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The Universal Verma Module and the b-Function

Masaki Kashiwara

§0. Introduction

In this paper, we study the universal Verma module and apply this
to the determination of the b-functions of the invariants on the flag mani-
fold.

Let g be a semi-simple Lie algebra over C, b a Borel subalgebra of g,
n the nilpotent radical of b and § a Cartan subalgebra in . Let Vbea
finite-dimensional irreducible representation of g and let v be a lowest
weight vector of V. Then there exists f ¢ U(§) and a commutative diagram

U@ QRC ——> U@V
U(n) TU(n)
0.1 f e
U@®C
where g is given by the n-linear morphism from ¥ to C sending u to 1.
Note that Endy, (U(8) Quw C) = UH).
The first problem is to determine the minimal f/ with such a property.
In order to state the answer to this problem, we shall introduce further
notations. Let 4 be the root system for (g, §). For a e 4, let h, be the
coroot of @. Let 4* be the set of positive roots given by b and p the
half-sum of positive roots. Let — u be the lowest weight of V.

Theorem . There exists a commutative diagram (0.1), with

f= a5+ (ha+h o)+ 1, h (1)

where (x, m)=x(x-+1)---(x+n—1). Conversely for any commutative
diagram (0.1), f is a multiple of [].cs+(he+h(0)+ 1, h(1)).

By using this theorem, we can calculate the b-functions on the flag
manifold. Let G be a simply connected algebraic group with Lie algebra
g, and let B and N be the subgroup of G with Lie algebras b and 1, respec-
tively, and let B_ be the opposite Borel subgroup.
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Then the semi-group of B_ X B-semi-invariants f on G, i.e. regular
functions f on G which satisfies f(b'gh)=x"(b")X(b)f(g) for b’ e B_, ge G,
b e B with characters X’ and % of B_ and B, is parametrized by the set P,
of dominant integral weights. More precisely, for 1¢ P, let V, be a
finite-dimensional irreducible representation of G with highest weight 2,
v, a highest weight vector of ¥, and v_; a lowest weight vector of the dual
V¥ of V,. We normalize them such that (v, v_;y=1. Then, the regular
function f* given by

FH(g)=(gv, v_2)

is a semi-invariant, and any semi-invariant is a constant multiple of some
% We have

@) =) ()

Theorem. For any dominant integral weight p, we can find a differ-
ential operator P, on G such that

P, frre=b,(2)f Jor any 2.
Here :

b= TI. (h.(2+ ), ha(p2))-

Notations

Z.. : the set of non-negative integers.
Z.. : the set of positive integers.

g : a semi-simple Lie algebra over C.
b : a Borel subalgebra of g.

1

: [b, ]
i : a Cartan subalgebra of b.
b : the opposite Borel subalgebra of b such that b_Nb=}.
n_ |
4 : the root system of (g, §).
4+ : the set of positive roots given by b
h, : the coroot of w e 4
S, : the reflection 22—, (e,

W . the Weyl group of (4, §™)

Q+(A) : ZaGA+Z+“

O : D iaesle

P, :{xel*; h()eZ, forany aedt}.
4 P ()2
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S(4%) : the set of simple roots of 4+.

U(x) : the universal enveloping algebra

U@ : U@=C, Uy@)=U, @3+ U;_,g)

R SH=U®H)

c : the canonical homomorphism §—R

Ui(x) 1 R U((%)

R.., :for pelh*, the Ug(b)-module Upb)/(Uz(0O)n+ > ,ey Un(b) (h—
c(h)— (1))

I.., : the canonical generator of R,.,

C, : for 2ebh*, the U(b)-module UD)/(UG)N+ 3, UOA—2(H)))

Z(g) : the center of U(g)

% : the central character Z(g)—C of U(g)®y,w Ci,; Xy=X,, forwe
w

V, : for 2¢ P,, a finite dimensional irreducible representation of g
with highest weight 2

v, : a highest weight vector of V,

v_; : alowest weight vector of V¥

Co,m) @ x(x4-1) - (x+m—1)
G, B,N,B_, N_, T: the group with g, b, 1, b_, n_ and § as their Lie alge-
bras.

