yr0V^b- By decomposing ^T0
 mto a direct sum, we may assume

that all the diagonal components of B are A at x = 0.

If A^Z, then e2niB — 1 is invertible and hence ^T = 0. Suppose that

A e Z. Then (e2*** - !)/(£ - 1) is invertible. Hence *${€**** - 1) - ^(B - A).

Therefore ^ = £$,l(£$,(tDt-X) + £%.(B-X)). Thus ^T is a quotient of

^x'/^x'ttDt-X), which is isomorphic to J^N. Q. E. D.

Now, let us prove Proposition A.6. By Lemma A.7, we have an exact

sequence

Let J[ be the cokernel of Y(<p) : W(£>NI)-> W(£>N°). Since <f>*F(j^) = jgf and 4> is

an exact functor, (P(^f) is the cokernel of <PlF((p) = (p: &NI-*&NO. Therefore

jV* is isomorphic to $(^). Hence !F(̂ r) is isomorphic to JK and Jf = $W(Jf}.

Q.E.D.

A.5. Let ̂  be a coherent ^-Module. An increasing sequence

of ^^-sub-Modules of u^ is called a filtration if

(A.5.1) ^fc = 0 for k«0 (locally),

(A.5.2) Jt^ is coherent ^-Modules,
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(A.5.3) &tJ?k<^J!!k+l for any k and /,

(A.5.4) J!=\]J!k.

If, in addition, {^k} satisfies

(A.5.5) ^ltJfk = ̂ k+l for /c»0 and

then the filtration {^k} is called good. We shall prove that the notion of a good
filtration of ^ is equivalent to that of a coherent (fx,(0)-sub-Module of

Proposition A.8. Let Jt be a coherent @x-Module, and let Jf be

We shall identify <Jt with the sub-Module of j^lJf by SH»WO®S.

(i) // {^fc}feeZ is a good filtration, then ^o = Z #xf(~k)(uo®^k) *s a

coherent £x,(®)-Module, j\T = e£/F0, r^T0c:^r0(-l) and ^k=Jol^0(k) n Jt

(ii) Let ̂  be a coherent £x,(Q)-Module such that ^ = #^0 and

l). Let Jtk be JQ1^r
0(k) n uf. T/ien {uTk} zs a good filtration o

Proo/. We shall prove first (i). We have

0(— 1). Let us prove that ^0 is coherent. <f( — /c)(w0®^fc) are coherent

^(O)-Module. Moreover, for /c»0, £(-k-l)(u0®<J?k+i) = £'(-k- I)(w0®
N

^1uTk)c:^(-fc)(M0®urfc). Hence we have ^T0 = Z ^(-/c)(w0®-4) for JV»0.

Therefore ^T0 is a coherent ^.(O)-Module.

It is clear that ^k^JQl^Q(k) n uf. We shall prove JQlj^Q(k)c:^k. Let

be the homomorphism from jo1^ into ^ defined by pfc®id^. Then
is the identity. We have ^r0(^)= Z ^(fc-0(ti0®-^/) for jv»°-

/=-JV

Any element of ^(fe — /)(w0®u^) is a combination of elements of the type
P(x, Dt, Dx)uQ®s with Pe<f(k-/). Expanding P= 2 P/x, DX)D{, we have

. Thus we have p0(Pu0®s) = Pk_ls£@Xk-l^l. Hence we obtain

This implies ^k=Jo1^0(k) n ̂  =

We shall prove (ii). The property (A.5.4) is evident, because ^ =

Let us take a good filtration {^k} of uf , and we define ^ = X <^(- fc) (w0®-^fe)-
Then by (i), ^"Q is a coherent <fx,(0)-Module such that ^r = ̂ x^'Q. Hence
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there is N such that ^^^( — N). We may assume that JV = 0 by replacing

^0 with ^o(-W)- Then j?k<=^r'k. Hence (A.5.1) is clear. We have 9^k

c7oK^(0^o(fe))n^=jV(-^o(fc+0)nuf = urfc+z. Thus (A.5.3) is proved.
Let us take a point x0 in X, and we shall prove the other claims on a neighbor-

hood of x0. Since *#ktXQc:^'kiXo and 0if,Xfcf,0c^k+lfJCO, ,4>JCO is a finitely

generated d?x,Xo-niodule and &ltXQt,#ktXo = ̂ #l+ktXo for /c»0 and 1^0. Hence

there are a neighborhood U of x and a good filtration {*#k} of u^ defined on U

such that ^JiXo = uTMo and ^c^. Set >"S = Z <?(-k)(u0®^'k). Then

by (i), ^o is a coherent ^((Q-Module.

