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1. Introduction

The subject of this paper is on one hand the theory of crystals for the quantum affine
Lie algebras, and on the other hand, is the computation of the 1 point functions for
the 6 vertex model and its generalizations.

The crystals are so designed that by handling them one can extract useful infor-
mation about the representation theory of U,(g) [K1-4][KN]. The main idea therein
is to consider the U,(g)-modules at ¢ = 0, where one finds surprisingly simple be-
haviours of certain weight vectors. The set B of these weight vectors (considered at
g = 0 and with a certain graph structure) is called the crystal of the U, (g)-module.

The 1 point functions are the basic macroscopic quantities that describe the
multi-phase structure of a given lattice model of statistical mechanics. For the 2
dimensional solvable lattice models a method of computing the 1 point functions
is known [B] as the corner transfer matrix method (CTM), which reduces the 2
dimensional statistical sums of the 1 point functions to the 1 dimensional statistical
sums over certain paths [ABF]. In this paper we consider the vertex models given by
the R-matrices of the quantum affine Lie algebras [J1-2]. The parameter ¢ behaves
like the temperature, and the sum over the paths leads to the series expansions at
the low temperature ¢ = 0 of the 1 point functions.

The aim of this paper is to identify the set P of the paths with the crystal B
of a U,(g)-module under certain condition. We will find that for a given model the
sets of paths corresponding to the multi-phases are in one-to-one correspondence
with the crystals of the irreducible highest weight U,(g)-modules of a certain fixed
level [DJKMO1-4]. As a result we get the closed expressions of the 1 dimensional
statistical sums ( and hence, of the 1 point functions) in terms of the string functions
of the corresponding affine Lie algebras. Viewing from the other side, we get the
explicit description of the crystals for the highest weight modules of arbitrary levels

for U,(g) of the following types: AS,I), B,gl), C,(ll), DE), Agi), Agi)_l, D,?_Ql. The
details of this part is given in a separate paper.

For Uy(g) of types Ay, By, Cy, D, the description of the crystals for the ir-
reducible finite dimensional modules are obtained in [KN]. The basic tool therein is
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a correspondence between the tensor category O;n: of the integrable highest weight
modules and the tensor category of the crystals. The present study requires to
handle the crystals and their tensor products of U,(g)-modules which do not belong
t0 Ojn:. Namely, we will deal with finite dimensional U,(g)-modules where g is an
affine Lie algebra.

Let us put it in the vertex model language. Each line of the 2 dimensional
lattice bears a finite dimensional module. Multiple lines mean the tensor product
of the associated modules. Therefore, the thermodynamic limit means the infinite
tensor product. The exact treatment of this infinite product is very difficult. But
if we consider only at ¢ = 0, it is tractable, and the result is summarized as the
isomorphisms between the set of paths P and the crystal B.

The idea of identifying the paths and the crystal bases have been already

developed in the case of U, (5?(;)) in [MM] and [JMMO]. Their method relies on

the Fock space realization of the highest weight representations of U, (5?(;)) In this

paper we stand on the theory of crystals [K1-4] and further develop it, especially
for quantum affine Lie algebras, so that we can get the isomorphisms for general
cases without knowing explicit forms of the highest weight representations.

In this introduction we are going to describe the material in the simplest case,
i.e., the 6 vertex model, then to extract several points from this case that are to be
clarified in the study of the general cases, and to explain the basic ideas to resolve
these issues. We assume that the reader knows the basic definitions and theorems
on the crystals. If it is not the case, the reader is advised to read a few pages in
Section 2. Some notations given there will be used in this introduction.

1.1. The 6 vertex model The Boltzmann weights of the 6 vertex model is given
by

1 2
(1.1.1) I——1= 2+2 =z —q%

1 2
1 2

1——2=1-¢% 2-‘—1 =z(1-¢%),
2 1
1 2

2——2 = l—l——l =gq(z —1).
1 2

Consider the two dimensional vector space V spanned by u; and u,, and define the
element R in End(V @ V') by

J
(1.1.2) R(uj ® uk) = ZI—*—-/‘C U @ U,
Im m

In the limit ¢ = 0, the operator R becomes diagonal with respect to u; ® uy:

(1.1.3) lir% R = diag (27 (#1®w))
q‘—)‘

where
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H(u; @up)=1 if j>k
The partition function is the sum (over all the configurations of 1 or 2 on each edge
of the 2 dimensional lattice) of the products (over all vertices) of the Boltzmann
weights (specified by the configuration):
J
(1.1.4) z= Y PO, PO)= ] Z+k'

configurations vertices

We restrict our consideration to the region of the parameters given by |g|, lz] < 1.
Then the following configuration Cy, is called a ground state configuration.

1 2 1

1 2 1 2
2 1 2

2 1 2 1
1 2 1

1 2 1 2
2 1 2

The other ground state configuration is obtained by exchanging 1 and 2. A config-
uration C'= {C(k) }:pond is said to be in the sector of Cy, if C(k) = Cyr (k) for all
but finitely many k. To each configuration C in the sector of Cyr we associate a
configuration W = {W(j, C)}; face as follows.

(1.1.5) W(,C)eZ
and
(1.1.6) W(i',C)=W(,C)+1 if Clk)=1

=W(,C)—1 if C(k)=2,

where j and j' are the adjacent faces next to a bond k, and j' is either on the right
of j or below j. We choose the boundary condition as

(1.1.7) W(j,C) = W(j,Cyy) for all but finitely many ;.
Here W(j,Cy,) is the following.

0 1 0 1

1 0 1 0
{W(J’ Csﬂ”)} =

0 1 0 1

1 0 1 0
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We call W the weight configuration associated with C.
Choose and fix a face, say 0. Then, the 1 point function F'(a) (a € Z) is defined
by

S

Z 6a,W(O,C)P(C)

(1.1.8) Fla) = >

The corner transfer matrix method (CTM) reduces this sum to a one-dimensional
configuration sum. Consider the half infinite chain of vertical bonds and the faces
between them.

p(1) p(2) p(3) p(4) p(5)
B L N

A pathp= (p([f:))k___1 , is a configuration of 1 and 2 on the bonds. For example,
the ground state path p,, and the associated weight configuration are as follows.

The sum (1.1.8) essentially reduces to the the following sum.

119)  G@)= 3 ¢ Tam HHeE020) (s tt020)
paths

Here the sum is taken over the path p such that W(0,p) = a. It is easy to evaluate
this sum. The result is

2/2

qa
[T, (1 = ¢2%)
=90 if a 1s odd.

(1.1.10) G(a) = if ¢ is even

Consider the quantum affine Lie algebra s1(2). Let V(A) be the level one
vacuum representation. Then we have the equality

(1.1.11) G(a) = > dim V(Ao)ap—aar/2-ns 0"
n>0

where é = o + « 1s the null root.

1.2 Paths and crystals for U, (5[ (2))  Let us discuss the role of the quantum affine
Lie algebra U, (g[ (2)) in the discussion of 1.1. It is two fold.
(i) The R-matrix appears as the set of Boltzmann weights of the 6-vartex model;

(1.1.1-2).
(i) The string functions appear as the 1 dimensional sums; (1.1.9-11).
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Th(Zse two are connected by the energy function H appearing in the ¢ = 0 limit of
R; (1.1.3).

In (i) we use the 2 dimensional irreducible representation V of U, (s1(2)). This
V is not a highest weight module, and the level of this representation is zero. In
(ii) we use the infinite-dimensional representation V(Ag). This is a highest weight
module of level 1. R

Strictly speaking, the definitions of U, (s[(2)) employed in (i) and (ii) are dif-
ferent. Recall that U, (;{ (2)) is generated by ¢;, f; (i = 0,1) and ¢* (h € P*)
where P* is the dual lattice of the weight lattice P. The choice of P is not unique.
One choice is such that P* = P = Zho & Zhy and P = P, = ZAg ® ZA; where
gAi, hj) = &ij. For this, the simple roots g and @; are not linearly independent:

= p -+ &y = O

With this choice, the corresponding quantum affine Lie algebra, which we de-

note by U} (sl (2)), have non-trivial irreducible finite dimensional modules such as

our 2 dimensional V. ~
One can define the highest weight module V(Ag) as a U, +(51(2))-module. But

it is then inevitable that the weight spaces of this module are infinite-dimensional.
"T'o avoid this inconvenience we choose the second choice of P; P = Z§ @ ZAo & A;.
Then one can apply the theory of crystals developed in [K4].

The crystal B(Ag) is a set with the weight decomposition

B(Ao) = U,\GPB(A())A where ﬂB(Ao))\ = dim V(AD),\
and the maps f;, & (i = 0,1)
fi + B(Ag)y — B(Ag)a—a, LI {0},
g B(Ao))\ —_— B(AD)A-{—Q; LI {0}

The precise definition will be given later (Definition 2.2.3). The several higher
weight spaces are illustrated in Figure 1.2.1, in which the dots show the elements

of B(Ag) and the arrows show the action of f;.

Figurel.2.1 Figurel.2.2

° Ao o (---1212)

N

o Ag—ao o (--1211)
\ \
o Ag—4é o (---1221)
o A—b-ag o Ap—b—oy o (---1121) o (1222
° o Ap—25 (-2121) o o (--1122)

° e Ay-2-op ® Ag—2—ay (--+12121) o e  (---1112) e (2123
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Consider the set
P(80) = {p = (p(k)) 5, | P(k) € {1,2},p(k) = pgr(k) for Kk >>0}.