§1. The universal Verma module

For a ring R and a Lie algebra a over C, we write Ug(a) for R®U(q)
=U(R®¢a). Hereafter we take S(§)==U(§) for R, where § is a Cartan
subalgebra of a semi-simple Lie algebra g. Let ¢ be the canonical injection
from §) into R. We define R, by R, = U,(0)/ U (0)n+ >, ¢ Un(0)(h— c(h)).
Then R, is isomorphic to R as R-module. We write 1, for the canonical
generator of R,.

Definition 1.1.  We call Uz(Q) @y, R, the universal Verma module.

As a g-module, Ux(g) ®y,@ R, is isomorphic to U(g) ®y, C. For
2ebh*, let C; be the U(b)-module given by U(0)/(UGn+ D], e UG A—
A(h))). We regard C; also as an R-module by R=—U(b). Then C,®,
(Un(8) Ry re R.) is nothing but the Verma module with highest weight .
Note that the universal Verma module is, as an R-module, isomorphic to
R®¢U(n.), and in particular it is a free R-module.

For p e §*, we write R,,, for the Ug(b)-module C,®¢R,.

The following lemma is almost obvious.

Lemma 1.2. Endy,(Ux() ®y,mR.)=R.

Now, we choose a non-degenerate W-invariant symmetric bilinear
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form (,) on b*.

Lemma 1.3. For p e §*, let f, be the function on h* given by

=2y, 2-+p)+ (s ).

and regard this as an element of R.
Then we have

fu EXt{/z{.(g) (UR(Q) @ -Rc'ﬂ UR(Q) @ *Rcﬂz):O fOI' any ]
Ur®) Ur(b)

Proof. The Laplacian 4 e Z(g) acts on Ux(@)®y,»R. by the
multiplication of (1-+p, 2+ p) and on Ux(g) yre Resp by (A4p+p, A+

p+p). Hence Q+p+p, 2+p+ 0)— 4+ p, 2+ p) annihilates Ext’.
Q.E.D.

Now, let F be a finite-dimensional b-module generated by a weight
vector u of a weight 2, € 6. Hence § acts semisimply on F. We shall
choose a decreasing finite filtration {F'} of F by b-modules such that

(1.1) F'=F
1.2) Fi{Fi+' has a unique weight 1;.
(1.3) ;A for j=#j'.

Therefore, we have F'=nF and F°/F'=C,,. Hence there exists an iso-
morphism

(2% Ux(@) ® Rcﬂo”‘:l)UR(g) ® (Rc®F0/FI)-
U r(b) UR(H) C
Now, we shall construct a commutative diagram
(‘0 .
Up(®) @ Rosr—>Un(@) @ (R.QF[F)
TR 0] c
(1.4),: 5|
\a -
Un(@) ® R.si—>Ux(g) ® (R.Q F°[F")
U R(5) @1 U R () [¢

with f; € R, by the induction on j.
Assuming that (1.4); has been already constructed (j=1), we shall
construct (1.4),,,. We have an exact sequence

0—>U3@) @ (ROFIF')——>Un() @ (ROFIFT)—>
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—>Ux(g) ® (R, & F°[F))——0.
Ur(®)

This gives an exact sequence
Homy o (Un(0) © Reviy Uslg) © (R,@ FIF*)
~“‘”’}Iomzng(g) (Un(@) @ R.izp Up(g) ® (R,QF°F7))
UR() UR(®)

g g
~ Bl (Un@) @ Revse Use) @ (R F/[FI*).

On the other hand, F//F/*! is a direct sum of copies of R,,, , Therefore,
by Lemma 1.3, we have

85 Bxty 1 (Un(@) @ Reizyy Ur(@) @ (R, FIFI*1))=0
) UR®

where g; € Ris given by g;(2) =(A+2;+ 0,2+ 2;+ ) — Q420+ 0, 242+ p)-
Hence g,5(¢;)=0, which shows that g,¢; lifts to vr: Ux(g) @y Rer2—>
Ur(@) ®pypw(R Q@ F[FI+Y),

If 4 is divisible by g;, then ¢, itself lifts and we obtain (1.4),,, with
fj+1=f1-

