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Introduction

Let G be a Lie group and g its Lie algebra. We denote by V the underlying
vector space of g.

There is a canonical isomorphism between the ring Z(g) of the biinvariant
differential operators on G and the ring I(g) of the constant coefficient operators
on ¥V which are invariant by the adjoint action of G. When g is semi-simple, this
is the “Harish-Chandra isomorphism”; for a general Lie algebra, this was
established by Duflo [4].

We shall prove here, that when G is solvable the Duflo isomorphism extends
to an isomorphism & of the algebra of “local” invariant hyperfunctions under
the group convolution and the algebra of invariant hyperfunctions on V under
additive convolution (the exact result will be stated below). This gives a partial
answer to a conjecture of Rais [12].

The existence of such an isomorphism @ is of importance for the harmonic
analysis on G, and for the study of the solvability of biinvariant operators on G
(see [7]). It reflects and explains the “orbit method” ([8, 9]), i.e. the cor-
respondence between orbits of G in V'*, the dual vector space of V, and unitary
irreducible representations of G: let T be an irreducible representation of G,
then the infinitesimal character of T is a character of the ring Z(g). Let @ be an
orbit in V'*, the map p,(P)=P(f) (f€0) is a character of the ring I(g) (I(g) being
identified with the ring of invariant polynomials on V*). The principle of the
orbit method is to assign to a (good) orbit @ a representation T, of G (or g),
whose infinitesimal character corresponds to p, via the isomorphism &. This is
the technique used by M. Duflo to construct the ring isomorphism @.

Furthermore let t, be (when defined) the distribution on ¥ which is the
Fourier transform of the canonical measure on the orbit @, then ¢, is clearly an
invariant positive eigendistribution of every operator P in I(g) of eigenvalue p,(P).
Kirillov conjectured that the global character of the representation T, (when
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defined) should be intimately connected with the “orbit distribution” @~ *(t,), as
proven in numerous cases. It is an essential result of Duflo [4] that these “orbit
distributions” are indeed eigenfunctions for every biinvariant operator P in
Z(g); as in Rais [11], this implies the local solvability of P [4].

We will here derived the existence of @ from a property of the Campbell-
Hausdorff formula, that we conjecture and can prove in the solvable case. It is
then a natural corollary of our conjecture, that biinvariant operators are locally
solvable and that “orbit distributions” are eigendistributions for Z(g). Hence the
correspondence between orbits and representations is already engraved in the
structure of the multiplication law.

Let us describe with some details our technique and results: We denote by g,
the Lie algebra whose underlying vector space is V itself and in which the
bracket [#, ], is given by [X,Y],=¢[X,Y]. Then g, gives a deformation
between g and the abelian Lie algebra, in which the fact is trivial.

In the course of the proof we encounter the following problem: Let L be the
free Lie algebra generated by two indeterminates x and y and L its completion.
Since x+y—loge’e* belongs to [L, L], by Campbell-Hausdorff formula, we can
write it in x+y—loge’e*=(1—e *)F+(¢®*—1)G for F and G in L. F and G
are not uniquely determined by this property.

Conjecture. For any Lie algebra g of finite dimension, we can find F and G such
that they satisfy

a) x+y~logeyex=(1 —e MY F 4 (e*—1)G.
b) F and G give g-valued convergent power series on (x, y)€gx g.
¢) tr((adx)(0.F); g)+tr((ad y) (9,G); 9)

—ltr( adx ady adz 1 )
2 X 1 pady_ 1 adz_q 87

Here z=loge"e” and 0, F (resp. 0,G) is the End(g)-valued real analytic function
defined by

d d
gaar EF(x-l—ta, Mo (resp. gaar— 7 G(x, y+ta)[,=0> ,

and tr denotes the trace of an endomorphism of g.

When g is nilpotent, this conjecture is easily verified because (ad x) (2, F),
1—(ad x/(e***—1)) etc. are nilpotent endomorphisms of g so that their traces
vanish. However, we get the following fact.

Proposition 0. If g is solvable, then Conjecture is true.

Let K be a non-empty closed cone in g. Let .#(K) (resp. .#(K)) be the vector
space of the germs at the unit element ee G (resp. the origon Oeg) of the
functions (i.e. either distributions, or hyperfunctions or micro-functions) u(g)
(resp. fi(x)) such that suppucexp K (resp. supp i = K) infinitesimally (see § 2) and
that u(ghg™')=|det(Ad(g); g)|~ *u(h) (resp. &(Ad(g)x)=|det(Ad(g);8)|~ " i(x)).
We shall set j(x)=det((1 —e~*¥)/ad x; g) for x e g sufficiently near the origin. We
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define the isomorphism @: . (K)— . (K) by (®u)(x)=j(x)*u(e*) for ue #(K). If
two closed cones K, and K, satisfy K, n(—K,)={0}, then we can define the
product #(K,)x #(K,)—#(K,+K,) (resp. F(K,)xF(K,)—F(K,+K,)) by
the convolution =, i.e.

(uxv)(g)= j (Wv(h~tg)dh and (i*D)(x)= f Y o(—y+x)dy.

The exact statement which we shall prove is the following:

Theorem. If Conjecture is true for the group G, then we have
(Pu) = (Pv)=P(u=0)
forue #(K,) and ve #(K,).

If we apply this theorem when v is supported at the origin, then we obtain
the following corollary:

Corollary 0. Suppose that Conjecture is true for G, then with any biinvariant
dlfferentlal operator P on G we can associate a constant coefficient differential
operator P on g so that P®(u)=®(Pu) holds for any ue 4 (g).

In paragraph 4, we will prove directly this particular case of our theorem. In
fact, applying the same technique, we can prove a more precise result, giving a
partial answer to a conjecture of Dixmier.

Let y(P)=B(D(j*'*)P) the Duflo isomorphism from I(g) to Z(g), where f is
the symmetrization map and D(j!/?) the “differential” operator (of infinite order)
defined by j'/?, let us look at the operator y(P) as a biinvariant differential
operator on G; we denote by (exp)*(y(P)) the differential operator on g with
analytic coefficients, which is the inverse image of y(P) by the exponential
mapping. Let D be the ring of the germs at 0 of differential operators with
analytic coefficients. We consider the left ideal £ of D generated by the elements
([A4, x],0,>+tr(ad4; g), Aeg (here {[4, x], 9, is the adjoint vector field given

by Egcp(exp ¢A-x)|,_o). Every invariant distribution on g is annihilated by #.
So Corollary 0 is implied by:

Corollary 1. Suppose that Conjecture is true for G, then

(exp)*(r(P) —j(x) *Pj(x)*e 2.

