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Introduction.
In "Functions on the Shilov boundary of the generalized half
plane" in the same volume, we constructed unitary representations

T, 4 Of the Lie group Sp(nJR) . T x_1s realized on the

kio¥p o L
space of functions wu(x) on the space S(n) of n x n symmetric

matrices such that the Fourier transform

G(!) = f u(x) e=2imTrex g
S(n)

is supported on the set of symmetric matrices of signature (kl,k2) .

On the same time, we observed that the K-types of Tk k are

P
distributed on a cone closely connected with (kl,K2) % ¢

Why there is a relation between K;types‘and the Fourier
transform?

More generally, let us consider G a real semi-simple Lie
group, K its maximal compact subgrouﬁ, P a parabolic of G such
that G/P 1is a symmetric space. Then P = MN where N is abelian.
We can then write, up to a set of measure zero, G = N P where N
is the nilpotent subgroup opposite to N . We hence can consider
the compact manifold G/P = X as an homogeneous space under K ,
or as an "almost" homogeneous space under 7~ , the Lie algebra of
N~ . Hence we can analyze I?(K/MHP) = L2(X) either by the Fourier

AN
integral u(e®) on 7

u(e) = J u(x)e~21m<E,x> 4

n
(we identify (77)* with 7 by the killing form), or via the
Fourier series expansion u(k) = = ul(k) of u with respect to
the finite dimensional representations of K .
Let us consider the singular spectrum SSu of the generalized

function u . This subset of T*X indicates the directions where

u can be continued as an holomorphic functions on the complexifi-



cation XC of X .

If the Fourier transform u(#) is supported on a closed cone
T' , then the singular spectrum of u(x) is contained in the subset
N xV=IT of /-I times the cétangent bundle N_ *x 7 = T*N_ .

In thisrnote, we prove a similar relation between the K-types
appearing in the expansion of u and the singular spectrum of u .

The determination by Birgit Speh of the K-types of solutions
of mass zero equations on the Minkowski-space considered as an
homogeneous space under U(2,2) was our first indication that there
was a strong connection between the asymptotic behavior of the K-
types of a given representation T of G and the geometric realiza-
tion of T as acting on functions on the Minkowskil space solﬁtions
of differential equations.

These questions are also in strong relation with the orbit
method: Iet G Dbe a semi-simple Lie group and K a compact sub-
group of G . ILet G an orbit of G in ?* and p, the
representation of G which can be in numerous cases associated to
¢ . Then the asymptotic directions to the K-types occurring in
Po should be the projection of the asymptotic cone of the orbit
0 « In particular we prove that the asymptotic support of the
K-types of an arbitrary Harish-Chandra module is'given by the
projection on k* of nilpotent orbits of G in gL* s hence are
only among a finite number of possibilities.

We thank Dan Barbasch for several discussions on asymptotic

directions of the orbitsof G in g;* and Sigurdur Helgason for

discussions on asymptotic estimates of the spherical functions.



1. Let K Dbe a connected compact Lie group and H a Cartan
subgroup of K . Let %X and b be the Lie algebras of K and
H . We denote by 9(® and bc their complexifications. We fix a
K-invariant metric on % , by which we identify % andb with
their dual vector spaces. Let ( , ) be the hermitian metric on
7(@ induced by this metric on X .

For any & € f——Ib* , we define

Xy = (X e Xg 5 [EX]=a(H)X, for Hebl .

Then dim X, = 0 or 1, for a# O, and 7(“=b® for a=0.
Let us denote A = {a e /=1 b* - {0} such that Xy, # 0} the
set of roots, and let A"' be the set of positive roots with respect
to some ordering. We define 7 = ®+ X. . Then b + N is a
aeA L ¢
Borel subalgebra of ’(G: .

We have

1.1) Xg = ¥ o /=1 b ® N , considered as a sum of real

vector spaces.

Let L be the lattice of /-1 b * which comes from the
character group of H , i.e. the set of & ¢ /-Ib * such that
x(eH) = %(H) (H eb ) defines a character on H . Let C be

the Weyl chamber:

Y o« e 2t} .