Define the weight of a path p € P(Ag) by

(o)

(1.2.1) wtp = Ao — Z(p(k) - pgr(k))al

k=1

- Z k{H(p(k + 1)717(]"')) - H<pgr(k + 1),1%,(/6))}5.

k=1

Set n;(a,b;p) = ${j | a < j < b,p(j) = i} where p € P(Ap), i = 1,2 and
1 <a<b Set Sy =4j]|n(f,5;p) > na(s,5;p) forany j < j}. Define
f1 : P(Ag) — P(Ao) U {0} as follows:

(i)  If S; =&, then set fip = 0.

(ii% If Sy # ¢, then set

(fip)(k) = p(k) k #max$,
=2 k=max5;.

The map f, is similarly defined by interchanging 1 and 2. By these definitions of
the arrows we can identify P(Ao) with B(Ao), and (1.2.1) gives the weight of the
element of corresponding to a path p. Hence we obtain

dim V(Ag)x = #{p € P(Ao) | wtp = A},

and (1.1.11) is also its consequence. Figure 1.2.2 shows part of this identification.

1.3. R matrix Now we consider the generalization of the scheme explained in
1.1-2. Let g be an affine Lie algebra. We consider two versions of quantum affine
Lie algebras U,(g) and U,(g) as in the s1(2) case. Denote by Mod/ the category
of the finite dimensional U;(g)-modules. For V' € Mod/, one can construct canon-
ically the U,(g)-module V; = Q[z,z7!]® V. The R matrix for V is an invertible
Qz,z7 1, y, ¥y 1] ® U,y(g)-linear map

(1.3.1) Ry VoV, —V, 0V,
satisfying the following properties.

(13.2) Ry € Qg)l2/y,y/2]® Endg)(V @ V).
(133) (Ry: @11 Q@ Ry )(Ray ®1) = (1® Ry y)(Roe @ 1)(1® Ry 2).
(1.34) Ry yRyq € Q(0)[z/y,y/z].

The universal R matrix is a candidate which gives R, , on V; ® V. Since we
are working in the affine situation, the expression of the universal B mattix contains
infinitely many non zero terms. "To be able to sum up all these, we assume that
V @V is irreducible Ué (g)-module. Now the problem is under Wh1ch conditions on
V', one can prove this irreducibility.

The idea is to use the crystal B of V. We assume the following.
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51.3.53 There exists a weight A such that §(B ® B)ay = 1, and
1.3.6 B ® B is connected.
Under these assumptions one can prove the irreducibility of V@V and the existence
of the R matrix.

The next step is to consider the ¢ — 0 limit of R. Set B, = U, 2" @ B and

define the maps &, f; (i € I): B, U{0} — B, U {0} by
'éizmé’n@ég, ﬁ:m—ai‘]@ﬁ.
With these maps B, is the crystal for the U,(g)-module V;.

A map R : B, ® By — By ® B, is called a combinatorial R matrix if it

commutes with the multiplications by z, y and the maps &, fz(z € I). A map

H: B® B — Z is called an energy function if for any b, ¥ € B and 7 € I such
that & (b ® V') # 0 it satisfies.

(137)  H(g(beV)=HbeV) ifi#0
=HO®V)+1 ifi=0and po(b) > eo(¥)
=H(bob)—1 ifi=0and ¢o(b) < eo(?').

The combinatorial B matrix is of the form
(1.3.8) R(b® V) = (y/z)TC&p g b/

for some energy function H.
We will show in Section 5 that after a suitable normalization R : V, ® Vy —

Vy @V, induces a combinatorial R matrix of the form (1.3.8) at ¢ = 0, and it satisfies

(1.1.3) with this H and with such a base {u;} that {u; mod ¢L} = B, where L is
the crystal lattice of V.

1.4 Perfect crystals  Fix a positive integer.[. Set (PF); = {) € @ 0Z>oA; |
{¢,A) = I} where c is the canonical central element of g. For A € (P) we denote
by V() the irreducible highest weight U,(g)-module with highest weight A and
by B(X) the associated crystal. Suppose that V is a finite dimensional irreducible
U,(g)-module and it has a crystal base (L, B).

It may happen that

(14.1) B(\)® B = B(u)

for some p € (Pc"’,” )i- This is a clue to the isomorphisms between the sets of paths
and the crystals —the isomorphisms we are looking for.

An element b; ® by € B(A) ® B is a highest weight element, i.e., there are no
arrows in B(A) ® B which point to b; ® by, if and only if

(1.4.2) b1 = uy : the highest weight element in B(}),
(14.3) ei(by) < (hy,A) for any 1.

If B(A)® B has only one highest weight element with weight z, then one can deduce
(1.4.1). (In fact, the proof requires an auxiliary condition which applies only to the

case rankg > 3. See Theorem 4.4.1.) For b € B we set e(b) = Y ., i(b)A;. We
assume the following.

(14.4) (c,e(b)y > 1 forallbe B.
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Set

(1.4.5) By ={b € B|(c,e(b)) =1}

We call B perfect of level | if it satisfies (1.4.4) and the following.
(1.4.6) @, €: By — (P}); are bijective.

If B satisfies (1.4.6), then for any Ag € (P});, one can find periodic sequences
bj € B (bj+n = b;) and A; € (PY) (A\j4n = Aj) such that

(1.4.7) e(bj) = A; = @(bj41).
Now from (1.4.1) we have the isomorphism of crystals

B(Ar)®B = B(Aj-1)
(1.4.8) w w
Uy, ® bk f— U por

Iterating this isomorphism we have

P, B()\g) = B(/\k) ® B®%
(1.4.9) w w
Uyg U Qb @ ® by

We make the following definitions.

The ground state path of weight Ao is the sequence {b;}z>1. A A¢-path in B
is a sequence {p(k)}r>1 such that

(1.4.10) p(k) € B, p(k)=by if k> 0.

Denote by P(Ag, B) the set of Ag-paths in B. Then B(Ao) and P(Xo, B) are in one
to one correspondence by

where
Pr(d) =ur, @p(k)@---@p(1) for k> 0.

The weight of b is given in terms of p by

wtb = Ag + i(wtp(k) —wtby) — i k{H (p(k + 1) ® p(k)) — H(bp11 ® bp)}6.
k=1 k=1

1.5. Vertex models In the setting given in 1.3-4, we can generalize the 6-vertex
model. Let {u; }jes be a base of the crystal lattice L of V such that {u; mod ¢L} =

B. For j, k, I, m € S define the Boltzmann weights j—-}—m by (1.1.2) where R is

the R-matrix for V. The sequence {b;} determines the ground state configuration
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Cyr and the corresponding sector of the 2-dimensional configerations. The dual
configuration W = {W(j, C)};.face is defined by

(1.5.1) VV(j, C) € Pu,
(15.2) W', C) = W(4,C)+ wt C(k),

where j, j" and k are the same as (1.1.6). (We choose and fix Wyr = (W(j, C’g,.)) )

The 1 point functions are defined by (1.1.8) where a € P,;. Then, the routine
procedure of the CTM method gives the expressions of the 1 point functions in
terms of the sums over the paths. As explained in the appendix of [ABF] (see also
[DIKMO1-4]), the CTM method requires the second inversion relation . We show
that it is valid in our general setting. Thus in our models, the 1 point functions are
expressed in terms of the string functions (Theorem 5.2.2).

The plan of the paper is as follows. In Section 2 we give the basic definitions
on crystals. Proposition 2.4.4 is a key when we prove results like ( 1.4.1). In Section
3 we discuss about the finite dimensional representations of the quantum affine
Lie algebras. The existence of the R matrix is shown under certain conditions. In
Section 4 we introduce the energy functions and the paths. The identity of the form
(1.4.1) is established in Theorem 4.4.2. We define the perfect crystals. In Section 5
the second inversion relation for the R matrix is derived. Finally we give a formula
for the one point function. In Section 6 examples of the perfect crystals of level
one are given. An extensive study of the perfect crystals are left to a subsequent
publication.

2. Crystals

2.1. Definition of Uy(g) Let us recall the definition of the quantized universal
enveloping algebra U,(g).
Consider the following data:

(2.1.1) a free Z-module P of finite rank (the weight lattice),
(2.1.2) a finite set I, a; € P and h; € P* = Hom(P,Z) for i € I,
(2.1.3) a Q-valued symmetric form ( , ) on P.

We set t = Q® P* and t* = Q ® P. We assume that they satisfy the following
conditions:

(2.1.49) (hi, ) is a generalized Cartan matrix,
(2.1.5) (i, ;) € Zw for any 1,
(2.1.8) (hi, A) = 2(ev;, A)/(evi, ;) for any i € I and ) € t*.

We do not assume that {o; | i € I} or {h; | i € I} are linearly independent.
The quantized universal enveloping algebra U,(g) associated to these data is the
Q(g)-algebra generated by the symbols e;, f; (i € I) and ¢" (h € P*) satisfying the
following defining relations:

(2.1.7) g" =1 for h =0 and ¢"¢" = $h*+",
(2.1.8) qheiq—h — q(h,ai)ei and thiq—-h — q—(h,ai)_fi,
(2.1.9) lei, £31 = 65t = 17) /(g — ¢ ")

where ¢; = q(o‘f:ai) and ¢; = q(ai,a,')hi)
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b

b
(2.1.10) Z(_l)negn)ejegb-n) - Z("l)nfi(n)fj f=m
n=0 n=0

for i,j € I, # j where b =1 — (h;, aj).

Here we set [n); = (¢ = ¢7")/(¢: — "), [n)i! = [Ticy [K)i, & = e /lnlit, 1) =
fI/[n)st. Wealso use {z}; = (z—27")/(¢i—¢; ) and {] }, = [Troy ({7~ a}s/[k]:).
We define the comultiplication by
(2.1.11) CAlg) =@t +H1®e,
Afi)=fi®l+t:9 fi,
A(‘ti) =1; ®1;.