Assume that + is not divisible by g;. For 1€ §*, let us denote by
Y(2) the specialization of +, i.e. C,®z+ Then, for a generic point A of
g71(0), Y()==0. Hence we obtain a diagram

b AVOQCOFIF

-
P
-
-
Fd

(1.5) U(o) U@(%cm; LRI /() R (€O

5’1(2)@%A l

U (g)UC(% (C,® F°/F)

Since g;(2) =0, we obtain a nonzero homomorphism %: U(g) ®ya Ciyz,—>
U@ Rpe (C;QFIF+Y). Since U(Q) Ry (C,Q F//F*Y) is a direct sum
of copies of U(g)®y C..; the central character of U(g)®y C,.;, and
that of U(g) ®yq Ci.zy must coincide. Hence there exists w e W such
that w(24+2,+p)=24+2;+p. This shows that w2+ p)=2+2;,+p
holds for any 2eg;'(0). Since 2,51, ws=1. Since w fixes the hyper-
plane (2, 2;—2,)=0, w must be the reflection s, for some « € 4*. Hence
we obtain

0=242,+ p— 5,3+ Ao+ ) =2, — o+ (A + Ao+ p)er.
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This implies that 2;=2,-+ke for some k e C. Since 2;—4, € Q.(H\{0}, k
is a strictly positive integer. Moreover /(24 2,+p)-+k=0 holds on
g7'(0). Hence g; is a constant multiple of h(A+2,+p)+Ek.

Summing up, we obtain

Lemma 1.4, (i) If 2; is not of the form 2,-+ka with « & A, keZ,,,
then @; lifts t0 @;.17 Un(@) Quaiey Res 2> Ur(8) vy (R.QF°[FI*)
@) If 4, =2+ka for some a e 4* and ke Z,., then (c(h)~+h+p)
+ K)o, lifts to @; .1,

Repeating this procedure we obtain

Theorem 1.5. There exists a commutative diagram

Un(@) @ Resi—>Un(9) ® (R,OF)
U r(b) Ur(b)
(1.6) f
Un(@) @ Revr—>Un(@) @ (R, @ FF).
U r(b) Ugr(b)

Here f= ] eotn (rat-hGo-+0)+K) and S(F) is the set of pairs (@, 1)
of positive root o and a positive integer k such that 2,+ ke is a weight of F.

Example 1.6. We set F,=U(®)/(U®))+U®)n*). Let K be the
quotient field of R. Then for any k, there exists a unique

o Ur(@ @ R—Ux(@) ® (RO F)
0] UR(5)

such that the following diagram commutes

Uu(@) @ R—25Ux(g) ® (R.QF,)
T Ur(5) UR(b)

BN

Ux(9) ® (R QFy).
UR(®
Hence, taking the projective limit, we obtain
¢: Ug(g) ® R~ lim Uk(g) @ (R, @ Fy).
Un(b) & URr(®)

When g =-s,, we shall calculate ¢. Let us take the generator X, X_,
& such that [, X.]=+2X.,[X,, X 1=5h Set A=c(h). We can write
P=¢(1) in the following form

P=31a,X!QXi(1,®1)
=0
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with ¢,=1. Then
X, P=>a,X X' QX{(1,®1)
=> ;X QX" (1, @D+ ja, X (h—j+DRX{(1,®1)
=@ XX (1@ D)+ YA+ Da X7 @ X{(1,®1).

Here we have used the relation [X,, X =jX7""(h—j+1).
Hence we obtain the recursion formula

1 .
A= a,_ for j=>1.
TG+ T
Solving this, we obtain
& (=)
(1.7 P=3% L XIQXI(1,®1).

Let V7 be a finite-dimensional irreducible representation of g with a
lIowest weight —p and v_, a lowest weight vector. As well-known, —p
+ka is a weight of V¥ if and only if 0<k=<h(yx). Hence Theorem 1.5
implies the following Theorem.

Theorem 1.7. There exists a homomorphism
SDO: UR(Q) ® Rc_—) Uﬁ(g) @ (Rc +y® V;:)
Ur(b) U r(8)

such that g o gy=[] scs+ (Ma+h0)+1, 1 (1)), where g: Un(@) @y sy (Ress
Q@ VEH—Un8) Qu sy R, is given by g(1®1,.,®v_,)=1&®1,.
Now, we shall show the converse.