/

c= {1 e/—f‘.fb*;<)\,a>>o

A
Then the set K of irreducible representations of K is isomorphic
to L NTC by the highest weight. For A e L N T, let Vv, denote

the irreducible representation with highest weight 2 .

2. Let dk be the Haar measure on K normalized by [ dk = 1 .
K



Then L2(K) , considered as a K x K module by left and right
translations, has the following decomposition into irreducible
components:

(.1) L2(K) = @ (Vk ® V;) , the element v @ f
AeLNC
of Vd ® V; being identified with the real analytic function
k —> f(k"l-v) on K
For @, an element of V, ® V) , we denote by me” the

norm induced by LE(K) .

2.2 Theorem [1],[10]:

Let ® Dbe a function on K and develop o = then

3
AeLNG Py

1) o=23 Py is a real analytic function on X if and only if

there are positive constants C and § such that

lo Il < cem®M

2l 9= X Py is a C -function, if and only if, for any positive

integer m , there exists a positive number Cm such that
-m
ey < e + D™
3) 9=359, is contained in LZ(K) if and only if
= lley 112 <

by =3 Py is a distribution if and only if there are positive

numbers m and C such that
loy Il < c(x + AT

5) =23 @, 1is a hyperfunction if and only if for any £ >0,

there exist C£ > 0 such that



£ln]
oy <, e
(For the theory of microfunctions, we refer to [2], [3], [4].)

3. Let TK and T*K be the tangent and cotangent vector bundles
of K . We shall identify TK with K x % and T*K with
K x X* by left translations. Therefore, the right (resp. left)

translation of k. € XK on X give rise to the transformation

o)
on TK=Kx X : (kX)) —> (kko,x) (resp: (k,X) —> (kok ,» Ad kO-X))
and on T*K = K x X* : (k,8) —> (kky,8) (resp: (k,8) —>
(kgk Ad* ky'8) . Here Ad* 1is the coadjoint representation.

Let T be a closed cone of /:I:b* contained in T and let
¢ = ke%ﬂL D, be a . hyperfunction on K such that each wx is a
highest weight vector of highest weight )\ with respect to the

left action on L?(K) . Then we have

Xey =0 for x e 7

X, X(X)wk for x %b

for the left action.
Let KC be a complexification of K , then for some p > 0

the map fp defined on

Uy = ((EX) e Kxhxns [B <o, x| <o)

by fp(k,H,X) = exp(/=I H +X) k is an isomorphism from Up onto an
open neighborhood np of XK in K, as follows from (1.1).

Let us extend the function ®y holomorphically on KC .
We fix H and X and we consider the function v, on the trans-

late exp (/=1 H+ X):K of K in Kg - Then



o, (exp (/7T H + X) k) = &= "I o ()
Hence considered as a function of k , we have:

J loy(exp (/=T H + X) k|2 dk =>e~2<)\,,f':f 553 HCOKHQ

We define 0= {Heh; /I >0,¥VaeTc/T h*1 and

™ - {(5H,X) ; He ) n U, . Then = o, ((exp /=T H + X) k)
converges on ‘I‘S ¢ ¢, being an hyperfunction satisfies

“CP)\“ < Cgeel)‘l and hence e~<t»/-1 B> Hcp)\ll has exponential decay

for H e TO . Hence

w(exp (V=1 H + X)k) = 3 co,\(exp (/=T H + X)k)

is a holomorphic function defined on fp(Tg) . This domain is an
infinitesimal neighborhood of {(k,/=1 X € /=1 TK , with

/I X e (/=T ™ + 7+ ¥) N/=I X} . Let us consider b“' the
orthogonal complement of b in X . We have ( bL)C = bL@ n as

a sum of real vector subspaces. Hence

P
V=T ™ + 7 + %) n/’-*‘I?(=f'-'ITO+f-'-'Ib )

Hence ¢ converges on an infinitesimal neighborhood of (k,X) ,
for X e /=T ™ + /=T bL. By definition, the singular spectrum
SS @ of ¢ is then contained in the dual of this neighborhood in
/=TI Tk .