Then Uy(g) is a Hopf algebra and the antipode is given by

(2.1.12) a(e;) = —eqty,
a(fi) = =71 fi,
a(qh) = q_h.

If we want to emphasize P and I, we write U,(g; P, I) for U,(g).

2.2. Crystal bases and Crystal pseudo-bases For a subset J of I we denote by
Uq(gy) the Q(g)-subalgebra of U,(g) generated by e;, f; (i € J) and ¢* (h € P*).
A Ug(g)-module M is called integrable, if it satisfies

(2.2.1) M= ,\@P My where My = {u € M | ¢"u = ¢®Nu Vh e P*},
€
(2.2.2) M is a union of finite-dimensional U,(gy;})-modules for any i € I.

For each ¢ € I, any weight vector u € M) of such a module M can be written
uniquely as

(2.2.3) u= S My,

where %, € Mijne; N Kere; and n ranges over integ~ers such that n > 0 and
(hi,A) +n > 0. Then we define endomorphisms é; and f; by

iu = Zfi(n-—l)un f";_u — Zfi(n+l)un'

Let A be the subring of Q(q) consisting of f € Q(g) that is regular at ¢ = 0.

Definition 2.2.1. A crystal lattice L of an integrable U,(g)-module M is a free
A-submodule of M such that

(2.2.4) M= Q(q)®a L,

(2.2.5) L= & L) where L) = L N M,,
AEP

(2.2.6) &L C L and f;L C L.

For a Q-vector space V', a subset B of V is called a pseudo-base if there exists
a base B’ of V such that B = B’ LI (-B').
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Definition 2.2.2. A crystal base (resp. crystal pseudo-base) of an integrable Uq(g)-
module M is a pair (L, B) such that

(2.2.7) L is a crystal lattice of M,

(2.2.8) B is a base (resp. pseudo-base) of L/qL,

(2.2.9) = )\EJP By where By = BN (Ly/qL)),

(2.2.10) &B C BU{0} and f;B C B L {0},

(2.2.11) for b,b' € B and i € I,V = f;b if and only if b = &',

If (L, B) is a crystal base, then (L, B U (—B)) is a crystal pseudo-base. Ab-
stracting the properties of crystal bases, we introduce the following notions.

Definition 2.2.3. A crystal B is a set B with the maps
&,fi :BU{0} = BU{0} (i€l
satisfying the following properties:

(2.2.12) &0=f0=0,
(2.2.13) For any b and i, there is n > 0 such that &2b = f7*b = 0,
(2.2.14) Forb,V' € Bandi€ I,V = f;b if and only ifb = &¥'.

When we want to emphasize I, we call B an I-crystal. A crystal may be
regarded as an oriented and colored (by I) graph by defining arrows as follows :

for b,0'€B, b——b ifand onlyif b = fb.
For an element b of a crystal B we set

(2.2.15) €;(b) = max{n > 0 | &b € B},
®i(b) = max{n >0 Ifz”b € B}.

Let By and B3 be two crystals. A morphism ¢ : By — By of crystals is defined
to be amap ¢ from By to B, that commutes with the actions of ¢ and f;. Here we
understand ¢(0) = 0. Then the crystals and their morphisms form a category. The
category of crystals has a structure of tensor category. For two crystals By and B,
we define its tensor product By ® B, as follows. The underlying set is By x By. We
write by ® by for (b1,b3). We understand b, ® 0 = 0® by = 0. The actions of &; and

fi are given by

(2.2.16) Fibr@bs) = fiby @by it i(b1) > si(by)
=b1® fiba if  i(b1) < g(bs),
(2.2.17) &i(b1 ®@bz) = &by @by if ;(b1) > ei(bo)

=b; ®¢€by if Cpi(bl) < €§(bg).

The following lemma is immediate.




460 S.-J. Kang et al.

Lemma 2.2.4.
¢ By the definition above, By ® B is a crystal.
(i We have

ei(by ® by) = max(ey(by), e:(b1) + €i(b2) — i(b1))
@i (b1 ® by) = max(p;(b2), pi(bz) + i (b1) — €i(b2))
(ii1) Let By, By and Bs be crystals. Then the map (By ® By) @ Bz —

B1 ®(B2® Bs) given by (b; ®b2) @bz — b1 ®@(b2® bs) is an isomorphism
of crystals.

By this lemma, the category of crystals is endowed with the structure of tensor
category.

Definition 2.2.5. A weighted crystal B is a crystal with the weight decomposition

= B
B=,.5
such that
& By C Bago, U{0}, fiBx C Ba_a; U{0}
and ’
(2.2.18) (hi,Wt b) = (,Dg(b) - Ei(b).

Here, we write A = wt(b) if b € B.

If we want to emphasize P, we say that B is a P-weighted crystal. For a
crystal base (L, B) of an integrable U, (g)-module, B can be considered as a crystal.
If (L, B) is a crystal pseudo-base, B/{1,—1} is considered as a crystal. If By and
B, are weighted crystals , then By ® B, is a weighted crystal by

(2.2.19) wt(by ® by) = wh(by) + wt(bs).

Note that by Lemma 2.2.4 (ii) we have ¢;(b1 ® ba) — &i(b1 ® ba) = Z?:l (i (b;) —
ei(b;)), and hence (2.2.18) and (2.2.19) are compatible. Thus the category of
weighted crystals forms a tensor category.

2.3. Linear independency of {c;}

In [K4], we assumed that {e;} is linearly independent. However, in this paper,
we have to treat also the case where {e;} is not linearly independent.

If we deal only with the U,(g)-modules in O;,:(g), the linear independency is
not important. In fact, let us take another data P/, o € P', hi € P™* (i € I),
(, ) satisfying (2.1.1-6), and a surjective homomorphism ¢ : P’ — P such that
o(ad) = a;, ¢*(hi) = h} and (ef,a}) = (o, ). Moreover assume that {a}} are
linearly independent.

(e.g., take P/ = Po(®;Z0}), o(af) = as, o(A) =X € P, A®)aaf, NV ®) aic]) =
M)+ Y ai(ei, X)) + afes, M) + 3 aai (e, o))
Then we have a ring homomorphism U,(g; P, I) — Uy(g; P, I).

Let Vp:(X) be the irreducible highest weight Uy(g, P’, I)-module with highest
weight A and let Vp (¢())) be the irreducible highest weight U, (g; P, I)-module with
highest weight @()). Then, Vp:/(A) and Vp(¢(X)) are isomorphic as U,(g; P, I)-
module. Consequently, their crystal bases Bp:(A) and Bp(p())) are isomorphic as
P-crystals. In particular,
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(2.3.1) even if {e;} is not linearly independent, for A € P,

fix "‘fizuA = f;l '”szku)\ € B()
implies
ﬁ{Vliu:i}:ﬁ{M!jM:i}
for any i € 1.
However, when we treat integrable modules not belonging to O;ni(g) the repre-
sentation theory of U, (g; P, I) and that of U,(g; P’, I) are very different. In the affine
case, if {a;} is linearly independent, any irreducible finite-dimensional representa-

tion must be one-dimemsional. But there are a lot of irreducible finite-dimensional
representations when {¢;} is linearly dependent.

2.4. Crystal base of highest weight modules Let Oint(g) be the category of in-
tegrable Uy(g)-modules M such that for any u € M, there exists [ > 0 such that
€iyooreu = 0 for any ¢y, € I For A € Py = {A € P | (h;,A) > 0}, let
us denote by V() the irreducible U, (g)-module with highest weight A. Then any
object of Ojni(g) is a direct sum of V(A)’s. Let uy be the highest weight vector of
V(A

~ Let L(A) be the smallest A-module that contains uy and that is stable under
fi's. Let us set B(A) = {b € L(A)/qL(X) | b = fi, -+ fi,up mod ¢L(A)}\{0}. We
denote by the same symbol u, the element of B()) corresponding to uy € L()).
The following three theorems are proved in [K4].

Theorem 2.4.1. (L(A),B())) is a crystal base of V().

A crystal is called a crystal with highest weight if it is isomorphic to B(}) for
some A € P,.

Theorem 2.4.2. Suppose that M is in O;yy(g). If (L, B) is a crystal base of M,
then there is an isomorphism M = @ V/();) which induces (L, B) = @(L();), B(};)).
i i

Theorem 2.4.3. Let M, and My be two integrable U, (g)-modules, and let (Lj, B;)
be a crystal base (resp. crystal pseudo-base) of M;. Set [ = Ly ® Ly C M; ® Mo,
B = {bi®by | b; € Bj} C L/qL. Then (L,B) is a crystal base (resp. crystal
pseudo-base). Moreover B = By @ By (resp. B/{%1} = (By/{+1}) ® (B2/{£1}))
as crystals.

Proposition 2.4.4. Let B be a weighted crystal. Assume the following.

(24.1)  Foranyb € B, thereexist! > 0, iy,---,i; € I such that b/ = &, - &,b€E
B 1s a highest weight element, i.e., &b’ = 0 for any i.

