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Introduction

Our motivation is to study the geometric theory of Weyl group represen-
tations, so called Springer’s representations (see [21] and its references), from
the view point of holonomic systems on Lie algebras. In this attempt, the
system of differential equations defining invariant eigendistributions, which was
extensively investigated by Harish-Chandra, occurs quite naturally as the re-
gular holonomic system corresponding to the intersection cohomology com-
plex defining Springer’s representations, through the Riemann-Hilbert cor-
respondence. Thus we obtain a decomposition of this holonomic system ac-
cording to the action of the Weyl group, which is also related to the decom-
position according to the monodromies. Through the Fourier transform, this
decomposition gives an “analytic” proof of a recent theorem of Borho and
MacPherson ([4], [5]), which has been first proved by using a deep theorem of
Bernstein-Beilinson-Deligne-Gabber. Secondly, applying this result, we can in-
vestigate structures of solutions to this system of differential equations. In
particular, we can extend, in a unified way, a recent result of Barbasch and
Vogan ([7], [8]) on the Fourier transforms of the nilpotent orbital integrals.

We are going into more details. Let g be a complex semisimple Lie algebra
with connected group G. Fix a Cartan subalgebra b of g and denote by h* the
dual space of h which is often identified with § through the Killing form. Let
S(g)¢ (resp. C[g]®) be the ring of G-invariant symmetric tensors (resp.
G-invariant polynomials) on g. For Aeh*, we consider the following systems
of differential equations:

. {<[A= x35ax>u}.:0 (Aeg)
PP - P()u,=0  (PeClg]°)

. {<[A,x1,ax>u§=o (Aeg)
Q@) Q=0 (QeS())

and
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where {[A,x],0,> denotes the vector field whose tangent vector at x equals
[4,x]eg. Thus .#F is a defining system of invariant eigendistributions and the
Fourier transform of .#,. These systems will be known to be regular holo-
nomic. Our aim is to study their structures as & ,-Modules, mainly aspects
related to the Weyl group action. This will be done in §6. However, for this,
we first consider the total deformation of these .#, with parameter Aeh* ~b.

In §4, we shall consider the Z,,,-Module 4" defined by the following
system on g x b

[4,x],0,>u=0 (Aeg)
M (P(x)— P(t)ii=0 (PeC[g]%)

Q@) —0(=8)u=0  (QeS(g)%).

Here &, ,, is the sheaf of linear differential operators with coefficients in
rational functions. We remark, in this paper, we mainly consider Z-Modules in
the algebraic category (see §1). Let # be the flag manifold consisting of all
Borel subalgebras of g and § the incidence subvariety of % xgq, ie, §
={(b’,x)e# x g|xeb’}. Denote by p: §—¢g the projection to the second factor.
Fixing a Borel subalgebra b containing the Cartan subalgebra b, we have the
smooth map 0: §—g defined by 0(gh,x))=g 'xmodn (geG) where n is the
nilpotent radical of b and § is identified with b/m. We thus have the com-
mutative diagram

.k
g—9g

h——b/W

where W is the Weyl group for (g,h) and x is the invariant map. Using these
maps, we consider the product map

f=px8:3—gxb
where f(§)=g xywh =g xbh. As our first main result, we prove

N[O =By 1001

which implies that 47 is a simple completely regular (for definition, see 1.5)
holonomic &, , ,-Module (Theorems 4.1, 4.2 and 5.1). Here the symbol |, is the
functor integration along fibers, and "%, ., is the minimal extension of
B 3yeslans xy (Brs 18 the set of regular semisimple elements in g and f(§),,
= (&N a, xb).

The W-action on g x b, defined by that on b, makes f{§) stable and hence
gives rise to the W-action on the Z,,,-Modules A" j 105 In §5, we shall
investigate this W-action. Borho-MacPherson’s result [4] will be clarified as

follows. Note that the following two isomorphisms (Prop. 4.8.1);

jp@§:§pM (p=pry: g xbh—g),
o iy=aCp-100=7* ¥ (i1 g=gx {0} >g x}),
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where the both are single Z,-Modules (N is the nilpotent variety of g). Con-
sidering the Fourier transform (*)' on g, we have

(jp(pé)F = (jp' ‘(N)AQ(QP‘ ‘(N))®Sgn
as W-2,-Modules, where sgn is the sign representation of W (Theorem 5.2).
Since
DR(f,0)=Rp,C; and DR(f,-1n.,0,-1 n) =Rp, C5ln[ —rank g]

9

through the Riemann-Hilbert correspondence DR, we have the natural decom-
positions into simple constituents of the both objects (Theorem 5.3), which
recovers Borho-MacPherson’s result. We also see why the sign representation
is involved in various situations in Springer’s representations.

In §6, we shall relate the previous Z,-Modules .#,; and .#] with 4" using
harmonic polynomials. Let b(4) be the span of the coroots orthogonal to 4 in |
and W(A)={weW|wi=241}. Let #(h(A)) be the space of harmonic polynomials
on h(4) with respect to the small Weyl group W(4). We can then define a
natural isomorphism

D,: J%/I:*Homwu)(]f(bu»» Mz D)

(Theorem 6.1). At this point, we use Harish-Chandra’s ancient result on #F
(Theorem 6.7.2) by which he derived the famous regularity theorem on in-
variant eigendistributions. We, however, know some method which gives our
results without relying on his result, at least, in the classical case (see 6.6).

We now consider the particular case A=0. Using the earlier decomposition

of
~ ) ~ N d(x)
Aol 10v=eCp-1vp  WE have My~D, 44,

where W is the set of the equivalence classes of irreducible representations of
W and d(y) is the degree of yeW. Here .#, is a simple Z,-Module. We now
take the Fourier transform

MG~ D) e (M) P.

Then .#f is a regular holonomic system which satisfies the asymptotics of
distribution characters ([6]). In the above, J/lf is a system with monodromy
representation y. Using this result, in §§7 and 8, we shall generalize some
results of Barbasch-Vogan ([7], [8]) and King ([171). For instance, let O be a
nilpotent orbit of g. The nilpotent orbital integral

to(N)={of (x)duo(x)

then defines the invariant measure pg on g. Then the Fourier transform [, is
explicitly given (up to constant multiplication) in terms of a harmonic poly-
nomials on b x b using Springer’s correspondence (Theorem 8.2). For “special”
O this result has been proved in [7], [8]. We shall also deduce some results on
real Lie algebras (§ 8).

We are grateful to J. Sekiguchi who has treated related probiems in other
aspects and discussion with whom has helped us in some point (6.6).
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§ 1. Holonomic systems on algebraic varieties

1.1. Let (X,0@y) be a smooth algebraic variety defined over €. We denote by
(X,n> Oy, ) the underlying complex manifold. Let i, denote the morphism of €-
ringed spaces

(1.1 1= 1y: (X Ox, ) (X, Oy).

an?

The sheaf &, of differential operators on X and the sheal 2y of differential
operators on X, are related by

(1.2) @Xan:(gxnn®l_10Xl-1@X=l“1@X®1‘10X(9Xan'
For a left y-Module ., we shall write .#,, for
9X3n®l""gxl_l'/%:(pxan®t"0xl—1‘ll‘

A coherent P,-Module .# is called holonomic (resp. regular holonomic, cf.
[16]) if so is .#,,. As in the case of coherent &, -Modules, we can define the
characteristic variety of a coherent ¥,-Module .# as a Zariski closed subset of
the cotangent bundle T*X of X, which we shall denote by Ch(.#). The
characteristic variety of .#,, coincides with 15.5(Ch(.#)). The following prop-
osition immediately follows from GAGA [20].

Theorem 1.1. Assume X to be smooth and proper over C. Then we have
(1) For coherent @y-Modules .# and &, we have
RI(X; R Homg (M, N)ZRIX 3 R Homg, (M,

an?

)

(2) The category of coherent Zy-Modules and that of coherent @y -Modules
generated by a coherent sub-Oy_-Module are equivalent.

1.2. For a quasi-coherent ¢y-Module # and a closed subset Y of X, we have

(see {9], [13]).

(1 21) ]RI}Yan](‘g:an) = ]RI;’('g;)an
and
(1.2.2) RIGy, vl Fan) =R p(F),-

In particular, for a holonomic (resp. regular holonomic) 2y-Module .,
H{(M) and H#}, () are also holonomic (resp. regular holonomic).