We shall prove ^O,JO(XO) = ̂ QJO(XO)- It is evident that ^rgc:^r0.
Let M 1 9 . . . , Mjy be a system of generators of ^T0, and let w be the column

vector with w j , . . . , w^ as components. Then there is an N x A/" matrix A(t, x, Dt, Dx)

of micro-differential operators of order :gO such that tDtu=A(t, x, Dt, Dx)u.

The proof of Theorem 3.2 [18] shows the following: there are invertible

matrices of U(t, x, Dt, Dx) and U'(t, x, Dt, Dx) of micro-differential operators

of order 0 such that

U(t, x, Dt9 Dx)(tDt-A(t, x, Dt, Dx))U'(t, x, D,, Dx) = tDt-C(t, x, D,, Dx).

Moreover, C(t, x, Dt, Dx) has the following form (A.5.10) for NtxNr

matrices B£x, Dx) = (blillv(x, D^)^^^. (/ = !,..., r) which satisfy the following

conditions :

(A.5.6) ± N{ = N.
i=\

(A.5.7) b,>v = 0 (n<v).

(A. 5. 8) bfjM/i depends only on x .

(A.5.9) &«>w,(xo) = *.

(A.5.10)

Here 1^ is the diagonal matrix with D^J as components. Let Ay be the diagonal

components of a0(Bj)(x). By replacing u with U'~1u9 we may assume that

Hence I /-Dj— %. lRw = 0. Set J?M= with N .-column vector

Wj (,7 = 1,..., r). Then (tDt — Bj)Wj = Q. Since the monodromy of rf is the

identity, e2niBJWj = Wj. If A,- is not an integer, then e2ltiBJ - 1 is invertible and
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hence w; = 0. If A,- is an integer, (e2KiBJ-l)/(Bj-)ij) is invertible. Hence we

have BjWj = A,jWj9 which implies (tDt — A^vv,- = 0. Therefore uk satisfies

(tDt-fik)uk = 0 for some integer fik. Then tD?k+1uk = Q. Hence Dfk+1uk

•=uQ®u'k for some w^e^. The section uk is contained in ^*fc+i by the

definition. Hence uk is contained in $( — ̂ fc— l)(w0(x)X"k+1). Therefore we

obtain ^Ojo(*o)c^ojo(xo)-
Since ^T0

 and -^o are coherent and ^O,JO(XO) = ̂ OJO(XQ), we have ^TO
=:-^/IO

on a neighborhood of J0(x0). Therefore (ii) follows from (i).

Ae6. Proposition A.9. Let ^ anJ Jf2 be two coherent ^-Modules

with regular singularities along V and f an fi^-lmear homomorphism from

i/TJ0 into rf%. Then we have

where M(̂ })°° is the automorphism of ^J obtained from M(yK}) by tensoring
jpao ( i _ 1 O\
&X' (J — ±> 2)'

Proof. We can take a system of generators w l 5 . . . , wz (resp., y l 9 . . . , vjn) of

^ (resp., ^*2)
 and an 7 x / (resp., mxm) matrix of differential operators

^(x, Dx) (resp., B(x, DJ) of the highest order ^0 such that, if u (resp., y) denotes

the column vector with u1,...,ul (resp., vl9...,vm) as components, we have

(tDt-A(x, Dx))u = Q (resp., (tDf-B(x, DJ> = 0).

Let &' be the sheaf of microdifferential operators which commute with Dt

and set £'(m) = £x,(m)r\£'. Then, for any integer m, &'(m) is a coherent

sheaf and &' (0) is Noetherian (i.e., an increasing sequence of coherent Ideals is

locally stationary). Let J be the sub-Module of g^, consisting of Jff e^Jf' sucn

that Hv = 0. Then J n ̂ '(0)m is a coherent <T(())-sub-Module of J^ n ^'(0)m-

Let $ be the operator of &'m defined by H*-*[lDt, H~] + HB. Then ^(j^ n ^/IB)