(2.4.2) For any i,j € I, B regarded as the {1, j}-crystal is a disjoint union of
the crystals of integrable highest weight modules over U,(g i)
Then B is a direct sum of crystals with highest weight.
Proof. Let H={beB|&b=0 for any i}. For by € H, let us denote by B(bo) the
set of non-zero vectors of the form f;, - -- f;,bo. We shall show that B(bo) is stable
under ¢; and is isomorphic to B(}), where A is the weight of by. For a sequence
o= (o1, --,01)in I, weset I = |o|, f7 = f, --- f,. We shall show by induction
on |o| and |7]

(2.4.3) Fobo=0% fouy, =0,
(244) ggfabg =0& éifOU)\ =0,
(2.4.5) F7bo = fTbo & FPun = fruy.
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We shall show first (2.4.3). Set j = oy, and ¢’ = (02,---,01). If f" uy = 0 then

by = 0 and there is nothing to prove. Hence we may assume foluy € B(X).
There exists k and 7 such that |7| =1 -k -1

Foun = FEfrun, & fTun = 0.
Hence by the induction hypothesis
Fobo = fEfTbo and &b =0.

Since f7by = f;.k“f’bg =0 is equivalent to k + 1 > (h;, wt(f7bo)) and f7uy =0 is
also equivalent to & + 1> (h;, wt(f7uy)) = (b, wt(f7bo)). This shows (2.4.3).

Now, we shall show (2.4.4). By the same notation, we may assume f"luA # 0.
There exist cr" and o' such that ¢ is a sequence in {7, _7} lo”| + o] = |o'],

Fouy = f7"F7"u, and e,f"l Uy = ejf"l uy = 0 Hence f” bo = f" Fo""by and
e,f""'bg = ijamb() = 0. Since f" "bo and f" u,\ are annihilated by & and &;

and have the same weight, (2.4.2) implies that &; f] 7" f7""by = 0 if and only if
ezf] f” f"m = 0. Fma,lly, we shall show (2.4.5). We set o1 = ], 7'1 = 4, and
o' = (o9, o'z) and 7/ = (72,---, 7). Then there exist sequences o, " in {i,5}
and o', 7./// such that lo_/l _ !O.III + lo_m, I,r/| _ IT”] + iT’"I fa U}\ _ fa fo"’

f"u;—ff f’ u,\ andezf -—e]f ,\_ezf ,\.._le 'u,\._O Hence

&f b0 = &7 bo = &f7 b0 = &f7 by = 0. If fux = fruy (resp. by =
F7bo), then f" u = F"uy (resp. b = bo) and hence f7"'by = F"'by
(resp f" fT uA) Hence f"bo f7bo and f7uy = f7uy are both equivalent
to fJ f" w = fz fT w where w is the highest weight element of the crystal of the
integrable irreducible Uy(gy; ]}) -module with highest weight wt( I uA) Hence we
have (2.4.5). Now e;f uy = fTu,\ implies e,f"bo fTbo because e,f"u)\ f’uA is

equivalent to f"u,\ = f, f uy. Hence B(bg) is stable under &; and is isomorphic to
B(X). O
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3. Finite-dimensional representations and R matrices.

3.1. Affine and classical weights Let g be an indecomposable affine Lie algebra
defined over Q, and let  be the Cartan subalgebra. Let {o; |7 € I}t C t* be the
set of simple roots and let {h; | i € I'} C t be the set of simple coroots. We assume
{ag [ i € I} and {h; | i € I} are linearly independent and dimt = #7 + 1. Set
Q=3%20;,Qy =3 ;Z>oc; and Q_ = —Q,. Let 6 € Q be the generator of
null roots, ie., {A € Q | (h;,A) = 0} = Z6. Let ¢ € 3, Z>oh; be the generator
of the center, ie., {h € 3, Zh; | (h,o;) = 0} = Ze. Set ty = ®Qh; C t and
ty = (@Qh;)* and let ¢l : £* — t¥; be the canonical morphism. We have an exact
sequence

(3.1.1) 0— Q6 —t* =1t —0.
Then dim t}, = #1I and

(3.1.2) {Aeth[(eA) =0} =" Qel(ay).

i€l

Let us fix ¢¢ € I such that § — o;, € Zo;. Let us take a map of : t¥, — t*
[§} 2

£,
satisfying:
(3.1.3) cloaf =1id
(3.1.4) afocl{ey) = ; for i+#ig.
We have
(3.1.5) afocl(ai,) =y, — 6

since af o cl(ai, — &) = aj, —6 by (3.1.4) and ¢l(6) = 0.

Let A; be the element of af(t}) C t* such that (hj, As) = 6;5. We take
> ZA; + 76 as P C t* and we set P, = c(P) = 3, Zel(A;) C t%. We call an
element of Py a classical weight and an element of P an affine weight. Note that
af ocl(A;) = A;. We have

(3.1.6) a; = Z(hj,ai>Aj + 643,0.

In particular, all ¢; belong to P.

Remark. The map af depends on the choice of i5. Even for a fixed 10, it is
not uniquely determined by the properties (3.1.3) and (3.1.4). If af’ is another
map satisfying the same conditions, then there exists » € Q such that af'(A) =
af(A) +r{c, A)s.

3.2. Affinization of Uy(g)-modules  Let U,(g) be the g-analogue associated with
P, and let Uj(g) be its subalgebra generated by e;, f;, ¢" (h € (Py)*). Then Uy(g)

s also a quantized universal enveloping algebra with P.; as the weight lattice. Note
that the simple roots cl/(c;) € Py are not linearly independent. For a U, (g)-module,

affine weights make sense but for a Uy (g)-module only classical weights make sense.
Let us denote by Mod/ (g, Pi) the category of Uy(g)-module M satisfing the
following conditions:
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(3.21) M has the weight decomposition M = R Q;) M),
€FPa

and
(3.2.2) M is finite-dimensional over Q(q).

For a Uj(g)-module M in Mod/ (g, P,), we define the U,(g)-module Aff(M) by

Aff(M) = ,\?P Aﬁ(M),\, Aﬁ(M)A = McI(A) for A€ P

The actions of ¢; and f; are defined by the commutative diagrams

AR(M)y =5 AR(M)rpo, A(M)y L5 AR(M)r—q,
1 i and i i
eq H
Mapy — cl(A+a;i) Mg RN el(A—a;)-

Let us denote by ¢l : Af(M) — M the morphism defined by

A (M)\——Myy (A€ P),
and by af : M — Aff(M) the morphism defined by
M,\-—':—arAﬁ'(M)af()\) (A€ Py).

We define the Uy (g)-linear automorphism 7" of Aff(M) by
A(M)y = AR(M)rps

! i

Meioxy 2 A(A+6)-
Then we have
(3.2.3) Aff(M)EQIT, T-l]gM

by the map
QIT, T~ ® M 3 T* @ uw T*af(u) € A(M).

Note that ¢l is Uy(g)-linear but af is not Ui(g)-linear. By (3.1.4) and (3.1.5) we

have
(3.2.4) e; of (u) = af (e;u) if i# 14
=T af(ejou) if 7=,
(3.2.5) f,’ af(u) = af(f,u) if ¢ '7{: io
=71 af(f;ou) if i=1
for u e M.

This notion can be reformulated as follows. Let K be a commutative ring
containing Q(g) and let 2 be an invertible element of K. For a K ®q(y) Uy (g)-module
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M let us denote by ®,(8) the K ®q(q) Uy (9)-module constructed as follows: There
exists a K-linear bijective homomorphism ¢, : M —s &, (M) such that
¢ (u) = ¢o(q"u) for he Py,
eido(u) = 2% gy (e5u),
fida(u) = 2= %0 g (fiu).
For a Uy(g)-module M in Mod”(g, Pt), we have the following U}(g)-linear
isomorphism

(3.2.6) AfR(M) = &7 (Q9)[T, T~ ®qqq M)

by T" af (u) — T ¢ (u).
For invertible elements z,y of K and K ® U,(g)-modules M, N, we have

(3:2.7) @, B, (M) = By (M)
by ¢z (6y()) < duy(u), and
(3.2.8) 3, (M ® N) = &,(M) @ B4 (N)

by ¢x(u ® 'U) A <Plx(u) ® Qszc(v)
For a K ® U,(g)-linear homomorphism f : M — N, we denote by ®,(f)

the K ® Uy(g)-linear homomorphism @, (M) — ®,(N) given by &,(f) ($2(v)) =

¢ (f(v)) for any v € M.

Remark.

(i) This construction makes sense because {cl(a;)} are not linearly independent.
In general, M and ®;(M) are not isomorphic. However, if we define @, (M)
for K ® Uy(g)-module when {e;} are linearly independent, then (M) is
isomorphic to M whenever M has a weight decomposition.

(ii) For the sake of simplicity, we use the same simbol ®, even when we consider
different rings of scalars. But in any case it is always obvious which scalars we
use.

3.3. Affinization of classical crystals  The investigation similarly goes through for
crystals. A Py-weighted crystal is called classical and P-weighted crystal is called
affine. For a classical crystal B, let us define the affine crystal Aff (B) by

Aﬁ(B) = AEUP Aff(B),\ where Aff(B),\ = Bcl(/\)-

The actions of & and f; are defined by the commutative diagrams:

AR(B)y =5 AR(B)rta, U {0} Af(B), L5 AR(B)s_o, U {0}
i ) Y and i ) ]
Bcl(/\) R Bcl()\-i-oz,-) U {0} BCI(A) ——f-’—> Bcl()\—a;) u{o}.
We define the automorphism 7" of Aff(B) by
T

A(B)y 5 AR(B)rss
Y Y

id
Baiy  —  Bapte)-
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We define ¢/ : Aff(B) — B and af : B — Aff(B) similarly to the definitions of

cl: Aff(M) — M and of : M — Aff(M). Then ¢l commutes with all & and f;
and af satisfies

(3.3.1) & af(b) = af (&) if i+
=T af (8,0) if =1,

af(fib) if i+

T af(fi,b) if i=io

(3.3.2) fi af(b)

for b € B.