1.3. Let f: X—>Y be a morphism of smooth algebraic varieties X and Y defined
over €. We define the sheaves 9y, and 2, _4 on X by

(1.3.1) @X_,Y=(9X®fq@yf“9y, @Y,_X=f"(@Y®0Y{Zf§’“)®f~,%§2x,

where Q, and Q, are the invertible sheaves of the highest degree forms on Y
and X, respectively. As in the analytic case, Dy, is a (Dy, [~ ' Dy)-bi-Module
and 9, _ is an (f ~' 9Dy, Dy)-bi-Module. For a 2,-Module 4, we set
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Lf* A=y y@®F g [T N =@ g [N
and for a ¥,-Module #, we set

jf ]Rf* YeX ®H9?X‘///)7
where ®¢_ denotes the left derived functor of ®, .

Theorem 1.2 ([19], [16]). (1) If A"is a holonomic (resp. regular holonomic ) Py-
Module, then #(ILf*A") is a holonomic (resp. regular holonomic) %y-Module
for any j.

2) If f is proper and if M is a coherent (resp. holonomic, regular holonomic)
D x-Module, then any cohomology group of [; # is a coherent (resp. holonomic
resp. regular holonomic) 9,-Module. Moreover we have Ch(éf’(jf
cwp~ Y(Ch(A)), where w is the projection X x,T*Y-T*Y and p is the
morphism X x, T*Y->T*X.

1.4. For a holonomic Z,-Module .# and for an irreducible component A of
the characteristic variety of .#, we can define the mudtiplicity, denoted by
mult (A), of .# along A. (See [14]). We shall call the algebraic cycle
Y4 mult () A the characteristic cycle of .# and we shall denote it by Ch(.#).

If 0> M'—M—4"—>0 is an exact sequence of holonomic Zy-Modules,
then we have

(1.4.1) Ch(#)y=Ch(A4")+ Ch(.4").
As shown in [14], we have

Theorem 1.3. Let f2 XY be a morphism of smooth algebraic varieties X and Y,
and let

T XX, T*YST*Y and p: X %, T*Y->T*X
be the canonical morphisms.
(1) Let A" be a holonomic @y-Module. If w='(Ch(A")) is finite over T*X, then
we have HIILf* A )=0 for j%£0 and Ch{f*A )= pw~(Ch(A)).
(2) Let M be a holonomic Dy-Module. If p~(Ch(A)) is finite over T*Y, then
we have

HN[,M)=0 for j+0 and Ch(H°([,.#))=wp~ (Ch(4)).

1.5. Let j: X< X be a compactification of a smooth algebraic variety X;ie.jis
an open embedding and X is proper and smooth over €. A holonomic %,-
Module # is called completely regular if j .# is a regular holonomic Z-
Module. This definition does not depend on a choice of a compactification j.
In order to see this, for another compactification j': X<~ X', we take a third
compactification j’: X<>X" and morphisms f* X"—X and f': X"—X' such
that j= foj” and j= f'oj". If j . is regular holonomic, f*j, .# is regular
holonomic. Therefore

= A S M) and Jy M =H g M)

are also regular holonomic.
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Theorem 14. (1) If 4 and A are completely regular holonomic @y-Modules,
th
e Ri, R Moy (M, Ny) =R Hong (M, N).

(2) The category of completely regular holonomic %,-Modules is equivalent to
that of regular holonomic 2y -Modules whose characteristic variety is Zariski
closed.

Proof. In order to prove (1), we have to show

]R]"(l_1 U; R ‘%m-@x.m(‘///

an?

Nao) =RI(U; R Ao g, (M, N))

for any open subset U of X. By replacing U by X we may assume from the
beginning U=X. Let j: XX be a compactification of X and suppose that X
—X is a divisor. Set A" =j, A/ and M =j,-#. By the definition they are
regular holonomic. We have

(1.5.1) RIX; R yﬁm%(ﬁ,j))-:mr(x; R Homgy (M, N)
and
(1.5.2) ]RF()TM; R J%mgx (.ﬂan, L/V;n))%]RF(X“; R %MQX (Mo Vo))

The first is trivial and the second follows from Theorem 5.4.1 and Theo-
rem 6.4.1 in [16]. On the other hand, Serre’s GAGA [20] implies that the left
hand sides of (1.5.1) and (1.5.2) are isomorphic. This shows (1).

The statement (2) follows from Theorem 1.1, Theorem 2.1 and (1).

Theorem 1.5. Let f: X —Y be a morphism of smooth algebraic varieties X and Y.
(1) For a completely regular holonomic @,-Module N, H#IILf* V) is also a
completely regular 9y-Module for any j.

(2) For a completely regular 2y-Module 4, any cohomology group of

. jfﬂsz*(@}u—x ®$Xﬂ)

is completely regular.

Proof. Let us embed f into f: X »Y where X and Y are compactifications of
X and Y, respectively. Then (1) follows from Theorem 1.2. Let j denote the
embedding X —X. Then

jf‘/” sz*(@Y«—X ®EXIRJ'*«//1)|)“

Since any cohomology group of Rj,.# is regular holonomic, (2) follows from
Theorem 1.2.

§ 2. Correspondence of holonomic systems and constructible sheaves

2.1. Let X be a complex manifold. We denote by Mod(2y) the category of 2y~
Modules and RH(X) the full subcategory of Mod(Z,) consisting of regular
holonomic @,-Modules. Let D(%,) denote the derived category of Mod(%y)
and let D% (2,) the full subcategory of D(Z,) consisting of bounded complexes
whose cohomology groups are regular holonomic.
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Let Mod(X) denote the category of sheaves of €-vector spaces on X and
D(X) its derived category.

We denote by D?(X) the full subcategory of D(X) consisting of bounded
complexes &~ satisfying

(2.1.1) {#™(F)}, is constructible, i.e., there exists a decreasing sequence
closed analytic subsets X=X >X o>... such that ~X,=@ and that
HANFNx,-x,., is locally constant of fmlte rank for any j and n.

Let PerV(X) denote the full subcategory of D?(X) consisting of #" satisfying

(2.1.2) codim Supp HH(F )=
and
(2.1.3) codim Supp &zt F ", Cy) 2j

where €, is the constant sheaf on X with C as its stalk.
Then we have

Theorem 2.1. (1) D',(Z,)=> D*(X) and RH(X)-> Perv(X) by
DRy: M =R Homg (O, M),

(2) We denote by Soly(M) =R Howmgy (M,0y). Then Soly and DRy are related
by
Soly(M) =R Hwng, (DRy(M'),Cy) for .M €D} (Zy).

Now, let X be a smooth algebraic variety. We denote by RH(X) the
category of completely regular holonomic Z,-Modules. We denote by Perv(X)
the full subcategory of Perv(X, ) obtained by replacing (2.1.1) with the follow-
ing condition.

(2.1.17) {A"(F )}, is algebraically constructible ie. (2.1.1) holds by choosing X;
to be Zariski closed.

Then we have
Theorem 2.2. RH(X) > Perv(X) by DRy: #—DR,_(4,,)
2.2. Let X be a complex manifold.

For .4 eD?, (2y) we set
(22.1) MFE =R Homg (M, Dy) ®, 2% [dim X].
Then .#'— #'* is a contravariant functor from D! (2,) into itself.
Proposition 2.2.1. (1) 4 **= 4" for M €D’ (%Dy).
(2) DRy(M *)=Sol (M) for M €D’ (D).
(3) M. M* is an exact contravariant functor from RH(X) into itself.
(4) Ch(.A)=Ch(A*) for any .4 RH(X).

(5) * commutes with integration; i.e., for a proper morphism f. X—Y and
M e Db (Dy), jf./”'* :(jf,/%")*
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(6) * commutes with non-characteristic pull-back; i.e. under the situation of (1) in
Theorem 1.3, (f* AV = f¥(AN¥).

2.3. Let X be a smooth complex manifold, and Y a closed analytic subset of X.
Let .# be a regular holonomic %y _,-Module. Assume that .# is extendable;
ie. there exists a coherent Z,-Module .#Z on X whose restriction to X —Y is
isomorphic to .#. This is equivalent to saying that j DR, ,(.#) is contructible,
where j is the embedding X — Y—X.

Theorem 2.3. Under the above assumption, there exists a regular holonomic &y-
Module .4’ which satisfies the following conditions

(2.3.1) My g M
(2.3.2) HNMN)=0 and AP (M'*)=0.
Moreover, such an M’ is unique up to isomorphism. (See [3].)

Definition 2.4. We call .#’ the minimal extension of .# and denote it by ".#.
It is easy to see that .#+—"# is a functor from the category of extendable
regular holonomic 2, _,-Modules to RH(X).