c^n^ / m . In fact, for He./ n *f/w, 4>(//)y = ([rDf, H] + HB)v = (HB-HtDt)v

= 0. It is easy to see that, for an <T(0>sul>Module ^ of £'m generated by

«!,..., 5p, J
r + ^(«^r) is an ^'(0)-sub-Module generated by Sj,..., sp,

^(sp). Hence, if J^ is a coherent ^'(O)-sub-Module of <T/m, then so is

There is an integer k such that any component of Bl is a linear differential

operator of order ^k for any i. Hence ^(^;(0)m) c: <f'(fc)m for any z. Thus
V

{ Z &(^ n <^'(0)m)}v is an increasing sequence of coherent «f ;(())-sub-Module of
i=0 oo

£'(k)m and hence </'=£ &(J n ̂ '(O)"1) is a coherent <T(0)-sub-Module of
i=0

e/ n <f /m. Let {Hl3..., HN} be a system of generators of «/'. Then we can see
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easily that {Hi9..., HN} has the following properties:

(A. 6.1) If we denote by H the Nxm matrix of micro-differential operators

whose row-vectors are H ,,..., HN, then there is an NxN matrix JR of micro-

differential operators in <f'(°) such that HB = RH-[tDt, H~\.

(A. 6. 2) If a row vector P of length m of micro-differential operators satisfies

Pv = 0 and [£>r, P] = 0, then there is a row vector S of length N such that P = SH.

Let G(x, Dx, Dt) be an / x m matrix of micro-differential operators of infinite

order such that/(w) = Gi; and [Df, G] = 0. Since

0 =/((f Dt -A)u) = (tDt - A)f(u) = (tDt - A)Gv

= GtDtv-AGv + [tDt, G~]v = (GB-AG + ltDt, G])v,

there is an / x N matrix S(x, DX9 Dt) of micro-differential operators such that

(A.6.3) AG - GB = [tDt,

We define G(A), H(X), R(X) and S(A) by

and G(0) = G5 // (0) = //,

S(0) = S.

If we expand G=Z G/x, DJD/, then we have G(A)=£ G/x, Dx

Hence G(27r^A::T) = G, H(27rv
/:=T) = //,.... It is easy to verify

(A.6.4) /f(A)5 = R(X)H(X) - ~Y

Now, we define K(A) by

and

The existence of such a X(A) is guaranteed by Theorem 5.2.1, Chapter II of

S-K-K [24].

We have

(A.6.5)

In fact, if we set $(A) = H(A)eA5-J£(A)H, then we have -- *(A) =

+ -^-HWe™ - -£r-K(X)H = H(X)e™B + (R(X)H(X) ~ H(Z)B)e™ - R(X)K(X)H
UA CIA,

= #(A)<P(A) by (A.6.4). Since ^(0) = 0, we have $(A) = 0 by the uniqueness of
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a solution of the differential equation. By (A.6.3), we have

(A.6.6) AG(X) - G(A)B = -^-G(A) + S(A)#(A).

We define jp(A) by the equation

-^rF(A) - AF(A) = S(A)X(A) for *e-*
AF(X) = e~^

a A. \ a/

andF(0) = 0.

Let us verify

(A.6.7) e*
AG- G(A)eA5 = F(X)H.

Set ^(A) = e*AG - G(A)eAB - F(X)H. Then we have

r - G'(A)eAB - G(A)eABB - F'(X)H

}-(AG(X)-G(X)B-l

- K(X)H)

and (P(0) = 0. Thus we obtain $ = 0. (A.6.7) implies, in particular,

(A.6.8) e2^~iAG _ Ge2nj=TB = p(2nj=l )H .

Hence we have

which implies f(M(^1)
c°u) = M(^2)

ccf(u)> Since ./Kf is generated by u, we
obtain /oM^)00 = M(^T2)

coo/. Q. E. D.

Proposition A.10. Let ^ be a coherent @x-Module and ̂  a coherent

with regular singularities. Then we have an isomorphism

Proof. By Proposition A. 4, we have ^(X)00 =;'o1 Je^fxt (&,

Hence, we have

Q.E.D.
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B.I. The purpose of this section is to prove (iii) of Proposition 1.4.2 in

Chapter I, Section 4.