We imbed b * in %™ according to the decomposition
w* = b* D ( b“")* . Then it is immediate from the definition of T°
that the dual cone of TO + b"" in X* is the convex hull of /=I T .

Thus we obtain

SS o < {k,2) ; -2 ¢ convex hull of T} .



3.1 Proposition: Let T be a closed cone in /-l‘b *NnNT<T.

Suppose that o= 2% mx is an hyperfunction on K and all the
AeT

0, are highest weight vectors with respect to the left action.

Then SS o © -K-T , where Tc /=I ¥* = /=1 T K* and K acts by

the right action on T°K .

Proof: If T 1is convex, this follows from the preceding discussion.
In the general case, for any disjoint family {TJ}lSJSN of closed
convex sets such that T < !JTj s We have ¢ =3 o, with

J

;= X ¢, and SS 9., < =-K-T., . Therefore
J A J J
XeTj

S8 © U (-K-T))
= =K. (UT,) .
(Ut,)

Since UTJ can be as close to T as we like, we obtain the result.

4, Singular support and K-types.

Let X, be the character of V, , i.e. xx(k) = tr(7x(k);vx)
We know that {Xx} forms an orthogonal basis of the space of
(Ad K)-invariant L°-functions on K . X, 1is the unique (Ad X)-
invariant functions in VI(&'VX .
Let us consider the 6-function 6(k) supported at e
characterized by [ §(k)u(k)dk = u(e) . We have 5(k) = § ?y s

with o, € V, @V"{ . Since 6(k) is invariant by A4d K , Py, is

proportional to ik . Since (mx,ix) = f 6(k)xx(k)dk = xk(e) =

dim V., , we obtain ¢, = dim V, % , i.e. 6= 3 (dim V,.) %, .
A A PN \eLT A A

Let uy be the highest weight vector of the representation Wa B
provided with a K-invariant hermitian inner product ( , ) . We

-1 -1
set 4, (k) = (Tk(k )ux,ux) . We shall calculate [ Wx(k'kk' Ydk! .
For any u and Vv f (Tk(k'k"lk'-l)u,v)dk' is an Ad K-invari-

ant function contained in Vk g>v§ and hence is proportinal to 'YX .



Hence there exist a constant ¢ such that

[l e e T vy det = e (w,v) X ().
Setting k= e , we have ¢ = — L - dié'v i.e.
%y () A

[ e e Ty vy dkt = e (0,v) R ()

A
If we normalize u, by quH = 1 , we have
(4.2) [ (ke ™ dk = e R (K)
K A im VX A

We define for a cone T in T

. 2
b = = (dim vV, )< ¢
T e AT
and
6T = 3 (dim Vx) Xy

reTNL

By (2.2), tp and 6p are hyperfunctions. By (4.1), op 1is
obtained from $T by

-1
GT(k) = f wT(k'kk' Ydk!' .
Since SS wT is contained in -K*'T by proposition 3.1, we obtain

(4.2) SS bp < - (K X K)-T .

4,3, Lemmas; Any X X K invariant subset of /=I T¥K is of the
form -(K x K)-T with T a subset of T .

Proof: This is equivalent to the classification of Ad X-=invariant
sets of X , and it 1s well known that they are written in the form

Ad K*T with TcTc /—I,b * for a unique T .

Let u(k) and v(k) be two hyperfunctions on K . We define



‘their convolution u#v by (u#v)(k) = [ u(kh"l) v(h)dn .
heK

We h i u = N
€ have dim V)\ Xy®¥u = u for u € VX Q V)\
D S
Hence for a hyperfunction o= 3 @, 5 we have 6T*¢ = 2 0
AeLNC AeLNT
4.4 Temma: Let T, and T, be two closed cones in T . If

Ssu € -(K x K).T,, and if SSv -(K x K)-T2 , then we have
SS(usv) < - (K x K)(Tl n Tg) .

Proof: This lemma is easily derived from the behavior of the
singular spectrum under integration: The singular spectrum of

u(kh"l) considered as a hyperfunction on K x K is contained in
((k,nse , - ad*(n™H)"tee) 5 (wn7lie) € ssu) .
Therefore the singular spectrum of u(kh:})v(h) is contained in

{(k,n;2 , &' - ad*(an™h)"L.e) 5 with (xh"L;2) € ssu, (h,e') e Ssv).