Theorem 2.5. Let .# be an extendable regular holonomic %y _,-Module and "4
its minimal extension. Set # =DRy_ (M) and F" =DR("4). Then we have

(2.3.2) Fly_ 2 F

(2.3.2) codim, Supp #(F )N Y >j
codimy Supp /i (F ", Cy)NY >j.

Conversely, if F'" satisfies these conditions, then F'" ~DRy(".4).
Definition 2.6. We call #'* the minimal extension of #".
Proof of Theorem 2.5.
Lemma 2.3.1. Let .4 €D"(Zy) and Z a smooth subvariety of X. Then
R Aoy (M, By x) ;=R Homg (DRy(M')| 5, C)[ —codim Z].

Here B,y denotes #5°™%(0y).
Proof. We may assume Z is closed. Then we have

R Homg (M, By x)=RI,; R Hosmg (M, Ux) [ codim Z].
On the other hand, R #wg (M',0x) = R Howmg (DR (M), Cy) implies

RI, R #omg (M, 00) =R Homg (DR (M), C)
=R Hwg (DR (M')|,,C)[~2codimZ] Q.E.D.

We shall apply this to #'* and "#. Then if #"|, is locally constant and Z < Y,

Sty ("M, Byx) = Homg (H X2 HF "), €.
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Hence Homg ("M, B, ) =0 implies HUF "), =0 for j=codimZ. Hence we
obtain codimy Supp #(F)nY >j. Since (“#)* is the minimal extension of
AM*, the same discussion implies

codimy Supp Ex¢H(F ", C)n Y >].
The converse is also proved by the similar argument. Q.E.D.

Let Z be a locally closed subset of X such that Z and Z—Z are complex
analytic. Let us take as Y a closed analytic subset of Z such that Y is nowhere
dense in Z and Y contains the singular locus of Z. The minimal extension of
B, _yx_y is denoted by "%, . This does not depend on the choice of Y.

These notions are also generalized to the algebraic case.

§ 3. Fourier transformation

3.1. Let V be a finite-dimensional vector space over €. Then we have, by
regarding V as an algebraic variety

T'(V,2,)=C[V]1®L[V¥]1=S(V¥)®S(V)

where C[V]=S(V*)=I(V,0,) and we regard C[V*] as the ring of constant
coefficient differential operators. Hence I'(V,%,) is a C-algebra generated by
V@ V* with the fundamental relation

(3.1.1) Loy, 0,]=[0t.v3]=0, Lo, 0*]= (o, 0%)
for vy,v,,veV and v} v v*eV*™

Therefore, I'(V, &) is isomorphic to I'(V*,%,.) by
VeV *-1*eV (v v*)—(v*, —v)).

On the other hand, the category of coherent Z,-Modules is equivalent to that
of finitely generated I'(V, &,)-modules. Hence we obtain the functor F from the
category of coherent @,-Modules onto the category of coherent %,.-Modules.
For a coherent Z),-Module .#, we call the Fourier transform of .# the image of
4 by F and denote it by .#7.

If we denote by a the isomorphism v+ —v of V, then we have (#5)F =a*.#
for a coherent Z,-Module .#.

The Fourier transforms of holonomic %,-Modules are holonomic Z,.-
Modules. In fact, .# is holonomic if and only if &2¢}, (.4, 2,)=0 for j+dim V.

3.2. Let 3 denote the element in V*QV < I'(V, %) corresponding to the iden-
tity. For a linear coordinate (x,,...,x,) of ¥, 3 is explicitly given by

¢
32.1 9=Yx.-2,
( ) ;xl 0x;

that is, 3 is the infinitesimal transformation of homotheties.
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For a coherent &,-Module .#, we say .# is homogeneous if, for any element
vel'(V, . #), C[3]v is a finite-dimensional vector space.

It is easy to see that a homogencous regular holonomic %,-Module is
completely regular.

For a homogeneous Z,-Module .# we can describe the relation between

an?

R Homy, (M, 0y ) and R Homy,, (M),0,,).
Let Z be the closed subset of V, x V* given by

n

{(x, 0)eV,, x Vi Redx, y> 20}

an?®

Let = and n be the projections from V, x V* onto V, and V}

X, respectively.
Then we have

Theorem 3.1. Let .# be a coherent homogeneous &,,-Module. Then we have

R Hng,, (ML), 0p ) 2R, R, R Homg, (M,,.0, ).

”
an an

Theorem 3.2. Let .# be a homogeneous holonomic @,-Module. Then Ch(.#)
=Ch(.#"). Here we identify T*V with T*(V*) (both isomorphic to V x V*),

Proof. We may assume that .# is generated by u with (3—A)"u=0 for some
AeC and m. Now, let I be the annihilator of u in I'(V, %,). Then [ is generated
by homogeneous elements. Here, we assign the degree 1 and —1 to the
elements of ¥ and V*, respectively. Let F' be the filtration of I'(V,2,) by the
order, and let F? be the filtration of I'(V*,%,.) by the order. If we denote by
rw,2,), the homogencous part of degree m, then

Elnr(v, @V)m=Fm2+kmF(V, Dy )m-
Thus we obtain
gr (D)= gr™(D).

Since Ch(.#) is the algebraic cycle corresponding to 0, ,./er" (I) and Ch(.#")
is the one corresponding to @, ,./gr"*(I), we obtain the desired result. Q.E.D.

3.3. The Fourier transformation discussed in §3.1 can be generalized to 2-
Modules on a vector bundle. In such a general case we have to twist & and
the argument becomes slightly complicated. However, if a vector bundle is
trivial, the same argument as in §3.1 can be applied. So, we shall restrict
ourselves to such a case.

Let V be a finite-dimensional vector space and X a smooth algebraic
variety. Let f and g be the projections from X xV and X xV* onto X,
respectively. Then f_ 9y ., and g, %y .~ are isomorphic to

Dx®@cT'(V,2y) and Dy QcI'(V*, D),

respectively. Hence f, %y, is isomorphic to g,%y,,. via the isomorphism
between I'(V,%,) and I'(V*,2,.) given in §3.1. Therefore the category of
coherent &y, ,~-Modules are equivalent to that of coherent %y, ,..-Modules. We
call this the partial Fourier transformation with respect to V.
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3.4. Let X be a smooth algebraic variety and f a section of ¢y. We define a
coherent %,-Module .# as follows:

M =Dy] Y, Dyv—v(f)
ve®
where @ is the sheal of vector fields on X. We have .#,, =0, and the
isomorphism is given by l—expf. In this reason, we shall denote by expf the
canonical generator of .#. The holonomic Module %, expf is regular but this
is not completely regular except when f is locally constant.

3.5. Let X be an algebraic manifold and let f: X—V be a morphism from X
to a vector space V. Then f defines a section ' of Oy, s by {f(x), v*)> for

(x,v¥)eX x V* We write Dy .expf for 2y ,.expf’. Let Y be the graph of f.
Then it is easy to see

Proposition 3.5.1. 9y, y.expf is the partial Fourier transform of &y .,. Here
expf and 6(v— f(x)) correspond.

After writing up the first draft of this paper, we came to know the following
references related to the geometric Fourier transformation [1] and [2], which
will help the reader’s understanding of this section.

§ 4. Some holonomic systems on semisimple Lie algebras

4.1. Let g be a semisimple Lie algebra defined over € and G a connected affine
algebraic group with g as its Lie algebra. We fix a G-invariant non-degenerate
quadratic form on g by which we identify g with its dual g*.

We denote by # the flag manifold, ie., the set of Borel subgroups of G, or
equivalently the set of Borel subalgebras of g.

We denote by § the subvariety of # x g defined by

4.1.1) §g={b',x)e# x g;b'3x}

and let p denote the canonical projection § onto g. The map p is proper and
we have

(4.1.2) dim p~!(x)=dim 2 —1dim Gx
2

for any xeg.

We shall fix a Cartan subalgebra h of g and a Borel subalgebra b contain-
ing b. Let 4 be the root system of (g,h) and 4 the set of positive roots given
by b. Let W denote the Weyl group of (g,§). If we denote by n the nilpotent
radical of b, we have bn->§.

