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§0. Intreduction.

The purpose of this report is to determine the structure of some
cohomology groups associated with the theta-zerovalue 9(t) of the

Riemann theta function, i.e.,

I(e)= > exp(mi{ty,v))

vEZn

with ¢ being a symmetric complex matrix of size n x n. The co-
homology groups are determined via a complex of linear differential
operators of infinite order which the theta-zerovalue solves. [A more
precise definition shall be given in §1.] When n = 1, its structure is
explicitly given in [K2], and the result combined with the so-called
reconstruction theorem ([KKK], Theorem 1.4.9, [SKK2], Theorem 1.5)
entails a quite intriguing result to the effect that the sheaf of micro-
functions is the £®-module generated by 9(t). (See [SKK2], p.286 for
the precise statement.} When n > 1, we encounter some algebraic
complexity concerning the commutation relations of operators which
are used to determine the complex. (See [K1] for example. See also
[KT].) This complexity makes the direct computation of the coho-
mology groups very hard, if not impossible. However, the microlocal
structure of the complex in question is a straightforward generaliza-
tion of the complex considered for n = 1. (See [S} and [K1].) Using
this fact, we find the structure of the cohomology groups explicitly.

In this report, we restrict our consideration to the case where
n = 2 so that the presentation may become simplified; other cases

shall be discussed elsewhere.



§1. Definition of the complex.

Let X be the space of symmetric 2 2 complex matrices (;1)1<;j k<2

and let Oj; denote the vector field 8/8t;, + 8/8t; on X so that

Bjktim = 8518km + 6imbir (1 < 4 k1, m < 2) holds with ;5 being

Kronecker's delta. Let us introduce several sections in M (3 x 3; Dx),

il.e., 3 x 3 mairices whose entries are linear differential operators in

t.

Definition 1.1.
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0 ——-2’#?:322 27?58;2
(1.7)  Rp=[Qa, Ro]= (—(27?5)2(311322 — 1) 0 0 )
¢ 0 0 0

Remark 1.2. The relations (1.6) and (1.7) entail

(18) R]_ = 271"?:611622 s 27(?:812@1
(19) Rg = 21'{‘1‘.813@3 - 211'2-822@1.
Hence [@Q;, Ri] (1 <4,k £ 2) belongs to M(3 x 3; Dx)Ry.

Now it is easy to verify the following relations (when Imt is

positive definite).

(1)
(1.10) (exp P; — 1) ( 0 ) =0, 7=1,2,
0
(1)
(1.11) (exp@; — 1) ( 0 =0, j=1,2
0

Here I denotes the 3 x 3 identity matrix.

These simultaneous equations (1.10) and (1.11) look quite sim-
ilar to the equations considered in the case where n = 1. (Cf. [K2])
However, exp F;’s and exp (J1.’s do not commute in our case; they
commute only when they are acting upon A mdfij{? 1{% N, where
D¥ denotes the sheaf of linear differential operators of infinite order

in ¢ and N denotes the following D x-module:

(1.12) N=Dxu & (Dxul + Dx'ug),
with the following fundamental relations:
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(1.12.ai) (811092 — 835 ug =0
(1.12.11) Blgul = 811ug

(112111) 822u1 = 312u2.

In fact, (P, P, Q1,@2) determines a Jacobi structure in the
sense of Definition 1.3 below and this is the reason why exp P;’s and
exp Q«’s do commute as endomorphisms of N'°, See [SKK1] for the
details.

Definition 1.3. Let A be a coherent left D-module and let P; (1 <

7 £ 2n) be D-endomorphisms of A. Suppose that {P;}; and N

satisfy the following conditions:

(1.13)  Pj acts on AV from the right.

{1.14}  There exists a rational number A < 1 and there locally
exists a good filtration {N;}req of A for which

NeP; € Niyn

holds for each k and j.
(1.15) There exists an integral matrix (eji)i<jk<2n with non-

vanishing determinant so that
[Pj,Pk] = -*2?Ti8jk (1 < j,k < 27’.’.)

holds in Endp(N).

It is known ([SKK1] §2) that, if {P;}; is a Jacobi structure
with respect to N, then exp P;’s are D*-endomorphisms of N

commuting mutually.



The fact that (P, P, @1, @2) determines a Jacobi structure is
guaranteed by the following proposition.

Proposition 1.4.