Hence the singular spectrum of f u(kh'l) v(h)dh 1is contained in
K

{(ksa) , such that there exists a h with

(k,h;e,0) € SS(u(kh™1)v(n))} .

This implies « = # € (Ad"K)T; , ' = Ad*(kn"Y)"l.e . Hence
*
« € (Ad K) T n(Ad*K:)T2= (Ad*K)(Tl nT, .

Now, we are ready to prove the following theorem.

4.5 Theorem: Let o =3 Py be a hyperfunction on K . Let T
be a closed cone in T . Then the following conditions are

equivalent:



(1) SS o< -(K x K)-T .
(2) For any closed cone T' in T such that T N T' < {0}, there

are constants RT’ > 0, and z > O such that

Epr 1]

T!

lo, Il < Bpie

Proof: Let us prove first that (2) implies (1). Take T' as in

(2), then o, = %@ = S o, and o =6 wo= 3 o . By
T T reTt M C-T! E@'m AETT A
(2.2) and the hypothesis, ®p, 1s real analytic; by (4.2), (4.4y,
SS @6 is contained in - K x X (C - T') . Since we can take
_T!

T - T as close to T as we like, we obtain (1).
Reciprocally if (1) is satisfied, SS Ppr © -(Kx K)(TNT") =
{0} . Hence P is a real analytic function. So (2) follows

from Theorem (2.2).

Remark: If we employ the wave front set in the C -sense instead
of the singular spectrum in condition (1), then condition (2) must

be changed to: For any m > 0 , there is Cm > 0 such that

loy Il < ¢y (L + IA])™™ for x eTr.

5. K-types of induced representations.

Let M Dbe a subgroup of K and 7 the Lie algebra of M .
Let X Dbe the homogeneous space K/M . We denote by O the coset
eM . Then the left action of K induces a surjective map:

X —> TO(X) whose kernel is 7 . Hence TSX is identified with
the orthogonal complement WJ"in x* .

Let ¢ be a finite dimensional unitary representation of M
in the complex vector space U . We denote by U the corresponding
homogeneous vector bundle K XM U over X . Hence the space of
section of U 1is the space of U-valued functions wu(k) on K

satisfying



(5.1) u(km) = c(m)'lu(k) for Kk eXK, meM.

The group K acts by left translations on this space. The space
of L°-sections of % 1is denoted by L2(KM;u) = L2(X,U)

" The decomposition of LQ(X,U) under K 1is given by the
Frobenius reciprocity law, i.e.:
(5.2) L2(X,U) = @, V) @ Homy(V,, 1)
where vQ® f , for v eV, , fe HomM(VK,U) is identified with
the function (v @ £)(g) = f(g“lv) . |

We denote by W, = v, @ HOmM(VX,U) .

We wish to determine what are the asymptotic behavior of the
representations of K appearing in LQ(X,U) 3 i1.e. what are the
representations A of X such that HomM(VX,U) # {0} when
IX\| > » . Consider the singular spectrum of a section u "of %
regarded as a U-valued function on X satisfying 5.1. Since

u(k) ‘satisfies (5.1), we have:
*.‘-lk 4
SSu c {(k,2); (Ad*k" )e ¢ /=I m ] .

We consider the inclusion 7 < X and the corresponding map
p: X¥* > M* . The kernel of this map is m“L. We consider the set
(Ad*K)M™ of orbits intersecting M™>. Let

' 4
(5.3) b;= h* 0 (aargym®.
. . . r“L‘ * . *
Then every orbit intersecting 7 intersects m