We define the map

(4.1.3) f:3-H

by (b, x}»gxmodn where g is an element of G satisfying gb’=b. Here the
actions of G on g and 4 are via the adoint action. This 6 is a smooth morphism.
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Let dx be a nowhere-vanishing global section of the sheaf Q of differential
forms of the highest degree on g. The sheafl Q; has also a unique nowhere-
vanishing global section w up to a constant multiple. We normalize © and dx

so that

4.1.4) p*(dx)=(]] <0, 2.

aed y

Let g,, be the set of regular semisimple elements of g. Then g, is Zariski
open in g. We denote by b, =g ,,nb.
Let x be the canonical morphism from g onto h/W such that

- p
g—9g

h——b/W

is commutative.
We denote by N the set of nilpotent elements of g. Then N is given by

(4.1.5) N ={xeg; P(x)=P(0) for any PeC[g]°}
where €[g]¢ denotes the ring of G-invariants on g.

4.2. Let f: §—gxb be the morphism given by p and 6. Then the image of f is
given by

(42.1) S @=1{(x,eg xb; P(x)=P() for any PeC[g]"},

and isomorphic to g xb. Here C[g]¢ is the ring of G-invariant polynomials
on g. By f, § is a desingularization of f(g).

Now, we shall investigate the property of | 0.
Theorem 4.1. (1) #/([,0,)=0 for j+0 and #°(j;0,) is a completely regular
holonomic 2, ,-Module.

(2) Ch(f,0)={(x,y;1,59)egx g xh xh=gxg* xh xh*=T*(gxb); [x,y]=0 and
there exists b'e A such that b'sx,y and 8((b', x))=t, O((VY, y))=—s},

and this is irreducible.

(3) §,0; is a simple Module and isomorphic to "%, «y-

Proof. Let w, and p, be the projections from §x_,,T*(gxbh) to T*(gxbh)

and to T*§, respectively. Then by Theorem 1.2, Ch(f,¢;) is contained in

A=wm,p; (T,*3). For

(bl, X)Eg, T;b’,x)ﬁc Tib’,x)(g X g):g/b/®g
is given by

Ty, o 8=1{(4,[4,x]eg/b'®g; Aeg} +(0DD).
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On the other hand, we have T, (g xbh)=gx}h
and df: Ty 8~ Ty (g xb) is given by

g/b'@g3(4, [4, x])—[4, x]D0
0pb' 200 A— AD(gA mod n),

where geG is an element such that gb’=b. Using this, we can easily show that
A coincides with the set given in (2). Remark that A is a Lagrangian variety
and hence A has pure dimension dimg+rkag.

Lemma 4.2.1. ([18]) V ={(x, y)eg x a; [x, y] =0} is irreducible and has dimension
dimg-+rkag.

Proof. Since the canonical projection A—V is finite and surjective, V has also
pure dimenion dimg+rkg. We shall stratify g by g= U g; so that the fiber

j=0
dimenion of V—g is constant over g;, and that g;'s are G-invariant. We take g,
as g,. Take a generic point x; of g;. Then

dimVn(g;xg)=dimg;+dimg,, where g, ={yegl|ly,x;]=0}.

On the other hand, for j+0, x: g;—b/W has nowhere dense image and the fiber
dimension equals dim[g, x;] because the fiber has a finite number of G-orbits.
Hence dimg;<rankg+dim[g,x;]. Hence for j+0, dimVn(g;xg)<dimg
+rank g=dim V, which implies that V (g, xg) is Zariski dense in V. Since
Vg, xg) is irreducible, V is also irreducible. Q.E.D.

Lemma 4.2.2. A is irreducible.

Proof. By the preceding lemma, An(g,,xgxhxb) is a Zariski dense subset of
A. Since this is irreducible, A is also irreducible.

Now, we shall prove Theorem 4.1. Since f is embedding on g, x b, we have

» "Br@lantlary 101 J=0
(4.2.2) Jf’(ff@a)'smxbz{o e for j+0.

Hence Ch(#7({,0,)) (j+0) is a nowhere dense subset of A. Since the character-
istic variety is always involutive, we have

H([,0)=0 for j+0.

Thus (1) is proved. The property (2) is also evident. The property (3) follows
from (4.2.2) and irreducibility of the characteristic variety of jf@g.

Corollary 4.2.3. #7([,0;)=0 for j+0 and |,0; is the minimal extension of
(1, C3)l...

Proof. Let p be the projection g x h—g. Then we have

(4.2.3) §,0,=1,(,95).
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Since #([(;)=0 for j+0 and Supp(#°(f,C;))—g is a finite map, #7({,0;)=0
(j+0) follows from Theorem 1.3.
Now, let us remark that local cohomology commutes with integration.

Hence .
0
%g~grs(jo (Oé) = L’ ‘%;7‘ ‘(g—grs)(.(f (Qé) =0

by (3) of Theorem 4.1. On the other hand, since O; is self-dual, jp(Oé is self dual.
Therefore |,0; has no non-trivial quotient supported in g—g,,. Hence 5,05 is

the minimal extension of its restriction to g,,. Q.E.D.

Corollary 4.2.4. (1) H#7([,-1n) 40, - 1)) =0 for j+0.

2 Jfo(jp_,(N)_,g(Op_l(N)) is a completely regular holonomic 9,-Module.

Proof. (2) follows from Theorem 1.5. We shall show (1). We have p~'(N)
=f"'gx{0}) and

O,-1y=ILi*0;  where i: p~'(N)—§.
Therefore, if j denotes the embedding g=—g x b given by {0} <= we have
(4.2.4) jp,I(N,_,g(Op_,(N)zlj*(jf(Og).

Since ANTY (g x D) is contained in the zero section, Theorem 1.3 implies (1).

x1
4.3. The projection f: 3—gxbh decomposes (j—»@Xbp——»gxb. Hence the

partial Fourier transform of jf(9§ w.r.t. b is the integration of the partial

Fourier transform of %, ..

Preposition 4.3.1.

(1) 9, Dy, exp)=0 for j+£0 and #°({,, D; ,expb) is the partial Fou-
rier transform of |0 with respect to b.

2 {,« 1Dy expl is a regular holonomic 9, ,-Module.

(3) Ch(j.pxlgﬁxbexpe)c {((X,y),(l,S))ET*(gXb) = g X g X b X b* ; S=0, [x,y] =0a yeN}

Proof. (1) and (2) follow from the fact that the partial Fourier transform of
Bsjsxp 18 D5, pexpt (Proposition 3.5.1). (3) follows from Ch(Z;,,exp0)

=T ,(8 xb) and Theorem 1.2.

4.4. We shall remark that jp“@gxbexpﬂ is not a completely regular holo-
nomic system. This does not contradict (1) of Proposition 4.3.1, because the
(partial) Fourier transformation does not preserve completely regular holo-
nomic systems when they are not homogeneous.

For ieh* =}, the Z,-Module

§ox 1%; x5 €300l 1=, Z; exp<0, 4

is neither completely regular except when 1=0. However, the corresponding
P4-Module on the group G is completely regular.
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4.5. Now, we shall express explicitly the 2., -Module jf(ﬁg. We define a

xp”
coherent &, , ,-Module A" by °
4.5.1) N=9, D, padg+ Z Z, . (P(0,)—P(—0,))
PeS(9)G
+ Y Z,0()-0())
QeC[g)¢
‘gxbﬁ.

Here, (x, ) denotes a point of g xh and ad g is the vector space of vector fields
d

{[4,x]},0,> (Ae€g), which denotes f(x)r—-»aﬂf(e“‘x)[t= o- By @i we denote the

canonical generator of .4

Theorem 4.2. A"~ 0,.

We shall prove this theorem in two steps.
(1) A is a simple or zero Z,, ;-Module.
(2) To construct a non- zero homomorphlsm N = ;0. Since ff is a simple

9, .,-Module Theorem 4.2 follows from these two statements.
4.6. Proof of (1). By the partial Fourier transformation with respect to g, it is
enough to show that

N =Dy (D, yadg+ Y Z,,(P(O,)—P(1)

PeS(g)C
+ Z gxb(Q(X) Q( t)))
QeCigl©
= 99 x baF

is a simple &, ;-Module or zero.

The characteristic variety of A4°F is clearly contained in

W={(x,y;t,s)eT*gx T*h=gx gxbhxbh; [x,y]=0,ye N,5s=0}
< T*g x T;*h.

By Theorem 1.3, for a coherent &, ,-Module .# such that Ch(#)=W, £ =0 if
and only if #|,,,,=0 for some t,eh. Hence it is enough to show that
NF lgx oy 18 @ simple or zero Module for t,ebh,. By using the partial Fourier

transformation with respect to g again, (1) follows from the following Lemma.
Lemma 4.6.1. For t,eb,,, V|,
Proof. First, we shall show that 47|

rs?

, is a simple ,-Module or zero.

