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0. Introduction
0.1.

Let G be a connected reductive algebraic group defined over C and &
its Lie algebra. The center 3(®) of the universal enveloping algebra U($)
is identified with the ring of bi-invariant differential operators on G. Let
6 be the sheaf of vector fields on G. The adjoint action of G on G induces
the Lie algebra homomorphism

Ad:G->T(G, 65). (0.1)
We shall denote by 9 the ring of differential operators on G. For any
character x:3(®)->C, let M, be the Zs-module D6/ (D Ad(S) +
Zpeg((g) @G(P—X(P)))-
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If Gg is a real form of G, any invariant eigendistribution satisfies the
system of differential equations /,. The property of ., is deeply investi-
gated by Harish-Chandra [H-C]). In this article, we shall give the proof of
the following theorem on J/,.

Theorem 1. (i) M, is a regular holonomic 9s-module. (ii) M, is the
minimal extension (see Section 2.2} of /%X[Greg. Here G, is the open set of
semisimple regular elements of G.

The version of this theorem in the Lie algebra case is already proven in
[H-K], and we shall use this result to prove Theorem 1. When x is a trivial
infinitesimal character, this theorem is shown in [H-K'] by a completely
different method.

The author acknowledges R. Hotta for some interesting discussions.

0.2.

Let T*G be the cotangent bundle of G and we identify 7%G with G x®*.
Let N(®*) be the set of nilpotent elements of &*. Let V be the common
zeroes of the principal symbol of Ad(®). Hence we have

V={(g §)le GxG*; g £=¢} (0.2)

Here g- ¢ is the coadjoint action on &*. We shall also prove the following
theorem.

Theorem 2. (i) (Richardson [R]) Vis irreducible with dimension dim G +
rank G.

(ii) dim(V (G x N(G*)))=dim G.

(iii) The characteristic cycle of M, coincides with V- (G x N(&*)).

The statement (i) is proven by Richardson ([R]).

0.3.

We define a @g-module Ng by No=Ds/ P Ad(®). Then 3(G) acts on
Ng by the right multiplication.
For a 3(®)-module M, we set

3(®)
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Hence if M is the one-dimensional 3(®)-module corresponding to a
character x of 3(®), ¥5(M) is nothing but 4. We shall also prove the
following theorem.

Theorem 3. (i) Ny is flat over 3().

(i) Extl, (NG, D) =0 for j# dim G —rank G.

(iii) Assume further G is semisimple. Then for any 3(&)-module M, we
have H%\(No(M)) =0, where N(G) is the set of unipotent elements of G.

1. Proof of Theorems 1 and 3
1.1,

We shall prove these theorems by induction on dim G. We can reduce to
the case where G has a trivial center. The following lemma is proven by
Harish-Chandra.

Lemma 1.1 ([H-C]). Let S be a nonempty closed subset of G invariant by
the adjoint action. If S contains no semisimple element other than 1, then S
is contained in N(G).

1.2.

Hereafter we assume that G has a trivial center. Let us take a semisimple

element a # 1, and let G’ be the centralizer of a and &' its Lie algebra.

Then by the hypothesis of induction, Theorems 1 and 3 are true for G'.
We can easily prove

Lemma 1.2. 77 '(a) N T&G Ve TEG. Here o is the projection T*G >
G and TG is the conormal bundle.

Corollary 1.3. N, c’o' is generated by ug|g: as a Ds.-module on a neighbor-
hood of a. Here ug is the canonical generator of Ng.

1.3.

Lemma 1.4. If Theorem 3 is true for G, then %%(Ns) =0 for any closed
nowhere dense subset S of G. v
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In fact, we have ch #%(Ns) < = '(S) N V, and hence codim ch #%(N5) >
dim G —rank G. Since €z¢/ (N, @) = 0forj # dim G —rank G, # U Ng) =
0 (Theorem 2.12 [K']).

We can also prove easily by induction on dim M.

Lemma 1.5. If Theorem 1 is true for G, then for any finite-dimensional
B(®)-module M, N(M) is regular holonomic and it is the minimal extension
of No(M)

Greg*

1.4.

Set v(g) =det(Ad(g)—1; &/®') for ge G'. Then ug+>»"?*(ug|s) defines
a Y@ -linear homomorphism on a neighborhood of a:

N> Nelo (1.1)
The hypothesis of induction along with Lemma 1.4 implies

Hone, (Ne)=0. (1.2)

reg

Since (1.1) is surjective by Corollary 1.3 and bijective on G'n G, (1.2)
implies that (1.1) is an isomorphism on a neighborhood of a.

Let us embed 3(®) into 3(®’). Then 3(®') is a free 3(®)-module of
finite rank. By Harish-Chandra [H-C], (1.1) is 3(®)-linear on G'n G,,.
Hence (1.2) implies the following lemma.

Lemma 1.6. Ng and Ng|g are isomorphic as (D¢, 3(®))-bimodules on
a neighborhood of a.

1.5.