Proposition B.I. Let $?' be a bounded complex on a complex manifold

X whose cohomology groups are constructible and let & be a complex of

sheaves on X. Let p1 and p2 be the first and the second projection from X x X

onto X, respectively. Let A denote the diagonal set of XxX. Then we have

c(^\ Cx)

Lemma B.2. Let J*" be as in Proposition B.I and F a C-vector space

(which is not necessarily finite-dimensional). Then we have

RjfU*c(jF', Cx) ® Fx ^=4 Rjf^cC^', Vx)c
where Vx is the constant sheaf on X whose stalks are V.

Proof. We may assume that &' is a simple complex. We identify ZF*

with & = 3? %F'). There exists a triangulation of X on each of whose simplex

& is a constant sheaf of finite rank. Hence we may assume that IF is Ca where

<7 is a simplex in X. Then the above lemma is obvious. Q. E. D.

Lemma B.3. p\^2e*™c(&\ Cx) ® p^' = Rje^c(p^^\ Pll&) .

Proof. Let us take a point x = (xl3 x2) of XxX. Let Uj be an open neigh-

borhood of Xj (j = 1, 2). Then we have

/! x U2;

On the other hand we have

Hence we obtain

/i x U2;

c(^\ Cx)

Hence, by taking an inductive limit, we obtain

Q.E.D.

Now, we are ready to prove Proposition B.I. By Lemma B.3, we have

c(^\ Cx) ® ptW
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Hence we have

c(&'9 Cx)

On the other hand, we can easily verify

(e.g., we can use Lemma B.3 after coordinate transformations). This shows

immediately Proposition B.I.

C.I. It seems that Theorem 2.2.1 and Theorem 2.2.3 are not written

explicitly in [3]. In this appendix we shall give their proof.

The following proposition is proved in [3] (Proposition 5.7 in p. 96 and

Theorem 4.1 in p. 85).

Proposition C.l.l. Let X be a complex manifold, Y a hypersurface of

X and j the inclusion map from X—Y into X. Let L be a locally free Cz_y-

Module of finite rank. Then there exists a coherent &x-sub-Module &$ of

J*(@x-Y®L) satisfying the following conditions:

(C.l.l) &Q\X_Y = 0X_Y®L as a @x.Y-Module.
c

(C.1.2) ^ = ̂ pxm(^0) is a ®x-sub-Module ofj*((9x_Y® L) .

(C.I. 3) On 7reg, 3? (resp., &$) is the subsheaf of j*(@x_Y®L) consisting of

sections in the Nilsson class (resp., the strict Nilsson class) .

The sheaf ^X^Q is a coherent ^-Module and @X£?Q |X-Y = °^O \X-Y is
a holonomic ^_y-Module. Hence Theorem 3.1 [8] implies that J? =

X-^O) i§ a holonomic ^-Module. By the definition of &(L) and
given in Chapter II, we have

and

Now, let us prove Theorem 2.2.1. On X- Fsing, Theorem 2.2.1 is evident.

Hence Theorem 2.2.1 follows from the following proposition. In fact, the

following proposition implies =Sf0(L) is a coherent d^-Module and
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Proposition C.1.2. Let X be a complex manifold and Y a hypersurface of

X. Let & be a coherent Ox-Module satisfying the following conditions:

(C.I. 4) 3P$(&) = 0.

(C.I. 5) J^l^.y is a locally free Gx_^-Module.

Let & denote ^[x|y]G^")- Then we have the following \

(i) Let s be a section of ^X|Y(^) defined on an open set U of X, Assume

that there is an open subset V such that s\vE^(V) and V intersects any ir-

reducible component of U r\ Y. Then s belongs to J?(U}.

(ii) Let &' be the sub sheaf of & given by &r'(U) = {se£'(U):> there is an

open subset V of U such that SE^(V) and V n Y is a dense subset of U ft Y}.

Then 3?' is a coherent Ox-Module.

Proof. We prove this proposition in several steps.

(1) The case where Y is smooth and !F is locally free.

In this case, we may assume J5" = Ox. Then &' = & and (i) is easily proved

by using the Laurent expansion with respect to the vertical direction of Y, We

leave the details to the reader.

(2) The case where Y is smooth.

There is a locally free d^-sub-Module # of & such that 5e = ^xm(&).

We may assume further ^ID J5". The property (i) is derived from the case (1).

