Advanced Studies in Pure Mathematics 6, 1985 Algebraic Groups and Related Topics pp. 67-81

The Universal Verma Module and the b-Function

Masaki Kashiwara

§ 0. Introduction

In this paper, we study the universal Verma module and apply this to the determination of the *b*-functions of the invariants on the flag manifold.

Let $\mathfrak g$ be a semi-simple Lie algebra over $\mathbb C$, $\mathfrak b$ a Borel subalgebra of $\mathfrak g$, $\mathfrak n$ the nilpotent radical of $\mathfrak b$ and $\mathfrak h$ a Cartan subalgebra in $\mathfrak b$. Let V be a finite-dimensional irreducible representation of $\mathfrak g$ and let v be a lowest weight vector of V. Then there exists $f \in U(\mathfrak h)$ and a commutative diagram

$$(0.1) U(\mathfrak{g}) \underset{U(\mathfrak{g})}{\otimes} \mathbb{C} \xrightarrow{U(\mathfrak{g})} U(\mathfrak{g}) \underset{U(\mathfrak{g})}{\otimes} V$$

$$\downarrow U(\mathfrak{g}) \underset{U(\mathfrak{g})}{\otimes} \mathbb{C}$$

where g is given by the n-linear morphism from V to C sending u to 1. Note that $\operatorname{End}_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{n})} \mathbb{C}) \cong U(\mathfrak{h})$.

The first problem is to determine the minimal f with such a property. In order to state the answer to this problem, we shall introduce further notations. Let Δ be the root system for $(\mathfrak{g}, \mathfrak{h})$. For $\alpha \in \Delta$, let h_{α} be the coroot of α . Let Δ ⁺ be the set of positive roots given by \mathfrak{h} and ρ the half-sum of positive roots. Let $-\mu$ be the lowest weight of V.

Theorem . There exists a commutative diagram (0.1), with

$$f = \prod_{\alpha \in \Delta^+} (h_\alpha + h_\alpha(\rho) + 1, h_\alpha(\mu))$$

where $(x, n) = x(x+1) \cdots (x+n-1)$. Conversely for any commutative diagram (0.1), f is a multiple of $\prod_{\alpha \in J^+} (h_\alpha + h_\alpha(\rho) + 1, h_\alpha(\mu))$.

By using this theorem, we can calculate the b-functions on the flag manifold. Let G be a simply connected algebraic group with Lie algebra $\mathfrak g$, and let B and N be the subgroup of G with Lie algebras $\mathfrak b$ and $\mathfrak n$, respectively, and let B_- be the opposite Borel subgroup.

Then the semi-group of $B_{-} \times B$ -semi-invariants f on G, i.e. regular functions f on G which satisfies $f(b'gb) = \chi'(b')\chi(b)f(g)$ for $b' \in B_-$, $g \in G$, $h \in B$ with characters χ' and χ of B and B, is parametrized by the set P_+ of dominant integral weights. More precisely, for $\lambda \in P_+$, let V_2 be a finite-dimensional irreducible representation of G with highest weight λ , v_1 a highest weight vector of V_2 and v_2 , a lowest weight vector of the dual V_{+}^{*} of V_{+} . We normalize them such that $\langle v_{+}, v_{-1} \rangle = 1$. Then, the regular function f^{λ} given by

$$f^{\lambda}(g) = \langle g v_{\lambda}, v_{-\lambda} \rangle$$

is a semi-invariant, and any semi-invariant is a constant multiple of some f^{λ} . We have

$$f^{\lambda+\lambda'}(g)=f^{\lambda}(g)f^{\lambda'}(g).$$

Theorem. For any dominant integral weight μ , we can find a differential operator Pu on G such that

$$P_{\mu}f^{\lambda+\mu} = b_{\mu}(\lambda)f^{\lambda}$$
 for any λ .

Here

$$b_{\mu}(\lambda) = \prod_{\alpha \in A^+} (h_{\alpha}(\lambda + \rho), h_{\alpha}(\mu)).$$

Notations

: the set of non-negative integers. \mathbb{Z} .

: the set of positive integers. \mathbb{Z}_{++}

: a semi-simple Lie algebra over C. g

Ъ : a Borel subalgebra of g.

: [6, 6] 11

ĥ : a Cartan subalgebra of b.

: the opposite Borel subalgebra of $\mathfrak b$ such that $\mathfrak b_- \cap \mathfrak b = \mathfrak h$. Б

 $: [6_{-}, 6_{-}]$ \mathfrak{n}_{-}

: the root system of $(\mathfrak{g}, \mathfrak{h})$. Δ

: the set of positive roots given by b 1+

: the coroot of $\alpha \in \Delta$ h_{α}

: the reflection $\lambda \mapsto \lambda - h_{\alpha}(\lambda)\alpha$. : the Weyl group of (Δ, \mathfrak{h}^*)

 $\begin{array}{l} Q_{+}(\Delta): \; \sum_{\alpha \in \Delta +} \mathbb{Z}_{+} \alpha \\ Q(\Delta) \; : \; \sum_{\alpha \in \Delta} \mathbb{Z} \alpha \end{array}$

 P_+ : $\{\lambda \in h^*; h_{\alpha}(\lambda) \in \mathbb{Z}_+ \text{ for any } \alpha \in \Delta^+\}.$

 ρ : $(\sum_{\alpha \in A} \alpha)/2$

 $S(\Delta^+)$: the set of simple roots of Δ^+ .