Proposition 1.8. For any homomorphism

§0: UR(g) ® Rc“—>UR(g) ® (Rcﬂz@VZ:)?
Ur(®) Ur(b)

set f=gope R. Then fis amultiple of [].cs+ (ha+h0)+1, h().

Proof. Note that h,+h,(p)+k=c(h,+h o)+ k") with a,a’ € 4%, k,
k', c € C implies, a=a’, k=K. Hence we can construct another ¢ such
that g o ¢ is the greatest common divisor of fand [] (2, +A.(0)+1, 1.(1)).
Therefore, we may assume from the beginning that f is a divisor of
T (het-p(h )+ 1, a(1)-

Set M=Ur(8) Qv rwy (R, @ VHZUQ@) Quew Vi and let M; be the
image of U;(@)® V¥ in M. Then we can easily show
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g M=0 Mj/Mj_zz(S(Q)/S(Q)n)@é) Vi

as an n-module.

Now, v=¢(1) is a non-zero element of M which is n-invariant. Let
J be the smallest integer such that v e M, and let U be the image of v in
M,/M,_,. Then ¥ is also n-invariant. By the Killing form we identify g
and g*. Then S(g)/S(g)n is isomorphic to C[b], the polynomial ring of 0.
Hence we can regard ¥ as a V' ¥-valued function on b, and we denote it 7.
By the assumption, v has the form

v=f®uv_,mod Ub_n_Q@nV}.

Hence j=>deg fand we have either

(1.8) j>deg/  and ¥[§=0
or
(1.9 j=degf and ¥ (W)=f(v_, for hel.

Here £ is the homogeneous part of . Since N is an open dense subset
of b, ¥|H=0 implies ¥=0. Hence the first case (1.8) does not occur and

we have (1.9).
Let S(4*) be the set of simple roots. For « e 4, let x, be a root
vector with root @. We normalize as [x,, x_,]=h,. We set

Xi= D, X, X.= 2, X_pm
e ST «€ ST

We take the element 7, ¢ ) such that & (e)=2 for a« e S(4*). Then A=
> eca+ .. Now, we can show easily [h, x.]==+2x., [x,, x_]=h, and
hence (h,, x., x_)¢ forms a Lie algebra isomorphic to s/,, We have

et +hy=h,—21x,.
Therefore, we obtain

U(ahy,—2x.)=T(ae* "+ h) ="+ ¥ (ah,)
:f(aho)e“_l“vw

> (“]; ) Fahyxiv._,.

¥=0 !

The representation theory of s/, implies that x%v_,=0 for (0=k=<1hy(n))
and x%v_,=0 for k>h(y). Since ¥(ah,—2x.) 15, a polynomial i_n a,
Flahya=*® is also a polynomial in a. Moreover f(h,)0 because f is a
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factor of [] A%=%. This shows that
deg f=deg f=h()= 2, ha(p)-

Hence f is [] (h.+h(0)+1, 1 (1)) up to constant multiple. Q.E.D.

For a g-module ¥ and a b-module F, we have a canonical isomor-
phism

(1.10) U(g)l%(FC@ V)HV@(U(Q)Z%F)

by IQ(fRv)—»vQ®(UQf)forveV, fe L.

Similarly, we have

(11D Ur(@ ® (R, @VH—>VEQUR(9) @ R..,)-
0] c UR(®)

Therefore, we have
Homy ) (Ux(8) @ Re, Un(8) @ (R, OV
URr(b) URr(b)
=HomUR(g) (UR(g)U®(E)RC, V;f{ ® (UR(Q) U®(B)‘Rc +.u))
(L12) _Homy .y, (7@ (Us@) ® R, Us(®) ® Re.,)
Ur(®) TR
=H0mUze(g) (UR(Q) ® (Rc® Vy)a UR(Q) ® RC+H)'
U r(b) Ur(b)

We choose a lowest weight vector v_, of V¥ and a highest weight vector
v, of V,, normalized by (v,, v_,)=1. We define g: Un(Q) Qv R+ ®
Vi) =Ug(8) Qurm Re and 712 Uz(Q) Qu e Re+u—=Ur(@) Oy (R ® V,) by
g(1®1,,,Qv_)=101, and (1®1,,,) =11, Qv,