Let M be a U,y(g)-module in Mod’ (g, Psi) and let L be a crystal lattice of M.
Then Aff(L) = cI7'(L) is a crystal lattice of Aff(M). If (L, B) is a crystal (pseudo-
)base of M, then Aff(B) = cI™!(B) can be considered as a subset of Aff(L)/q AfE(L)
and (Aff(L), Aff(B)) is a crystal (pseudo-)base of Aff(M).

3.4. Existence of R-matrix Let V be a U}(g)-module in Mod’ (g, P.;). We assume

that
(34.1) V@YV is an irreducible U;(g)-module.

Under this condition V has an R-matrix.

Theorem 3.4.1. Let V be a U}(g)-module in Mod” (g, P.;) satisfying (3.4.1).
(1)  There exists a non-zero U, (g)-linear endomorphism R of Aff(V)® Aff )
such that (T®1)oR=Ro(1®T) and (1®T)oR=Ro(T®1).
(i) R? = f(T ®T~') for some non-zero f € Q)T @ T, T~ & T).
(i) R satisfles the Yang-Baxter equation: (R®@1)o (1® R)o (R® 1) =
(1®R)o(R®1)o(1® R) as an endomorphism of Aff(V) ® Aff(V) ® Af(V).

In order to prove this theorem, let us start by the proof of the following classical
result. It says that a representation with a parameter ) is irreducible for a generic
A whenever it is irreducible at a special A.

Lemma 3.4.2. Let C be a Noetherian commutative ring and m a maximal ideal.
We assume that C' is an integral domain and denote by K its fraction field. Let R
be a C-algebra, i.e., a non-commutative ring R with a ring homomorphism C — R
whose image is contained in the center of R. Let M be an R-module free of finite
rank as a C-module. If M/mM is a simple (R/mR)-module then K ®c M is a
simple K ®¢ R-module.

Proof. By localization, we may assume that C is a local ring. Let N be a K ®¢
R-submodule of K ®c M. We shall prove N is zero or K ®c M. Let us set
M = M/mM, gr,, C = mF/m** gr, M = mFM/mF+10 = (81 C) ®c/m M and
gry N = (Nnw*M)/(N nm*+ M) € gr, M for k > 0. Since gry N is an (R/mR)-
submodule of gry C®¢/m M, there exists a vector subspace ay, of gry, C such that
gty N =~ ap ©cym M. Set a = @a;. Then gr N = k@ﬁgrkN =a® M, and a is

an ideal of grC' = k@ grC. If a is nilpotent, then a; = 0 for k£ > 0 and hence
>0

NN m*M = NN w1 for k> 0, Therefore N m* M = 0 implies NN m* M = 0
for k > 0, which implies N = 0. If a is not nilpotent, then there exists & € a; which
is not nilpotent. Then taking a representative ¢ € m* of ¢, we have

eM C NnwPM +mbtipg,
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Let {u;} be a system of generators of M. Then there exists a;; € m**! such that

cu; — Zaijuj € N for any 1.
J

Since det(cb;; — aij);; does not vanish in C by the choice of ¢, all u; belong to N
and hence N = K @¢ M. O

Proof of Theorem 3.4.1. Let z be an indeterminate and let X be Q(g,2). We
shall first prove the existence of the R-matrix R : @, (K Q V) Qg (K@ V) —
(K®V)®k ®,(K ®V). By the existence theorem of the universal R-matrix due
to Drinfeld ([D2]), there exists a formal R-matrix of the form ® = ¢ 5 (P ® Q;)a

where a acts on My ® N, by ¢**#) and P; € Uy (9),Q: € U (g) are certain bases
dual to each other with respect to certain coupling Uy (g) x U (8) — Q(g). The

map o is the permutation map v ® v + v ® u. We may assume that P; and Q;
are weight vectors and if Q; has weight &; € Q4 then P; has weight —¢;. Now, let

K be the fraction field of Q(¢)[[z~ ). We shall show that ® gives a well-defined

homomorphism from ®,(K ® V) @ (K ® V) into (K ® V) ® &,(K ® V). Observe
that since the level of any weight cl()) of V' 1s zero, we have (§,A) = 0. Hence (), u)
is determined by cl(A) and cl(y). Therefore, for v € Vny, w € Vi) (A, 4 € P),
we have

(P @ Qi)a(d.(v) ®w) = *AMPd,(v) ® Qiw.

If we write §; = af o cl(&) + ¢;6, then ¢; is a non-negative integer and P, (v) =
z7%¢,(P;v). Hence, we have (P ® Q;)a(¢:(v)®w) € 27%¢,(V)®V. On the other
hand P;¢,(v) and Q;w have weight cl(A—¢;) and cl(u+¢;). There exist only finitely

many &' € P, such that cl(A) — &' and cl(u) + ¢’ are both weights of V. Therefore,
for any c, there exist only finitely many 7 such that Pj¢,(v) ® Q;w # 0 and ¢; = c.

Hence, S (P ® Qi)a(4,(v) ® w) converges in K ® V ® V. Hence the universal
R-matrix gives a K ® Ug(g)-linear homomorphism R:®,(K@V)®(K®V) —

(KoV)®d,(KoV).
Moreover, if we take a non-zero w such that e;w = 0 (¢ # ig), then

R(qﬁz (v)® w) =@My ¢, (v) mod 2 1Q(q)[[2~ 1}](V ® ¢z(V))

Hence R does not vanish.
Set

S= Hom ¢ 171 gy (K@ V)®(EoV),(KoV)®e,(KkeV))

and
S = HomK®U;(g) (@z(K @V)I®(KQV){(K@V)®d,(K® V))

Then § = K @k S. On the other hand by Lemma 3.4.2 with C = Q(g)[z, 271,
m=(z-1)C, R=CoUyg), M = &,(CRq) V) ® (C®q V) and (3.4.1),
2, (KQV)Q(K®@V) and (KQ®V)® ®,(K ®V) are irreducible. This implies

dimS < 1. Therefore, we have S = KR. Thus S contains a non-zero R. By
multiplying a function of z, we may assume

R(2,(V) ®q(q) V) C Q92271 ®qq) (V ®q(g) @:(V))-




468 S.-J. Kang et al.

Let z and y be indeterminate, and set z = z/y. Then ®,(R) gives a homomorphism
of @y (@,(V)QV) = &,(V) @ ®y(V) into &, (V@ @,(V)) = @,(V) ® (V). Thus
R gives a Q(g)[z, 27", y,y7'] ® U, (g)-linear homomorphism

2, (Qg)[z, 2711 @ V) ®q) Py (AU, v 1O V)
— @y (Q(Q’)[%?J—l] ® V) ®q(q) Do (Q(Q)[ﬁ, xul] ® V).

By identifying @, (Q(q)[z,27']® V) with Aff(V), we obtain R satisfying the con-
ditions in (i).

(i) follows from the irreducibility of @ (Q(q)(z,¥) ® V) ® &, (Q(g)(z,y) ® V).
(iii) follows from the fact that the universal R-matrix satisfies the Yang-Baxter
equation and that R is proportional to R. o

Proposition 3.4.3. Let V be a U,(g)-module in Mod” (g, P.;) satisfying the fol-
lowing conditions:

(3.4.2)  V has a crystal pseudo-base (L, B).

(3.4.3)  If we denote by By = B/{#1} the associated crystal, then By ® By is
connected and there exists Ag € Py such that #(Bo ® Bo)ay, = L.

Then, there exists an R-matrix R : Aff(V) @ Aff(V) — Aff(V) ® AF(V).

Proof. Because of Theorem 3.4.1 it is enough to prove the following lemme which
guarantees (3.4.1).

Lemma 3.4.4. Let M be a Uy(g)-module in Mod/ (g, Pyi). Assume that M has a
crystal pseudo-base (L, B) such that

(3.4.4) there exists A € Py such that #(B/{+1})\ = 1,
(3.4.5) B/{+1} is connected.

Then M is an irreducible Uy (g)-module.

Proof. First let us show that M, generates M. Let N be the U ¢(g)-module gener-

ated by M. Then LNN is a crystal lattice of N. Since (LNN), = Ly, LAN/¢LNN
contains B. Hence LNN = L and N = M. Now let us prove that M is irreducible.
Let N be a non-zero submodule of M. If N) # 0, then by the preceding argument,
N = M. Suppose that Ny = 0. Since the dual of M satisfies the similar properties
to M, we have N = 0. O
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4. Path and Energy Function

4.1. Energy function Let B be a classical crystal. A Z-valued function H 611
B ® B is called an energy function of B if for any i € ] and b Q¥ € B @ B such
that & (b ® ') # 0 we have
=HOb@V)+1 ifi=ip and @i (b) > €;,(b),
=HOb®V)—1 ifi=1ipand p;(b) < €, (b').

Lemma 4.1.1. Let H and H' be Z-valued functions on B® B and let R be the
map from Aff(B) ® Afl(B) into itself defined by

(4.1.1)  R(T°af(b) @ T° af(1')) = T +HOOM) of(p) @ ToHH 088 41y
wherec, ¢ € Z and b, I/ € B.

Then R is a morphism of P-crystals if and only if H + H' =0 and H is an energy
function.

Proof.  Comparing the weights of the both sides of (4.1.1), we see that if R is a
morphism of crystals then H 4+ H' = 0. Let us consider the case where 7 = iq and

©0io(b) > €,(b'). We have
(4.12) RE,(T°af(5) @ T af (V') = R(T*+" af(8;,0) @ T af(¥"))
= T HHGEIY) of (3, b) @ T+ ~H(Eob®Y) g (3).

