The Invariant Holonomic System on a Semisimple Lie Group

Masaki Kashiwara

Research Institute for Mathematical Sciences Kyoto University Kyoto, Japan

0. Introduction

0.1.

Let G be a connected reductive algebraic group defined over $\mathbb C$ and $\mathbb G$ its Lie algebra. The center $\mathfrak Z(\mathbb G)$ of the universal enveloping algebra $U(\mathbb G)$ is identified with the ring of bi-invariant differential operators on G. Let θ_G be the sheaf of vector fields on G. The adjoint action of G on G induces the Lie algebra homomorphism

$$Ad: \mathfrak{G} \to \Gamma(G, \theta_G). \tag{0.1}$$

We shall denote by \mathscr{D}_G the ring of differential operators on G. For any character $\chi: \mathfrak{J}(\mathfrak{G}) \to \mathbb{C}$, let \mathscr{M}_{χ} be the \mathscr{D}_{G} -module $\mathscr{D}_{G}/(\mathscr{D}_{G}\operatorname{Ad}(\mathfrak{G}) + \sum_{P \in \mathfrak{J}(\mathfrak{G})} \mathscr{D}_{G}(P - \chi(P)))$.

If $G_{\mathbb{R}}$ is a real form of G, any invariant eigendistribution satisfies the system of differential equations \mathcal{M}_{χ} . The property of \mathcal{M}_{χ} is deeply investigated by Harish-Chandra [H-C]). In this article, we shall give the proof of the following theorem on \mathcal{M}_{χ} .

Theorem 1. (i) \mathcal{M}_{χ} is a regular holonomic \mathfrak{D}_{G} -module. (ii) \mathcal{M}_{χ} is the minimal extension (see Section 2.2) of $\mathcal{M}_{\chi}|G_{\text{reg}}$. Here G_{reg} is the open set of semisimple regular elements of G.

The version of this theorem in the Lie algebra case is already proven in [H-K], and we shall use this result to prove Theorem 1. When χ is a trivial infinitesimal character, this theorem is shown in [H-K'] by a completely different method.

The author acknowledges R. Hotta for some interesting discussions.

0.2.

Let T^*G be the cotangent bundle of G and we identify T^*G with $G \times \mathbb{G}^*$. Let $N(\mathbb{G}^*)$ be the set of nilpotent elements of \mathbb{G}^* . Let V be the common zeroes of the principal symbol of $Ad(\mathbb{G})$. Hence we have

$$V \cong \{ (g, \xi) \in G \times \mathfrak{G}^*; g \cdot \xi = \xi \}. \tag{0.2}$$

Here $g \cdot \xi$ is the coadjoint action on \mathfrak{G}^* . We shall also prove the following theorem.

Theorem 2. (i) (Richardson [R]) V is irreducible with dimension dim G + rank G.

- (ii) $\dim(V \cap (G \times N(\mathfrak{G}^*))) = \dim G$.
- (iii) The characteristic cycle of \mathcal{M}_{χ} coincides with $V \cdot (G \times N(\mathfrak{G}^*))$.

The statement (i) is proven by Richardson ([R]).

0.3.

We define a \mathscr{D}_G -module \mathscr{N}_G by $\mathscr{N}_G = \mathscr{D}_G/\mathscr{D}_G$ Ad(\mathfrak{G}). Then $\mathfrak{Z}(\mathfrak{G})$ acts on \mathscr{N}_G by the right multiplication.

For a $\Im(\mathfrak{G})$ -module M, we set

$$\mathcal{N}_G(M) = \mathcal{N}_G \underset{\mathfrak{Z}(\mathfrak{G})}{\bigotimes} M. \tag{0.3}$$

Hence if M is the one-dimensional $\mathfrak{Z}(\mathfrak{G})$ -module corresponding to a character χ of $\mathfrak{Z}(\mathfrak{G})$, $\mathcal{N}_G(M)$ is nothing but \mathcal{M}_{χ} . We shall also prove the following theorem.

Theorem 3. (i) \mathcal{N}_G is flat over $\mathfrak{Z}(\mathfrak{G})$.

- (ii) $\mathscr{E}xt^{j}_{\mathscr{D}_{G}}(\mathscr{N}_{G},\mathscr{D}_{G})=0$ for $j\neq \dim G$ -rank G.
- (iii) Assume further G is semisimple. Then for any $\mathfrak{Z}(\mathfrak{G})$ -module M, we have $\mathscr{H}^0_{N(G)}(\mathscr{N}_G(M))=0$, where N(G) is the set of unipotent elements of G.