Now, we shall show Theorem 3 and
%OG\G (A,)=0 (1.3)

reg

on a neighborhood of a.

Lemma 1.7. If<is a coherent 9 -module such that ch ¥ < Vand ¥|5 =0,
then ¥ =0 on a neighborhood of a.

This follows immediately from Lemma 1.4 and Theorem 2.6.17 in [K].
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For a 3(®)-module M, set M'=M &K 3(&’). Then we have
3(®)
To1] " (Nor, M') = Tor} P (N, M)|g.

Hence we have Jo4;(Ng, M) =0 for j# 0. The other statements follow in
a similar way.

1.6.
By using Lemma 1.1, Theorem 3 and (1.3) is true outside N(G).

2. Proof of Theorem 1 (Continued)

2.1.

In order to describe 4, |g,,, let us choose a Cartan subgroup T of G. Let
t be its Lie algebra, A the root system for (&, t) and W the Weyl group.
For a €A, let £, be the corresponding character of T. Set T, =T N G,,.
Let ¢:3(®) > U(1)" be the canonical isomorphism and we identify U(r)
with the ring of invariant differential operators on 7. Then by Harish-
Chandra ([H-C]), #,|r,, is equal to the system of differential equations

e

T;

D (@(P)—x(P)D?u=0 for Pe 3(®), (2.1)
where
D=1 (&= &),
2.2.

Since (2.1) is regular holonomic, ., | __ is regular holonomic. Let (MG, )

reg reg
be its minimal extension, i.e., a regular holonomic %@ s-module such that
"(My|6,,) |G,y = M|, and such that it has neither non-zero submodule nor
quotient whose support is contained in G,.,. By Harish-Chandra ([H-C]),

we have

A, has no non-zero quotient whose support is contained in G\ G,,.

(2.2)
Hence we have a canonical homomorphism

My (M ). (2.3)

g

This is evidently surjective.
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2.3.
By the result of Section 1, supp(# %o, (/) is contained in the set N(G)

of unipotent elements, and hence (2.3) is an isomorphism outside N(G).
Thus it is enough to show that (2.3) is an isomorphism on a neighborhood

of 1.

24.

Let us take a small neighborhood U of 0 in & such that exp:® - G is an
isomorphism from U onto V=exp(U). Let JZ[X be the Dg-module
Ds/(Ds ad &+ pogyc Ds(P—x(P))). Here ad is the homomorphism
®&->T(®; 6,) given by the adjoint action. We identify 3(®) with S(®)°
and S(®)° with the ring of G-invariant constant-coefficient differential
operators on &. By [H-K], jix is the minimal extension of /th|@wg. Here
.., is the set of regular semisimple elements of &. Moreover by [H-C],
we have

(exp) Hom (M, 0, ) = Homg, (M,, Oc,).
on VN G,,. Here G,, and ®&,, are the underlying complex manifolds. This
implies
(",

o)y =expy (L] ). (2.4)

2.5.

Now, we shall use the same argument as in [H-K].

Let &£ be the kernel of (2.3) and S the support of Z. Then one can
easily show (by a similar argument as in [H-K], Section 6.6) that codim
S=2. Assume S>3e. We take a generic point g of Sn V. Since
Gt by (Mly, Broxpy~'si0) 108(z) =0 by Lemma 6.7.1 [H-K],

0->F>M,~»"(Mys, )0 (2.5)

reg

®

splits on a neighborhood of g. Hence ./, has a non-zero quotient supported
in G\ G,,. This contradicts Harish-Chandra’s result (2.2).

3. Proof of Theorem 3 (Continued)
3.1.

We proved already Theorem 3 outside the set N(G) of unipotent elements.
In the sequel, we use the following simple result.
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Lemma 3.1. Let M be a coherent YDs-module such that ch M <
7 Y(N(g))n V. Then A is holonomic.

In fact # 'N(G)n V is Lagrangean because N(G) has finitely many
G-orbits.

3.2.

We shall first prove Theorem 3(iii) by induction on dim M. If dim M =0,
this is true by Lemma 1.5. Hence we shall assume dim M > 0. Let M' be
the largest submodule of M with dim M'=0, and let M"= M/M’'. Since
0> No(M)»Ng(M)->Ng(M")->0 is exact outside N(G) and
KNG (No(M') =0, this is exact on the whole of G. Hence in order to
prove #Yc)(Ng(M))=0, it is enough to show #%N g (Ns(M"))=0.
Replacing M with M", we shall assume M’'=0 from the beginning. Then
there exists P e 3(®) such that P—c acts injectively on M for any ce C.
Then for any non-zero polynomial b(P), dim(M/b(P)M)<dim M. Set
=% (Ns(M)). Then by Lemma 3.1, ¥ is holonomic and hence
End(X) is finite-dimensional. Therefore there exists a non-zero polynomial
b(P) such that b(P)Z =0. Since b(P) acts injectively on N5(M) outside
N(G), b(P) acts injectively in Ns(M)/¥. Moreover the kernel of b(P) in
No({M) is £ Hence F->Ns(M/b(P)M) is injective. Since
N ) (No(M/b(P)M)) =0 by the hypothesis of induction, we have ¥ = 0.