U(*): the universal enveloping algebra

 $U_{j}(g) : U_{0}(g) = \mathbb{C}, U_{j}(g) = U_{j-1}(g)g + U_{j-1}(g)$

 $R: S(\mathfrak{h}) = U(\mathfrak{h})$

c: the canonical homomorphism $\mathfrak{h} \rightarrow R$

 $U_R(*): R \otimes_{\mathbf{C}} U(*)$

 $R_{c+\mu}$: for $\mu \in \mathfrak{h}^*$, the $U_R(\mathfrak{b})$ -module $U_R(\mathfrak{b})/(U_R(\mathfrak{b})\mathfrak{n} + \sum_{h \in \mathfrak{h}} U_R(\mathfrak{b})(h - c(h) - \mu(h)))$

 1_{c+n} : the canonical generator of R_{c+n}

 \mathbb{C}_{λ} : for $\lambda \in \mathfrak{h}^*$, the $U(\mathfrak{b})$ -module $U(\mathfrak{b})/(U(\mathfrak{b})\mathfrak{n} + \sum_{h \in \mathfrak{h}} U(\mathfrak{b})(h - \lambda(h)))$

 $\mathcal{Z}(\mathfrak{g})$: the center of $U(\mathfrak{g})$

 χ_{λ} : the central character $\mathscr{Z}(\mathfrak{g}) \rightarrow \mathbb{C}$ of $U(\mathfrak{g}) \otimes_{U(\mathfrak{g})} \mathbb{C}_{\lambda-\rho}$; $\chi_{\lambda} = \chi_{w\lambda}$ for $w \in W$

 V_{λ} : for $\lambda \in P_{+}$, a finite dimensional irreducible representation of g with highest weight λ

 v_{λ} : a highest weight vector of V_{λ} : a lowest weight vector of V_{λ}^*

 $(x, m) : x(x+1) \cdot \cdot \cdot (x+m-1)$

 G, B, N, B_-, N_-, T : the group with g, b, n, b_, n_ and h as their Lie algebras.

§1. The universal Verma module

For a ring R and a Lie algebra $\mathfrak a$ over $\mathbb C$, we write $U_R(\mathfrak a)$ for $R\otimes_{\mathbb C} U(\mathfrak a)=U(R\otimes_{\mathbb C}\mathfrak a)$. Hereafter we take $S(\mathfrak h)=U(\mathfrak h)$ for R, where $\mathfrak h$ is a Cartan subalgebra of a semi-simple Lie algebra $\mathfrak g$. Let c be the canonical injection from $\mathfrak h$ into R. We define R_c by $R_c=U_R(\mathfrak h)/U_R(\mathfrak h)\mathfrak n+\sum_{\mathfrak h\in\mathfrak h}U_R(\mathfrak h)(h-c(h))$. Then R_c is isomorphic to R as R-module. We write 1_c for the canonical generator of R_c .

Definition 1.1. We call $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_c$ the universal Verma module.

As a g-module, $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} R_c$ is isomorphic to $U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} \mathbb{C}$. For $\lambda \in \mathfrak{h}^*$, let \mathbb{C}_{λ} be the $U(\mathfrak{h})$ -module given by $U(\mathfrak{h})/(U(\mathfrak{h})\mathfrak{n} + \sum_{h \in \mathfrak{h}} U(\mathfrak{h})(h-\lambda(h)))$. We regard \mathbb{C}_{λ} also as an R-module by $R \longrightarrow U(\mathfrak{h})$. Then $\mathbb{C}_{\lambda} \otimes_R (U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} R_c)$ is nothing but the Verma module with highest weight λ . Note that the universal Verma module is, as an R-module, isomorphic to $R \otimes_{\mathbb{C}} U(\mathfrak{n}_-)$, and in particular it is a free R-module.

For $\mu \in \mathfrak{h}^*$, we write $R_{c+\mu}$ for the $U_R(\mathfrak{h})$ -module $\mathbb{C}_{\mu} \otimes_{\mathbb{C}} R_c$. The following lemma is almost obvious.

Lemma 1.2. $\operatorname{End}_{U_R(\mathfrak{g})}(U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} R_c) = R.$

Now, we choose a non-degenerate W-invariant symmetric bilinear

form (,) on \mathfrak{h}^* .

Lemma 1.3. For $\mu \in \mathfrak{h}^*$, let f_n be the function on \mathfrak{h}^* given by

$$f_{\mu}(\lambda) = (\lambda + \mu + \rho, \ \lambda + \mu + \rho) - (\lambda + \rho, \ \lambda + \rho)$$
$$= 2(\mu, \ \lambda + \rho) + (\mu, \ \mu).$$

and regard this as an element of R.

Then we have

$$f_{{}_{\!\mathit{I}}}\operatorname{Ext}_{U_R(\mathfrak{g})}^{j}(U_R(\mathfrak{g}) \underset{U_R(\mathfrak{g})}{\bigotimes} R_c, \ U_R(\mathfrak{g}) \underset{U_R(\mathfrak{g})}{\bigotimes} R_{c+{}_{\!\mathit{I}}}) \!=\! 0 \qquad \textit{for any } j.$$

Proof. The Laplacian $\Delta \in \mathscr{Z}(\mathfrak{g})$ acts on $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} R_c$ by the multiplication of $(\lambda + \rho, \lambda + \rho)$ and on $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} R_{c+\mu}$ by $(\lambda + \mu + \rho, \lambda + \mu + \rho)$. Hence $(\lambda + \mu + \rho, \lambda + \mu + \rho) - (\lambda + \rho, \lambda + \rho)$ annihilates Ext^j . O.E.D.

Now, let F be a finite-dimensional \mathfrak{b} -module generated by a weight vector u of a weight $\lambda_0 \in \mathfrak{h}^*$. Hence \mathfrak{h} acts semisimply on F. We shall choose a decreasing finite filtration $\{F^j\}$ of F by \mathfrak{b} -modules such that

$$(1.1) F^0 = F$$

(1.2)
$$F^{j}/F^{j+1}$$
 has a unique weight λ_{j} .