(116) [P, Po] = (tuitze — t5)Ro

(L17)  [Q1,Q2] = Ro

(1.18) [P, Qi) = —2midji + hjpRe (1 €4,k € 2), where

hit = —tia, hiz =11, hor=—tsy and hep = 1s.

(1.19) [Pj,R@] = tji.Rl + tngg for j =1,2.

(1.20) [Pj,Rk} = 2'1Ti(5jk —i-—Tjk -+ Zsjk)Rg (1 < ik < 2), where
bjk is Kronecler’s delta, Tjr is a scalar operator given by

Sy t10 and €k is a constant matrix given as follows:
0 00 0 0
€11 = 0 0 0 s €12 = 0] -1 '
0 0 1 0 0
0 0 0 0 0
Ea] = 0 0 0 s Ennp = 0 0.
0 -1 0 0 0

Let us denote exp P; — I (resp., exp @y — I) by &; (resp., ¥s)

Do OO0 o

for §,k = 1,2. Since they commute on A, we can construct the

following Koszul complex K:

(1.21)
(‘I’l "I)Q 1‘I’1 t\pﬂ)

As N admits a free resolution [actually a rather trivial resohition

in our case where n = 2}, Lemma 1.4 below guarantees that K is
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locally quasi-isomorphic to a finite complex of free D*°-modules of
finite rank, and hence K is a good complex in the sense of [SKK2];
thus we can talk about its characteristic set Ch(K). A concrete
description of Ch(X)} shail be given in §2.

Lemma 1.5. Let A be a sheaf of rings and let M be a finite complex
of left A-modules each of whose components admits a finite resolution

by finitely generated free A-modules, that is,
(1.22) 0+ Mj — Ljo — Ljy & -+ ¢ Ljg; 0

with L;i being a finitely generated free A-modules. Then M is
locally quasi-isomorphic to a finite complex of finitely generated free
A-modules.

As a proof of this lemma is a straightforward one, we omit it

here.



§2. The characteristic set of I.

‘The purpose of this section is to describe the characteristic set Ch(X)
of the complex K introduced in §1. In what follows, we introduce
the fiber coordinates on T X by setting 15 = 01(9;1), the principal

Tar Ta2
fundamental 1-form on T*X is given by tr(rdt)/2.

symbol of the operator d;,, and we set 7 = (Tu 12 ) Then the

Theorem 2.1. The characteristic set Ch(X) is contained in

{{t;7) € T" X (t;7) satisfies the following conditions (2.1), (2.2) and
(2.3)}.

(2.1) det 7 = 0.
(2.2) Rer=0 and Im 7 Iis positive semi-definite.

(2.3) Retr = 0.

Proof.  When (t;7) belongs to the zero-section T'% X, there is
nothing to prove. Hence we may assume 7 # 0. The relation (2.1)
is a defining equation of the characteristic variety of A/, and hence
any point in Ch{X') should satisfy it. To obtain relations (2.2) and

(2.3) outside the zero-section T%.X, we use the following.

Lemma 2.2. Let A = (aj5)1<5k<n be an N x N matrix of micro-
differential operators of finite order. Let {r;}1<j<n be a set of ratio-
nal numbers and let p be a real number strictly smaller than 1. Let

us consider conditions (2.4) and (2.5) below. Here o5{a ;) denotes
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the principal symbol of a;i and ox(a;ix)(z*) denotes its value at a

point z* of the cotangent bundle.

(2.4) ord ajp <r;—rr+p
(2.5) every eigenvalue of the matrix

(0r;—rp+olaielz™ W< pen

is contained in C\{R.

Then under condition {2.4) each component of exp 4 is a well-defined
section of the sheaf £™ of holomorphic microlocal operators, and, if

(2.5) is further satisfied, exp A — I is invertible in M (N x N;ER).

The proof of this lemma is essentially the same as the proof of

[AKK], Theorem 2, and hence we omit it here.

As the matrix of symbols determined by P, etc. has an eigen-
value that is identically 0, Lemma 2.2 cannot be appled to P, etc.
To avoid this technical trouble, we replace P, etc. by P etc. given
below so that P, = P, etc. hold in £nd(ER @ N). Before writing
down P, etc., let us note that (2.1) combined with the assumption
T # 0 entails either 717 or 72 is different from 0. Hence, in what

follows, we assume without loss of generality that r; # O.

0
—t12//2midyy
11/ 2mi0

0
(26) P]_%P]_-— 0
0
0 0
0
0

Ro

(2.7) Py=Py - —tg2//271011

tl?/'\/ 271"23 11

2-2
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0
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-
0
0...