) is generated by 1®i. We have

[P(2), Q)]i= —[P(—0,), Q(x)]

for PeS(g)® and QeC[g]°. By choosing P=t2+...+t? where (t,,...,t,) is an
orthonormal basis of b,

0 0 0?
TR el R AN
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Since there are Q,,...,0,6C[g]® such that dQ,ly, .--,dQyly are linearly inde-
pendent at t,, we have the relation
J . -
5’; u e@g (Qg % hu
on a neighborhood of t,. This implies
‘/Vlg x {to} — 99(1 ®).
On the other hand 1®#% satisfies
(ad g)(1®#)=0
(P(x)— P(t,))(1®@u)=0 for PeC[q]°

Since S={xeg; P(x)=P(t,)} is smooth and consists of a single G-orbit, we
have ChiA/|,, ,,)=0 or Tg*g. Therefore 4|, 1s a simple & -Module or zero.

4.7. Proof of (2). Now, we shall construct a non-zero homomorphism
N —»jf(Og. By taking the partial Fourier transformation, it is enough to con-
struct a non-zero homomorphism

NFE| Dy, expl.

Let & be the section of |, , %, expf given by (dx) ' @w®expf. We shall
show that ufi—i} gives a &, -linear homomorphism from A4F to
j ox1Z5xy€xp0. In order to see this, we have to show

@7.1) (ad @)’ =0
4.7.2) (P(x)—P@)if=0 for PeC[g]°
(4.7.3) (P(3,)~P(t)if =0 for PeS[g]°.

The first equality follows from the fact that dx and w are G-invariant. The
second equality follows from P(0,)exp 6 = P(x)exp0.
In order to see (4.7.3), we shall recall the following lemma. We define

(4.7.4) 4=T] «

a>0

Proposition 4.7.1. ([10]) Let ¢ be a g-invariant function defined on a neigh-
borhood of ty€bh,,. Then for any PeC[g]¢

P(@)gly=4""P(@)(4oly).

We shall apply this to show (4.7.3). Since px1 is a (4 W)-sheeted un-
ramified covering of g xf over g, x b, we have

(.fp x1 °@§ xb €Xp 6)an - ((9(9 x b)an) ww
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on a neighborhood of (ty,t,)eg,,xb. Since dx=+Aw at any branch, this
isomorphism is given by

if-p(x,w),  (weW).

Here @(x,f) is a g-invariant function defined on a neighborhood of t,x}h,,
given by ¢(x, t)lbxhze“"‘ ’/A(x). Hence by applying Proposition 4.7.1, we have

(P()@)(t,t)=A(t')" ' P(3,)e"*
=A(t)" " Pr)e"
=(P(t)p)(t,1).

Hence (P(0,)— P(t)) =0 on b, x b,. Since this is G-invariant, this holds on g,,
x b,.. Thus we obtain

(P(ax) - P(t))ﬁ{:O on g, X brs'

Since jpxl@éxbexp@ is a simple Module we have (4.7.3) on gxb. Thus the
proof of (2) is completed.

4.8. As seen in §4.2, |,0; and [, . _,0, 1 are canonically obtained from
§;0;. Hence we have
Proposition 4.8.1. (1) | 0, = | A

2 jp' io—aUp-109 =j*AN

where p: g xbh—g and j: g==g x b is given by {0}<>b. In particular, we have
0
I'(s,§,0)=TI(g x bw’)/z‘a‘; I'(gxh,A)

I'(a, j‘p’ ‘(N)-vg(Op’l(N)):F(g x b, JV)/Z ;I (g xbh, A).

If F' denotes the Fourier transformation with respect to gxbh, we have
NF = 4 Hence

[(g,(J,09") =T (g x b, /7)Y ;I (gx b, 4T

=F(9,j BN SN 2
Thus, we obtain prmaTeT

Proposition 4.8.2. |, _,0,- 1, is the Fourier transform of |,0,.

Proposition 4.8.3. Ch([,0,)=V-(3x N). Here

V={(x.yeT*g=gxg*=gxg; [x,y]=0}.

Proof. By the use of Theorem 1.3 and the relation jp(9§=jp/t/ , we shall calcu-
late Ch(j‘,(9§). Here p is the projection g x h—g. We have Ch(A")=A; where A
is the one defined on right hand side of (2) in Theorem 4.1. Hence, we have

Ch([,0)=m,(A-{s=0}).



344 R. Hotta and M. Kashiwara

Here w is the projection from the (x,y,t)-space onto the (x, y)-space. Now set,
for weW,
A, ={{x,y,t,5); (x, y,t,ws)eA}.
Then we have A,,- {s=0}=A"{s=0}. Hence
(#W)-Ch([,0)=,(( T, A,) {s=0}).
On the other hand, we have -
A=Y A, ={(x, .,5); [x, y1=0, k(x) = k(0), k() = Ke( = 5)}.
Let @, be the projection from the (x, y, t, s)-space onto the (x, y, s)-space. Then,
o(A-{s=0})=m, () {s=0}.
On the other hand, it is easy to see that

@ (A)=(#W)-S
where
S={(x,y,5); [x,y]1=0,k(y)=x(—s)}.

Ch(f,0,)=S5 - {s=0}.

Thus, we obtain

Since N={y; k(y)=x(0)}, we obtain the desired result. Q.E.D.
Proposition 4.8.4. Ch(.4"")=Ch(|,0;) x T*. In particular,
Ch(A#)={(x,y)eg x g=a x g*=T*g; [x,y]=0,yeN} x T,*b.

Proof. We have
N =, 1a%; .y expl.

Since (%, €Xp 0),, = (O 1 )a, WE have
('/‘/F)anz(p*(jp@g))an
where p is the projection g x h—g. Hence we have
Ch(A"F)=Ch(p*{,0,)=Ch(f,0,) x T*h. QE.D.
Proposition 4.8.5. Ch({,- . ,0,- 1) =V (N x g¥).
Proof. Since {, 1 _40,-1(n is the Fourier transform of |,¢, which is homo-
geneous, this is obtained by Theorem 3.2. This proposition also can be proven
in the similar way as Proposition 4.8.3 by using
jp"(N)~+g@p"(N)gjf(%lgx{m‘
4.9. The correspondence of RH and Perv implies the following

Proposition 4.9.1.
1 DRgxb(jf(ﬁﬁ)=lkf*<13§[—rankg]
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2) DR ({,0)=Rp,C;

(3) DRy({, - 1pn-q0, - 100) = R Tyl [~ rank g]
“4) DR, (f, 1%« pexp0)=R(p x 1), Ty,
(5) DR (N[, 1) =Rp,C,.

Here we considered them in the usual topology.

§5. The action of Won A~

5.1. The action of the Weyl group W on b induces the action of W on g x1.
The subset f(§) is clearly invariant by this action. Hence W acts on
i f(@)lgxhgﬁr@gg-/‘/- . . _ o
Through Riemann-Hilbert correspondence in Theorem 2.1, this W-action is
closely connected with Lusztig’s construction of Springer’s representations.

52. As seen in the preceding section #f—u! gives an isomorphism between
AP and (f;0)F. Hence, by taking the partial Fourier transform i—ii;
=(dxdt)” '@ gives an isomorphism between 4" and {,0;.

Now, §,.=dnf"'(g,,xb) is isomorphic to f(§)~g, xb. Hence W acts on
d,. It is easy to see that w*(w)=(sgnw)w for any weW. Here sgnw=det,(w).
Since w*(dt)=(sgn w)dt, i, is invariant by the action of W.

Proposition 5.2.1. W acts on A" by Waw: in—1i.

5.3. The section u can be realized as a section of "%, .., as follows. Let
{P(x), ..., B(x)} be a homogeneous base of €[g]° where [=rank g. Then, for a
linear coordinate system (¢,,...,t), the Jacobian of (P,(¢),...,B(t)) equals a
constant multiple of A(t)=]],.,.<{o ).

Fix a point ty,eb,,. We shall consider on a neighborhood of (z,,¢)eq
x b f(@). Then, there exists a function ¢,(x),...,¢,(x) so that f(§) is defined
by t;=¢(x) (j=1,....,]) and also B(t)=F(x) (j=1,...,]). Hence u corresponds to

3ty — @ (x)d(ty — 9, (x))...0( — @ x)dx ™' ®w
=06(t; — @ (x))...0(t,— @ (x)) (1)~ ".

On the other hand we have

(P, (1) — P (x))...6(B(6)— B(x))
=(Jacobian of (P,(t), ..., B{t))) ' 8(t, — 9 (x))...0(t, — @,(x)).

Hence, we obtain

Theorem 5.1. V' -57"% .\ . is given by
it 3(P, ()= P,()...3(R(6) — RL0).