(1.3)
$$\lambda_j \neq \lambda_{j'} \quad \text{for } j \neq j'.$$

Therefore, we have $F^1 = \mathfrak{n}F$ and $F^0/F^1 \cong \mathbb{C}_{\lambda_0}$. Hence there exists an isomorphism

$$\varphi_1\colon\thinspace U_R(\mathfrak{g})\underset{U_R(\mathfrak{g})}{\bigotimes}R_{c+\lambda_0} \xrightarrow{\hspace*{1cm}\sim} U_R(\mathfrak{g})\underset{U_R(\mathfrak{g})}{\bigotimes}(R_c \underset{\mathbf{c}}{\bigotimes}F^{\mathfrak{g}}/F^{\mathfrak{g}}).$$

Now, we shall construct a commutative diagram

$$(1.4)_{j}: U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} R_{c+\lambda_{0}} \xrightarrow{\varphi_{j}} U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} (R_{c} \underset{\mathfrak{C}}{\bigotimes} F^{0}/F^{j})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

with $f_i \in R$, by the induction on j.

Assuming that $(1.4)_j$ has been already constructed $(j \ge 1)$, we shall construct $(1.4)_{j+1}$. We have an exact sequence

$$0 {\longrightarrow} U_R(\mathfrak{g}) \underset{U_R(\mathfrak{b})}{\bigotimes} (R_c \otimes F^j / F^{j+1}) {\longrightarrow} U_R(\mathfrak{g}) \underset{U_R(\mathfrak{b})}{\bigotimes} (R_c \otimes F^0 / F^{j+1}) {\longrightarrow}$$

$$\longrightarrow U_R(\mathfrak{g}) \underset{U_R(\mathfrak{b})}{\bigotimes} (R_c \otimes F^0/F^j) \longrightarrow 0.$$

This gives an exact sequence

$$\operatorname{Hom}_{U_{R}(\mathfrak{g})}(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} R_{c+\lambda_{0}}, \ U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} (R_{c} \otimes F^{0}/F^{j+1}))$$

$$\longrightarrow \operatorname{Hom}_{U_{R}(\mathfrak{g})}(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} R_{c+\lambda_{0}}, \ U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} (R_{c} \otimes F^{0}/F^{j}))$$

$$\stackrel{\delta}{\longrightarrow} \operatorname{Ext}^{1}_{U_{R}(\mathfrak{g})}(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} R_{c+\lambda_{0}}, \ U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} (R_{c} \otimes F^{j}/F^{j+1})).$$

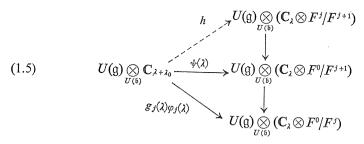
On the other hand, F^{j}/F^{j+1} is a direct sum of copies of $R_{c+\lambda_{j}}$. Therefore, by Lemma 1.3, we have

$$g_{j} \operatorname{Ext}^{1}_{U_{R}(\mathfrak{g})}(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} R_{c+\lambda_{0}}, \ U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} (R_{c} \otimes F^{j}/F^{j+1})) = 0$$

where $g_j \in R$ is given by $g_j(\lambda) = (\lambda + \lambda_j + \rho, \lambda + \lambda_j + \rho) - (\lambda + \lambda_0 + \rho, \lambda + \lambda_0 + \rho)$. Hence $g_j\delta(\varphi_j) = 0$, which shows that $g_j\varphi_j$ lifts to $\psi: U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} R_{c+\lambda_0} \to U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} (R_c \otimes F^0/F^{j+1})$.

If ψ is divisible by g_j , then φ_j itself lifts and we obtain $(1.4)_{j+1}$ with $f_{j+1} = f_j$.

Assume that ψ is not divisible by g_j . For $\lambda \in \mathfrak{h}^*$, let us denote by $\psi(\lambda)$ the specialization of ψ , i.e. $\mathbb{C}_{\lambda} \otimes_{\mathbb{R}} \psi$. Then, for a generic point λ of $g_j^{-1}(0)$, $\psi(\lambda) \neq 0$. Hence we obtain a diagram



Since $g_j(\lambda)=0$, we obtain a nonzero homomorphism $h\colon U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\mathbb{C}_{\lambda+\lambda_0}\to U(\mathfrak{g})\otimes_{U(\mathfrak{b})}(\mathbb{C}_{\lambda}\otimes F^j/F^{j+1})$. Since $U(\mathfrak{g})\otimes_{U(\mathfrak{b})}(\mathbb{C}_{\lambda}\otimes F^j/F^{j+1})$ is a direct sum of copies of $U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\mathbb{C}_{\lambda+\lambda_j}$, the central character of $U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\mathbb{C}_{\lambda+\lambda_0}$ and that of $U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\mathbb{C}_{\lambda+\lambda_j}$ must coincide. Hence there exists $w\in W$ such that $w(\lambda+\lambda_0+\rho)=\lambda+\lambda_j+\rho$. This shows that $w(\lambda+\lambda_0+\rho)=\lambda+\lambda_j+\rho$ holds for any $\lambda\in g_j^{-1}(0)$. Since $\lambda_j\neq\lambda_0$, $w\neq 1$. Since w fixes the hyperplane $(\lambda,\lambda_j-\lambda_0)=0$, w must be the reflection s_α for some $\alpha\in \Delta^+$. Hence we obtain

$$0 = \lambda + \lambda_j + \rho - s_\alpha(\lambda + \lambda_0 + \rho) = \lambda_j - \lambda_0 + h_\alpha(\lambda + \lambda_0 + \rho)\alpha.$$

This implies that $\lambda_j = \lambda_0 + k\alpha$ for some $k \in \mathbb{C}$. Since $\lambda_j - \lambda_0 \in Q_+(\Delta) \setminus \{0\}$, k is a strictly positive integer. Moreover $h_{\alpha}(\lambda + \lambda_0 + \rho) + k = 0$ holds on $g_j^{-1}(0)$. Hence g_j is a constant multiple of $h_{\alpha}(\lambda + \lambda_0 + \rho) + k$.

Summing up, we obtain

Lemma 1.4. (i) If λ_j is not of the form $\lambda_0 + k\alpha$ with $\alpha \in \mathcal{L}_+$, $k \in \mathbb{Z}_{++}$, then φ_j lifts to φ_{j+1} : $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} R_{c+\lambda_0} \rightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} (R_c \otimes F^0/F^{j+1})$ (ii) If $\lambda_j = \lambda_0 + k\alpha$ for some $\alpha \in \mathcal{L}^+$ and $k \in \mathbb{Z}_{++}$, then $(c(h_\alpha) + h_\alpha(\lambda_0 + \rho) + k)\varphi_j$ lifts to φ_{j+1} .