1/\! 27?'?:311 0

0 0
-—'l/\/ 2’1’(2"51}_ 0:! .Ro
4] 0

B 0 0 0
(2.8) Q=01 |0 0 0 Ry
0
_ 0
(2.9) Qe=0Q2~ |0
0

In calculating the eigenvalues of the matrices 0(131) etc. of sym-
bols associated with the operators ﬁl etc., we may replace a9 by
i/ in o(Py) etc., as Tog = 72,/7; holds on Supp(ER @ N). Af-

ter this replacement we find the following:

(2.10) The eigenvalues of o(P,) are :

A1 dffszi(fu?‘lz + t127a1)/V2RITT, ~A1, —Ap
(2.11) The eigenvalues of o(P,) are :

Az (;"—;‘fZﬁ‘i(leTu +t2aTo1) [V2rITL, —Az, = Aa.
{2.12) The eigenvalues of a(@;) are :

'\/2?1"’i7“§1, —\/27?1:‘7'1]_} "-*‘\/27?2'7'1;.
(2.13) The eigenvalues of o(Q5) are
271'?:7'32/\! 27?'?:7’11 3 —2‘3('2.7';2/‘\/ 2?(?:‘7'11, —27('7.'7‘12/\/ 2?T?:T11.

It then follows from Lemma 2.2 and (2.12) that for (#;7) in
Ch(K)

(214:) Ty = i witha>0
holds. Similarly we find by (2.13) that

(2.15) 712 is a purely imaginary number.
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Then (2.1), (2.14) and (2.15) imply that T2» is also purely imaginary.
Thus we obtain (2.2) by (2.1).

Let us now verify (2.3). It follows from Lemma 2.2, (2.2) and
(2.10) (vesp.,(2.11)) that

(2.16) t1371y + t1a712 (resp., tm Ty + t9aTe:) is purely imaginary.

On the other hand, using (2.1) we find

(2.17) toaTan + t1aTie = T12(f22 T2 + o)/
and
(2.18) tyaTos +t11712 = Ti2(taTe +tu T )/ T

Since T2/ 720 is also real-valued on Ch(K) by (2.1) and (2.2}, condi-
tion (2.2) follows from (2.17) and (2.18) combined with (2.16).
This completes the proof of Theorem 2.1.

As an immediate consequence of Theorem 2.1, we obtain the

following proposition.

Proposition 2.3. Set S = {t € X;detIm ¢t = 0}. Then

Ch(J) C T s X U T3 0y X UTjoy X.



§3. Structure of the solution complex & and its

cohomology groups.

The purpose of this section is to clarify the structure of the so-
lution complex S = RHompe (I, 0) and its cohomology groups.
The results in §2 combined with [SKK2], Theorem 1.5 and [KS]
Lemma 8.2.7 imply that H7(S) is a locally constant sheaf of finite
rank on X\S, S\{0} and {0}, where § = {t € X;detIm ¢ = 0}. To
describe the structure of H7(S) more concretely, we will make use
of the tangential system L(z) induced from N onto Y(z) = {t €
X;it1p =z} (z € C). The structure of & itself shall be clarified after
determing the structure of H7(S).

To begin with, let us note that L({xz) is a free Dy (;)-module,

which can be expressed as follows:

3
(3.1) jEEDDy(z)Uj,
where
(32) U= U iY(a:) for j = 0, 1., 2

for the generators u; (j = 0,1,2} of V, and

(33) Uy = (QTfialg‘uu) ]Y(:) .

Let {¢;(2),%r(x)}j k=1, denote the Jacobi structure on £(z) which
is induced from the Jacobi structure on A determined by

{P;,Qr}jr=12- Then one can immediately find the following:

0 t11 0 0

, 2wl + 10 0 0 0

@ ae = | ORI 0
0 0 2mi{l+#30) O
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0 0 1 0
0 o 0 1
TE omide, 0 0 0
0  2%idyp 0 O
0 0 tao 0
B 0 0 0 i
(8.5) ¢a(z) = 2711 + t22020) 0 0 0
0 2wi(l+12282) 0 0
0 1 0 o0
218 0 0 0
0 0 2mby O
c 1 0 0
_{ 2wy O 0 0
B8 el =1"y" o ¢ 1
0 0 2??'5311 0
0 0 1 0
0 0 01
BN == 05. 0 0 0
0 211":."322 ¢ 0