Note that Proposition 5.2.1 follows also from this theorem.
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5.4. The action of W on [0, induces the action of W on [, 1.0, and
[,0; because they are canonically obtained from [,0, (see §4.2). On the other
hand, we see |,0; is the Fourier transform of {,- .0, More precisely
we have the following theorem.

Theorem 5.2. Together with the actions of W, we have

(L’ @é)p = (yp‘ 1~ 0p - 100) 3L

Proof. As seen in §4.8, we have

d
I'g,§,0)=T(@xb;4) Y —T(gxbh;A)
ot

and
j‘p‘l(N)ﬂg(pp’i(N):F(gxb;“/‘/‘)/z t,I(gxb;.N).

0
Since a(t)ﬁmodzgl”(gxb;,/tf) corresponds to a(t)iidt in L,(Dg (here dt

=dt,...dt; and (¢,,...,t) is a linear coordinate of bh) weW acts by
a(t)ir->sgnwa(w™ 1)L

On the other hand weW acts on a(@)imod) 1, I'(gxh;A4) by
a(@)i—a(w~'0,)ii. Thus we obtain the desired result. Q.E.D.

Now, we decompose, according to the W-action,

(54.1) jﬂ"(N)—»g(op'l(N);@erVx(@ﬂx

where W is the set of irreducible representations of W and V, is a repre-
sentation space of y.

Theorem 5.3. (1) 4, is a simple Z-Module.

(2) The M ’s are not isomorphic to each other.

(3) The support of M, is the closure of a nilpotent G-orbit.
Proof. Note that (3) follows from (1). By Theorem 5.2, we have

(54.2) 1,0 =@, i V, @My, ¥ =y@sgn.

In order to prove this proposition it is enough to show that the .#)’s are

simple Z,-Modules and not isomorphic to each other. Since {,¢; is a minimal
extension of its restriction to g, so is .#,.. Hence it is sufficient to show them
for 4|, . Now p~'(g,)—g, is a principal W-bundle and hence W acts on
| »Usl,..- This action coincides with the action already defined. Now fix a point
Xo€Dh,. Then, DR([,0;)., = H’(p~*(x,), €). The action of W via the structure of

principal W-bundie andothe action via the monodromy endow H%p ~'(x,), )
with the structure of bi-W-module, and this is isomorphic to C{W7]. Since
CW]l=@,V,®V;* as W-bi-modules, the monodromy action to DR(JZXF,)XO is

isomorphic to V;*. Since the V*’s are irreducible and not isomorphic to each

other, we obtain the desired result. Q.E.D.



Invariant holonomic system 347

By the argument discussed here we obtain
Corollary 5.4.1. The multiplicity of M, along T3¢ equals dim V.

We shall denote by O(y) the nilpotent G-orbit whose closure is the support
of .#,. For example Oftrivial) is the orbit of regular nilpotent elements and
O(sgn) is the origin.

§ 6. The invariant holonomic system

6.1. For ieb*, we define a ¥ -module .4, by

(6.1.1) M=9 ) D,adg+ Y, Z,(P(x)— P(1))

PeClgl®
=% u,;.
Hence its Fourier transform is given by

6.12) M= /)D,adg+ Y F,(P@,)—P(L)

g
PeS(g)¢
F
= qul.

This is nothing but the system of linear differential equations for invariant
eigendistributions. We call .#F the invariant holonomic system on g. In this
section, we shall study the relation between .4, and 4"

6.2. For Aeh* we define

AN ={aed; (2, 1)=0}
and
W) ={weW;,wl=4}.

If we denote by h(4) the vector space generated by A(4), then (h(4), 4(4)) is a
root system and W{(J1) is its Weyl group. Let us denote by #(H(4)) the space of
harmonic polynomials on h(4). By definition

HHA)={SeCHAL: (FWANS (W= ) flu+wpy)for any p,p'eh(2)}

weW(A)
={feC[bH(A)]; P@,) f(1)=P)f () for any PeS{H(4)"}.
As is well-known, #(h(4)) is isomorphic to C[W(4)] as representations of
W(A).
6.3. As was seen in §4, we have

63.1) NT=9, (@, padg+ Y Dy, (P@,)—P(®)

PeClg)C

+ Y 2,,,(0)—0@)),

QeS(g)¢

- ~F
= gxbu .
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We shall define a homomorphism
(6.3.2) Vo AODN®AT >N,
by P@ui—P(0)if|,_,.

Here, we identify h(4) with a vector subspace of h* by the invariant quadratic
form.

Proposition 6.3.1. ¥, is a well-defined 9 -linear homomorphism.
In order to see this, we have to show for any Pe# (h(4))

(1) (adgP@)i’|,_,=0

) (QB)—Q@)PE)u",_,=0 for any QeC[g*]°.

The first statement is obvious.
We shall show (2). We have

(Q(0)— QU P@ )i’ =P@)(Q(1)— Q(A)i".

Hence it is enough to show

P@)(Q1) - Q(A)el, Z;.

Here I, is the ideal of ¢, consisting of the functions vanishing at ..

Let h=h(A)@h(A)* be the orthogonal decomposition of h. Then QeC[H1¥
can be written in the form Q=Y Q.R; where Q,eC[h()]"*® and R;eC[h(1)"]
because W(4) acts trivially on h(L)*,

Since ieh(d)*, we have

() - QA= (Q;(OR ()~ Q,(O)R (1))
=Y (R(t) = R;(1)Q (1) + Y. R{A)(Q;(t)— Q;(0)).
Since R (t) commutes with P(d,), we have
P@) Y. (Ri(t)~R{()Qt)el, %,
Hence (2) is reduced to the following Lemma.
Lemma 6.3.2. For Pe # ()(1)) and QeC[H(A)]¥P with Q(0)=0, we have
P(©0)Q(elBy;,.

Here I is the maximal ideal of Oy, consisting of the functions vanishing at the
origin.

Proof. By taking the Fourier transformation, it is enough to show

0
P(t)Q(— at)ez ‘a(T Dy
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Here (¢,,...,ty) is a linear coordinate system of h(l). By taking the formal
adjoint, this is equivalent to

. 0
Q(O,)P(t)ez @b(l) 3
j 't

This follows from the definition of #(§(4)). Q.E.D.
In the preceding section, we have defined the homomorphism
Vi A O Rl N, ;-

On the other hand, since 4 is a fixed point of W(4), W(4) acts on A"|,_,, and it
is obvious that ¥) is W(A)-linear. Thus we can define

@,: M,—Homy, ,,(H# (H(4), A, ).
Theorem 6.1. @, is an isomorphism.

The proof is devided into three steps.
(1) @ is an isomorphism on g,,.
(2) codimk(S)=2. Here S is the support of the kernel of @' and x is the
canonical morphism from g onto h/W.
(3) @ is an isomorphism.

6.5. Proof of (1). As was seen in Propositions 4.8.3 and 4.8.4 we have
(6.5.1) Ch(AF],_ ) ={(x,); [x,y]1=0} - (g x N).

Hence the multiplicity of .47F|,_, along T}g equals # W. Hence in order to
show (1), it is enough to prove that

'%m@((pg’(ggan)xo %‘m@ (Homwu)(”(b(/l))qut a
—m}fm% ((ﬂp)

n? Qan)xo
an? gan)xo
is injective for any x,€eq,..
By the adjoint action, we may assume x,eb,. By the well-posedness of
Cauchy’s problem

Homg, (NE] Hom gy oy (N0

t= 4’ qan)xo an? (th)an)(xﬂvA).

For weW, let ¢, (x,t) be a g-invariant holomorphic function defined on a
neighborhood of {x,} xh given by

? (X, t)|h>< b e<wx't>/na> 0<%, x).

Then, C{W] > %m@(gx;,),,,,('/VaFm(O(gxb)an)(xo.x) by wi(ifr> @ (x,1)). The action
of W{(J) on the right hand side is the left multiplication on C[W]. We shall
choose Pe W(J) such that #(h(4)) < C[W(4)]P. Then, we have

CIW )= Hom g, (HOMy (O A 1, Juns Gy )

Ban’X
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Then Hom,(®,,0,),, is given by

w (> (P(0) @, (X, )], ).

On the other hand P(d)@, = P(wx)@,(x, ). Therefore it is enough to show the

homomorphism
C[W]-0

b, xo

given by wi— P(wx)e<™* '* is injective. This easily follows from the fact that
Y;C[x]e**” forms a direct sum for mutually different p’s.
This shows (1).