Since Conjecture is solved in the solvable case the above theorem and its
corollaries are true for a solvable group G. Recall that the result stated in
Corollary 0 holds for g semi-simple as proved by Harish-Chandra [6]. Howe
[16] says that he proved Theorem for a nilpotent group G and a restricted class
of functions u, v.

Acknowledgement. We wish to thank Weita Chang, Dixmier, Duflo, Rais, and acknowledge that their
questions and their work have stimulated our work.
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§1

For The Theory of Microfunctions, we Refer to [1, 10, 15]. Let G be a Lie group,
g its Lie algebra and exp: g— G the exponential map. Let M be a real analytic
manifold on which G acts real analytically. A hyperfunction u{x) on M is called
a relative invariant with respect to a character y of G if u(gx)=y(g)u(x) holds
on GxM. Here u(gx) is the pull-back of u by the map r: GxM—M defined
by (g, x)—gx, and yx(g)u(x) is the product of a real analytic function x(g) on
G xM and the pull-back of u by the projection from G xM onto M. More
generally, let 4 be a subset of M, G,={geG; gd=A}. A hyperfunction u(x)
defined in a neighborhood U of A4 is called relative invariant locally at A if there
is a neighborhood W of G, x A such that r(W)<U and that u(gx)=y(g)u(x)
on W.

For any Xeg, we denote by Dy the vector field defined by (Dyu)(x)=

%u(exp(— t X) x)|; 0, and by oy the derivative of x (i.e‘ 5;((X)=%X(exp tX)I,zo).

Lemma 1.1. If u is a relative invariant locally on A hyperfunction then (Dy + 46y (X))u
=0 in a neighborhood of A for any Xeg.

Proof. We define the map ¢: R x M—G xM by (t, x)—(exp(—tX), x). Then the
pull-back of u(gx) is the pull-back (r@)*u of u by the map ro ¢, and the pull-
back of y(g)u(x) is y(e~"*)u(x). Since ro ¢ has maximal rank, this is justified.
Thus (ro @)*u=y(e""*)u(x). If we differentiate the both-sides with respect to ¢,
and restrict them at the variety t=0 in R x M, we obtain Dyu from the left hand
side and —d x(X)u from the right hand side. Q.E.D.

§2

Let G be a Lie group, g its Lie algebra and exp: g—G the exponential map. We
denote by dg the left invariant Haar measure and by dx the Euclidean measure
on g. After the normalization, dg and dx are related under the exponential map
by the formula: d(e*)=j(x)dx where j(x)=det((1—e *¥)/adx;g) in a neigh-
borhood of x =0, because the derivative of expx at x is given by (1 —e™*¥)/ad x
when we identify TG with g x G by the left translation. We define the character
%o(g) of G by |det(Ad(g); g)|, we denote by dy, the corresponding character of g,
Le. dyo(x)=tr(adx;g).

Let 4 and B be subsets of a C*-manifold M, x a point in M. Take a local
coordinate system (x,,...,x;) of M. The set of limits of the sequence a,(y,—z,)
where a,>0, y,€A, z,€B and y,, z, converge to x when n—oco, is denoted by
C,(4;B) regarded as a closed subset of the tangent space T.M of M at x.
C,(4;{x}) is simply denoted by C,(A). If f is a differential map from M to a C !
manifold N, then we have (df),(C.(4;B)<=C(fA4;fB). If C.(4;B)n
Ker df(x)<= {0}, then there is a neighborhood U of x such that

(df). Ce(A;B)=Cy(f (AN U); f(BNU)).
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If C,(4;B)={0}, then x is an isolated point of A and B. C,(4;B)=§ if and only
if AnB3x. N

Let K be a closed cone of g. We shall denote by .#(K) (resp. £ (K)) the space
of the germs of function u(g) (resp. #(x)) on G (resp. on g) at eeG (resp. Oeg)
satisfying

(2.1) C,(suppu)cKcg=T,G (resp. Co(suppi)cKcg=T,q)

and

(2.2) wuis a relative invariant locally at e with respect to the character y,(g)~*.

Let K; and K, be two closed cones in g such that K, n(—K,)={0}. If
ue #(K,) and ve #(K,), then (suppu)n(suppv)~' is contained in {e} locally.
Suppose that u and v are defined on a neighborhood U, of e. For any open
neighborhood U< U, of e, we can find neighborhoods W and V of e such that
WcU, W=l U, {heW;hesuppu,h~'esuppv} ={e} and that the map (g, h)—g
from {(g, h)eV x W;h~ ! gesupp v, hesuppu} to V is a proper map. Hence we can
define (u % v)(g) by

fuv(h-'g)dh on geV.
w

This gives the bilinear homomorphism #(K,)x J(K,)—.#(K,+K,) because
C.((suppu)-(suppv))= K, +K,. In the same way, we can define the convolution

(@ D) (x)=[#(y) 5(—y+x)dy

which gives the homomorphism (K ) x (K ,)—.# (K, +K,).

Note that if u belongs to #(g), then we have y,(g)u(g)=u(g). In fact, if we
restrict the identity u(g, gg7")=y,(g,)"*u(g) on the submanifold {(g,,2)eG
xG; g,=g '}, then we obtain the above identity. Hence we have u(g)
=10(g)* u(g) for any LeC. We shall define the isomorphism &: .# (K)—#(K) by
(@u)(x)=j(x)* u(e”). The above remark shows us (®u)(x)=y,(e*)*j(x)* u(e) for
any A

For any ii(x) in (g), we have d x,(x)ii(x)=0. In fact, by Lemma 1.1, we have
[A4,x], 0, (x)= —dy,(A) ii(x) for any Aeg. Here, for any g-valued real ana-
lytic function E(x) on g, {(E(x), 0, is the vector field defined by (E(x), 0> u(x)

d
=1 u(x+tE(x))|,_o- Thus, we have the identity {[4,x],d,> d(x)= —d 3, (4) ii(x)

on (x,A)egxg. If we restrict this on the submanifold A=x, we obtain
d y0(x)i(x)=0. These observations also show the following:

Let us denote by G, the kernel of x, and g, its Lie algebra. Then, G, is a
unimodular group. For any ue.#(g), we can find an absolute invariant v on G,
such that u=v6(x,). Similarly, for any iie.#(g), we can find an absolute invariant
U on go such that #=096(d y,). Thus we can reduce the study of .#(g) and .#(g)
into the case where the group is unimodular, although we will not employ this
fact.