1. Proof of Theorems 1 and 3

1.1.

We shall prove these theorems by induction on $\dim G$. We can reduce to the case where G has a trivial center. The following lemma is proven by Harish-Chandra.

Lemma 1.1 ([H-C]). Let S be a nonempty closed subset of G invariant by the adjoint action. If S contains no semisimple element other than 1, then S is contained in N(G).

1.2.

Hereafter we assume that G has a trivial center. Let us take a semisimple element $a \neq 1$, and let G' be the centralizer of a and G' its Lie algebra. Then by the hypothesis of induction, Theorems 1 and 3 are true for G'.

We can easily prove

Lemma 1.2. $\pi^{-1}(a) \cap T_{G'}^*G \cap V \subset T_G^*G$. Here π is the projection $T^*G \rightarrow G$ and $T_{G'}^*G$ is the conormal bundle.

Corollary 1.3. $\mathcal{N}_G|_{G'}$ is generated by $u_G|_{G'}$ as a $\mathcal{D}_{G'}$ -module on a neighborhood of a. Here u_G is the canonical generator of \mathcal{N}_G .

1.3.

Lemma 1.4. If Theorem 3 is true for G, then $\mathcal{H}_{S}^{0}(\mathcal{N}_{G}) = 0$ for any closed nowhere dense subset S of G.

In fact, we have $\operatorname{ch} \mathcal{H}^0_S(\mathcal{N}_G) \subset \pi^{-1}(S) \cap V$, and hence codim $\operatorname{ch} \mathcal{H}^0_S(\mathcal{N}_G) > \dim G - \operatorname{rank} G$. Since $\operatorname{Ext}^j(\mathcal{N}_G, \mathcal{D}_G) = 0$ for $j \neq \dim G - \operatorname{rank} G$, $\operatorname{H}^0_S(\mathcal{N}_G) = 0$ (Theorem 2.12 [K']).

We can also prove easily by induction on $\dim M$.

Lemma 1.5. If Theorem 1 is true for G, then for any finite-dimensional $\mathfrak{Z}(\mathfrak{G})$ -module M, $\mathcal{N}_G(M)$ is regular holonomic and it is the minimal extension of $\mathcal{N}_G(M)|_{G_{max}}$.

1.4.

Set $\nu(g) = \det(\operatorname{Ad}(g) - 1; \mathfrak{G}/\mathfrak{G}')$ for $g \in G'$. Then $u_{G'} \mapsto \nu^{1/2}(u_G|_{G'})$ defines a $\mathcal{D}_{G'}$ -linear homomorphism on a neighborhood of a:

$$\mathcal{N}_{G'} \to \mathcal{N}_{G}|_{G'}.$$
 (1.1)

The hypothesis of induction along with Lemma 1.4 implies

$$\mathcal{H}^{0}_{G' \setminus G_{\text{reg}}}(\mathcal{N}_{G'}) = 0. \tag{1.2}$$

Since (1.1) is surjective by Corollary 1.3 and bijective on $G' \cap G_{reg}$, (1.2) implies that (1.1) is an isomorphism on a neighborhood of a.

Let us embed $\mathfrak{Z}(\mathfrak{G})$ into $\mathfrak{Z}(\mathfrak{G}')$. Then $\mathfrak{Z}(\mathfrak{G}')$ is a free $\mathfrak{Z}(\mathfrak{G})$ -module of finite rank. By Harish-Chandra [H-C], (1.1) is $\mathfrak{Z}(\mathfrak{G})$ -linear on $G' \cap G_{reg}$. Hence (1.2) implies the following lemma.

Lemma 1.6. $\mathcal{N}_{G'}$ and $\mathcal{N}_{G}|_{G'}$ are isomorphic as $(\mathcal{D}_{G}, \mathfrak{Z}(\mathfrak{G}))$ -bimodules on a neighborhood of a.

1.5.

Now, we shall show Theorem 3 and

$$\mathcal{H}^{0}_{G\backslash G_{\text{reg}}}(\mathcal{M}_{\chi}) = 0 \tag{1.3}$$

on a neighborhood of a.

Lemma 1.7. If \mathcal{L} is a coherent \mathcal{D}_{G} -module such that $\operatorname{ch} \mathcal{L} \subset V$ and $\mathcal{L}|_{G'} = 0$, then $\mathcal{L} = 0$ on a neighborhood of a.