Repeating this procedure we obtain

Theorem 1.5. There exists a commutative diagram

Here $f = \prod_{(\alpha, k) \in \mathfrak{S}(F)} (h_{\alpha} + h_{\alpha}(\lambda_0 + \rho) + k)$ and $\mathfrak{S}(F)$ is the set of pairs (α, k) of positive root α and a positive integer k such that $\lambda_0 + k\alpha$ is a weight of F.

Example 1.6. We set $F_k = U(\mathfrak{h})/(U(\mathfrak{h})\mathfrak{h} + U(\mathfrak{h})\mathfrak{n}^k)$. Let K be the quotient field of R. Then for any k, there exists a unique

$$\varphi_k \colon U_K(\mathfrak{g}) \underset{U_R(\mathfrak{h})}{\bigotimes} R_c {\rightarrow} U_K(\mathfrak{g}) \underset{U_R(\mathfrak{h})}{\bigotimes} (R_c {\otimes} F_k)$$

such that the following diagram commutes

Hence, taking the projective limit, we obtain

$$\hat{\varphi}\colon U_{K}(\mathfrak{g}) \underset{U_{R}(\mathfrak{g})}{\bigotimes} R_{c} \to \varprojlim_{k} U_{K}(\mathfrak{g}) \underset{U_{R}(\mathfrak{g})}{\bigotimes} (R_{c} \otimes F_{k}).$$

When $g = sl_2$, we shall calculate $\hat{\varphi}$. Let us take the generator X_+ , X_- , h such that $[h, X_{\pm}] = \pm 2X_{\pm}$, $[X_+, X_-] = h$. Set $\lambda = c(h)$. We can write $P = \hat{\varphi}(1)$ in the following form

$$P = \sum_{j=0}^{\infty} a_j X_{-}^{j} \otimes X_{+}^{j} (1_c \otimes 1)$$

with $a_0 = 1$. Then

$$\begin{split} X_{+}P &= \sum a_{j}X_{+}X_{-}^{j} \otimes X_{+}^{j}(1_{c} \otimes 1) \\ &= \sum a_{j}X_{-}^{j} \otimes X_{+}^{j+1}(1_{e} \otimes 1) + \sum ja_{j}X_{-}^{j-1}(h-j+1) \otimes X_{+}^{j}(1_{c} \otimes 1) \\ &= \sum a_{j}X_{-}^{j} \otimes X_{+}^{j+1}(1_{c} \otimes 1) + \sum j(\lambda+j+1)a_{j}X_{-}^{j-1} \otimes X_{+}^{j}(1_{c} \otimes 1). \end{split}$$

Here we have used the relation $[X_+, X_-^j] = jX_-^{j-1}(h-j+1)$.

Hence we obtain the recursion formula

$$a_j = -\frac{1}{j(\lambda+j+1)} a_{j-1}$$
 for $j \ge 1$.

Solving this, we obtain

(1.7)
$$P = \sum_{j=0}^{\infty} \frac{(-1)^j}{j!(\lambda+2,j)} X_{-}^{j} \otimes X_{+}^{j}(1_c \otimes 1).$$

Let V_{μ}^* be a finite-dimensional irreducible representation of \mathfrak{g} with a lowest weight $-\mu$ and $v_{-\mu}$ a lowest weight vector. As well-known, $-\mu + k\alpha$ is a weight of V_{μ}^* if and only if $0 \le k \le h_{\alpha}(\mu)$. Hence Theorem 1.5 implies the following Theorem.

Theorem 1.7. There exists a homomorphism

$$\varphi_0 \colon U_R(\mathfrak{g}) \underset{H \not = (\mathfrak{h})}{\bigotimes} R_c \longrightarrow U_R(\mathfrak{g}) \underset{H \not= (\mathfrak{h})}{\bigotimes} (R_{c+\mu} \otimes V_{\mu}^*)$$

such that $g \circ \varphi_0 = \prod_{\alpha \in J^+} (h_\alpha + h_\alpha(\rho) + 1, h_\alpha(\mu))$, where $g \colon U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} (R_{c+\mu} \otimes V_{\mu}^*) \to U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} R_c$ is given by $g(1 \otimes 1_{c+\mu} \otimes v_{-\mu}) = 1 \otimes 1_c$.

Now, we shall show the converse.

Proposition 1.8. For any homomorphism

$$\varphi \colon \ U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} R_{c} \longrightarrow U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} (R_{c+\mu} \otimes V_{\mu}^{*}),$$

set $f = g \circ \varphi \in R$. Then f is a multiple of $\prod_{\alpha \in A^{+}} (h_{\alpha} + h_{\alpha}(\varphi) + 1, h_{\alpha}(\mu))$.

Proof. Note that $h_{\alpha}+h_{\alpha}(\rho)+k=c(h_{\alpha'}+h_{\alpha'}(\rho)+k')$ with $\alpha,\alpha'\in \Delta^+,k$, $k',c\in \mathbb{C}$ implies, $\alpha=\alpha',k=k'$. Hence we can construct another φ such that $g\circ\varphi$ is the greatest common divisor of f and $\prod (h_{\alpha}+h_{\alpha}(\rho)+1,h_{\alpha}(\mu))$. Therefore, we may assume from the beginning that f is a divisor of $\prod (h_{\alpha}+\rho(h_{\alpha})+1,h_{\alpha}(\mu))$.

Set $M = U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_{\mathfrak{c}+\mu} \otimes V_{\mu}^*) \cong U(\mathfrak{g}) \otimes_{U(\mathfrak{n})} V_{\mu}^*$ and let M_j be the image of $U_j(\mathfrak{g}) \otimes V_{\mu}^*$ in M. Then we can easily show

$$\operatorname{gr} M = \bigoplus M_j/M_{j-1} = (S(\mathfrak{g})/S(\mathfrak{g})\mathfrak{n}) \otimes V_{\mu}^*$$

as an n-module.