On the other hand, we have
(4.1.3) & R(T° af (1) @ T af (V) = &, (T +FOOY) 4f(p) @ T~ HO®) 4f (1))
=T OO 4f (5 ) @ T HOY) 4p ().

Comparing (4.1.2) and (4.1.3), we obtain the assertion of the lemma in this case.
Other cases can be proved similarly. i

4.2. Combinatorial R-matrix

Definition 4.2.1. A combinatorial R-mairix of a classical crystal B is an endo-
morphism R of the P-weighted crystal Aff(B) @ Aff(B) such that

(4.2.1) (T®l)oR=Ro(1®T) and (1®T)oR=Ro(T®1).

One can see easily that, for an energy function H,
(4.2‘2) R(Tc af(b) ®Tc' af(b')) — Tc'+H(b®b') af(b) ® Tc-H(b@b') llf(b')

is a combinatorial B -matrix.

Consider the following conditions for B:
4.2.3 B ® B is connected (and hence B is connected).
4.2.4 There exists Ao € Py such that #(B®B)sy, = 1 (and hence #B), = 1).
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Proposition 4.2.2. Suppose that B is a classical crystal satisfying (4.2.3), (4.2.4£
and R is a combinatorial R-matrix of B. Then there is an energy function H suc
that (4.2.2) holds.

Proof. Note that g4.2.3) and (4.2.4) imply that there is no endomorphism of the
P,-weighted crystal B ® B other than the identity. Hence we have a commutative

diagram: R
Afi(B) ® Aff(B) —— Afi(B) ® Aff(B)
cdoecl] cd®cl]

B®B = B®B.
From this we have
(425)  R(af(b) ® af (t') = THCOO) @ TH'COM) (af (b) @ af (V).
with some functions H,H' : B® B — Z. From (4.2.1) we have (4.1.1), and then
the assertion follows from Lemma 4.1.1. [}

Proposition 4.2.3. Let H be an energy function of a classical crystal B. Let
¥ : Aff(B) ® Aff(B) — Z be the function defined by

T af (B)@ T af (V) =c—c ~ HO@ V)
for b, ' € B and ¢, ¢ € Z. Then v is constant on each connected component of
Aff(B) ® Aff(B).
Proof. Let R be the combinatorial R-matrix associated with H. Then, for any
b € Afi(B) ® Afi(B), we have R(b) = (T~*® @ T¥("M)}. Since R, T®1 and 1@ T
commute with & and f;, v is constant on the component containing b. o

4.3. Existence of combinatorial R-matrix Let us give a sufficient condition for
the existence of combinatorial R-matrix.

Proposition 4.3.1. Let V be a U,(g)-module in Modf(g,Pcz) satisfying (3.4.2)
and (3.4.3). Then By = B/{+1} has a combinatorial R-matrix.

Proof. By Proposition 3.4.3, V has an R-matrix R : Aff(V) ® Aff(V) — Aff(V)®
Aff(V). Let up be such that (Bg)a, = {uo mod ¢L}. Let us show after a suitable
normalization of R, we have R(up ® ug) = uo ® ug and R(Aff(By) ® Aff(By)) C
Aff(Bo) ® Aff(Bg). Denoting z = T® 1 and y = 1 ® T, we have R(up ® ug) =

9(x/y)(uo ® uo) for some g € Q(q)[z/y,y/z]. By normalizing R by a multiple of
an element of Q[q], we may assume g € Q[g][z/y,y/z] and go = g|g=0 # 0. Set

L = Afi(L) ® Afi(L). Then L is a crystal lattice of Aff(V) ® Aff(V) which is
stable by z and y. Since By ® By is connected, the map R=1(L) N L/R-Y(I)n
qL — L/qL is surjective. Hence I C R‘l(z) +qL. Since I is a finitely
generated Alz,2~!,y,y~']-module, there exists ¢ € A[z,z~1 y,y~!] such that
Plg=0 = 1 and oL C R-Y(L). Since R preserves the affine weights, we may
assume ¢ € Alz/y,y/z]. Thus, replacing R with @R, we have RL C L. If
R(b) € go(z/y)(Aff(Bo) ® Aff(Bo)) for b € Aff(By) ® Aff(By), then R(f;b),
R(&b) and R((T™ ® T™)b) belong to go(z/y)(Aff(Bo) ® Afi(By)). Therefore we
have R(Aff(Bo) ® Aff(Bo)) C go(x/y)(Aff(Bo) ® Aff(Bo)). Hence go(z/y)~ 1R gives
a combinatorial R matrix. O

The following proposition follows from the arguments above and Proposition
4.2.2.
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Proposition 4.3.2. Take a basis {u;} of L such that u; mod ¢L € B, and set
R(u; ® u) = ng,;f ujs @ ugs where rj:’;f € Aly/z,z/y). Then, we have

| = 6t (/)P g0z )

)

for some function go(z/y) € Q[z/y,y/z].

4.4. Tensor product of B(A) and B Let B be a classical crystal associated with
a Uy(g) -module V in Mod” (g, P.i). The product B()) ® B may happen to be
isomorphic to B(y), although V() ® V is not isomorphic to V() and it is even
not a highest weight module.

Theorem 4.4.1. Assume rank g > 3. Let B be a classical crystal, A € P, and
bo € B satisfy the following properties.

441 B is a finite set.
4.4.2 B has an energy function H.
4.4.3 {b € B|ei(b) < (hi,A) for all i} = {bo}.

4.4.4 There exists b’ € B such that ¢;(b') < (h;, A) for all i.
4.4.5 For any pair i,j € I, B regarded as {i, j}-crystal is a direct sum of
the crystals of irreducible integrable highest weight modules over the subalgebra

U,(94i,;3) generated by e;, ¢;, f;, f; and ¢"(h € P3).
Then we have an isomorphism of classical crystals B(A\) @ B ~ B(u) where
p = A+ af(wtby) in such a way that uy ® by « u,.

Proof. By Proposition 2.4.4 it is enough to check the following.

(446) {beBM\)®B|&b=0for all i} = {u) ® bo}

(44.7) For any b € B()\) ® B, there exists a sequence iy, - - - , 4 (I > 0) such
that &, --- §,‘j) = u) ® bg.

(4.4.8 For any pair ¢,j € I, B(A) ® B is a disjoint union of crystal graphs of
integrable irreducible highest weight U,(gy; ;;) modules.

Note that (4.4.6) follows from (4.4.3) and (4.4.8) follows from (4.4.5). Let us
prove (4.4.7). Suppose that b = V' @ b where &/ € B()) and b € B. For any i € I
there exists m > 1 such that

g ) =&b @&
Hence there exists ji,---, 7 such that

éjl"'5j15=u>\®b for some b€ B.

Therefore we may assume b = u, ® b. Now, assume that (4.4.7) does not hold for
this b. Then, there exists an infinite sequence {i,} in I such that

éik é’,l(u,\@)b) -75 0.

Since &, -+ &;,(uy ® b) = u) ® &, ---&;,b and since B is a finite set there exists
by € B and 4y,--+,%; (k > 1) such that

uy @by =&, - &, (uy ®b1).
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Hence setting b, = &;b,, we have
(4.4.9) Zi,(ua®b,) =ur®b,41 and  bryg = by.

By (2.2.17), we have €;,(b,) > @i, (ur) = (hy,,A) > ¢; (V'), where b’ € B is an
element as m (4.4.4). Hence we have

&, (V' ®b,) =b' @b,y
Therefore, by the definition of energy function, we have
H(b, ® bV-H) = H(b/ R b,,) — 5:'0,@',,‘

Hence H(V' @ bry1) = H(V' @b1) — #{v | i, = 1o}, which implies there is no v such
that 7, = 4p. On the other hand ¢/(}", «;,) = 0 and hence 3, @;, is a positive
multiple of §, which contradicts {i1,---, 4} % 0. O

45. Path Let B be a finite classical crystal that has an energy function H and
satisfies (4.4.5). We assume that there exists a sequence A, € af(Py) N Py (v > 0)
and b, € Bga,_,)-ci(n,) (¥ 2 1) such that

(4.5.1) gi(by) = (hy,A,) for all ¢ and v > 1
(4.5.2) {b € B |ei(b) < {hi,A,) for all i} = {b,} for each v > 1.

Since wt(B) = {)A € Py | By # ¢} is a finite set invariant under the Weyl group,
any weight A has level 0 (i.e., (¢, A) = 0).

Therefore {A,}, are dominant integral weights with the same level. Since
there are only finitely many such weights, there exist N > 1 and k& > 0 such that
Ar4nN = Ap. Hence by the uniqueness of b, we conclude that b,y = b, for any
v > 1and Ayyny = A, for any v > 0. Since (hi, Ay — A1) = ©i(byt1) — €i(by11),
we have (h;,A,) = ©;(by41). Thus we can apply Theorem 4.4.1 to see that there
is an isomorphism between B(A,_;) and B(A,) ® B such that uy,_, < uy, ®b,.
Hence, repreating this, we obtain an isomorphism

P 1 B(Ao) = B(A;) ® B®*  such that wuy, — ux, @bp @ -~ @ by.
Lemma 4.5.1. For any b € B(\g), there exists k > 0 such that

Pi(b) € uy, @ B,

Proof. Tt is sufficient to show that if ¢, (b) € ua, ® B®*, then ¥y 41(£;b) € uy,,, ®
BOGH) I by (b) = up, @b for b’ € B®* then ¢y41(b) = uy,,, ® b1 ® V. Since
fi(u;\k_H ® bk+1) = Uk ® fibpi1, ?,bk+1(f§b) 1s equal to either Urpyy @ fibps1 ® v
or Uy, ,, ® bk-{-l Q f;b. O

The sequence (b1, bz, - - -) is called the ground-siate path of weight Aog. A Ag-path
in B is, by definition a sequence {p(n)},>1 in B such that p(n) = b, for n > 0. Let

us denote by P(Ag, B) the set of Ap-paths. Now, the following theorem is obvious
by the preceding discussions.
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Theorem 4.5.2. B(/\oz is isomorphic to P(Ao, B) by B(Ao) 3 b — p € P(X, B)
where ,(b) = ux, @ p(k) ® - @ p(1) for k> 0.