254 M. Kashiwara and M. Vergne
§3. We Shall Prove Theorem

Take two closed cones K, and K, of g such that K, n(—K,)={0} and two
functions u in # (K ;) and v in #(K,). Set w(g)=[u(h)v(h~'g)dh, and ii=Du, &
=duv, W=>w. ¢

In order to prove Theorem we shall compute W.

W(z)=j(2)* [u(h)v(h~'e’)dh

=j(2)* fu(e) vle™ ) j(x) dx

g

=j(2)* {dx [dyu(e®)v(e’)j(x) 6(y—loge ™ ¢?).

g g
Lemma3.1. §(y—loge *e?)=j(y)j(z)~ ' 6(z—loge* e).

Proof. We have 6(y—f(2))=|Jf|"'é(z—f~"(y)) where Jf is the Jacobian of f.
Setting f(z)=loge™~¢*, we shall apply this. We have, for aeg

f(z+ea)=loge e ™%

which equals loge™*e? exp(e(1—e~*%)/adz) a modulo & As we can set y
=loge~*¢? this is equal to

ady 1—e %
l—e™ ¥ adz
ady 1—e %%
—e % adz

a modulo 2.

log e’ exp(e(l —e~™?)/adz)a=y+¢

Thus we obtain Jf ———det1
result. Q.E.D.

which implies the desired

By this lemma, we have

(B.1) W@ =[[uE)v(e)j(x)j()j(z)*é(z—loge*e) dx dy
o (X))
-0 (5

We want to prove that this integral equals

(@ 0)(2)=Ji(x)5(y) 6(z—x—y)dxdy.

Given a vector space V and two functions i and # on V, given a structure g
of Lie algebra on V, we want to prove for the Lie algebra g=(¥, u) the equality:

i (J’(X)J'(y)
j(2)
If we consider the Lie algebra g,=(V,tu) i.e. [x, y],=t[x, y], the first member of
the equality becomes

)%ﬁ(x) 7(y)d(z—loge*e’)dxdy.

)%ﬁ(x) 5(y)6(z—loge*e)dx dy =[ii(x)5(y)d(z—x—y)dx dy.

(32) o,@=)=| (j(t_;c()t]?()@>~ i(x)(y) o (z-—%log e e”) dxdy,
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and this must be equal to the second member which is the value of ¢, for t=0.
Therefore it is enough to show that ¢, does not depend on ¢, or equivalently

0 . o
E(p,zO. Let us calculate this derivative.

Lemma3.2. Let F(x,y) and G(x,y) be two g-valued real analytic functions on
(x,y)eg x g defined in a neighborhood of the origin. Suppose that F(0,0)=G(0,0)
=0 and that

x+y—loge’e*=(1—e ) F(x, y)+ (e — 1) G(x, y).

Then, we have

(3.3) % %log er el = (< [x,%F(tx, ty)] , 6x> + < [y,%G(tx, ty)] , 0),>> %log et e,

Here {A(x),0,) is the derivation defined by

d
((Ax), 0 u)(x) =7 ulx+eA(x)l,_o-

Proof. Set F,=t="F(tx,ty) and G,=t~'G(tx,ty). Then, the right hand side of
(3.3) is the value of

d
! Elog exp(tx+e[tx, E])exp(ty+e[ty, G,])

at ¢=0. We shall calculate
A=exp(tx+e[tx,E])exp(ty+e¢[ty, G,J)

modulo ¢2. We have

—adrx

exp(tx+e[tx, F])=e'* expsm [tx,F]

=e“expe(l—e ™) F, modulo &2,

and similarly exp(ty+e[ty, G,])=expe(e®” —1)G, expty modulo 2. Thus, we
have

A=e"expe((l—e ™) F+(e™—1)G,) e

1
=e¥expe (x +y—;log ey e‘x> e
(t-+&)x 1 ty ,tx t
=e expe y—-;logeye e’
{(t+e)x jty ( 1 tx ty)
=¢ eVexpe yw;loge e

1
=eltox gl +ely exp ¢ (~t— log ™ e‘y> modulo &2,
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We have therefore

€
log A =loget*o* gt +ey - loge™e"”

— ¢ loge(t+a)xe(t+g)y‘

t+e
This implies Lemma3.2. Q.E.D.

This lemma shows in particular

(3.4 ~a-5 z——lloge"‘e’y =[x, Fl,0>+<[y,G],0,0) 0 z—lloge”‘e‘y .
ot t t

Therefore, integrating by parts, we have the equality

j(£x)j(ty)

* 0 1
(3.5) p1=f( D) )ﬁ(x)ﬁ(y)aé (z——?loge"‘e’y)dxdy

g {«[x, F1,0,5 40, G.1,8,> + div, [x,E]

(1) iV
+div, [, G,)) (J—(t;%lz-()iy—)) (%) 5(y)} 5 (z——-i— log '™ ew) dxdy.

Here div, (resp. div,) signifies the divergent with respect to the variable x (resp.
y), i.e. the function div, E(x) is the sum of the vector field (E(x),d,)> and its
formal adjoint.

If a function ¢(x) satisfies ¢(Ad(g)x)=yx(g) ¢(x) with a character x(g), then
we have

[4,x1,0.0 ¢=00(4) p(x) for Aeg.