Theorem 1.9. Assume that
90 € HomUﬂ(s) (UR(Q)U@(DB) Rc: UR(Q)[/@(&) (Rc + ® V:))
and

\b‘ € HomUR(g)(UR(g) ® (Rc® Vp): UR(g) @ Rc-r-[z)
U r(b) U (D)

correspond by the isomorphism (1.12). Set f=gogp e Rand f'=+oheR.
Then, we have

’ . ha+ha(‘0)#

(1.13) =
agd+ B+ o+ 1)
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Proof. For 2 e ¥, we shall denote by ¢(2), y(2), i(2) and g(2) their
specializations at 2. Identifying V& (U(g) Qe Ci.p) With U(Q) Qe
(C;.,® V), etc., we have commutative diagrams

(A
U@ Q CEBTHR(UE @ ;.
U (b) U (5)

fN ig(x)

U@ ®C,
U(s)
and

U(g) ® Cyup
U
lh(z) o)
V,®(U@) X C)—>U@Q)RC,, .-
U ()

Letting 2 be a dominant integral weight and employing the homomorphism
U@Q) Que C:—V,, ete. we obtain

VLo Vi@ Vi,
(1.14) f@)\\ lg,
v
and
Vase
(1.15) lﬁ \f’a)
V;t@ ]VJZ_T')V—“-;:

Here g and / are characterized by g(v_,®v,,,)=v, and A(v,,,)=v,Qv,.
Moreover, ¢ and - are related by

(c®idy,, ) W) =F(w®v) forvelV, andwel,

where c¢ is the contraction V,® V' —C.

Now, V,® V, contains V;,, with multiplicity 1. Let us denote by p
the projector form ¥, ® ¥, onto 2(V;.,), and regard this as an endomor-
phism of ¥,® V,. Then by (1.15), we have

hovp=f"(A)p.

On the other hand, we have a commutative diagram
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VvV,

vy, |rres \savier
Ve ViQViu—> VEQ V@V,

VIGA
ﬂﬁ\\&]i///ﬁém

v
where ¢: C—VF®V, is the canonical injection. Therefore we have
S@idp, =D (@ V) (ViRP) o ((RF)).
Taking the trace, we have
(1.16) S dim V,=f" QD) try, (c@ V) o (VEQp) o (¢ R V7).

In order to calculate the right-hand side, we shall take bases {w;} of V.
{u,} of V, and their dual bases {w}} and {u}. Then

(C®V)o(VE@p) s (R V(W)
=2, (cQV) o (ViQP)ui ®u, @w))
= ; (c® V) uE Qplu, @w))).
Hence we obtain
tr (c@V) o (VER@p)o(c®V))
=5 (0, (@ V)t ®p(, @ )
=3 @ P ® )
= fc’r,,,@,, Lp=dim V..
By (1.16), we obtain
S dim V,=f"(2) dim V..

Then the assertion follows from Weyl’s dimension formula

dim v,= || f=Gt0), QED.
agd+ ha(P)

Corollary 1.10. For a dominant integral weight p, there exists a
commutative diagram

UR(Q) ® Rc+;z
UR(b)
h
~h
Ur(®) @ (R.®V)——>Ux®) & Re..
URr(®) v URr(®)

f
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where f=1[] ccs+ (ha+h1p), h (1) and (131, ) =11, v,.

Remark 1.11. This corollary is also obtained either by a similar
argument as the proof of Theorem 1.5 or directly from Theorem 1.7 by
the following argument. First note that for any U,(b)-module F, we have

R Homy (UR(Q)”Q% F, Ux(g)
= Ua(@ @ R Homy(F, U(0).
On the other hand, for a finite dimensional b-module V'
R Homy (R, QV, Upy(b))=R_,_,, @ V*[—dim b]

where R_,_,, is the Ug(b)-module R with weight —c—2p. Hence the
commutative diagram

Un(@) ® Re——>Ur(®) @ (Ro.,® V¥)

UR® \ 0)
7
AN

Ur(®) @ R.
Ur(b)

with 7= T, (oA h(o)+ 1, () gives

UR(Q) ® R—c-29<———UR(g) ® (R—c~;t—2p® Vﬂ)
U r(B) U Rr(5)

fl
Ur(9) @ R_;s -
UR(®)

Now, the isomorphism /s> —h—h(2p+ 1) gives Corollary 1.10.