Now, we shall calculate the weight of a path. Define a morphism of P-crystals
B(Ag-1) — B(Ar) ® Afi(B) by ua,_, — ux, @ af(bg). This is well-defined. By
repeating this, we obtain

Wi - B(ho) — B(A\r) ® Aff(B)®*
where Pr(un,) = ur, ® af(by) @ --- ® af(b). Evidently the following diagram
commutes. s

B(Ag) —— B(X\) @ Aff(B)®*

iid lid@cl Ok
Py &
B(xg) — B(X;) @ B®*.
Lemma 4.5.3. For b € B()y), set
Pr(b) =8 @ T™ af(b) @ T af (b_1) ® -+ @ T af (b))
with b € B(\;), b, € B. Then
Cy — Cp—1 = H(b’;, ® b';/—l) — H(b,, ® by_l).

Proof. Since 9;(B(XAo)) is connected, both T af (b, )@T - af(b},_,) and af (b,)®
af (by—1) belong to the same connected component of Aff(B) ® Aff(B). Hence by
Proposition 4.2.3
ey —cyp1 — HW, @b, 1) =~H(b, ®b,-1). O
Proposition 4.5.4. Ifb € B(A) corresponds to a Ag-path p = (p(n))n>1 then
wib=Xo+ > (af (wtp(k)) — af(wtbz))

k=1

- (i E(H(p(k +1) @ p(k)) — H(bry1 © m)))&.

=1
Proof.  Since p(k) = b for k > 0, the sum makes sense. Take & > 0 such that
r(b) = ur, @ p(k) @ -+ @ p(1).
Then p(v) = b, for v > k. Set
Vi1(0) = tryy @ T af (p(k +1)) @ T af (p(k)) ® -~ © T af (p(1)).
Then ¢y = 0 and p(k + 1) = bpy1. Thus we have

k
wtb = af o cl(wtb) + (ch)é.

v=1
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On the other hand we have ¢, 41 — ¢, = H(p(v + 1) ® p(v)) — H(b,41 ® b,) for
1< v <k by Lemma 4.5.3. Hence we obtain

o

Y UHpY+1)@pr)) - H(bys1 ® b))

r=1
= ZV(C:/—H - Cu)
v=1
k b3
= —~Zc,, +keppy = —Zc,,.
v=1 v=1
Thus we obtain the desired result. O

4.6. Perfect crystal In this subsection, we assume that the rank of g is greater
than 2. We set Pc‘,L = {A € Py | (hs,A) > 0 for any i} = 3" Z>oA; and (Pc"l‘), =
PePl (e, )=} ={AeXZA; | {c,A) =1} for | € Z.
Let B be a classical crystal. For b € B, we set (b) = Y. €;(b)A; and ¢(b) =

2 %i(b)A;. Note that wt(b) = cl(o(b) — e(b)). In particular (c, (b)) = {c, ©(b)).
Definition 4.6.1. Forl € Zs, we say that B is a perfect crystal of level | if B
satisfies the following conditions.

(4.6.1) B ® B is connected.

(4.6.2) There exists Ao € P such that wt(B) C Ao + Zi;&-o Z<oo; and that
ﬁ(BAo) =1.

(4.6.3) There is a U,(g)-module in Mod” (g, Py) with a crystal pseudo-base
(L, B') such that B is isomorphic to B’ /{+1}.

(4.64)  For any b € B, we have {c,e(b)) > L.

(4.6.5) The maps € and ¢ from By = {b | {¢,e(b)) =1} to (PX}); are bijective.

We call an element of B; minimal.

Lemma 4.6.2. Let By and B, be perfect crystals of level . Then By ® B, is also a
p}erfect crystal of level . Moreover (B1® Ba)i = {b1®b3 | ¢(b1) = e(bs), (¢, 0(b1)) =
[}

Proof.  For b € Bj, we have €;(b1 ® ba) = &;(b1) + (£i(b2) — i(b1))4 Where z, =
max(z,0). Hence (c,e(by ® bs)) > (c,e(b1)). Moreover (lc,s(bl ® b2)) = (c,e(b1))
implies ;(b1) > &;(b2) for any 2. Hence (c,e(by ® b)) > I and if (¢, e(by ® by)) = 1
then (c,e(b1)) = I and ;(b1) > &;(by). Hence I = {c,(b1)) > (c,e(b)} > I. Thus
©(b1) = &(b2). The conditions (4.6.2) and (4.6.3) for B; ® B, are obvious. Let us
prove (4.6.1). There are Aj, Ay, Az, Ay, A5 € af((Pj)z) such that

B()\l) ® By ~ B(/\z),
B(/\z) ® By ~ B(/\g),
B()\g) ® By ~ B()\4),
B(x\4) ® By ~ B(As).

Since B(A1) ® (B1 ® B2)®? ~ B(Xs) is connected, (B; ® B3)®? is connected. u]
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Corollary 4.6.3. If B is a perfect crystal, then B®" is connected for any n.

Let B be a perfect crystal of level I. For A € (P¥)1, let b()) € B be the element
such that ©(b(A)) = X. Let o be the automorphism of (P}); given by ¢\ = e(b(X)).

c

Then the conditions (4.5.1) and (4.5.2) are satisfied by taking b, = b(e”~1X) and
v = 0” . Hence by Theorem 4.5.2 we have the following result.

Proposition 4.6.4. For A € (P}, let P(A, B) be the set of sequences {p(n)}n>1

]
in B such that p(n) = b(c™~1)) for n > 0. Then B(}) is isomorphic to P(), B) by
B()A) 3 br— ugky @pk)®---@p(l) for k> 0.

By this correspondence, we have
wt(b) =A+ Y af (wt(p(k))) — of (wt(b(c*~12)))
k=1 ‘

- i k{H (p(k +1) ® p(k)) — H(b(e*A) @ b(*~1N)) } 6
k=1

5. One point function

5.1 Dual Module Let us begin by the definition of dual modules.

Definition 5.1.1. Let ¢ be an anti-automorphism of Uy(g) and V a left U}(g)-

q
module. Then a left Uj(g)-module V*¢ is defined by

V¥ = Homq(g)(V, Q(9)),
(PF)(w) = f(o(P)v) for P e Ug(g), fEV*® andve V.

If V is finite-dimensional, then (V*"”)""’—1 is canonically isomorphic to V. Let a be
the antipode of Uj(g). The following lemma is well-known.

Lemma 5.1.2. Let V;(i = 1,2,3) be finite-dimensional left U,(9)-modules. Then
Homy,(q)(V1 ® V3, V5) = Homyuq)(Va, V** ™" @ V3)
= Homy:(qy(V1, V3 ® V5'¢).
Let ¢ be the anti-automorphism of U, (g) defined by
we)=—ei, fi)=—F, ud")=q"
For V in Modf(g, Pu), let ( , ), be the pairing of V and V** given by
(v,w), = q’(“f()‘)"‘f(”)(v,w) for (v,w) € V) x V*,

where (-, ) is the canonical pairing of V and V*. For a crystal lattice L of V, let
us define L** by

L = {we V*|{L,w), C A}.
Then the pairing ( , ), induces a pairing between L/qL and L* /qL*.
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Proposition 5.1.3. Let V be an object of Modf(g, P.) and L a crystal lattice of
V. Then

(i) L** is a crystal lattice of V**.

(1) Suppose that (L, B) is a crystal pseudo-base of V. Let B* C L*/qL* be the
dual base of B with respect to the pairing induced by (', ).. Then (L**,B*) s
a crystal pseudo-base of V*¢,

Proof. (i) We shall prove that &L* C L** and f:L* C L*. As a U,(9;)-module
L is a direct sum of L(A)’s. Therefore we may assume that V is the highest
weight Uy(g;)-module with highest weight A and I is its crystal lattice. Write

L= @JI-":OAUJ-, where u; = fi(j)ug for 0 < j < N. Let {w;} be the dual base of {u;}
with respect to ( , ),. Then

(e, e n) = (=1)e*) 1P ug, wy)
=(-1)* [Ul“A)] {uo, wo)
k H
c (__l)kq(aj()\),aj()\))q‘:‘k((hi,)\)“k)(l - qA)
- (~l)kq(af(,\——kcl(oz,')),af(,\-kcl(a.’)))(l + QA).

Hence (uk,(—l)"esk)wo)‘ € 1+ gA. Tt follows that L* = @Aegk)wo. Then it is

obvious that & 71* ¢ L* and f,-L*‘ C L*.
(i) The proof is straightforward from the arguments above. O

Definition 5.1.4. Let B be a weighted classical crystal. Then the weighted c¢las-
sical crystal B* is defined by

B* = Uxer, (B*),\ and (B*))\ =B_y for le P,.

The actions of & and f; are defined by the following commutative diagrams.

(B)x == (B")ater(as U {0} (B) L5 (B)r_aan U {0}
l i i and il i
B_, —{1” B—,\—cl(a;) u {0} B_x L B—)\-}-cl(ozg) u {0}

The following lemma is immediately proved.

Lemma 5.1.5. Let B; (i = 1,2) be weighted classical crystals. Then the map
0':(31@.32)* ""——*B;@Br

defined by o(by ® by) = by ® by is an 1somorphism of classical crystals.