This follows immediately from Lemma 1.4 and Theorem 2.6.17 in [K].

For a $\mathfrak{Z}(\mathfrak{G})$ -module M, set $M' = M \bigotimes_{\mathfrak{Z}(\mathfrak{G})} \mathfrak{Z}(\mathfrak{G}')$. Then we have

$$\mathcal{T}oi_j^{\mathfrak{Z}(\mathfrak{G}')}(\mathcal{N}_{G'},M') \simeq \mathcal{T}oi_j^{\mathfrak{Z}(\mathfrak{G})}(\mathcal{N}_{G},M)|_{G'}.$$

Hence we have $\mathcal{T}or_j(\mathcal{N}_G, M) = 0$ for $j \neq 0$. The other statements follow in a similar way.

1.6.

By using Lemma 1.1, Theorem 3 and (1.3) is true outside N(G).

2. Proof of Theorem 1 (Continued)

2.1.

In order to describe $\mathcal{M}_{\chi}|_{G_{\text{reg}}}$, let us choose a Cartan subgroup T of G. Let t be its Lie algebra, Δ the root system for (\mathfrak{G}, t) and W the Weyl group. For $\alpha \in \Delta$, let ξ_{α} be the corresponding character of T. Set $T_{\text{reg}} = T \cap G_{\text{reg}}$. Let $\varphi: \mathfrak{F}(\mathfrak{G}) \to U(t)^W$ be the canonical isomorphism and we identify U(t) with the ring of invariant differential operators on T. Then by Harish-Chandra ([H-C]), $\mathcal{M}_{\chi}|_{T_{\text{reg}}}$ is equal to the system of differential equations

$$D^{-1/2}(\varphi(P) - \chi(P))D^{1/2}u = 0 \quad \text{for } P \in \Im(\mathfrak{G}), \tag{2.1}$$

where

$$D = \prod_{\alpha \in \Delta} (\xi_{\alpha}^{1/2} - \xi_{\alpha}^{-1/2}).$$

2.2.

Since (2.1) is regular holonomic, $\mathcal{M}_{\chi}|_{G_{\text{reg}}}$ is regular holonomic. Let $^{\pi}(\mathcal{M}_{\chi}|_{G_{\text{reg}}})$ be its minimal extension, i.e., a regular holonomic \mathcal{D}_G -module such that $^{\pi}(\mathcal{M}_{\chi}|_{G_{\text{reg}}})|_{G_{\text{reg}}} \cong \mathcal{M}_{\chi}|_{G_{\text{reg}}}$ and such that it has neither non-zero submodule nor quotient whose support is contained in G_{reg} . By Harish-Chandra ([H-C]), we have

 \mathcal{M}_{χ} has no non-zero quotient whose support is contained in $G \backslash G_{\text{reg}}$.

(2.2)

Hence we have a canonical homomorphism

$$\mathcal{M}_{\chi} \to {}^{\pi}(\mathcal{M}_{\chi}|_{G_{rec}}).$$
 (2.3)

This is evidently surjective.

2.3.

By the result of Section 1, supp($\mathcal{H}^0_{G\backslash G_{reg}}(\mathcal{M}_\chi)$) is contained in the set N(G) of unipotent elements, and hence (2.3) is an isomorphism outside N(G). Thus it is enough to show that (2.3) is an isomorphism on a neighborhood of 1.

2.4.

Let us take a small neighborhood U of 0 in \mathfrak{G} such that $\exp:\mathfrak{G}\to G$ is an isomorphism from U onto $V=\exp(U)$. Let $\tilde{\mathcal{M}}_\chi$ be the $\mathfrak{D}_\mathfrak{G}$ -module $\mathfrak{D}_\mathfrak{G}/(\mathfrak{D}_\mathfrak{G})$ ad $\mathfrak{G}+\sum_{P\in S(\mathfrak{G})^G}\mathfrak{D}_\mathfrak{G}(P-\chi(P))$. Here ad is the homomorphism $\mathfrak{G}\to\Gamma(\mathfrak{G};\theta_g)$ given by the adjoint action. We identify $\mathfrak{Z}(\mathfrak{G})$ with $S(\mathfrak{G})^G$ and $S(\mathfrak{G})^G$ with the ring of G-invariant constant-coefficient differential operators on \mathfrak{G} . By [H-K], $\tilde{\mathcal{M}}_\chi$ is the minimal extension of $\tilde{\mathcal{M}}_\chi|_{\mathfrak{G}_{reg}}$. Here \mathfrak{G}_{reg} is the set of regular semisimple elements of \mathfrak{G} . Moreover by [H-C], we have