§ 2. The b-functions of B_ X B-semi-invariants

For a dominant integral weight 2, let ¥, be an irreducible representa-
tion of g with highest weight 2. Let v, be a highest weight vector of 7V,
and v_, the lowest weight vector of V¥, normalized by (v,, v_;)=1.

Let /* be the regular function on G defined by

2.1) FH(&)=(gus, v_y).
Then f* is B_ X B-semi-invariant such that

2.2)  fAgb)y=1;(N1B)f(g) forgeG,b eB_ andbe B,
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where 2§ is the character of B and B_ such that
LE(e) =™ forhel.

Moreover we have

(2.3) fo=1

Note that any B_ X B-semi-invariant with character X; ® X, is a con-
stant multiple of f* and any B_ X B-semi-invariant has a character %7 ®2,
for some 2 € P*. This follows from the well-known formula

@(G)= @ Vi® Vi
AEP 4

In particular, we have

24 S =f4()f*(8)-

Theorem 2.1. For any dominant integral weight u, there exists a dif-
Serential operator P, such that

(2.5) P, f**e=b () f* for any 2.
Here b,()=Tecsr (hO+0), (1),

Proof. Let us denote by 2 the sheaf of differential operators on G.
Then the right-action of G on itself gives a homomorphism R: U(g)—
2(G). In particular, R(U(g)) is the set of left invariant differential oper-
ators on G.

By Corollary 1.10, there exists an n-invariant element P of V¥ ®
(Un(8)®p e Rern) with weight ¢, whose coefficient of v_, is [].es.(c(h,)
+n.(p), h(r)). Hence P is written in the following form

N
P=>0,QP,®1..,
£

where

2.6) 0= Py= [] (hethilp—p, h(e)
and

2.7 v;enV¥ P,eU()n. forj=l1.

We shall define the differential operator P, on G by
28) (Pot)(g) = 2 (Vur 8U5) (R(P 1) (g)-
J
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Lemma 2.2. For any y € n, we have
[R(»), P.] € D(GR().
Proof. We have [R(p), (v,, gv;)]=(v,, gyv;). Hence we have
(R(G), Pu)(@) =248 0w y05) (R(P)u)(8)
+ }JZ (&0, U} (R([y, P D) ().
Since >, v,®@ P;@1,,, is n-invariant, we have
;J’Uf@P;@ lw-u;vj@[y, PI®1,,,=0
in
V@U@ @ Reey=VERUQU@N.
Therefore we can write, as the identity in V¥ ®¢ U(g),

DI, QP; A4 v, [y, Pll=2 1w ® S,

with w, € V¥ and S, e U(g)n. This shows
(IRG), Py (g)= ; (870 W) (R(Su)(8).

Since R(S,) € 2(G)R(n), we have the desired result. Q.E.D.
By this lemma, we have for y e nt

R(y)PFfH#,—_[R(y), P,,]f“"+P,,R(y)f””=0

because f2*# is right invariant by N. Therefore P,f*** is also right N-
invariant. Since B_ N is an open dense subset of G, it is sufficient to show
(2.5) on B_. Now for g e B_, we have

@)= JZ (Vi 8U;) (R(P)S*7) (8)-

Note that all P; belongs to U(b.) and P, e U(b_)n_ for j0. Since
freem_hy=f**#(hn_)=h** for heT and n.eN_, f**#|,_ is right N_-
invariant. This shows R(P,)f**#|,_=0 for j+0. It is easy to see for
geB.

R 1@ =1 L2+ ) +hlo—p), h (s
— bl,(Z) oy
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and (v,, guy=1/f*
This completes the proof of Theorem 2.1.

Remark 2.3. We can show 5,(2) in Theorem 2.1 is the best possible
one. This follows from the similar argument as Proposition 1.8, or we
can use the result in [3]. In fact if w, is the longest element of W, then
TF 4,5Gisa good Lagrangian variety in the sense in [3], which is equivalent
to saying that n is a prehomogeneous vector space over . Hence we can
show the degree of the local b-function is J ¢4, 7.(1).
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