5.4 Proposition: For any closed cone T in € such that

TNnJ/=-1 b;;l c {0} , there exists a constant RT such that

Hom,(V,,V) = 0 for X\ e T, and [x] > Rp -

}\,

Proof: If it is not true, there is a sequence XJ in T such that



Ixj] tends to infinity, when J tends to infinity, and such that

WX # {0} . Let us take a vector ® in W, ~ normalized by
J J

ijﬂ = 1 . Take any sequence a; in €, such that 3 |a |2

%

<=

We consider wu(k) = = a.p., which belongs to L“(X,U) . We have

Jdd
as u satisfies (5.1) (SSu) ¢ K+(/=T m™) for the left action of X,
N N
| c (KxK)(/:Ibm),
But by Theorem (4.5) as T n /=T 9;7; =0, th:}.s v'\rould imply that
’ -&l N
there exist R > 0, and £> 0 with lajl < Re -4 . This cannot
be true for any gequence ay s with z-[ajlg < © , hence we obtain

our result.
7/~

Remark: Let us’consider K as a subset of orbits in /=1 %* by
VX‘"—-> (Ad*K).)x . This is a bijection with the set of integral
orbits of K in /=I ¥* . Let us consider the projection of the
orbit o, = (Ad*K) A on /=I m* with respect to the restriction

p: /=1 x* > /=TI M* . This set decomposes under M into a union of
M-orbits. The "philosophy" of the orbit method would imply that the
restriction of VX to M decomposes as a sum of representations

w., of M corresponding to "some" integral orbits of M in /=1 M*

J

contained in the projection of ¢C on /J=I#* . In particular the

A
Ats of % containing a given representation of M corresponds to
orbits @X intersecting p-l(B) for B a compact subset of m*x.
The asymptotic directions of the corresponding highest weights is
/'-—-Tb% NT . Hence for a cone T such that T N by";z = 0, the

set (Ad*K)-T n p'l(B) is a bounded set. Our result gives an
"asymptotic" verification of this desired result. (We thank

Donald King for discussions of the case K-> K x K via the diagonal

map, i.e. of the case of decomposition of tensor products [5].)

We can reformulate our Theorem 4.5 in the following:

5.5 Theorem: Let o =23 Py 2 P, € Wk be a hyperfunction section

N
of U . Let T be a closed cone in J—I/& ; NT . The following



conditions are equivalent:

L
(1) SSy < -K-(Ad*K-T N/=I M~ ) when K acts by the left.

(2) For any closed cone T' in /=1 b* such that T' N T = {0} ,
£, |\

. TY

there exists Rg, and £, such that H%\H < Rpee

for N e T!' .

Remark: It is only necessary to investigate the condition (2) for

the cones T! intersecting /=1 by}‘; s as follows from 5.3.

The conditions of the Theorem (5.5) will be more easily
described when K/M 1is a symmetric space. Let X =7© P the
decompcosition of X with respect to the involution & , i.e.

Ol = Id , 6|P = -Id . Let (I be a maximal abelian subalgebra

of X contained in P . We can choose a O-stable Cartan sub-
algebrab of % , such that bﬂP:OZ,i.e. b:bﬂm@w.
Let C, Dbe a Weyl chamber of /=I L * and C a Weyl chamber of
/=1 b* compatible with C, .

We define for u € Euz.

F = @ Vv, @Hom, (V,,U) .
N a=u » R

We recall that if Hom (Vy,U) # O then A|hN 7 is a weight
of the representation U of M restricted to ﬁ N 7m as follows
from the following remark: Let f be a nonzero element of

HomM(VX,U) and v be the highest weight vector of V Clearly

X L4
f(v) € U transform under b N M according to xlbﬂ M . Hence

we have to see that f(v) ¥ 0 . Let 7' = { ® Xy s |l # 0},
aeat
we have 7{0 = 77zC + OZC + N' . As v 1is an eigenvector for

U‘LC + N, for any u € ‘L((?(C) » We have u-v = uo'v with
u, € 'L{(??ZC) . Hence f(u-v) = ug f(v) . As 'L((?(C).v =V s
f(v) # 0 .



In particular, for any u , the possible \'s occuring in Fu

are of the form u + 5j for a finite choice of Gj in /=T (i)ﬂ m)*.

In this case we see that the possible K-types occuring in LZ(K,U)

are contained in a strip along (L * .

b m)™

' \\

Hence the Proposition (5.4) is then automatically satisfied. We
remark also that F“ is finite dimensional.