We obtain the following proposition by Proposition 5.1.3 and the arguments in
its proof.

Proposition 5.1.6. Let V be an object of Modf(g,Pd). Suppose that V has a
crystal pseudo-base (L, B). Then V** has a crystal pseudo-base (L**,B**). More-
over the associated crystal B* /{+1} is isomorphic to (B/{x1})".
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Proposition 5.1.7. Let B be a perfect crystal of level . Then B* is also'a perfect
crystal of level [. i

The proof is straightforward by using Proposition 5.1.6 and Lemma 5.1.5.
Set p=) serAi and d = ¢*»9. Note that 2(p, §) is an integer.

Proposition 5.1.8. Let V be an object of Modf(g,Pc;). Define a linear map
FoV™ — 04(V*®) by (V*)y 3 w s g—(8/(Aaf(R))=2(p,af(A))y, ¢ ®4(V*)x. Then
I is an isomorphism of U} (g)-modules .

Proof.  For a weight A € Py of V, let w € (V*)y and v € V_x-ci(a;)- Since
eiw € (V™ )\1oi(a,), we have

(Balv), F(esw)) = (o OFel@a ()= 2naf OHel@) (g1, 1)
—_ q—(af(/\),aj(A))—L’(af(A),o:g)-2(0:;,a;)-2(p,af()\))+26,','0 (p’é)<—6,‘v, w) .

This follows from cl(es) = o — 6:3,6,  2(p, ;) = (s, ;) and (af()), 8) = 0.
On the other hand
(ba(v), ei F(w)) = q“(ﬂf('\)»af(/\))—ﬁ(ﬂ,af(/\))(ﬁq25:‘io(p,5)eitiv’ w)
= g~ (af(X),af(A)=2(p,af (A\)+28:30(p,8)+{hi,~ A=cl(as)) (—eiv, w)
= q—(af(*),af()&))—E(Gf('\),de)-z(as.a;)-z(p,af(k))'l-%eso(0,5)(__6‘,,,, w).

Hence e;F'(v) = F(e;v). By a similar calculation we can show that fi commutes
with F. O

Corollary 5.1.9. Let V be an object of Modf(g,Pc;). Suppose that V has a
crystal pseudo-base (L, B) such that By = B/{+1} is a perfect crystal of level I.
Then ®4(V**) has a crystal pseudo-base such that its associated crystal is perfect
of level I and isomorphic to Bj.

Let us denote V, = ®,(V) for a Uq(g)-module V in Mod (g, Py). Set ¢ = ¢~4r %),

Lemma 5.1.10. Let V be a left Uy(9)-module in Mod’ (g, P.;). Then we have
() (Vo) = (V*2); and (Vo) = (v,

(i) Define a linear map ¥ : (V,)*¢ — (Vee)*™" by ¥(w) = ¢4 e/ Oy for w €

(Vz)3e. Then W is an isomorphism of U ((8)-modules.

Proof. (i) is immediate. We shall show that ¥ commutes with e; and f; for all
i€l Letwe (V)3 and v e (Vx)*;\_cg(m) for A € P,. Then e;w € (Vx):{:’cl(a;)'
Therefore
(v’ \I‘(egw)) — q-i(p,af(/\—\‘-cl(ou)))(_gl.é.'.‘o eil;v, w)
— 376“0 q4(p,af(/\)-~§;"0 6)qi<hi.-)\> ("‘63’7}, 'lU).
Here we used 4(p, ;) = (o, a;)(hi, o).
On the other hand we have
(v, e U (w)) = g*P I gbiio g=4(p8)80i0 tie;v, w).
— FE‘SHO q"l(p,nj()\)-—&é,‘,‘o) {(hi,—A> (_eiv’ u))-
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Hence ¥(e;)(w) = e;¥(w). Similar calculations show that f; commutes with .
O

5.2 Second Inversion Relation Let R(z/y):V, @V, =V, ® V, be a U,(a)-linear
isomorphism. Take a base {v,}ues of V in such a way that each v, is a weight
vector. Write R(z/y) by using the base {v,},ecs as

R(z/y)(vp @ v,) = Z Rapuu(z/y)va © vp.
a,p

For Y < J set 97 frad q_g(Pﬁf(wt(Uv))) and 2z = x/y

Proposition 5.2.1. Suppose that (V,)**®V, is an irreducible U,(g)-module. Then
the following relations hold.

(5.2.1) Zgagﬁg;,lg;,lRum,ﬂ(z)R,,/ﬁ“,a(cz"l) = f(2)8pubuur,
a,p

where f(z) is a function in z which is independent of u,y',v and /. Here ¢ =
~4(p,8)
q .

Proof. By Lemma 5.1.2, we have HomU;(g)(VxQ@Vy, V,®V,) ~ Homgé(g)(vz, V,®
Ve ® (V)™ ~ Homy: gy ((Vy)™* ® Ve, Vo ® (V,)™"). By this, R(z/y) gives the
Uy(g)-linear isomorphism R(z) : (V,)** ® V, — V,; @ (V,)*®. Similarly we have

-1 gt
HomU‘;(g)(ch ® Vx;I/:z: ® ch) jat HomU{l(g)(Vx ® (ch)*a z(ch) ® Vx)a and

R(cy/z) gives R*(z) : Vo @ (Vo )" — (Vey)** ™' @ V,. Let v*(p € J) be the dual
base of v,(p € J). Write : '

Rl(z)(vp ®vy) = Z R}xﬁuu(z)vﬂ ® 'Uﬁ:
af
R¥(2)(v, ®v") = Z Rgﬁm,(z)vo‘ ® vg.
a,f
Then R;ﬁ“”(z) = Ruavp(z) and Rimw(z) = Rpyau(cz™?). Since (V)" ® V; is
irreducible and R*(z)(1 ® ¥)R!(z) is a Ug(g)-linear homomorphism, R*(z)(1 ®
V)R(z) = f(z?(\Il ® 1) for some scalar function f. Writing this relation in terms
of the matrix elements of R we have the desired result. O

Suppose that V' has a crystal pseudo-base (L, B) and that the associated crystal is
perfect of level I. Take v,(u € J) in such a way that v, € L and the image of v, in
L/qLisin B. By Corollary 5.1.9, Lemma 4.6.2 and Lemma 3.4.4, (Vy)*®V; is an
irreducible Q(¢)[z,y, 27!,y ® Ug(g)-module. Therfore the R-matrix associated

with V' satisfies the second inversion relation (5.2.1). Thus we can apply Baxter’s
corner transfer matrix method (¢f[ABF]). Then for a € Py and A € (Py)4y, the
one point function P(a|A) can be written in the form

G(a)
=

P(ajA) =
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where
Gla) = g HpA=al@) S gaeiut),
PEP(A,B)(a)
k k
P(A, B)(a) = {(p(k));21 € P(A, B)la+ Y _wip(i) =y wtb for k>> o0},
i=1 i=1

w(p)= Y k(H(p(k +1) @ p(k)) — H(bit1 ® b)),

k=1
Z= %" G(a).

a€ Py

Here (bi)§%; is the ground state path of weight A. Using this expression of P(a|A)
and Proposition 4.6.4 we obtain

Theorem 5.2.2. Let A be a dominant integral weight of levell, V(A) an irreducible
highest weight g-module with highest weight A and a € P.;. Then the one point
function P(a|A) is given by

s dimV (A)x, —isq™*prre=i0)

P(aiA) feees . ,
ZNEWL‘(V(A)) dimV(A) g~ 4en)

where A\, = A — af(a).
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6. Level one crystals

Here we give explicit descriptions of level one perfect crystals for quantum affine
Lie algebras of the following types: A,(%l) , B,(f), C,(ll), Dgl), Agi), Agi)ﬂl, D,(f_gl. This
1s not a complete list of all the level one perfect crystals.

In the forthcoming paper, we will give higher level perfect crystals. Table 1 is
the list of the affine Lie algebras and the perfect crystals we will treat therein. Table
2 1s the level one crystal graphs except for B(Ag)(k # 1) for Ag), B(Ay) for C’,(ll),
B(An-1), B(A,) for DEY. Lower rank cases of these exceptional types are given at
the bottom.

Lie algebras Dynkin diagram for g Perfect crystal of level |
g and g
Ay(';l) (TLZ 2) An 8__(1) ............ ng_l_g B(IAk), k :1,..,,71
1
BV (n>3) | Bn T B(lAs)
o O+ 8 0 s 0 s O——0—>0
0 2 3 n—2 n—-1 n
Ci(n22) | Cn| g=90—g - or—ot=o | B(iAn)

1 n—1
i~ T T B(IA1), B(IA,_1
Dy’ (n>4) | Da and B(lA,
O O——0 + =+ + - » O—O0——0
0 2 3 n—-3n-2 n
AD(n>2) | B, e=ro—g - o me=o | BiA) @ B((1-2)M) &
1
A mzyl| | B(iA)
o ¥ S S O——0<E=0
o 2 3 n—-2 n—1 n
I O - B(lA1) @ B((l - 1)A1) @ --- & B(0)
Dyfi(n>2) | By ARG 222 ot m and B(IA,)
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Level one perfect crystals

0
Ag,l)(n22) B(Ay) : _+.._.» .......... ._.,.__.

B (n>3) |B(A1):

D (n>4) |B(A1):

AR (>2) |B(A):

AG) L (n23) | B(A):

0 ¢

2 -1 n « n 2 ey TR
D(n22) [BO@BM): [[—E— - — =02 =] — - —E—1]




482 S.-J. Kang et al.
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