Here, 6y is the derivative of y. Hence, if ¢ is an absolute invariant, ¢ and
{[A4,x],0,> commute. Since (j(x)j(y)/j(z))* is an absolute invariant

([x,F1,0.> +<[y,G],0,y+div,[x, F]1+div, [y, G ]

commutes with this function. Since fi(x) is a relative invariant with respect to the
character |det(Ad(g);g)” ', we have

{[4,x],08,> fi(x)= —tr(ad 4) fi(x).
Thus, we obtain

(3.6) py=—[(tr(@d(F,+G),0)+div,[x, F] 1
+div, [, G0 109 90) 8 (5= loge™e?) dx dy.

d 1
Lemma 3.3. % logj(tx)=tr (__a_i.- - _) .

etadx___l t
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Proof.
_6_10 detl_e_adtx—tr adtx 0 1—e %
ot 08 ad(tx)  1—e %3 adtx

—tr( adx 1)
- eadx_ 1 ]

By this lemma we have

%(j(t;)ti()ty))i%tr( adx  ady  adz _1) (j(z;c()ti()ty))%_

-+
etadx -1 etady -1 etadz —1 t

We obtain finally

5} . .
59" —f {lex [x, F1+div, [y, G]+trad(F,+G,)

L adx ady adz 1
-itr etadx_l +etady___1 —etadz__l _?

. (j(tx)j(ty)
jt2)

In order to see that d¢,/dt vanishes, it is enough to show

+
) () 5(y) 6 (z—% log ' ew) dxdy.

(3.7) div,[x, E]+div,[y, G,] +trad(F,+G)

i adx ady adz 1
"‘th (etadx_1+etady_1 _etadz_l ~; =0

1 . . . .
when z=;log e e, Since the left hand side of this formula is homogeneous of

degree 1 when we assign degree —1 to ¢ and degree 1 to x and y, it is enough to
show (3.7) when t=1.
For a g-valued function A(x), let us denote by 0,4 the endomorphism of g

d
defined by gaai—»EA(x +ta)l,_o. Then div, A(x)=trd, A(x).
Since 0,[x, A(x)]=(adx) 0,4 —ad A4, the formula (3.7) is equivalent to

(3.8) tr(adx)(axF)—l—tr(ady)(ayG)=%tr( adx | ady _ adzl—l)

eadx_l eady_._l eadz___

with z=loge*¢’. This completes the proof of Theorem.

§4. Biinvariant Differential Operators

We consider the algebra I(g) of the G-invariant elements of S(g). We identify
S(g) with the algebra of constant coefficient differential operators on g, hence
I(g) is identified with the ring of constant coefficient differential operators on g
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invariant by the action of G. We consider the universal enveloping algebra U(g)
of g and its center Z(g). We identify U(g) with the algebra of the left invariant
differential operators, hence Z(g) will be identified with the ring of biinvariant
differential operators on G.

We denote by § the Dirac function on G supported at the unit e, then u*§
=& +u=u. On the other hand, we have P(u=*v)=u= Pv for PeU(g). This shows
that Pu=u+ P 5. We shall denote by the same letter ¢ the Dirac function on g
supported at the origin. Similarly if PeS(g), Pu=u*Pd=Po+u. We shall
denote by (exp)* (resp. (exp),) the pull-back of functions or differential operators
on G to those on g (resp. the inverse of (exp)*), by the exponential map.

We shall denote by B the linear mapping from S(g) onto U(g) obtained by
symmetrization. We have (B(P)o)(e)=(P)(0) with @(x)=e¢(e*), hence
(B(P)d)(€")=j (=)~ (PO)(x).

For a real analytic function f(x) on g defined on a neighborhood of the
origin, and PeS(g), we define

D(f)PeS(g) by ((D(S)P)O)(x)=f(—=x)Pi(x),

or

(D) P)9)(0) = P(xi—=1 (x) ¢ (x))(0).

We shall denote by y the map from I(g) onto Z(g) defined by P S(D(j*) P).

Duflo [4] has proved that for any Lie algebra g, y is an isomorphism of the
rings I(g) and Z(g).

We have seen that for any Pel(g),

%o(€") (P 0)(x) =P d(x),
and hence y,(¢*) and P commute. In fact,

Ho(e )P ) (x—y)=(Pd)(x—y)
and this implies

2o(€) (P 6)(x =) =10(&") (P ) (x — ).

Let us denote by g,={Aeg;trad 4 =0}, this implies that PeS(g,) (see also [3,
137). In particular, we have j(x)* (P3) x)=j(—x)* (Pd), x),asj(x)=(dete~**%) j(—x).
So we have ®(y(P)d)=Pé. If we take v=y(P)d then we can get from Theorem
the following proposition.

Proposition 4.1. If Conjecture is true for g, then for every fie S (g) and Pel(q)

((exp)* p(P) d=(j(x)"* Pj(x)*).
(In particular y is an isomorphism of the ring I(g) and Z(g).)

However, we can get a more precise result applying the same method as in
the preceeding paragraphs. Let us denote by D the ring of the germs of the
differential operators at the origin.
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Proposition 4.2. Suppose that Conjecture is true for g, then for any Pel(g)

JEE((exp)* y(P))j(x)~* —
is contained in the left ideal of D generated by the ({([4,x], 0, +trad A)’s (A<g).

(As we have ({[4,x],8,> +tradA)ii(x)=0 for every fic.#(g), this implies
Proposition4.1.)

Proof. Remark that for PeS(g), exp*(S(P)) is the differential operator defined by
((exp)* B(P)u)(x)=F (u(loge* e))l,_o,

where P, means that P operates on the y variable. Hence
Q=j(x)*((exp)* y(P))j(x)~*

is the operator:

J)E i)

R

u(loge* ey)>

y=0

As before we introduce the Lie algebra g, and the corresponding operator Q,,
then

(0005 (LI (Lo e )

(log & ¢")?*

y=0

Let us remark that if we define the left ideal %, of D generated by the
element {[x, 4],,0,) +tr(ad,4;g,) then for t+0 &,=%. Hence we have to prove

that: Q,—~Pe%. As Q,=P, it is sufficient to prove that tQtei’, where

((aatQ) )<X>--(Qtu)(x)

0 jex)tjey? ( . U))
=5 (at j(loge™e)* logee

y=0

Let F and G be as in Lemma 3.2,

F(tx,ty G(tx,ty)
E(Xay):—t‘la Gt(xay)z—t——_:

and

adx ady adz 1
d(x,y, t):%tr (etadx_l +etady_1 Tadz —;)

—tr((adx) 0, F,+(ady)d,G))

log '~ ey

where z= . Then we prove:
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a . . . -3 1 s '
@n (J(tx)% i(ty)jllog ¢ ¢¥)*u (? log ¢'* ¢ y))
g
=053} f(og e ) Hu ( logee)

+ ioc,-(x, y,0)(({[e;,2z],0,> +trade) - u) (% log e'* e‘y)
i=1

- 1
+ Z <[y) ej]a ay) 'ﬁi(X,J% t)u (;loge’x ety)'
i=1

Here, e,(i=1,2,...,n) is a basis of the Lie algebra g, <{[e;,z],0,) denotes the
adjoint field corresponding to e;, and o;(x,y,t), B;(x,y,t) are analytic functions
defined near the origin.