Now, $v = \varphi(1)$ is a non-zero element of M which is n-invariant. Let j be the smallest integer such that $v \in M_j$ and let \overline{v} be the image of v in M_j/M_{j-1} . Then \overline{v} is also n-invariant. By the Killing form we identify \mathfrak{g} and \mathfrak{g}^* . Then $S(\mathfrak{g})/S(\mathfrak{g})$ n is isomorphic to $\mathbb{C}[\mathfrak{b}]$, the polynomial ring of \mathfrak{b} . Hence we can regard \overline{v} as a V_{μ}^* -valued function on \mathfrak{b} , and we denote it Ψ . By the assumption, v has the form

$$v = f \otimes v_{-u} \mod U(\mathfrak{b}_{-})\mathfrak{n}_{-} \otimes \mathfrak{n} V_{u}^{*}$$
.

Hence $j \ge \deg f$ and we have either

(1.8)
$$j > \deg f$$
 and $\Psi | \mathfrak{h} = 0$

or

(1.9)
$$j = \deg f$$
 and $\Psi(h) = \overline{f}(h)v_{-u}$ for $h \in \mathfrak{h}$.

Here \bar{f} is the homogeneous part of f. Since $N\mathfrak{h}$ is an open dense subset of \mathfrak{h} , $\Psi | \mathfrak{h} = 0$ implies $\Psi = 0$. Hence the first case (1.8) does not occur and we have (1.9).

Let $S(\Delta^+)$ be the set of simple roots. For $\alpha \in \Delta$, let x_{α} be a root vector with root α . We normalize as $[x_{\alpha}, x_{-\alpha}] = h_{\alpha}$. We set

$$x_+ = \sum_{\alpha \in S(\Delta^+)} x_\alpha$$
 $x_- = \sum_{\alpha \in S(\Delta^+)} x_{-\alpha}$.

We take the element $h_0 \in \mathfrak{h}$ such that $h_0(\alpha) = 2$ for $\alpha \in S(\Delta^+)$. Then $h_0 = \sum_{\alpha \in \Delta^+} h_\alpha$. Now, we can show easily $[h_0, x_{\pm}] = \pm 2x_{\pm}$, $[x_+, x_-] = h_0$ and hence $\langle h_0, x_+, x_- \rangle_{\mathbb{C}}$ forms a Lie algebra isomorphic to sl_2 . We have

$$e^{tx_+}h_0 = h_0 - 2tx_+$$
.

Therefore, we obtain

$$\Psi(ah_0 - 2x_+) = \Psi(ae^{a^{-1}x_+}h_0) = e^{a^{-1}x_+}\Psi(ah_0)
= \overline{f}(ah_0)e^{a^{-1}x_+}v_{-\mu}
= \sum_{k>0} \frac{(a^{-1})^k}{k!} \overline{f}(ah_0)x_+^k v_{-\mu}.$$

The representation theory of sl_2 implies that $x_+^k v_{-\mu} \neq 0$ for $(0 \leq k \leq h_0(\mu))$ and $x_+^k v_{-\mu} = 0$ for $k > h_0(\mu)$. Since $\Psi(ah_0 - 2x_+)$ is a polynomial in a, $\overline{f}(ah_0)a^{-h_0(\mu)}$ is also a polynomial in a. Moreover $\overline{f}(h_0) \neq 0$ because \overline{f} is a

factor of $\prod h_{\alpha}^{h_{\alpha}(\mu)}$. This shows that

$$\deg f = \deg \overline{f} \ge h_0(\mu) = \sum_{\alpha \in A^+} h_\alpha(\mu).$$

Hence f is $\prod (h_{\alpha} + h_{\alpha}(\rho) + 1, h_{\alpha}(\mu))$ up to constant multiple. Q.E.D.

For a g-module V and a $\mathfrak b$ -module F, we have a canonical isomorphism

$$(1.10) U(\mathfrak{g}) \underset{U(\mathfrak{g})}{\otimes} (F \otimes V) \longrightarrow V \underset{\mathfrak{C}}{\otimes} (U(\mathfrak{g}) \underset{U(\mathfrak{g})}{\otimes} F)$$

by $1 \otimes (f \otimes v) \mapsto v \otimes (1 \otimes f)$ for $v \in V, f \in F$.

Similarly, we have

$$(1.11) U_R(\mathfrak{g}) \underset{U_R(\mathfrak{h})}{\otimes} (R_{\mathfrak{c}+\mu} \otimes V_{\mu}^*) \xrightarrow{\sim} V_{\mu}^* \underset{\mathfrak{c}}{\otimes} (U_R(\mathfrak{g}) \underset{U_R(\mathfrak{b})}{\otimes} R_{\mathfrak{c}+\mu}).$$

Therefore, we have

$$(1.12) \qquad \begin{array}{l} \operatorname{Hom}_{U_{R(\mathfrak{g})}}(U_{R}(\mathfrak{g}) \underset{U_{R(\mathfrak{b})}}{\otimes} R_{c}, \ U_{R}(\mathfrak{g}) \underset{U_{R(\mathfrak{b})}}{\otimes} (R_{c+\mu} \otimes V_{\mu}^{*})) \\ = \operatorname{Hom}_{U_{R(\mathfrak{g})}}(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c}, \ V_{\mu}^{*} \otimes (U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c+\mu})) \\ = \operatorname{Hom}_{U_{R(\mathfrak{g})}}(V_{\mu} \otimes (U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c}), \ U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c+\mu}) \\ = \operatorname{Hom}_{U_{R(\mathfrak{g})}}(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\otimes} (R_{c} \otimes V_{\mu}), \ U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c+\mu}). \end{array}$$