Let us prove (ii). We have ^n> J5"'. Then it is easy to see that J5" is coherent

over @x, because &']& is the sheaf of sections of jf 5r(0/«^) whose support has

codimension ^2.

(3) The general case.

If se^^yO^) satisfies the condition in (i), then s\x_Ysinse£'(X- Ysing)

by the case (2). Therefore it is sufficient to show MP \\ ysing(«^0 = &• Hence the
properties (i) and (ii) are local problems.

Now, let us assume that Y is defined by /(x) = 0. We may assume that/

is of the Weierstrass type :

Let F be the map from X into Cn given by x*-+(xi,..., XB-I, /(*)). Then F is

locally a finite map. Hence shrinking X, we may assume that F is a finite map

from X into an open subset X' of Cn. Set Y' = {(xl9..., xn.ly t)eX'cCn;

r = 0}. Then Y=F~1(Y'). Set & = F*^. Then we have jf^(^) = 0, and
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<& \X'-Y' is a locally free dV-r-Module because F is a flat map. We have

Ft&
and

By case (2), we have ^i|F(ysing)(^*^) = F*&, and hence we obtain

^*(^|F.,ng(^)) = f *^- This implies Jrj,r.ing(^) = ^.
Now, we shall prove (ii). It is easy to see

F^f = {sEF^', s belongs to F*<& on an open dense subset of Y'} .

Hence Case (2) implies that F^' is a coherent 0x<-Module. Therefore &' is

a coherent ^-Module. Q. E. D.

C.2. Let us prove Theorem 2.2.3.

Since TBiJl?*** 9 X(G x, J^)|^_y = L, it is sufficient to show

(Ist-step) Reduction to the case where 7 is normally crossing.

By Hironaka's desingularization theorem ([26]), there is a monoidal

transform/: X'-+X of X satisfying the following conditions

(C.2.2) X'-f~l(Ysins)->X- 7sing is an isomorphism.

(C.2.3) Y'=f~1(Y) is normally crossing, i.e., we can choose a local coordinate

system (tl9..., tn) of X' around any point of Yf such that Y' is given by ^ - - -^ = 0.

Let / be the inclusion map from X ' — Y' into X' and let L' be the locally

constant sheaf (/|x- y)"1^ on X1 - T. Set &' = &(L'). Then as easily shown,
we have

(C.2.4) /*&' = &

(C.2.4') Rkf*3" = Q for fc^O.

Let Q'x(-^) be the de Rham complex associated with & :

Let Q'x,(3?') be the de Rham complex associated with & '. Then we have

flj(^f) for k=0
'(C.2.5)

0 for
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because Qp
x,(3")=f-lQp

x ® 3". Now, "BLje+~9x(GX9 &) (resp.,
f ~ l 0 x

&')) is quasi-isomorphic to Q'x(&) (resp., Qi/(jgf' )) (see § 1, Chapter II). Hence

(C.2.5) implies that

My .|{H.ePr1 0-w*Qx' \(sx'i ~& ) = *

Thus we obtain

Hence the vanishing of RryR^r^^x(^x, J^7) is reduced to that of

JK.1 yJKe^S <s*-/7^^ Y'\- X'* ^ /*

(2nd-step) The case where Y is normally crossing.

We have

(&9 0X), Cx)

and hence

M.1 yM.e^t^272^ vV^X? *" /̂ ^ -K.e5fr^./»£j^JK.e^t<p./»^ ^^J^j C/ _y^ | y 5 ^*X/ '

Hence it is sufficient to show that

(C.2.6) £a*j
9x(&, &x)p = ® for any pe 7 and any j.

Let us take a local coordinate system (x1?...,xn) around p such that Y

= {XI~-XI = Q} and p is the origin. Set Yj = {x; x7- = 0} (l^j^/). Then

7= U Y,-. Let us take a small ball U centered at p on which L is defined. Since

KI(U — Y) is the free abelian group generated by the / elements yl9...9 yt where

jj is a cycle around Yj. Recall that L is represented by the representation of

n^U—Y) on a finite-dimensional vector space F; hence L is determined by

£13..., £zeGL(F), which correspond to Vx, . . . , yz. The ff/s satisfy [jBf, BJ-]=0.