6.6. Proof of (2). Since A°F|,_, is the minimal extension of its restriction to g,,,
the same thing holds for

Homgy, iy, (£ (B(4), A7, ).

Hence the surjectivity of @} |g,, implies
(1) @ is surjective.
Let % be the kernel of ®f. Then we have

(6.6.1) Ch(.#F)=Ch(ZL)+ Ch(AF|,_)).
On the other hand, we have
Ch(A;) = {(x. y)eg x N; [x, y]=0}.
Hence if A is an irreducible component of the right hand side, we have
(6.6.2) mult (A4 Zmult, A F|,_,.
Moreover, if
(6.6.3) mult , #F <mult , AF|_,

holds, then Ch(.%#) does not contain A.
Now, we know that

Ch("A/FIt:),)z {(X, y)€g X g’ [X, y] =0} . g X N
Assume that at some point {x,, y5)eA we have
(6.6.4) dimg, ng, =rankg.

Then by the Jacobian criterion {(x,y);[x,y]=0} is non-singular on a neigh-
borhood of (xq, yo)-

Let {P,..., B} be a system of homogeneous generators of C[g]¢ (I=rank g).
Then mult, 4"F|,_, is the multiplicity of ¢,, /I along A where I is the ideal
generated by [x,y] and P(y). On the other hand, the symbol ideal of u,
contains I. Hence mult ,.#F is equal to or less than the muitiplicity of O, /I
along A. Thus (6.6.3) holds and hence Ch(Z)$ A.
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Remark that in the case when g is a classical semisimple Lie algebra,
(6.6.4) holds for any A. Therefore we have Ch(¥)=@ and hence @&, is an
isomorphism. However in the exceptional Lie algebra case (e.g. F,), there exists
some A where {6.6.4) does not hold (communicated by J. Sekiguchi).

Now we shall prove (2). In order to prove this, it is enough to show that,
for A with codimxn(A)=1, (6.6.4) holds. Here = is the projection from T*g
onto g.

In this case we can take h+x, or h as x,. Here, a is a root, h is a generic
point of «~'(0), and x, is a root vector of «. In the first case we have dimg,
=rank g and in the second case we have dimg, ng, =rankg. Thus, (6.6.4) is
satisfied in either case, and hence (2) holds.

6.7. Proof of (3). In order to prove this we shall show the kernel ¥ of @Y
equals zero. Let S be the support of £. By (2), we have

(6.7.1) dim x(S)<rank g —2.

Now, assuming S is non-empty we shall deduce the contradiction. Let x, be a
generic point of S.

Lemma 6.7.1. &r/f% (NEl 0 2. =0.

an’xp

Proof. On a neighborhood of x,, £, is isomorphic to a direct sum of copies of

S{gan”
Hence it is enough to show that

atly (NEl_: B =0.

an nlt:/l’ S!gan)xo

By Lemma 2.3.1, this is equivalent to
A NS DR (A )y, =0
On the other hand, by Proposition 4.9.1,
DR (A*],_)=Rp,C,.
Thus it is enough to show
HeodmS =1 (5= 1(x,), €)=0.
Thus the lemma is reduced to

codim S —1>2dim p~!(x,)=dimg—dim[g, x,]—rankg,
or

(6.7.2) dim $ + 1 <dim[g, x, ]+ rank g.

Since the fiber of k is a union of a finite number of G-orbits, we have
dim S =dim x(S)+dim[g, x,].

Hence (6.7.1) implies (6.7.2).
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Now, we shall recall the following famous deep result due to Harish-
Chandra ([10, 117]).

Theorem 6.7.2 (Harish-Chandra). (.#]),
whose support is contained in g—g,..

has no non-zero coherent quotient

n

What he proved is not exactly of this form, but his main purpose was
rather to show the regularity of invariant eigendistributions. In fact, if one
inspects his proof, one can apply his method to obtain the above form of
expression. Rather, in our point of view, the essence of his regularity theorem
lies in the above stated point and the regularity property can be deduced di-
rectly from this. (See also unpublished paper of Atiyah-Schmid.)

Now, by Lemma 6.7.1, the exact sequence

0—') ’Zm_)(j/f)an—)('/VF‘tz,‘x)an_’O

splits on a neighborhood of x,. Hence %,, is a quotient of (.#]),, on a neigh-
borhood of x,. This contradicts Theorem 6.7.2.
This completes the proof of Theorem 6.1.

Corollary 6.7.3. For A and A'ely, we have
(M} )on = (MY

Proof. We have, by Theorem 6.1 and Proposition 4.9.1,
DR(A])=DR(M])=Rp (Cy).

Thus this corollary follows from the Riemann-Hilbert correspondence in Theo-
rem 2.1.

Note that this isomorphism is not canonical. Note also that .#; is not
completely regular in general and .#] is not isomorphic to .#;..

§7. Homogeneous decomposition of .

7.1. Let 3, be the vector field ijﬁ/(?xj for a linear coordinate system

J
(xy,...,X,) of g. Similarly we define the vector field 9, on b.
We define the Z-linear endomorphism 8 of .#, by 8: us— 9 u,. This is
well-defined because the defining ideal of u, is homogeneous.

Lemma 7.1.1. (3, + 9 +¢)ii=0 where c= 4% 4 +rank g =dimb.

Proof. We shall take orthonormal base (x,...,x,} and (¢, ...,,) of g and b, where
n=dimg and [=rank g. Then

; (24 +x2—ti— ... —t)a=0
an
(az+ Lo 52)~-0
ax% “ee axz ét—f 6):;2 u==u.
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By taking the commutators, we have
0 0 0 0
4x, —+ ... +4x, —+4t, —+... — 21} a=0.
( x10x1+ + x"&xn+ t’6t1+ +4t’6tl+2n+ )u 0
The lemma follows from this and n=2(%4,)+1

Proposition 7.1.2. @,(3u)(P)=,u){(—c—I)(P)) for any Pe#(b) and any ue
M.

Proof. We may assume u=u,. Then we have
Dy (I, 1) (P) =3, ®(u)(P)=3,P(0,)ii], =O0.
On the other hand,
34P(@)u=P(0)3,i=P(C)(—c—3pii=(—cP(@)—[P(C,), H i — 3, P(d,)ih.

Since SbeZtr@QXh, and [P(2),8,]1=(3,P)(2,). the statement holds for u=u,.
The general case follows from the Z-linearity. Q.E.D.

We set M()y=M,[(3~o).H, for aeC, and H#(x)={PeH(bh); I P=aP}.
Since # (h)=F®H# (), we have, by Theorem 6.1 and the preceding lemma

(7.1.1) Mo =DM ()
and
(7.1.2) M) = Hosag (H(—c—), N|,_¢)

Proposition 7.1.3 (Barbasch-Vogan [6]). For any nilpotent orbit O of g, we have

0 for a>jig=%dimO—dimg
Co,, Jor a=io

‘%)/}”gjgan(‘ﬂ(a)an’ “@0 ]gan)lo = {

Corollary 7.1.4. (1) For any nilpotent orbit O, there is XoeWsuch that ﬂ10="%0!g

1 for a=#4,—1dimO

[#120: 7] ={0 for a<#4, —LdimO

(2) The dimension of the support of any non-zero sub-Module of #() is equal to
or larger than 2(o+ dimg).

Corollary 7.1.5. Let J, be the defining ideal of O and J the defining ideal of the
set N of nilpotent elements. Then

"Bo)e = L(Dyad g+ D5+ DY, — Aoy + D) for any kz1.

Proof. Let & denote the right hand side. Then Supp & <O and £ "%, on a
neighborhood of O by Proposition 7.1.3. On the other hand, & is a quotient of
M. Since M, is completely reducible (i.e. a direct sum of simple & -Modules), so
is £ Hence ¥ ="%,,®%" for some Z-Module £’ such that Supp £’ <=00.
On the other hand the preceding corollary implies dimSupp ¥’ 2dimO, if
&' +0. Hence &' vanishes.
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§ 8. Hyperfunction solutions to 4" and .4,

8.1. In this section, we shall study hyperfunction solutions to A"

Since the sheaf of hyperfunctions is obtained from the sheaf of holomorphic
functions by a cohomological manipulation, the property of hyperfunction so-
lutions is, theoretically derived from that of holomorphic solutions. In our
case, the knowledge on DR(A") permits us to perform this program.

In the sequel, we shall maifly treat the case where g is the complexification
of a complex semisimple Lie algebra.

Let g be a semisimple Lie algebra and g a real form of g. Let us fix a
Cartan subalgebra by of g and let b be the complexification of bhg. Let Gy be a
connected Lie group with gg as its Lie algebra.