To prove (4.1), we compute as in Lemma 3.2

1
——Jogelt+axlt+ey  modulo &2

t+¢

1 tX ,ex 1y ,€ - 10ge‘xety
=-t-10ge erevee t

1 ted logetyetx
=—loge™ e eg(e wd(x ey )

t

1 —tad ~tadx tad
.—_}.logetx o'y ptle Y((1-e YFe+ (e )’—I)Gt))'

We write

e—tady((l _e—tadx)E+(etady_ 1)Gt)
= (1 —e M) ot (1 -~ (G, ~ F).

So we have

d (1 1 1
= (frogerer) =<z FLa) ({loge ) 4106, F1.0,) floge™e”)
(lf E(X, y)= Zfi(x’ Y t) €, and I(X) =X
1 1
TE 21,0 (Joge ) =X )(Len 120D (loge™e”)).

We write

1
2 jetjentitogeentu (Llogerer)

t=1to

tx Iy — 4% 1
= jetients (FESE) Tu logeer)

t=1g
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L adx ady adz 1
=7tr (etadx__1+etady_1 etadz_l t

1
0903 log e &) +u (1 og ee)

L0 ([ logeTen\-t 1
095500 52 (1 (1o25) T (Floge )

t=1tg
by Lemma 3.3.
Now if (G, —E)(x,y)=) 4;(x, y,t)e; we have

<[ya Gz—'Ft]: 8y> = 21<[y2 ei]s ay> Ai(x: Vs t)—tl' ady ay(Gt_F;)

As j is an absolute invariant, j commutes with the adjoint fields.
Hence from the preceeding calculation, we obtain that the left hand side of
(4.1) is equal to

1 adx ad adz 1
(Et (e y__ —~—)——trady6y(Gt—F,))

tadx_l etady___ 1 etadz_l t
1
(e ilog ey tu ({loge )
N 1
HIE 0 Q08 L2 FLOY ) (Flogee?)

+ 28 (B u - logter o).

But, we have

L adx ady adz 1
_Z.tr etadx_l +etady__1 _etadz__l _;) _tradyay(Gt_E)

=d(x,y,0)+tr(adyd, F,+adx o, F).

Let us remark here that if E is in L, we have g E(x,y)=E(gx,gy) for every
geG. The operator (0, E)adx +(9,E)ady is the linear operator

CH;’;E(xHEx, cLy+eln D,

d
=E;E(exp86‘>€, expec-y)l..o

d
:Eexpsc-E(x, Nezo

= —[E(X, y),C]

hence is the operator —adE.
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We then obtain that the left side of (4.1) is equal to
.00} floge e+ u (T Togee?)

—jtx)¥jty)tjloge™e?) *(K[F,2],0,> +tradF)-u) (% log et ew)
+ 3 <Dned 8, Bl (Foge=en),

which is of the required form.
Now if our conjecture is true for g, then we can find F and G such that
d(x,y,t)=0. Now we remark that if Pel(g),

Py<[y> ei]a ay> = <[y’ ei]’ ay> P;,
hence (B{[y,e;1,8,> ¥ (1)l,—o=0. Let R;(t) denote the differential operator

R(9)(x)=P, (oci(x, -y (% log & e))

y=0

We obtain from (4.1)

20~ 3 ROKes 318>+ wade)
i=1

.0
1.6.5;QI€$. Q.E.D.

Remark. The same proof shows the corresponding fact for biinvariant integral
operators.

Remark. We will see in the next section that our conjecture is true for G
solvable; we can easily deduce from Proposition4.1, the fact that every biin-
variant operator on G is locally solvable, which was already obtained by
Rouviére [14] and Duflo-Rais [5]. In fact P being invariant by the action of G
we can find a fundamental solution for P, which is invariant by G. It follows that
(exp)* y(P) has a local fundamental solution. If G is exponential solvable, the
maps F and G can be constructed in the whole space g hence the Pro-
positions 4.1 and 4.2 hold on the whole space g. So exp*(j(P)) has a fundamental
solution on the space G, (Weita Chang [2] has proven recently that every
biinvariant operator on an simply connected solvable group is globally solv-
able). We recall that M. Duflo has shown that every biinvariant differential
operator on a Lie group G is locally solvable [4].

§ 5. Proof of Proposition 0

First we shall translate our conjecture into another form. Let us write for an
AelL

2(x+y—loge’e”)=((x+y—loge’e®) + A)+(x+y—loge’e’)— A.
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Hence we will consider 4 e L such that (x + y—loge’e*)+ A is divisible by x (i.e.
in [x,L]) and (x+y——logey *)—A is divisible by y (ie. in [y, L]). As x+y
—loge” e"s%[x y] mod [[L,L], L] and [x, y] is divisible by x and y, we may
take 4 in [[L,L],L]. We will write x+y—loge’e*+A=[x,P], A—(x+y

ad ad
—loge¥e®)=[y, Q], choose F=% = x P, G=-— —;Hy—y——Q and translate our
conjecture in terms of A. €

We shall first give two preliminary lemmata.

—adx

Lemma 5.1.
adz eM*¥—1
e 1 adx

1) 0.loge*e’=

and

i) 0, loge"eyz1
Here z=loge*e.

Proof. We have, modulo &2,

eadx__ 1 eadx__ 1
loge® e’ =loge’ adx “e*e’=loge’ adx “¢°

adz e¥*—1

=zt
71 adx

The formula ii) is shown in the same way. Q.E.D.