We choose a lowest weight vector $v_{-\mu}$ of V_{μ}^* and a highest weight vector v_{μ} of V_{μ} , normalized by $\langle v_{\mu}, v_{-\mu} \rangle = 1$. We define $g: U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} (R_{c+\mu} \otimes V_{\mu}^*) \rightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} R_c$ and $h: U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} R_{c+\mu} \rightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} (R_c \otimes V_{\mu})$ by $g(1 \otimes 1_{c+\mu} \otimes v_{-\mu}) = 1 \otimes 1_c$ and $h(1 \otimes 1_{c+\mu}) = 1 \otimes 1_c \otimes v_{\mu}$

Theorem 1.9. Assume that

$$\varphi \in \operatorname{Hom}_{U_R(\mathfrak{g})}(U_R(\mathfrak{g}) \underset{U_R(\mathfrak{h})}{\bigotimes} R_c, \ U_R(\mathfrak{g}) \underset{U_R(\mathfrak{h})}{\bigotimes} (R_{c+\mu} \otimes V_{\mu}^*))$$

and

$$\psi \in \mathrm{Hom}_{U_{R}(\mathfrak{g})}(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} (R_{c} \otimes V_{\mu}), \ U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} R_{c+\mu})$$

correspond by the isomorphism (1.12). Set $f=g \circ \varphi \in R$ and $f'=\psi \circ h \in R$. Then, we have

(1.13)
$$f' = \prod_{\alpha \in J^+} \frac{h_\alpha + h_\alpha(\rho)}{h_\alpha + h_\alpha(\rho + \mu)} f$$

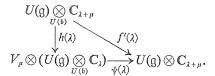
Proof. For $\lambda \in \mathfrak{h}^*$, we shall denote by $\varphi(\lambda)$, $\psi(\lambda)$, $h(\lambda)$ and $g(\lambda)$ their specializations at λ . Identifying $V_{\mu}^* \otimes (U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda+\mu})$ with $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (\mathbb{C}_{\lambda+\mu} \otimes V_{\mu}^*)$, etc., we have commutative diagrams

$$U(\mathfrak{g}) \underset{U(\mathfrak{g})}{\bigotimes} \mathbf{C}_{\lambda} \xrightarrow{\varphi(\lambda)} V_{\mu}^{*} \otimes (U(\mathfrak{g}) \underset{U(\mathfrak{g})}{\bigotimes} \mathbf{C}_{\lambda+\mu})$$

$$\downarrow g(\lambda) \qquad \qquad \downarrow g(\lambda)$$

$$U(\mathfrak{g}) \underset{U(\mathfrak{g})}{\bigotimes} \mathbf{C}_{\lambda}$$

and



Letting λ be a dominant integral weight and employing the homomorphism $U(\mathfrak{g}) \bigotimes_{U(\mathfrak{g})} \mathbb{C}_{\lambda} \rightarrow V_{\lambda}$, etc. we obtain

$$(1.14) V_{\lambda} \xrightarrow{\overline{\varphi}} V_{\mu}^* \otimes V_{\lambda+\mu}$$

$$f(\lambda) \qquad \downarrow_{\overline{g}}$$

and

$$(1.15) V_{\lambda+\mu} \xrightarrow{f'(\lambda)} V_{\lambda} \xrightarrow{\overline{j_b}} V_{\lambda+\mu}$$

Here \bar{g} and \bar{h} are characterized by $\bar{g}(v_{-\mu} \otimes v_{\lambda+\mu}) = v_{\lambda}$ and $\bar{h}(v_{\lambda+\mu}) = v_{\mu} \otimes v_{\lambda}$. Moreover, $\bar{\varphi}$ and $\bar{\psi}$ are related by

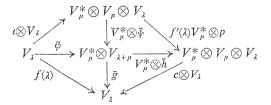
$$(c \otimes \mathrm{id}_{V_{\lambda+\mu}})(w \otimes \bar{\varphi}(v)) = \bar{\psi}(w \otimes v) \quad \text{for } v \in V_{\lambda} \quad \text{and } w \in V_{\mu},$$

where c is the contraction $V_{\mu} \otimes V_{\mu}^* \rightarrow \mathbb{C}$.

Now, $V_{\mu} \otimes V_{\lambda}$ contains $V_{\lambda+\mu}$ with multiplicity 1. Let us denote by p the projector form $V_{\mu} \otimes V_{\lambda}$ onto $\bar{h}(V_{\lambda+\mu})$, and regard this as an endomorphism of $V_{\mu} \otimes V_{\lambda}$. Then by (1.15), we have

$$\bar{h} \circ \bar{\psi} = f'(\lambda)p$$
.

On the other hand, we have a commutative diagram



where $\iota \colon \mathbb{C} \to V_n^* \otimes V_n$ is the canonical injection. Therefore we have

$$f(\lambda) \operatorname{id}_{V_{\lambda}} = f'(\lambda) (c \otimes V_{\lambda}) \circ (V_{\mu}^* \otimes p) \circ (c \otimes V_{\lambda}).$$

Taking the trace, we have

$$(1.16) f(\lambda) \dim V_{\lambda} = f'(\lambda) \operatorname{tr}_{V_{\lambda}} (c \otimes V_{\lambda}) \circ (V_{\mu}^{*} \otimes p) \circ (\iota \otimes V_{\lambda}).$$