We set

(8.1.1) b, ={rebg; there exists at least two positive roots vanishing at ¢}.
Then we have

Proposition 8.1.1.

(a) %%R_ 8rs) X {)]R(%mg(g X b,)a" ('/Van’ gggm X blR)) =0
(b) y/“lk" ‘“(%w%g(g%b)an(ﬂ"‘“’ gaglkxblk)):o'
Hcie # denotes the sheaf of hyperfunctions.

Proof. Let us take a subanalytic Whitney stratification

such that gr X bmﬁf@!):u M;

(0) M, is connected.

(1) Any fiber of M;—by consists of a single Gy-orbit (or empty).
(2) M;=(9r—8,) X bg or M; =g, X bg.

() M;=grx(bgr—b,) or M;cggxh,.

(4) M,—bg has constant rank.

(5) Ma(x,t)~dim[g, x] is locally constant.

(6) DR(A")|y, has locally constant cohomology groups.
The properties (4) and (5) implies

(7) For (x,t)eM;, dim M;=dim[g, x]+rank of (M, — by).
Now we shall remark the following lemma

Lemma 8.1.2. Let M be a real analytic manifold and N a closed submanifold of
M. Let Y = X be complexifications of N M. Let # be a holonomic Zy-Module
such that all the cohomology groups of DR (M#)|y are locally constant. Then we

have RI,(R Homg (M, Byy)
=R Homg, (DR y(M)|y, Cp)®¢, AN (C ) [ — codim NT.
Proof. W have
RIZR Howeg (M, Ox)
= R Howg, (DR(A)|y, Cy)
=R Hwng (DR(M)|y, Cy) D¢, A7 ™M~ 4N ) [dim N ~ 2dim M].
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On the other hand, 2,,=RI(05)® #$™M(C,)[dim M] implies

R, R Aoy (M, By)
—RIy R S, (M, 0)® #I™M(C,)[dim M]
= R Hurg, (DR(M)ly, C) @ A2EmM=dmN(C )@ 3™ M(C ) [ — codim N].

Hence the lemma follows from
byﬁ\[ZdimM-» dimN((['X)®F”A2imM(q:X)=%jodimN(‘EM}' QED

We shall resume the proof of Proposition 8.1.1. By using this lemma, we
have locally

]RFM.(]R ‘%ﬁﬁ@(g x b)an('/‘/‘anﬁ '%QIRX b]R))IM‘
= R # gy, (DR(N )y, €, )[ —codim M,]
= R Hrig,, (R f,(C,)ly., Cy)[rank g-codim M,].

Hence for p,=(x,,t,)e M;, we have

Hog, R Hom g (N, T
~ Homc(HcodimM,— rankg-— k(f —1 (pi)ﬂ q:)’ q:)

Now, we have 2dim f ~'(p,)=dim g—rank g—dim[g, x,]. Hence, if
(8.1.2) codim M, —rank g —k>dim g—rank g—dim[g, x,]

holds, then #,; (R Hestrg gy (1 ;n,,ﬂqubm)HM‘ vanishes. Now (8.1.2) is equiva-
lent to S ‘

(8.13) k<rankg+dim[g,x,]—dim M,;=rank g— the rank of (M,>hy).

Hence, we obtain

(8.1.4) %’A}" (R Hos (A, B))=0 for M,<(g—g,) X bg
and
(8.1.5) }’/’A} (R oo g NV, B)=0 for M,=gxb,.

This shows immediately (a) and (b).
Proposition 8.1.3.

(1) I'ag; .}fm@g ((Jff)an,@gm)) does not depend on A.
Q) HL o Aoy, (M), B ) =O.

(SR Ors

Proof. (1) follows immediately from Corollary 9.7.3.
Let us show (2). By Lemma 8.1.2, it is enough to show that for a subvariety
N of gg—g,, such that GgN=N and DRQ(J/,{r )y 1s locally constant,

H=mNDR (MF)],)=0.
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Now, we have DRg(e/llA) Rp (C;). Hence we have, for xeN,
Jﬂ(DRg(,//lf))szj(p‘ 1(x),€)=0 for j>2dimp~!(x).
On the other hand, we have

2dim p~*(x)=dim g—rank g —dim[g, x]
=dim g —rank g—(dim N —dim x(N))
=codim N — codim x(N)

<codim N.

Thus we obtain the desired result.

8.2. In the sequel we shall restrict ourselves to the case where gp is the under-
lying structure of a complex semisimple Lie algebra g,. Hence g=g,®g,, where
§, is the complex conjugate of g,.

Theorem 8.1. Under this assumption

T(gr %X by, How: N B

(g x an Y a0 emxbm))
Proof. Ser Q= f(@)N(agN 8, Xbgr. Then, the sheal o, (A, .@q b )o is

an’®

isomorphic to €. In fact, choosing a base {P,...,F} of homogeneous gene-
rators of CLag]°R we set

=C.

@(x, )= ;=1 0(B(t) — B(x)).
Then ¢ is a well-defined hyperfunction on a neighborhood of Q and

i@
defines the isomorphism

an?’

C, > Aoy (N, %qu bm)]Q.
Since we assumed that gy is a complex semisimple Lie algebra,

Q=f@®ngrx(br—bh)

and Q is connected. Hence by Proposition 8.1.1, we have

I'(gg X by, Hom,, (JVan,% blR)) = [(Q, Howg, (N0, B, “’m))'
The last term is isomorphic to € because Q is connected. Q.E.D.

By this theorem, the hyperfunction ¢ is extended to a global hyperfunction
solution to 4. We shall denote it by J(x,1).

8.3. Let W be the Weyl group of (g,b) and let W be the subgroup {we W, whyg
=hg}. Then, Wy is the Weyl group of g,, and W is isomorphic to Wy x W
Since the Fourier transform of 4" is isomorphic to .4~ we have

Proposition 8.3.1. The Fourier transform of 6 is a constant multiple of 6.
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Proposition 8.3.2. For Pe#(b),

(8.3.1) P(@)o(x,0|,_o=0 if and only if Y P(wt)=0.

weWR
Proof. The Fourier transform of P(d,)d(x,t)|,_, is the integration of P(2nit)-
times the Fourier transform of ¢ with respect to 1. Hence P(C,)d(x,t)|,_,=0 if

and only if
[ PQ2rit)d(x,t)dt=0.

On the other hand, the Fourier transform of P(3)d(x,1)|,_, satisfies .#(,
and hence it vanishes if it vanishes on g,ngg (Proposition 8.1.3). Since

Supp 0 < (Grbg) X by, (8.3.1) is equivalent to

[PQmityd(x,t)dt=0 for xebgnb,,.
Since

1
o(x,t b= ——— 3{t —wx),
( )‘Xeb]}( brs wg‘:ym |A(t)| ( )

we have
[PQrityd(x,t)dt= Y PRriwx)/|4(x).
weWR
Thus we obtain the desired result.

8.4. Let O be a Gg-orbit of gy consisting of nilpotent elements. Let Og be the G-
orbit containing O. Now, the invariant measure on O extends to a measure on
gg, Which defines a distribution p on gg. This defines a solution to .#(4g¢) on
Or-

By Proposition 7.1.3, Corollary 7.1.4 and Corollary 7.1.5, we have

Proposition 8.4.1. (1) ug is a solution to C«/ZXO.
(2) Any solution to c,////xO is a constant multiple of pg.

These results hold for an arbitrary gg.

Now assume that gy is the underlying real structure of a complex semi-
simple Lie algebra g, and let W and Wy be as in 8.3. Then g=g,x§; and O
=0 x 0, and incidentally ;(Oczx()@xo, for yo€ W, where the bar - denotes the
complex conjugation.

Theorem 8.2. There exists
Pe#'(—(dimg+rank g)/2— Zog)
which transforms according to X0c=750® fo Such that

P(az)é(xa t)l:: 0 =l10-

Proof. Note that # = #(—(dim g+ rank 9)/2—Aog) contains yoe. SINCE Yoglwy
contains the trivial representation there exists Pe.# which transforms accord-

ing to ¥oq such that zw P(wt)#0. Let us take such a P. Then P(0,) d(x,t)|,_ o +0
weWg

by Proposition 8.3.2. On the other hand by Theorem 6.1, P(¢)d(x,1)|,_, is a
solution to ,//170 . Hence it is a non-zero constant multiple of uo. Q.E.D.
"O¢

This theorem is proved by Barbasch-Vogan [7, 8] for special orbits.
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