Lemma 5.2. Let aeg, f () and g(}) two power series on 1. Then

g(0)—g(adx) ada: g) _

tr(f(adx) 0, (g(adx)a)=tr (f(adx) adx

Proof. By linearity, we may assume g(4)=A" If n=0, the lemma is evident.
Suppose n= 1. Then we have

n—1
ad(x+ec)'a—(adx)'a=¢ Y (adx)""'~*(adc)(adx)fa
K0

— &Y (adxy- 1 ~*ad(adxfa)e modulo &
Thus we have o
d.(gladx)a)= — Z (adx)"~'~*ad((adx)a).
If k>0, tr f(adx)(adx)*~ ' ~*ad((ad x)* a) vanishes. In fact, if we set b=(adx)*~a
and @(A)=A""1"%f(J), then
tr p(adx) ad((ad x)b) = tr p(ad x)(ad x adb —ad b ad x)=0.
Therefore, we obtain

tr f(adx)d,.g(adx)a= —tr f(adx)(ad x)"~ *(ada). Q.E.D.
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Proposition 5.3. Conjecture is implied from the following: For any Lie algebra g,
we can find A in [[L, L], L] satisfying the conditions i), ii) and iii):

i) There is P in 1. such that A+x+y—loge’e*=[x, P] and that P gives a
convergent power series on (X, y)€g X g.

ii) There is Q in 1. such that A—(x+y—loge’e*)=[y,Q] and that Q gives a
convergent power series on (x, y)€g X g.

ady adz
] 0,A=tr (

adz __

iii) tr—fig—-a-d—xa A— 14l adz)

where z=loge*e’.

d
Proof. We have x +y—loge®e*=%[x, P1—3[y, Q] Let F=%i——a-e——i3—;P and G=

, ady

I Q. Then we have
x+y—loge’e*=(1—e ¥ F+(e—1)G.
We have [x, P]=2(1 —e**)F. Therefore, by Lemma 5.2, we have

adx adx O0—(1—e %)
tr———éja-ax[x,P]~2tr1_e_adx adx

1—
=2tr(adx) 0, F—2tradF.

adF +2tr(adx) 0, F

d N
Similarly, we have —tr -e—i—y—fT 3,[y, 0] =2tr(ady)d,G—2tradG. Set Z

=loge’e*, we have, by Lemma 5.1
adz 1—e ™

— _ Y o* =1— _ A.
d.[x, P]1=0,(x+y—loge’e*+A)=1 o= adx +0,
Hence, we obtain
adx adx adx adz
_adx P _ )
tr ey 0,.[x, P] tr1 —z 0, A+tr (1 g
adx d adz
—trm;a A+tr (1 e-adx—1__e~—adz)'
In the same way, we have
ady _ ady ( ady adz )
_trmay[y,Q]— eay 6A+t _1 eadz—l

Thus, we obtained
tr (adx)(0,F)+tr (ad y)(3,G)

d d
—tr (ad F) + tr (ad G) + 3 tr (_a——’f—axA ey aA)

1_e~adx eady

adx ady adz adz )

1
+7t1‘ (1 __e—-adx eady_l _eadz_l - 1 __e—adz
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N ady adz
Ime—adx eady_l l_e-adz

=tr(adF)+tr(ad G)+5tr ( —-1+%adz>.
Since /(1—e~*)=A/(e*—1)+ A and tradz=tr(ad x +ady), this equals

adx ady adz
tr(adF)+tr(adG)+4tr(adx —ady) +5tr (e“d"wl +ea"”-—1 — ] —1).

Hence, it is enough to show that
(5.1) tr(adF)+tr(adG)=%tr(ady—adx).

However, adding a constant multiple of x (resp. y) to P (resp. Q) we may assume
that P (resp. Q) is equal to ay (resp fx) modulo [L il However x+y
—loge’e* = —%[x, y] modulo [[L, L], L] and hence P=3y (resp. Q= 1x). Thus,
we have F=1y (resp. G= —%x) modulo [L,L]. Since trad[L L1=0, (5.1) is
satisfied. Q.E.D.

Let A satisfy i), ii), iii), of the Proposition 4.3. We may remark that A4'(x, y)
=1(A(x,y)—A(y,x)— A(—x, —y)+ A(—y, —x)) satisfies also 1), 2), and 3). This
follows from the following observations:

a) if m(x,y)=x+y—loge’e", then m(x,y)=—m(—y, —x);

m(x, y)—m(y, x)=loge e’ —loge’e*

=(e®*—1)loge’e*
=(1—e*"]loge*e’
hence is divisible by x and y.

b) if t(x,y)=tr (ﬁ—f1—1+a§ ) then t(x, y)=t(y, x)=t(—x, —Y).

¢) for any Ee[L, L],

tr—————-aE ady 6E tr d aE—t ady 0.E

1—e~ adx ©X e dy __ 1_e_ady y
In fact the difference is
tr(adx 0,E+adyd, E)=tr (0, Eadx+0,Eady)
=—tradE(x,y) (see 4.2)
=0 as Ee[L,L].
We will now construct 4 in [[L, L], L] such that
Ax,y)=—A©Y, x)= —A(=x, =)

and i) x+y—loge’e* + A(x, y)=[x, P] and P gives a convergent power series on
(x, y)eg x g. ((ii) follows then). If g is solvable we will be able to prove that 4
satisfies also the condition iii).
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We consider now the condition i):
x+y—loge’e*+ A(x, y)=[x, P(x, y)].
Then for every t, we will have

tx+ty—loge?e*+A(tx, ty)=t[x, P(tx,ty)].

Hence % (tx+ty—logee™) +§; A(tx, ty)e[x, L] and gt— A(tx, ty) satisfies the

same antisymmetry relation as 4. ~
Let 0 be the vector field (x,d,>+{y,0,) (or the derivation of L defined by
0|L,=nidL, where L, is the space of elements of L of degree n) then

0 .
té—tB(tx, ty),. =08, for BeL. We compute

dz dz
O(x+y—loge’e) =x+y g y— =

- 1—e~ adz x
with Z= loge’e” and we will write 0(x + y—loge’e*) as an antisymmetric element
mod [x, L].

For any real analytic function g(4), we have g(adz)=e**g(adZ)e™**, in
particular g(ad?)- x=g(adz)- x modulo [x, L] and

g(adz) - y=g(adz)e **y=g(adZ)e **.y modulo [x,L].
Hence we write modulo [x, L]

adz ) ad?z N
Xt y————e .