In order to calculate the right-hand side, we shall take bases $\{w_j\}$ of V_i , $\{u_k\}$ of V_μ and their dual bases $\{w_j^*\}$ and $\{u_k^*\}$. Then

$$(c \otimes V_{\lambda}) \circ (V_{\mu}^* \otimes p) \circ (\iota \otimes V_{\lambda})(w_j)$$

$$= \sum_{k} (c \otimes V_{\lambda}) \circ (V_{\mu}^* \otimes p)(u_k^* \otimes u_k \otimes w_j)$$

$$= \sum_{k} (c \otimes V_{\lambda})(u_k^* \otimes p(u_k \otimes w_j)).$$

Hence we obtain

$$tr_{V_{\lambda}}(c \otimes V_{\lambda}) \circ (V_{\mu}^{*} \otimes p) \circ (\iota \otimes V_{\lambda})$$

$$= \sum_{j,k} \langle w_{j}^{*}, (c \otimes V_{\lambda}) (u_{k}^{*} \otimes p(u_{k} \otimes w_{j})) \rangle$$

$$= \sum_{j,k} \langle u_{k}^{*} \otimes w_{j}^{*}, p(u_{k} \otimes w_{j}) \rangle$$

$$= tr_{V_{\mu} \otimes V_{\lambda}} p = \dim V_{\lambda + \mu}.$$

By (1.16), we obtain

$$f(\lambda) \dim V_{\lambda} = f'(\lambda) \dim V_{\lambda+\mu}$$

Then the assertion follows from Weyl's dimension formula

$$\dim V_{\lambda} = \prod_{\alpha \in A^{+}} \frac{h_{\alpha}(\lambda + \rho)}{h_{\alpha}(\rho)}.$$
 Q.E.D.

Corollary 1.10. For a dominant integral weight μ , there exists a commutative diagram

$$U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{g})}{\bigotimes} R_{c+\mu}$$

$$\downarrow h \qquad \qquad \downarrow f$$

$$U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{g})}{\bigotimes} (R_{c} \otimes V_{\mu}) \xrightarrow{\psi} U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{g})}{\bigotimes} R_{c+\mu}$$

where
$$f = \prod_{\alpha \in A^+} (h_\alpha + h_\alpha(\rho), h_\alpha(\mu))$$
 and $h(1 \otimes 1_{c+\mu}) = 1 \otimes 1_c \otimes v_\mu$.

Remark 1.11. This corollary is also obtained either by a similar argument as the proof of Theorem 1.5 or directly from Theorem 1.7 by the following argument. First note that for any $U_p(\mathfrak{b})$ -module F, we have

$$\begin{split} \mathbf{R} \operatorname{Hom}_{U_R(\mathfrak{g})} \left(U_R(\mathfrak{g}) \underset{U_R(\mathfrak{b})}{\bigotimes} F, \ U_R(\mathfrak{g}) \right) \\ = U_R(\mathfrak{g}) \underset{U_R(\mathfrak{b})}{\bigotimes} \mathbf{R} \operatorname{Hom}_{U_R(\mathfrak{b})}(F, \ U_R(\mathfrak{b})). \end{split}$$

On the other hand, for a finite dimensional b-module V

R Hom_{$$U_R(\mathfrak{b})$$} $(R_c \otimes V, U_R(\mathfrak{b})) = R_{-c-2\rho} \otimes V^*[-\dim \mathfrak{b}]$

where $R_{-c-2\rho}$ is the $U_R(\mathfrak{b})$ -module R with weight $-c-2\rho$. Hence the commutative diagram

$$U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{h})}{\bigotimes} R_{c} \longrightarrow U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{h})}{\bigotimes} (R_{c+\mu} \otimes V_{\mu}^{*})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

with $f' = \prod_{\alpha} (h_{\alpha} + h_{\alpha}(\rho) + 1, h_{\alpha}(\mu))$ gives

$$U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} R_{-c-2\rho} \longleftarrow U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\bigotimes} (R_{-c-\mu-2\rho} \otimes V_{\mu})$$

$$\downarrow U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{g})}{\bigotimes} R_{-c-2\rho}.$$

Now, the isomorphism $h \mapsto -h - h(2\rho + \mu)$ gives Corollary 1.10.

§ 2. The *b*-functions of $B_{-} \times B$ -semi-invariants

For a dominant integral weight λ , let V_{λ} be an irreducible representation of $\mathfrak g$ with highest weight λ . Let v_{λ} be a highest weight vector of V_{λ} and $v_{-\lambda}$ the lowest weight vector of V_{λ}^* , normalized by $\langle v_{\lambda}, v_{-\lambda} \rangle = 1$.

Let f^2 be the regular function on G defined by

$$(2.1) f^{\lambda}(g) = \langle gv_{\lambda}, v_{-\lambda} \rangle.$$

Then f^{λ} is $B_{-} \times B$ -semi-invariant such that

(2.2)
$$f^{\lambda}(b'gb) = \chi_{\lambda}^{-}(b')\chi_{\lambda}^{+}(b)f^{\lambda}(g)$$
 for $g \in G, b' \in B_{-}$ and $b \in B_{+}$

where χ_{λ}^{\pm} is the character of B and B_{-} such that

$$\chi_i^{\pm}(e^h) = e^{\lambda(h)}$$
 for $h \in \mathfrak{h}$.

Moreover we have

(2.3)
$$f^{\lambda}(e) = 1.$$

Note that any $B_- \times B$ -semi-invariant with character $\chi_{\lambda}^- \otimes \chi_{\lambda}$ is a constant multiple of f^{λ} and any $B_- \times B$ -semi-invariant has a character $\chi_{\lambda}^- \otimes \chi_{\lambda}$ for some $\lambda \in P^+$. This follows from the well-known formula

$$\mathcal{O}(G) = \bigoplus_{i \in P} V_i^* \otimes V_i$$
.

In particular, we have

$$(2.4) f^{\lambda+\lambda'}(g) = f^{\lambda}(g)f^{\lambda'}(g).$$

Theorem 2.1. For any dominant integral weight μ , there exists a differential operator P_u such that

(2.5)
$$P_{\mu}f^{\lambda+\mu} = b_{\mu}(\lambda)f^{\lambda} \quad \text{for any } \lambda.$$

Here $b_{\mu}(\lambda) = \prod_{\alpha \in \Delta^{+}} (h_{\alpha}(\lambda + \rho), h_{\alpha}(\mu)).$

Proof. Let us denote by \mathcal{D} the sheaf of differential operators on G. Then the right-action of G on itself gives a homomorphism $R: U(\mathfrak{g}) \rightarrow \mathcal{D}(G)$. In particular, $R(U(\mathfrak{g}))$ is the set of left invariant differential operators on G.