Since Y'(z) is non-characteristic with respect to A/,
(38) RHOTR'D%O (Nm, OX) 1y(I)

Y(=)

holds. Hence we obtain

= REOTR'DOO (Dlo;)(:) _.XD@QNOQ: OY(Q))
X

(3.9) RHOM'D?{? (K, Ox) |y

As Doy, x ® K is quasi-isomorphic to the Koszul complex X(z)
determined by (e®1(®) — I, e%2(2) — [, ¢#1(=) _ [, e¥2(=) _ ) by the
definition of (¢1(z), ¢a(2),¥1(x), ¥2(z)), it now suffices to compute
RHomD?/o(E) (K (x), Oy(z))-



Now let (p;, g5} denote the Jacobi structure determined by 9(t;5)
on Y; = {t;; € C} for j = 1,2 : To be more explicit,

L 0 tij c
(319 i (27ri(1+f5:‘3:'5) 0 ) P I= e
and
0 1 .
(3‘11) q; = (27(‘7:63']' 0) y J= 132

anB a2 B

Using the convention that 4 @ B denotes (023 B anB

>f0r2><2

matrices A = (Z; Z;z) and B, we can rewrite (3.4)~{3.7) as
follows:

(3.12) ${z) =L@p+200 L

(3.13) pa(z) =p2 @ Ltz @q

(3.14) Pi(z) =hL&q

(3.15) P2(z) =2 ® L.

Here I denotes the 2 x 2 identity matrix.
Using this expression let us calculate RHom-D;c»(U) (£1{0), Oy (o)
We first note the following lemma.

Lemma 3.1. Let X; be a complex manifold and let p; : Xy x Xz —
X; denote the projection (j = 1,2). Let A; be an R-holonomic com-

plex of @fwﬁj—modnles for § = 1,2 and denote by M &N, the com-
L
plex of DF, , x,-modules DF, , x, LB (p;lf\ﬁ@pg_lj\fg).
P ID?]_ @Pg 'D?{og
Then we find
(3.16) R.E‘ro’J'i"L',!;;‘%-{c‘a1 x X (N1®Ng, Oxl ><Xg)
= pi ' RHompg (M, Ox,)@py ' RHompes (M2, Ox,)-
1 C Xo
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The proof of this lemma is similar to the proof of Proposi-

tion 1.4.3 of [KK], and we do not repeat it here.

Now, (3.12)~(3.15) imply that K{0) is quasi-isomorphic to
Ma®M,, where M; denotes the Koszul complex determined by
(ePi — Ip,e% - L) (j = 1,2). Furthermore the following result is
proved in [K2].

Lemma 3.2.
(3.17) RHome%o(JV[l, OC) =Cy @ CZ[“‘]-])

where U = {t;; € C;Im #;; > 0} and Z = {¢1; € C;Im ¢, < 0}.

Combining (3.9), Lemma 3.1 and Lemma 3.2, we obtain the

following result.

Proposition 3.3. Let W; (j = 0,1,2) denote the following subset
of Y(0):

(3.18)  Wo = {(t11, 22) € Y(0); Im t11,Im 222 > O}

(3.19) Wy = {{t11,122) € Y(0);Im #13 < 0,Im 255 > O}
{(#11, t22) € Y(0);Im ¢33 > 0,Im #53 < 0}

(3.20) Wy = {(t11,%22) € Y(0);Im 131, Im 2 < 0},

Then we find

(3.21) S ly(0)® Cwy ® Cwy[-1] & Cuwy[-2].
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To state Theorem 3.4 below, we introduce the following nota-

tions:

(3.22) Xy ={t € X;Imt is positive definite }
(3.23) Xp = {t € X;Im t has exactly one positive eigenvalue }

(3.24) X. ={t e X;Imt is negative semi-definite }.

We now obtain the following Theorem 3.4 from Proposition 3.3
combined with the local constancy of HY(S), noting that X, and

X_ are simply connected.
Theorem 3.4.
(i) H(S) = Cx,.
(i) H1(S8) is a locally constant sheaf of rank 1 on Xo.
(i) H*{S) = Cx_.

As an immediate consequence of Theorem 3.4 combined with

(3.9) and the fact

EX‘C2 (CX_ ny(z}, CX() nY(m))
=E:{t2(Cxony(z), CX.mY(z))

=Ext*(Cx_ny(z), Cxynviz) = 0

we obtain the following result.