Our Theorem (5.4) is reformulated as follows:
5.3 Theorem: Let o= 3 ®, a hyperfunction section of ¥

WEC,
and S be a closed cone in ﬁ& . Then the following conditions

are equivalent:
(1) (SSw) < -K-S

(2) TFor any closed cone S' contained in /=1 UL* satisfying
S N S'" = {0} , there are positive numbers Ry, and £,

'Esllu!

such that Hmuﬂ_g Ry, © when u € S!' .

Proof: This follows from (5.5) as for a symmetric space,
— — . e
(4d*)W" N T =T, and for any S<T,, (Ad*K)S N/ZI M = (Ad*M)S .
Let X = K/M being a symmetric space. Let us now consider H

a Kkinvariant~3ubspace of LQ(X,U) . We consider H= & Hu
HeCy,
where

i = @, H Moo= u .

5.9. We define the asymptotic support of H by



T(H) = {u e'ﬁm_, such that there exist a sequence

(b €) u, € Cp > E'n >0 with |u | ~>=, Hun # 0

and Enun > .}

We define SSH = U SSuc T*(K/M) . We have then:
ueH

v

5.10 Corollary: SSH = K-T(H) .

Proof: Following the construction of the Proposition 5.4, it is
easy to construct for every ¢ ¢ T(H) a function u in H such

that k.(1l,#) € SSu . As H is K-invariant the corollary follows.

6. Singular spectrum of G-modules.

Let G be a real semi-simple Lie group, K a maximal compact
subgroup of G , G = KAN an Iwasawa decomposition of G . We
denote by M the centralizer of A in K . Let (gy,x;az,n;m) be
the Lie algebras of the groups involved.

For o a finite dimensional representation of M in U and
A oa homomorphism of A in C* , we consider the representation
c@® 2 of MAN in the vector space U trivial on N‘ and extending

c®X on M x A . We consider the G-bundle G x U . This as a

MAN
K-bundle is isomorphic to XK x U over X = K/M . The decomposition
M e

under K of the associated principal series Ind 4 o ® \ is then
given by the formula 5.2. The Proposition (5.4) g?ﬁgs us the
asymptotic behavior of the K-types of the principal series assoc;ated
to the parabolic MAN .

Let ¥ be an irreducible Harish-Chandra (%QEQ module. We

write ¥ = @, NX where %k is the isotypic component of type A .
AekK

Let us define the following subsets of T :

6.1 Definition.

a) The K-support of & , S(¥) = {x» ¢ T ; ¥, # 0} .



b) The asymptotic K-support of ¥

T(¥) = {x» € T, such that there exists \_ e S(¥)
with  |a | > =, t, >0, and tA >} .

It is known that ¥ can be imbedded as a (f-submodule in a
principal series Ind % c®@ X . Let us choose such an imbedding,
and let us denote by %ANthe completion of ¥ in LQ(X,U) « Then
G acts by bounded transformations on H . We denote by
SSH = \J SSu . Hence SSH is a closed subset of /=L T*K . We
mentilfl;H (ssH), as a subset of J/=I TZK = /=T ¥*. We have
(aa™K) (SSH), = (Aa"K) T(¥) , as follows from 5.5 and the proof of
5.4, |

As H is stable by G, SSH is a G-invariant subset of
/=T T*(x/M) = /=1 T(G/MAN) . We have Tg(G/MAN) = (M + a + ?z)"?- 7
by the Killing form, TS(K/M) =-mc ¥* , the isomorphism o
i: N~ m-L being given by the Killing form X —> B(X,*) . Hence
if we identify %* with % , and we write gy =X @®P , the map
i 1is the restriction to N of the orthogonal projection m from

y to X perpendicular to P .

Let @ be an MAN invariant closed cone in 7. Then SSH
is of the form /=TI G-Q = /=1 K*1(Q) . We have:
AA*K-T(¥) = (Ad7K)-1(Q) .