1 _e—adé

O(x+y—loge’e™)= (1——

=f(adZ)-x+f(adz)-y, where f(/l)=<1~ 271)
=f(ad?)-x—f(adz)- y+2f(adz)-y.
We write, as f(0)=0,

d
f(adz)y:efa‘(ij_zi (eadz_l)y
S04 (e,
e —1

therefore f(adz)-y= (f(adi) _ f(adz)) -

eadi_l eadz___l
As (f(adf) _fladz)

) -x=0 we obtain that

O(x+y—loge'e")= f(adz) - x—f(adz) - y+2 (é:‘gjc}.? _e{‘giizi

eadE_I eadz_l

) G,
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Let us denote by a(x, y) the second member of this equality. We have obviously
a(x, y)= —oa(y, x), hence if we define B(x, y)=3(x(x, y)+a(—y, —x)), B will satisfy
the relation B(x,y)=—pB(,x)=—p(—x, —y) and O(x+y—loge’e)=[(x,y)

. A 1 .
mod [x, L]. We remark that the function h{l)= (1 ”1—...(;?7) pray verifies h(A)

=—h(—A4)—1 as l—e“:e’lj+1’ hence

pen=2 (L5 -LE90) 4 ) 41 a2+ (—ada) x

—3(f(adz)+f(-ad2)-y.

We can therefore define A(x, y) by the differential equation:

adz adz ) 1

1
(52) 04=2 (1—1_e_adz) e (x+y)—2 (1_—1—-8_“‘2 ST ] (x+y)

adz adz adz
4 () et () o (e 1)

adz
N
with the initial condition A(0,0)=0 (Z=loge’e*, z=loge*e’). As the second
member is a convergent power series at the origin, so is A(x, y).

The preceding calculation implies now 1) and 2) of the:

Lemma 5.4.
1) A(Xa)’)=”‘A(y3x)= —‘A('—X, —y)a
2) x+y—loge’e*+Ae[x, L],
3) Ae[L,[L,L7].

For 3) we remAarkAthElt Ae[L, L], and the properties A(x, y)= —A(—x, —Y)
implies that Ae[L, [L, L]]. The lemma is proven. Q.E.D.

Let g be a power series of the two non commutative variables x and y, i.e. g
is in the completion of the tensor algebra T(x, y) of the vector space Cx+C y.
We denote by c(q) the image of ¢ under the map T'(x, y)—S(x, y)= C[[x, y]], i.e.
¢(q) is a power series in the commutative variables x and y.

Lemma 5.5. If g is solvable, tr(q(adx, ad y)) depends only on c(q).

Proof. There is a basis of g* where the operators adx, ad y are lower triangular,
then ad[x, y]=adxady—adyadx have zeros on the diagonal, and the lemma
follows.

Let us write 4=p(adx,ady)-[x, y], where p is a convergent power series in
the non commutative variables x and y.

Lemma 5.6. Let g be solvable, then

adx o 4w 2 5y

trl__e—adx x eady—-l y
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adx ad
= —tr ((eadz_l) (eadx_1> (eadyfl> plad x, ady)).

Proof. Let us consider the endomorphism

d
gacs——»zi—gp(adx+sadc, ady) - [x, y1l._o;

this is a sum of terms of the form

p,(adx,ady)adcp,(adx,ady)- [x, y]
= —p,(adx,ady)ad(p,(adx, ady)- [x, y]) - c.

dx
The trace of the endomorphism -l—f—:\d—x p,(adx, ady)ad(p,(adx, ady)- [x, y])

vanishes by the preceding lemma. So the only term appearing in

adx

tr [T 0. A will come from the trace of the endomorphism

adx
de 1 —e—2d%

cH> pladx, ady)[x+ec, y]l,_o-
We obtain that the left side of the equality is:

d d
—tr (_1_ae_x_ ady + Y adx) p(adx, ady)

_ adx ady padz
- —tr (ead"~1) (eady—l)( 1) p(adx, ad ).

If we restrict our attention when g is solvable, we have to prove:

adx ady .. [ adz
r <eadx_1 eady__l (ed ’—l)p(ad:)@ ad)’))ztl ('ﬁ?‘:‘l—_l‘*‘%adZ)

Hence, considering the commutative ring € [[x, y]] we need only to prove:

_( x+y x+y) 1 ef—1e"—1
c(p)(x,y)——( - 2 FHy_1) &t —1 x y :

We denote by q(x, y) the right hand side.

Let us consider the homomorphism h: [T, L]-[L, LY/IL L, [T, 117 and
let us write for me[L, L], m=¢@(adx, ady)- [, y] then clearly h(m) depends only
on ¢(¢p). Therefore, for f(x,y)eC[[x,y]], we shall write f(adx,ady)[x,y] for
the element ¢(adx, ad y)[x, y] modulo [[L, L], [L,L]] with f=e¢(e).

Remark 5.7. If f(x,y)eC[[x,y]] is such that f(adx,ady)-[x, y] =0 modulo
[[L, L], [L,L]], then f(x,y)=0. In fact if p(adx,ady)- [x, yle[[L, L], [L, L1],
with f=c(¢) then tr(d, p(adx, ady)- [x, y]; g)=0 for any solvable Lie algebra g.
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On the other hand the same calculation as in Lemma 5.6 shows that

tr (0,(p(adx, ady) - [x, y]); )= —tr(p(adx, ady)ady; g).

Considering the 2 dimension Lie algebra g with basis H, A and relation [H, A]
=A, we have for x=x,H+x,4, y=y, H+y, A,

tr(p(adx,ady)ady; g)=1(x;, y1) 1,

hence f(x,,y,)y;=0, and so is f.
Proposition 0 will result from the following lemma.

Lemma 5.8. Let

_(1 adz ) 1 (et )+ (1 adz ) 1
o= 1) ads xX+y—2Z Z— 1) ads (x+y—z)—iz

then
1) h(e)=g(adx,ady)- [x, y],
2) h{a)=h(A4).
Proof. 1) We have as (x+y—2%)e[L, L],

adz 1 N
= (l—e—ad—;-—) ”p (x+y—2)+iz

dz \ 1
_(l_g_a_z_>@(x+y—z)——z modulo [[L,T],[L, 1]

adz_l

adz 1
=l ) = (z—2
( eadz__l) adz (Z Z) Z(Z 2)
and 1) will result from the following formula:

adz eM¥—1 ¢y 1
53 (-5= e®?—1 adx ad

-[x,y] modulo [[L,L],[L,L]].