Proposition 3.5.
R Hom(K(z), Oy(zy) = Cx,nv(z) ® Cxypav(a)[~11 @ Cx_ayr(z)[~2]

holds for any =z € C.



Using Theorem 3.4 we can further determine the structure of
the complex S as in Theorem 3.7 below. In view of Theorem 2.1, we
first note that & has the form p“ig , where p is the projection from X
to the space V' of real 2 x 2 symmetric matrices s by ¢ +— Im £, and &
is a complex on V. Let G denote the inverse Fourier-Sato transform
of § (in the sense of [KS] §5.1). Identifying V* with the space of
symmetric matrices ¢ via the pairing tros, we find the following

(3.25) and (3.26) from Theorem 2.1 and [KS}, Theorem 10.1.1:
{3.25) Ch{g) C T’S“:V* U T V™,
where S} = {0 € V*; 0 has rapk 1 and is positive

semi-definite },

(3.26) Gl 51 has locally constant cohomology groups.

Letting F denote Gy»\j0}, we have the following' distinguished tri-

angle:

(.27 R
: G — Gu®Cy
where {y denotes the germ of G at the origin 0.

Let C denote {s € V; s is positive-definite }. Then it follows
from Theorem 3.2 that S is isomorphic to C%f_ microlocally at a
generic point of the conormal bundle of 3. Hence 7 is isomorphic to
the inverse Fourier-Sato transform of Cgi microlocally at a generic
point of the conormal bundle of S3. Therefore F | st is a locally
constant sheaf of rank 2. Let W be a stalk of F | 51 and let M
denote the monodromy automorphism of W.

Now we have the following,.
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Lemma 3.86.

(i) The cohomologies of F and those of § are concentrated at the
degree 0.
(ii) Letting ¢ denote the injection: V*\{0} — V*, we find

G2 HY,,~LF.

(iii} F has a direct sum decomposition Fy @F_ so that M|z, = +id
and that F.u. is a locally constant sheaf of rank 1.

Proof. DBesides Cy defined earlier, let us define Cp and C_ as

follows:
(3.28) Cq = {s € V; s has the signature (3,1)}
(3.29) C_ = {s € V; s is negative definite }.

For a point p in C it follows from the definition of the Fourier-
Sato transform F* that (F"), = 0. It also follows from the definition
of G and Theorem 3.4 that Gy & (GM)p = §P = C, which we denote
by W'. In particular, the cohomologies of G is concentrated at the
degree 0. This proves (i).

Similarly, for p in Cy, we find

(3._30) (FM)p 2 Wi-1]
and
(3.31) (GM), & (S")p = C[~1].

Hence we obtain the following exact sequence:

(3.32) 0—Go— W — C —0.
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For p in C_, we obtain

(3.33) (FM)p= W kst W, where the indices 1 and 2
denote the degree of the complex,

(3:3¢) (6" =C[-2],

and hence

(335) 0—W =W ZSw_coo

The above exact sequence (3.35) implies that

(3.36)  Go is isomorphic to (t.7 F)o,

and hence

(3.37) ¢=HY“W.TLE,

proving (ii).

To prove (iii) we investigate the monodromy of

HY(Hom{IK, Hi\ =110, y(Ox)) lp-1(ac,\ 1oy
where p is the morphism Im : X — V and 9C, denotes the bound-

ary of C.
‘We first parametrize a loop in 8C:\{0} by

(338)  s(6) = (‘;‘jg ) (cosf, sinb) ¢ gm)

To perform the explicit computation of the monodromy, let us in-
troduce the following auxiliary functions h, (s, v € Z) following
(X1]:

exp(mi(pPtyy + 2uvtie + v?ta3)
(3.39)  hy, () = | 2migexp(mi(p?iyy + 2uvtis + v2ta0)
2wiv exp(mi{pPtyy + 2uvtis + viton)
Then we can easily verify
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{3.40) (expQj; — I)hy, =0for j =1,2 and for any (u,v),
(3.41) Rihy, =0for1=0,1,2 and for any (g, ),

(3.42) (exp Pi)hy,, = hupy, and (exp Po)hyy = hy py1.
(CE. [K2])

Let us further introduce the following subsets of Z>:

(3.43) H(0) = {(pt,v) € Z*%; —pusinf + v cos 8 > 0}

(3.44) Hy(0) = {(p+1,0) € Z% (i, v) € H(O)}

(345) Ha(8) = {(u,v +1) € Z% (p,v) € H()}.