3.3.

In order to prove Theorem 3(if), we shall prove the following generalized
statement.

Lemma 3.2. If G is semisimple, Ext/(Ng(M),%Ds5)=0 for j#
dim G —dim M for any finitely generated Cohen-Macaulay 3(%)-module M.

Proof. We may assume that the center of G 1is trivial. Since
codim ch(Ng(M))=dim G —dim M, we have &z¢/(Ng(M), D5)=0 for
j<dim G—dim M. Since dim proj M =rank G—dim M, M has a free
resolution of length m=rank G—dim M: 0« M« Lo« L, <+ -« Ly, < 0.
Hence we have a resolution outside N(G): 0« Ng(M) <« Ng(Lo) <+ - -«
Ns(Lp) < 0. Since €zt (N, D) = 0 outside N(G) for j> dim G —rank G,
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we have
supp €zt/(Ng(M), D)= N(G)
for j>dim G —rank G+ m =dim G —dim M.

Hence €z¢'(Ng(M), D) is holonomic by Lemma 3.1. Now we shall
proceed with the proof by induction on dim M. If dim M = 0, this is trivial.
If dim M > 0, take P € 3(&) such that dim(supp M n{P=c})=dim M -1
for any ceC. Then for any non-zero polynomial b(P),
Eet! (No(M/b(P)M), @) = 0for j>dim G —dim M + 1 by the hypothesis
of induction. Hence b(P) acts surjectively on £ = €z¢ (Ng(M), D) for
j>dim G —dim M. Since & is holonomic, there exists a non-zero b(P) such
that b(P)% =0. This implies &£ =0.

3.4.

We shall prove Theorem 3(i). In order to see this, it is enough to show that
for an injective morphism M'~> M of finitely generated Z(®)-modules,
Ne(M')-» Ng(M) is injective. Since this is injective outside N(G), this
follows from Theorem 3(iif).

4. The Proof of Theorem 2
4.1,

Theorem 2(i) is a result of Richardson [R]. Let us prove Theorem 2(ii).
Let g be the projection from V to &*. Let S be a G-orbit of N(®™). Let
£e 8. Then 7(Vnq ' (£)) = G.. Hence dim G, +dim S = dim G. This shows
that Vg '(S) is a non-singular manifold of dim G. Since N(®&*) has
finitely many G-orbits, Vn g~ '(N(®*)) has pure dimension dim G.

4.2.

Let us prove Theorem 2(iii). We may assume that G has a trivial center.
By Proposition 4.8.3 and Theorem 6.1 in [H-K], the characteristic cycle of
exp*(/flx) is V- (G x N(&*)) on a neighborhood of 1 (with the notation in
Section 2.4). Hence, by the result in Section 2, Theorem 2(iii) is true on a
neighborhood of 1.
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4.3.

If Theorem 2 is true, then for a finite-dimensional 3(®)-module M, the
characteristic cycle of Ng(M) is (dim M) V- (G x N(&*)).

4.4,

By Lemma 1.1, it is enough to show ch #, = V- (G x N) on a neighborhood

of a semisimple element a. Here ch denotes the characteristic cycle. Let G’

be the centralizer of a. Let p be the projection G’ XxT*G - T*G' and & the
G

embedding G' xT*G - T*G. Then since /' is non-characteristic, we have
G

ch(s,|c)=p,& '(chM,) (see Chapter II, Section 6 [K]). Hence it is
enough to show

ch(y|6) = py& (V- GX N).

Let V' and N’ be the sets defined as V and N replacing G with G'. Since
M, | is isomorphic to Ms(M) with M =C (>%) 3(®) by Lemma 1.4, we
have .
ch(M,|c) = ch(Me(M))
=(dime¢ M) - V' - (G'xX N'). (4.1)

Note that dimc M = #(W/W’). Here W and W' are the Weyl group of G
and G’ respectively. Hence it is enough to show

Lemma 4.1. On a neighborhood of a,
psx@ (V- GXN)=#(W/W')(V' - G'XN').
Proof. Set u={¢e®*; aé = £}. Then, u~> ®* is an isomorphism.
We shall show that
(G'x@*)n V< G'xu on a neighborhood of a. (4.2)

In fact, it is enough to show that g: &*/u— &*/u has no eigenvalue 1 if
g € G'is sufficiently near a. This is evident. Hence (G’ x &*) n V is isomor-
phicto V'. Take homogeneous functions f, ..., f. (r =rank G) on &* such
that C[f,,...,£.]=S(®)C. Then

6NV N)=((G'XE*) A V)~ (fi=---=£=0).
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Hence p,& (V- N)=V'n(fi=---=f=0). Since S(®)° is a free
module over S(®)° of rank#(W/ W), &*n(fi=---=f£=0)=
#(W]W)N". Q.E.D.
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