By Corollary 1.10, there exists an n-invariant element P of $V_{\mu}^* \otimes (U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} R_{c+\mu})$ with weight c, whose coefficient of $v_{-\mu}$ is $\prod_{\alpha \in J_+} (c(h_\alpha) + h_\alpha(\rho), h_\alpha(\mu))$. Hence P is written in the following form

$$P = \sum_{j=0}^{N} v_{j} \otimes P_{j} \otimes 1_{c+\mu}$$

where

(2.6)
$$v_0 = v_{-\mu}, \quad P_0 = \prod_{\alpha \in J^+} (h_\alpha + h_\alpha(\rho - \mu), h_\alpha(\mu))$$

and

$$(2.7) v_j \in \mathfrak{n} V_{\mu}^*, \quad P_j \in U(\mathfrak{b}_{-})\mathfrak{n}_{-} \quad \text{for } j \geq 1.$$

We shall define the differential operator P_{μ} on G by

$$(2.8) (P_{\mu}u)(g) = \sum_{j} \langle v_{\mu}. gv_{j} \rangle (R(P_{j})u)(g).$$

Lemma 2.2. For any $v \in \mathbb{N}$, we have

$$[R(y), P_{u}] \in \mathcal{D}(G)R(\mathfrak{n}).$$

Proof. We have $[R(y), \langle v_u, gv_i \rangle] = \langle v_u, gyv_i \rangle$. Hence we have

$$([R(y), P_{\mu}]u)(g) = \sum_{j} \langle g^{-1}v_{\mu}, yv_{j} \rangle (R(P_{j})u)(g) + \sum_{j} \langle g^{-1}v_{\mu}, v_{j} \rangle (R([y, P_{j}])u)(g).$$

Since $\sum v_i \otimes P_i \otimes 1_{c+u}$ is n-invariant, we have

$$\sum_{i} y v_{i} \otimes P_{j} \otimes 1_{c+\mu} + \sum_{i} v_{j} \otimes [y, P_{j}] \otimes 1_{c+\mu} = 0$$

in

$$V_{\mu}^* \otimes U_R(\mathfrak{g}) \underset{U_R(\mathfrak{h})}{\bigotimes} R_{\mathfrak{e}+\mu} = V_{\mu}^* \otimes (U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{n}).$$

Therefore we can write, as the identity in $V_{\mu}^* \otimes_{\mathbf{c}} U(\mathfrak{g})$,

$$\sum_{i} y v_{i} \otimes P_{i} + \sum_{j} v_{j} \otimes [y, P_{j}] = \sum_{j} w_{k} \otimes S_{k}$$

with $w_k \in V_{\mu}^*$ and $S_k \in U(\mathfrak{g})\mathfrak{n}$. This shows

$$([R(y), P_{\mu}]u)(g) = \sum_{k} \langle g^{-1}v_{\mu}, w_{k} \rangle (R(S_{k})u)(g).$$

Since $R(S_k) \in \mathcal{D}(G)R(\mathfrak{n})$, we have the desired result.

O.E.D.

By this lemma, we have for $y \in n$

$$R(y)P_{\mu}f^{\lambda+\mu} = [R(y), P_{\mu}]f^{\lambda+\mu} + P_{\mu}R(y)f^{\lambda+\mu} = 0$$

because $f^{\lambda+\mu}$ is right invariant by N. Therefore $P_{\mu}f^{\lambda+\mu}$ is also right N-invariant. Since B_{-} N is an open dense subset of G, it is sufficient to show (2.5) on B_{-} . Now for $g \in B_{-}$, we have

$$(P_{\mu}f^{\lambda+\mu})(g) = \sum_{j} \langle v_{\mu}, gv_{j} \rangle (R(P_{j})f^{\lambda+\mu})(g).$$

Note that all P_j belongs to $U(\mathfrak{b}_-)$ and $P_j \in U(\mathfrak{b}_-)\mathfrak{n}_-$ for $j\neq 0$. Since $f^{\lambda+\mu}(n_-h)=f^{\lambda+\mu}(hn_-)=h^{\lambda+\mu}$ for $h\in T$ and $n_-\in N_-$, $f^{\lambda+\mu}|_{B_-}$ is right N_- invariant. This shows $R(P_j)f^{\lambda+\mu}|_{B_-}=0$ for $j\neq 0$. It is easy to see for $g\in B_-$

$$R(P_0)f^{\lambda+\mu}(g) = \prod_{\alpha} (h_{\alpha}(\lambda+\mu) + h_{\alpha}(\rho-\mu), h_{\alpha}(\mu))f^{\lambda+\mu}$$
$$= b_{\mu}(\lambda)f^{\lambda+\mu}$$

and $\langle v_{\mu}, gv_{0}\rangle = 1/f^{\mu}$.

This completes the proof of Theorem 2.1.

Remark 2.3. We can show $b_{\mu}(\lambda)$ in Theorem 2.1 is the best possible one. This follows from the similar argument as Proposition 1.8, or we can use the result in [3]. In fact if w_0 is the longest element of W, then $T^*_{B_-w_0B}G$ is a good Lagrangian variety in the sense in [3], which is equivalent to saying that n is a prehomogeneous vector space over \mathfrak{b} . Hence we can show the degree of the local b-function is $\sum_{\alpha\in \mathcal{A}_+}h_\alpha(\mu)$.

Bibliography

- [1] Bernstein, I. N., Gelfand, I. M. and Gelfand, S. I., Differential operators on the base affine space and a study of g-modules, Proc. of the Summer School on Group Representations, Bolyai János Mathematical Society, Budapest, (1971), 21-64.
- [2] Verma, D. N., Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc., 74 (1968), 160-166.
- [3] Sato, M., Kashiwara, M., Kimura, T. and Oshima, T., Microlocal analysis of prehomogeneous vector spaces, Invent. Math., 62 (1980), 117-179.

Research Institute for Mathematical Sciences Kyoto University Kyoto 606, Japan