We let 9(t) and @p(t) respectively denote 2o n)ez? uw(t) and
Y (uw)en(o) tuy. Both ¥(2) and @g(t) are well-defined and holomor-
phic on p~!(Cy). Furthermore (3.42) entails

(3.46) (exp P — Ipe(t) = Z B (2)
(u,w)e s (O\H(8)
and

(3.47)  (exp P, — I)wo(t)

= Z Py w(t) = Z By (t).
(e Ho(ONH(8) {p Y H{ON\Ha(8)
We can readily verify also

(348) (EX‘p Qj - I)‘Pﬂ(t) = 07 J =1, 2
and

(3.49) Rypp(t) =0, [=0,1,2.
Since there exists a constant C > 0 for which

(3.50) (pcosb + vsind)® > C(p? +v?)
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holds for (1,) € (i (6)\E(6)) U (Ha(6)\E(8)) U (H(6)\Ha(5)),
{exp P; — I)pp(t) is holomorphic on a neighborhood of the point
p(8) = is(8). Hence 1q(t) and 9(t) respectively determine elements
in ’Hf‘{\p_l ( C+)(S)p(g), and (pgft) is locally constant with respect to
8. Since the components of ¥(¢) other than the first one are zero
and those of g(t) are singular at p(f) (cf.[K3]), they are linearly
independent in Fprpy. Similarly ¢o(2) + ¢ (t) = 'ﬁ(t) in

HLL ( c+)(O)P(°)' Thus the monodromy on H%/\c_{_ (8) has eigen-

X\p
values 1 and —1, and hence the monodromy M of F | st has eigen-

value —1.

This completes the proof of Lemma 3.6.

Since S is the Fourier-Sato transform of G , the fact that § =
p~18 entails the following Theorem 3.7. There we identify X* with
the space of symmetric 2 X 2 matrices 7 by the pairing Retrir.

Theorem 3.7. The complex § has the form C§. @ 4,F[—1], where

(3.81) S* ={reX*;det T==0,Re7=0,Im 7 is
negative semi-definite },

(3.52) 1 is the injection Z < X, with Z being {t € X; Im ¢
has exactly one positive eigenvalue },

and

{3.53) Fis a locally constant sheaf of rank 1 on Z with

monodromy —1.
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§4. Imaginary transformation.

One crucial point in the results given in the preceding section is that
the equation determined by the complex K determines its solution
by its local properties. To exemplify this fact concretely, we show
how Jacobi’s relation between the theta-zerovalue and its imaginary
transform follows from the local property of the theta-zerovalue, i.e.,
the fact that the theta-zerovalue satisfies the equation on X .

Let A denote dett(t € X). Then A never vanishes on X (see,
e.g.K%), p.90) and hence # is invertible there. Furthermore, using
the simply-connectedness of X, we have a single-valued analytic
function VA on X, by determining its value at tgd=:r ( \/8:_1‘ \/%)
to be v/~1. Let ¢ denote the automorphism of X given by ¢
~t~1. Then for P in M(3 x 3;Dx.,) we denote by P the operator
(p* P} defined so that the relation

(4.1) (" P)f(e(2))) = (Pf)e(=))

may hold for any f, a three-vector of holomorphic functions on X.

Now, denoting by T the following matrix

va 0 0
0 VAt VA,
0 VAtn VAt

we find the following relations:

(4.1) TPT =~Q;, j=1,2
(4.2) TIQ T =PF;, j=1.2,
(4.3) T='RyT = AR,
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(44) 7! ﬁlT = A(tuR; + t]_zRg),
(45) TulﬁgT = A(tlgRg_ =+ tggRg).

These relations entail that

(ﬁ(so(t))
' o
0

satisfies the same equations as

(%)
0
0

satisfles. Here we have used the fact that exp(T_lﬁT) =
T~ (exp P)T holds for any P in M(3x3;Dxy).
Hence Theorem 3.4(i) implies that

(r%so(t))) ( ﬁ(t))
(4.2) Tt 0 =C| 0
0 0

should hold with some constant C'. Since @(tg) = tp holds, we

evaluate both sides of (4.2) at t; = ( ! {'}_ 1 \/(-):1-) and find that

C =1/+/A(to) = 1/v/—1. Thus we have deduced Jacobi’s relation

from local properties of the theta~zerovalue.
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