6.2 Theorem. Let S Dbe a closed subset of nilpotent orbits

of G in 37 . Let m(S) be the projection of S to X* by the
Killing form; let us denote by Tg = Tn/=I m(S) . For any Harish-
Chandra module ¥ there exists a closed subset S of nilpotent

orbits of G in tj such that: T(¥) = Tg

In particular for ¥ a module of the principal series associated

to MAN, we have S = Ad*Gen = the nilpotent cone.



Let us give a example:

6.3 Example: G = SU(2,1)

We consider the group SU(2,1) associated to the canonical

hermitian form

1 0 0
h = 0 1 0 .
0 0 =1

We choose

and X = S(U(2) x U(1)) . Then the group M is given by

e 0 0
0 et g .
0 0 eie
Hence J/=I 7 has basis
1 0 0
HO = 0 =2 0 | .
0 0 1

Let /b be the Cartan subalgebra of % given by

al 0] 0 .
/-fI}: 0 320);a1+a2+a3=0,aiem .
0 0 a3

We identify /b with its dual via the G-invariant form
(A,B) = Tr AB for A,B e€4Uu(2,1) . We identify the Lie algebra

of /=TI % with the space of hermitian matrices by

( A 0 )
A ~>
0] ~-Tr A

then the orbits of X in /=1 X are classified by the eigenvalues



of “A.. 'In this identification - J<I m‘L'is the subspace of matrices

o

Hence an hermitian matrice

( Xl 0 )
0 Xz

is conjugated to m'L if and only if xlxg‘s‘o s

We have for

A+ = {a,B8,y} the root system of (4 with respect

to ,b ,a being the compact root, y =8 +a .

The Weyl chamber
roots A;,= {a} ,

given by

0 0 0 0]
0] ) P HB = ( 0 1 0 ) s HY = Ha + Hs .

0 o -1
C corresponding to the system of compact positive

is given by A(Hy) > O . Hence TN /-I’b % is

L= {xls + Xy X 20 x5, < 0}
A P

\\\\\\\ ,
Nl

Let us consider the three possible classes of nilpotent

elements for the action of G in gy ([61)



G o R ol i
X, = + gl al/a i /e , Xg= | -1 O Y
0 -i/2 -i/2 s R IR

It is easily computed that

TO=/':IAd*G-X n‘G=/’-‘-‘Ib;zn6

0

T, = /=T ad*e-x, N T =R'.8 , the half line of
* direction B8

T = /=T Ad*G-X_ NT = -R'.y , the half line of
- .direction vy .

Let us precise our theorem (6.2) as follows: If the
((g,K) module can be associated to an orbit A of Ad*G¢ in
(}* (for example, for the discrete series DA) we will choose the
G orbit of the elliptic element A) the choice of S should-be

given as follows: we define for an element f eg* the asymptotic

cone S(f) to the orbit G- f

i.e. u € S(f) if there exist f, € G-I, |fn! > o and £ > 0,

such that i—:nfn > u

we then should have T(A(A) = TS(A) .
It is easy to verify this conjecture in the case of

y=4 Y(2,1): If A corresponds to an element of the holomorphic

discrete series, we have S(A) = G-X+ . If A corresponds to an

element of the antiholomorphic discrete series, we have S(A) = G-X_.

If A corresponds to the non-holomorphic discrete series, we have

s(A) = & Xy -

Example 6.4: Let G = Sp(n,R) operating on the vector space S(n)

of symmetric n x n real matrices by x > (ax + b) (ex + d)":L

a b
for (c d) € Sp(n;IR) . The maximal compact subgroup K of G

,,AlTl;isﬁqonJectu;e has been proven recently by D. Barbasch and



is isomorphic to U(n) , via 'a + ib € U{n) —> ( i ) .
-b a

For P +the parabolic

a 0
P=’( t_l);aeGL(nﬂR) j
* a

and u a given finite dimensional representation u of GL(n;R) ,

G
we consider the associated principal series Ind‘% =T (not

v
necessarily unitary).