$$(\exp)_* \operatorname{Hom}(\tilde{\mathcal{M}}_{\chi} \mathcal{O}_{\mathfrak{S}_{an}}) \cong \operatorname{Hom}_{\mathfrak{D}_G}(\mathcal{M}_{\chi}, \mathcal{O}_{G_{an}}).$$

on $V \cap G_{reg}$. Here G_{an} and \mathfrak{G}_{an} are the underlying complex manifolds. This implies

$$({}^{\pi}\mathcal{M}_{\chi}|_{G_{res}})|_{V} \cong \exp_{*}(\tilde{\mathcal{M}}_{\chi}|_{U}). \tag{2.4}$$

2.5.

Now, we shall use the same argument as in [H-K].

Let \mathcal{L} be the kernel of (2.3) and S the support of \mathcal{L} . Then one can easily show (by a similar argument as in [H-K], Section 6.6) that codim $S \ge 2$. Assume $S \ni e$. We take a generic point g of $S \cap V$. Since $\mathcal{E}_{x} t_{\mathcal{D}_{(X)}}^{1}(\tilde{\mathcal{M}}_{\chi}, \mathcal{B}_{(\exp)^{-1}S|(S)})_{\log(g)} = 0$ by Lemma 6.7.1 [H-K],

$$0 \to \mathcal{L} \to \mathcal{M}_{\chi} \to {}^{\pi}(\mathcal{M}_{\chi|\mathfrak{S}_{reg}}) \to 0 \tag{2.5}$$

splits on a neighborhood of g. Hence \mathcal{M}_{χ} has a non-zero quotient supported in $G \setminus G_{\text{reg}}$. This contradicts Harish-Chandra's result (2.2).

3. Proof of Theorem 3 (Continued)

3.1.

We proved already Theorem 3 outside the set N(G) of unipotent elements. In the sequel, we use the following simple result.

Lemma 3.1. Let \mathcal{M} be a coherent \mathcal{D}_G -module such that $\operatorname{ch} \mathcal{M} \subseteq \pi^{-1}(N(g)) \cap V$. Then \mathcal{M} is holonomic.

In fact $\pi^{-1}N(G) \cap V$ is Lagrangean because N(G) has finitely many G-orbits.

3.2

We shall first prove Theorem 3(iii) by induction on dim M. If dim M=0, this is true by Lemma 1.5. Hence we shall assume dim M>0. Let M' be the largest submodule of M with dim M'=0, and let M''=M/M'. Since $0 \to \mathcal{N}_G(M') \to \mathcal{N}_G(M) \to \mathcal{N}_G(M'') \to 0$ is exact outside N(G) and $\mathcal{H}^0_{N(G)}(\mathcal{N}_G(M'))=0$, this is exact on the whole of G. Hence in order to prove $\mathcal{H}^0_{N(G)}(\mathcal{N}_G(M))=0$, it is enough to show $\mathcal{H}^0_{N(G)}(\mathcal{N}_G(M''))=0$. Replacing M with M'', we shall assume M'=0 from the beginning. Then there exists $P \in \mathfrak{F}(\mathfrak{G})$ such that P-c acts injectively on M for any $c \in \mathbb{C}$. Then for any non-zero polynomial b(P), dim $(M/b(P)M) < \dim M$. Set $\mathcal{L} = \mathcal{H}^0_{N(G)}(\mathcal{N}_G(M))$. Then by Lemma 3.1, \mathcal{L} is holonomic and hence $\operatorname{End}(\mathcal{L})$ is finite-dimensional. Therefore there exists a non-zero polynomial b(P) such that $b(P)\mathcal{L}=0$. Since b(P) acts injectively on $\mathcal{N}_G(M)$ outside N(G), b(P) acts injectively in $\mathcal{N}_G(M)/\mathcal{L}$. Moreover the kernel of b(P) in $\mathcal{N}_G(M)$ is \mathcal{L} . Hence $\mathcal{L} \to \mathcal{N}_G(M/b(P)M)$ is injective. Since $\mathcal{H}^0_{N(G)}(\mathcal{N}_G(M/b(P)M))=0$ by the hypothesis of induction, we have $\mathcal{L}=0$.