Let us take Al9...9 ^4zeEnd(F) such that

(C.2.7) exp (2nJ=lAj) = Bp lAi9 AJ = 0 ,

and

(C.2.8) any eigenvalue A of Aj is not 0, 15 2, ____

We define a ^-Module jgf ' by

&' = 9x®VI(?l(9x®V)(xjDj-Aj)+ ± (&x
C j = l C .7 = 1 + 1 C

Here an element of End(F) operates on Ffrom the right. Then one can easily

check that
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(C.2.9) SS(&')c:{(x9Q;xj$j = Q for Igjg/ , £7 = 0 for

(C.2.10) JST is a holonomic ^-Module with R. S. ,

and

Lemma C.2.1. «pf ui.^'\ = 0 for any k.

Proof. In order to show this, it is sufficient to show that the multiplication

by Xj gives an isomorphism on g"p.

We shall show first the multiplication by Xj gives a surjective map on <g'p.

For an element ve V9 we denote by the same letter the corresponding section of

£". We first prepare the following formula:

(C.2.12) xfDjvmn (Aj-k)~l = v (l^j^l).

We shall prove this formula by the induction on m. We have
m-2

xm~i])m-iv YI (Aj — k)~l = v by the hypothesis of the induction. Hence,
k=0

applying this to (Aj — m + l)~1v5 we obtain

m-l
xj-iDm-iv YI (Aj

k=0

On the other hand, we have

x jDf = (XjDj

Thus we obtain
m-l

xfDJv n C^- fe)-1=(
= v(

Now we begin proving that Xj-: <£'p-+g"p is surjective. The surjectivity of

Xj (l + l^j^ri) is clear, because Xj^O at p. Hence it suffices to show the
surjectivity of Xj for 7 = !,..., /. Let u be an element of g"p. It follows from

the definition of <£'p that u has the form X Pv
vv w^tn PV E ^p an<^ ^ e F, we may

V

assume from the first that u=Pv. Let m be an integer greater than the order of

P. Then there exists a linear differential operator R such that XjR = PxJ holds.
m-l

Let w denote the element RDj(v Yl (Aj - k)~l) of &'p. Then, by using (C.2.12),
k=0

we find

Xj.w = XjRDjv Tl (Aj - k)-1
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m-l

n
k=0

=Pv =

This means that x7- defines a surjective map.
In order to prove the injectivity of xp we prepare the following

Ca2.29 Let Pe(@® V)p. Then PE £ (2 ® V)P(XJ®J - Aj) +
j=i

X (@®V)vDi if and only if Pxfi—xf*=Q.
j=i+i

Proof. Set J = E (@ ® V\ (xjDj - Aj) + f) (2 ® V)pDj and Jf = {P

p, Pxp'-xfl=Q}. It is easy to see that JcJ'. We shall prove the

converse inclusion relation. Let P be an element of J'. Then we can write

P= Z bx(x)Dx with b^(x)eOp®V.

Then there is ap(x)e@p®Vsnch that

P = Z fl/*)^ mod/,

where D^ = 3^l/3xf1---3xf1 and fl/x) satisfies

(C.2.13) (dldXj)ap = 0 if JB,.^0.

Set ̂ 0=0 El G4/~fe)- Then Pxf1---x/ I=0 implies
j=l k=0

(C 9 14^ V <7 Tr^/4 v~^ —0\\*s,4*.jL^J JF vi a\J\ i £JL aJ\i —w 3

where x~P = Xiftl-~xjPl. Hence it is sufficient to show that (C.2.13) and (C.2.14)
implies ap(x) = Q for any /?.

It is easy to check that (C.2.13) and (C.2.14) imply a/g(x)^=0 for any /?.
Since Ap is invertible, we obtain ap = 0. Thus Sublemma C.2.2 is proved.

Now we resume the proof of Lemma C.2.1. Sublemma C.2.2 shows that
&' is contained in

Hence xf. 3?'p-»£"p is injective. Thus Lemma C.2.1 is proved.

Lemma C.2.1 shows 3" = £? and we obtain

(C.2.15) &



978 MASAKI KASHIWARA AND TAKAHIRO KAWAI

Set j? = &®V/(&®V)(x1Di-A1). Then by using the Koszul complex, we

have an exact sequence of ^-Modules

0< & < ^< ^n~l < jfi ^ < < jy»-l< ^< 0.

We can easily verify £»/£ Of, @x\ = ® f°r anY J- Thus, we obtain tf&s^g', 6x)p

= 0 for any j.
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