We denote by M= P N K = 0(n) . We realize T, as a space
of sections of a bundle over G/P = K/M = X . The vector space
S(n) can be considered as an open subset of G/P by

X

S (é ?) mod P , the corresponding action of G being given

by the above formula. The corresponding identification

T*(U(n) /0(n)) = T*S(n)

is given at the origin by B e S(n) ——>~(Eg g) € M . The pair

(K,M) = (U(n), O(n)) is a symmetric pair. The preceding map
allows us to identify the orthogonal complement of 7 in % .with
S(n) , the action of M on M’L being given by g-X = gxtg s for
g € 0(n) .

Let Jf be the subspace of 7 defined by diagonal matrices

then every M-invariant subset of N is of the form M-.T where
T is a subset of (L.

X is a Cartan subalgebra of X , hence every irreducible
representation of K 1is indexed by its highest weight

A = (Xl, Nos *o%s Xn) , where ); > A, > +++ >\, » considered as



" an element of (¥ = .

et ¥ bea ( 7 ,K) submodule of the space of K-finite

vectors of the representation Ind g.u . We can analyze

ssua= U ssu by analyzing the exgansion of “a-funetion  of of " H
in termgegf the K-Fourier series of o= I Dy f.e. let

¥ = ;E%:%X , let T(¥) be the asymptotic Xéfsupport of

(definition 6.1). Let M-T(¥) < S(n) be the orbit of T(¥) under
the group 0(n) . We know that SSH c T*(K/M) 1is given by a K-
invariant set of T¥(K/M) , and (SSH), = M-T(¥) , by 5.10.

Let us consider H as a G-module, then SSH < T*(G/P) 1is a
G-invariant subspace of T*(G/P) . Hence (SSH), is given by a
.GL(nﬂR) invariant closed subset of S(n) . The action of GL(n)

t

on S(n) via gX’g decomposes S(n) into a union of finite

number of orbits Ok Kk’ where Gk e is the set of symmetric

1’72 1’72
matrices of signature (kl’ke) . Hence we have necessarily
(ssH), =U O | © S(n) over a subset of orbits. Realizing H
1’72

as a space of tempered distributions on the vector space S(n) 3
we may compute the singular spectrum of H using the Fouriler

A _ .
integral u (g) = [ u(x) e 21nTrex dz over the vector space
S(n) with respect to the bilinear form Trgx . If H 1is such

A
that for every u ¢ H, u(%) is supported in k}Ok x_ + then

l’
(ssg) . <« VUa, . 2
e kl,k2

Let us consider

KT {(xeCi; \= (Xl’X'Z’.."xi’o’....’O’-y"‘yj-l’.‘._yl)} P)

C
kl, 2 J
with %3 > 0, y5 > 0, 1 < Xy, J < k)
We have le’kE = M’Ekl’kz . Hence if H is a (%},K) module

such that the asymptotic support of % 1is contained in a finite

, it follows that SSHc< & and
17%5 kis Kk,

union of the sets Ck

reciprocally.



This explains "asymptotically" the relation between the
description of the spaces Hp,q introduced in the article [7]
via the support of the Fourier transform of the functions involved,
and the K-support of Hﬁ,q given in [7].

In the similar example of the group U(2,2) acting by conformal
transformations on the Minkowski space, we consider sub-representa-
tions H on the space of sections of the classical spin bundles
on the Minkowski-space: We have in this case to consider
K=10U(2) x U(2) , M= U(2) . Our bundles can be considered either
as bundles over K/M = U{2) , either on the flat Minkowski space
identified with H(2) by

XA + X X, + ix
> 0 ;8 2 5
X = (XqyXq,X yXy) =D X = ( s _ ) s
8 L iy X, 1x3 Xq Xy
The asymptotic directions of the K-types occurring in H are’

given by
T(H) = {(ml,mz) X (-me,-ml) € U(2Y\ x U(2)"1 with
(ml,mz) e TcTc H(2)}.

We can similarly read on the asymptotic directions of the
K-types of H the support of the Fourier transform of a function
u on H considered as a classical field. For example the space
H of solutions of Maxwell, Dirac or Wave equation (considered as a
subspace of the appropriate bundle) will have as asymptotic support
the line T = (m,0) as U(2).T < H(2) is the light cone
2 2 2 2)

(xo = X + X5+ X3

H 1is given in [8].

The precise description of the support of
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