Proof of (5.3). Let

<ol(x,y)=(e"—e‘y)‘1(e _lze )

X y
—p— X Yy __

@2(x,y)=(eY—e-x>~1(3——e— ¢ 1)
X y .

then ¢, and ¢, are analytic functions at the origin. We have
a) x+y—Z=¢,(adx,ady) [x,y],
b) (x+y—z)=¢,(adx,ady)-[x,y] mod [[L, L], [L,L]].
For a) we consider

eadx__e—ady)(x _}_y_Z)___(eadx“e—ady)(x +y)
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(as (€M% —e ") (2)=e *V(e** —1)-Z=0) s0
(== ) (o y =2) =(E* = D (L =e™*) - (v+)

_(eadx__'l lwe—ady) [x ]
T\ adx ady Y

and we obtain the equality a) by Remark 5.7. Now

z—2=(p,—¢,)(adx, ady)-[x,y]
but

ez—ey ey—l e"—l ez——e"
- 2—1_1 ( )’ - 2—1_1 ( B )
p,=(—1) . . @, =(—1) . )

with z=x+y, and

01— =1yt (CZREZD EZDE0)

(e —1)1 ;Z;(e"—l)(ey—l)

and this proves Formula (5.3).
Let us prove 2) in Lemma 5.8. We let

Cx.y)= ( —?*CLZ—> d~(X+y—2)+%

then a(x, y)={(x, y)—{(y, x). As x+y—ze[L, L], we have

tadz
acz ) (tx+ty—2(tx, ty)+5Z(x,ty)

{(ex,ty)= (1—2752_—1 wds

_ tadz 1 1=
= (l—etadi_l) adz (x+y——z(tx ty)) +22(txaty)
modulo [[L, L], [L, L.1].

Here # still denotes loge’e* and #(tx, ty)=loge”e'™. We have
0 tz \1 1 z
= - - = -1].
ot ((1 e”——l) Z)t_-—_l -1 (l—e‘z )
So
adz | N
(QO(X _V)—( Aadz— > (x+y Z)+( EE:T)—(TZJ Z—QZ)-{—%GZ

adz
( —adz

il
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as

; 1 dz \ 1
(lj:idrl) : -z=§5=<1——if—>~—,z.

Recalling that

ad? adz adz

92:(3*“‘5—1 “y+ ar Xy (x+y)+adz - x,

1—e~

we obtain:

adz )

1 adz 1
0000 = (T —1) g b+ (e 1) - (x)

adZ? , adz |
+(e—a&—’:’:—_1 .X+Eead2_1'y+—

-, 1
adz , adz , adZ
i _1 ¥ X+3 adz_q 'y+"2'1_e—adz x
_ adZz 1 , adZ , adz
= (1 o—adE ) a7 _q '(X+Y)+§1__'e‘_ﬁ“i'x_x“§é§¢ff‘%

After antisymmetrization, we obtain

adz 1 adz 1
=2 — . — — _ _ .
Bo(x, y) (1 ] e_adz) - (x+y)—2 (1 ] e_adz) e (x+y)

adz adz adz adz
+ (%eadz___l +%1_e-—ad2 _1) CX = (%eadé_l +%1_e~adz _—1) Y

=04. cq.fd.

References

1. Cerezo, A., Chazarain, J., Piriou, A.: Introduction aux hyperfonctions. Lecture notes in Math.
449, pp. 1-53. Berlin, Heidelberg, New York: Springer 1973

2. Chang, W.: Global solvability of bi-invariant differential operators on exponential solvable Lie
groups (preprint 1977)

3. Dixmier, J., Duflo, M., Vergne, M.: Sur la représentation coadjointe d’une algébre de Lie.
Composition Math. 29, 309-323 (1974)

4. Duflo, M.: Opérateurs différentiels bi-invariants sur un groupe de Lie. Ann. Sci. Bcole Norm.
Sup. 10, 265-288 (1977)

5. Duflo, M., Rais, M.: Sur l'analyse harmonique sur les groupes de Lie résolubles. Ann. Sci. Ecole.
Norm. Sup. 9, 107-114 (1976)

6. Harish-Chandra: Invariant eigendistributions on a semi-simple Lie group. Trans. Amer. Math.
Soc. 119, 457508 (1965) ’



272 M. Kashiwara and M. Vergne

7. Helgason, S.: Solvability of invariant differential operators on homogeneous manifolds. In:
Differential Operators on Manifolds (ed. Cremoneze). Roma: C.I.M.E. 1975
8. Kirillov, A.A.: The characters of unitary representations of Lie groups. Functional Anal. Appl. 2,
40-55 (1968)
9. Kostant, B.: Quantization and Unitary Representations. Lecture Notes in Math. 170, pp. 87-208.
Berlin, Heidelberg, New York: Springer 1970
10. Miwa, T., Oshima, T., Jimbo, M.: Introduction to micro-local analysis, Proceedings of OJI
Seminar on Algebraic Analysis. Publ. R1M.S. Kyoto Univ. 12 supplement, 267-300 (1966)
11. Rais, M.: Solutions élémentaires des opérateurs différentiels bi-invariants sur un groupe de Lie
nilpotent. C.R. Acad. Sci. 273, 49-498 (1971)
12. Rais, M.: Resolubilité locale des opérateurs bi-invariants. Fxposé au Séminaire Bourbaki,
February 1977
13. Rentschler, R., Vergne, M.: Sur le semi-centre du corps enveloppant d’une algébre de Lie.
Annales Scientifiques de P'Ecole Normale Supérieure, vol. 6, p. 389-405, 1973
14. Rouviére, F.: Sur la résolubilité locale des opérateurs bi-invariants. Ann. Sc. norm. super. Pisa,
ClL. Sci. 1V, Ser. 3, 231-244 (1976)
15. Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. Lecture
notes in Math. 287, pp. 265-529. Berlin, Heidelberg, New York: Springer 1973
16. Howe, R.: On a connection between nilpotent groups and oscillatory integrals associated to
singularities (preprint)

Received December 15, 1977/April 10, 1978