3.3.

ħ

In order to prove Theorem 3(ii), we shall prove the following generalized statement.

Lemma 3.2. If G is semisimple, $\mathscr{E}_{x} \ell^{j}(\mathcal{N}_{G}(M), \mathcal{D}_{G}) = 0$ for $j \neq \dim G - \dim M$ for any finitely generated Cohen-Macaulay $\mathfrak{P}(G)$ -module M.

Proof. We may assume that the center of G is trivial. Since codim $\operatorname{ch}(\mathcal{N}_G(M)) \geq \dim G - \dim M$, we have $\mathscr{E}_{x}t^j(\mathcal{N}_G(M), \mathscr{D}_G) = 0$ for $j < \dim G - \dim M$. Since dim proj $M = \operatorname{rank} G - \dim M$, M has a free resolution of length $m = \operatorname{rank} G - \dim M \colon 0 \leftarrow M \leftarrow L_0 \leftarrow L_1 \leftarrow \cdots \leftarrow L_M \leftarrow 0$. Hence we have a resolution outside $N(G) \colon 0 \leftarrow \mathcal{N}_G(M) \leftarrow \mathcal{N}_G(L_0) \leftarrow \cdots \leftarrow \mathcal{N}_G(L_M) \leftarrow 0$. Since $\mathscr{E}_{x}t^j(\mathcal{N}_G, \mathscr{D}_G) = 0$ outside N(G) for $j > \dim G - \operatorname{rank} G$,

ividoditi ixdomivvan

we have

supp
$$\mathscr{E}xt^{j}(\mathcal{N}_{G}(M), \mathscr{D}_{G}) \subseteq N(G)$$

for $i > \dim G - \operatorname{rank} G + m = \dim G - \dim M$.

39

ğ

8

Hence $\mathscr{E}xt^j(\mathcal{N}_G(M),\mathscr{D}_G)$ is holonomic by Lemma 3.1. Now we shall proceed with the proof by induction on dim M. If dim M=0, this is trivial. If dim M>0, take $P\in\mathfrak{Z}(\mathfrak{G})$ such that dim(supp $M\cap\{P=c\})=\dim M-1$ for any $c\in\mathbb{C}$. Then for any non-zero polynomial b(P), $\mathscr{E}xt^j(\mathcal{N}_G(M/b(P)M),\mathscr{D}_G)=0$ for $j>\dim G-\dim M+1$ by the hypothesis of induction. Hence b(P) acts surjectively on $\mathscr{L}=\mathscr{E}xt^j(\mathcal{N}_G(M),\mathscr{D}_G)$ for $j>\dim G-\dim M$. Since \mathscr{L} is holonomic, there exists a non-zero b(P) such that $b(P)\mathscr{L}=0$. This implies $\mathscr{L}=0$.

3.4.

We shall prove Theorem 3(i). In order to see this, it is enough to show that for an injective morphism $M' \to M$ of finitely generated $Z(\mathfrak{G})$ -modules, $\mathcal{N}_G(M') \to \mathcal{N}_G(M)$ is injective. Since this is injective outside N(G), this follows from Theorem 3(iii).

4. The Proof of Theorem 2

4.1.

Theorem 2(i) is a result of Richardson [R]. Let us prove Theorem 2(ii). Let q be the projection from V to \mathfrak{G}^* . Let S be a G-orbit of $N(\mathfrak{G}^*)$. Let $\xi \in S$. Then $\pi(V \cap q^{-1}(\xi)) = G_{\xi}$. Hence dim G_{ξ} + dim S = dim G. This shows that $V \cap q^{-1}(S)$ is a non-singular manifold of dim G. Since $N(\mathfrak{G}^*)$ has finitely many G-orbits, $V \cap q^{-1}(N(\mathfrak{G}^*))$ has pure dimension dim G.

4.2.

Let us prove Theorem 2(iii). We may assume that G has a trivial center. By Proposition 4.8.3 and Theorem 6.1 in [H-K], the characteristic cycle of $\exp_*(\tilde{\mathcal{M}}_\chi)$ is $V\cdot (G\times N(\mathfrak{G}^*))$ on a neighborhood of 1 (with the notation in Section 2.4). Hence, by the result in Section 2, Theorem 2(iii) is true on a neighborhood of 1.

4.3.

If Theorem 2 is true, then for a finite-dimensional $\mathfrak{Z}(\mathfrak{G})$ -module M, the characteristic cycle of $\mathcal{N}_G(M)$ is $(\dim M) V \cdot (G \times N(\mathfrak{G}^*))$.

4.4

8

8

5

By Lemma 1.1, it is enough to show $\underline{\operatorname{ch}}\,\mathscr{M}_\chi = V\cdot (G\times N)$ on a neighborhood of a semisimple element a. Here $\underline{\operatorname{ch}}$ denotes the characteristic cycle. Let G' be the centralizer of a. Let ρ be the projection $G'\times T^*G\to T^*G'$ and $\tilde{\omega}$ the embedding $G'\times T^*G\to T^*G$. Then since \mathscr{M}' is non-characteristic, we have $\underline{\operatorname{ch}}(\mathscr{M}_\chi|_{G'})=\rho_*\tilde{\omega}^{-1}(\underline{\operatorname{ch}}\,\mathscr{M}_\chi)$ (see Chapter II, Section 6 [K]). Hence it is enough to show

$$\operatorname{ch}(\mathcal{M}_{\mathbf{Y}}|_{G'}) = \rho_{*}\tilde{\omega}^{-1}(V \cdot G \times N).$$

Let V' and N' be the sets defined as V and N replacing G with G'. Since $\mathcal{M}_{\chi}|_{G'}$ is isomorphic to $\mathcal{M}_{G'}(M)$ with $M = \mathbb{C} \bigotimes_{\mathfrak{F}(\mathfrak{G}')} \mathfrak{F}(\mathfrak{G})$ by Lemma 1.4, we have

$$\underline{\operatorname{ch}}(\mathcal{M}_{\chi}|_{G'}) = \underline{\operatorname{ch}}(\mathcal{M}_{G'}(M))$$

$$= (\dim_{\mathbf{C}} M) \cdot V' \cdot (G' \times N'). \tag{4.1}$$

Note that $\dim_{\mathbb{C}} M = \#(W/W')$. Here W and W' are the Weyl group of G and G' respectively. Hence it is enough to show

Lemma 4.1. On a neighborhood of a,

$$\rho_* \tilde{\omega}^{-1}(V \cdot G \times N) = \#(W/W')(V' \cdot G' \times N').$$

Proof. Set $\mathfrak{u} = \{ \xi \in \mathfrak{G}^*; a\xi = \xi \}$. Then, $\mathfrak{u} \to \mathfrak{G}^*$ is an isomorphism. We shall show that

$$(G' \times \mathbb{S}^*) \cap V \subset G' \times \mathfrak{u}$$
 on a neighborhood of a . (4.2)

In fact, it is enough to show that $g: \mathfrak{G}^*/\mathfrak{u} \to \mathfrak{G}^*/\mathfrak{u}$ has no eigenvalue 1 if $g \in G'$ is sufficiently near a. This is evident. Hence $(G' \times \mathfrak{G}^*) \cap V$ is isomorphic to V'. Take homogeneous functions f_1, \ldots, f_r $(r = \operatorname{rank} G)$ on \mathfrak{G}^* such that $\mathbb{C}[f_1, \ldots, f_r] = S(\mathfrak{G})^G$. Then

$$\tilde{\omega}^{-1}(V \cdot N) = ((G' \times \mathfrak{G}^*) \cap V) \cap (f_1 = \cdots = f_r = 0).$$

Hence $\rho_*\tilde{\omega}^{-1}(V\cdot N)=V'\cap (f_1=\cdots=f_r=0)$. Since $S(\mathfrak{G}')^{G'}$ is a free module over $S(\mathfrak{G})^G$ of rank #(W/W'), $\mathfrak{G}'^*\cap (f_1=\cdots=f_r=0)=\#(W/W')N'$. Q.E.D.

References

- [H-C] Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, *Trans.* A.M.S. 119 (1965) 457-508.
- [H-K] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, *Invent. Math.* 75 (1984) 327-358.
- [H-K'] R. Hotta and M. Kashiwara, Quotients of Harish-Chandra system by primitive ideal, Geometry of Today, Giornate di Geometria, Roma 1984, Progress in Math., Birkhäuser (1985) 185-205.
- [K] M. Kashiwara, Systems of Microdifferential Equations, Progress in Math. 34 (1983) Birkhäuser.
- [K'] M. Kashiwara, B-functions and holonomic systems, Invent. Math. 38 (1976) 33-53.
- [R] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups. *Compositio Math.* 38 (1979) 311-322.