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0 Introduction

Our main result in this paper is the following theorem conjectured by G. Lusztig [L].

Let g be an affine Lie algebra with Cartan subalgebra ) and simple coroots {h;}ic;.
For A € h* let M(A) (resp. L(A)) be the Verma module (resp. the irreducible module) with
highest weight A.

Theorem. For A € h* such that (A + p)(h;) € Zo for any i € I, we have

chL (WA +p) —p) = > (=1)™WP, (1) ch M (YA + p) - p) (0.1)

y=w

for any w € W. Here W is the Weyl group, p € h* is such that p(h;) = 1 forany i € I, lis
the length function, < is the Bruhat order, P ,, is the Kazhdan-Lusztig polynomial, and

ch denotes the character.

This type of character formula was first conjectured by Kazhdan and Lusztig [KL]
for finite-dimensional semisimple Lie algebras and was proved by Beilinson-Bernstein
[BB] and Brylinski-Kashiwara [BK]. Then its generalization to symmetrizable Kac-Moody
Lie algebras concerning the dominant integral weights A was given by Kashiwara
(-Tanisaki) [K2], [KT] and Casian [C1]. This paper is concerned with a different version in
the case of the antidominant integral weights for affine Lie algebras.

The schemes of the proofs of those character formulas are all similar. The g-
modules correspond to D-modules on the flag manifold, and the D-modules correspond
to perverse sheaves by the Riemann-Hilbert correspondence. Since the perverse sheaf
corresponding to a dual Verma module (resp. irreducible highest-weight module) is the

zero (resp. minimal) extension of the constant sheaf on a Schubert cell, the proof is
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reduced to the calculation of the local intersection cohomology groups of the Schubert
varieties. This last step is now standard by the theory of Weil sheaves (cf. [BBD]) or the
theory of Hodge modules (cf. [S]).

However, there are some differences between [K2], [KT] and our case. The nat-
ural setting in our case is of the right D-modules supported on the finite-dimensional
Schubert varieties, while in [K2], [KT] we used left D-modules supported on the finite-
codimensional Schubert varieties. The category of left D-modules and the one of right
D-modules are equivalent on finite-dimensional manifolds. The flag manifold in our case
is infinite-dimensional, and those two categories are not equivalent. The left D-modules
behave well under the pull-back while the right D-modules behave well under the push-
forward. This is the reason why we use right D-modules.

For a technical reason, we do not directly treat the right D-modules on the flag
manifold itself. Instead, considering the fact that the flag manifold is locally isomorphic
to the projective limit of finite-dimensional smooth varieties, we use a “projective limit”
of right D-modules on these finite-dimensional varieties as a substitute.

In this paper we will give descriptions of the category of those projective limits
of right D-modules, and the functor from this category to the category of g-modules.
Our main result follows from several properties of this functor. Details of the proof will
appear elsewhere.

The same result is claimed in the preprint of Casian [C2]. Our method is different,

since a functor in the opposite direction is used in [C2].

1 The Kac-Moody Lie algebra

We recall basic facts concerning the Kac-Moody Lie algebra.

Let h be a finite-dimensional vector space over C, and let {«;}ic1, {hi}ic: be linearly
independent vectors of h* and h respectively, such that ((hi, &;)) je1 is a symmetrizable
generalized Cartan matrix. The Kac-Moody Lie algebra associated to (b, {o}, {hi}) is the
Lie algebra g generated by the vector space h and the elements e;, f; (i € I) satisfying the

following fundamental relations:

[hH1=0 for h,h' € b, (1.1)
[h, el = ai(h)e; forhehbh, i1el, (1.2)
[h, f;] = —o(h)f; forhebh, i€l (1.3)

[ei,f]-] = 511']’11 for i, ] S I, (1.4)
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ad(e)' "M (e) =0  fori,j e Iwithis j, (1.5)
ad(f)!~%M(f) =0  fori,jeIwithisj. (1.6)

For i € I, let s; be the linear automorphism of h* given by
s$iA) = A = A(hy) oy for A € b*. (1.7)
The Weyl group W is by definition the subgroup of GL(h*) generated by {si}ic;. Then W

is a Coxeter group with a canonical system of generators {si}ic;. We denote the length
function by | and the Bruhat order of W by <.

Set

ge = {x € g | [h,x] = a(h)x for h € h} for « € b*, (1.8)

A ={oe b | g« # (0}} - {0}, (1.9)

AT =ANY Zxox, (1.10)
iel

Ao = JWl), AL =ATNA,, (1.11)

iel

and let n, n~, b, b~ be the subalgebras of g generated by {e;i}ic1, {fi}ic1, {€i}ic1 Ub, {fikie1 Ub,

respectively. We then have

A=ATU(-AT), W(A) =A, (1.12)

g=n"@hen, (1.13)

n=P o, =P o (1.14)
aeAt aeAt

b=hdnt, b =hPn". (1.15)

For A € h* let M(A), N(A) be the g-modules defined by

M() = Ulg) / (Z Ulg) (h = AR) + > u(g)ei) , (1.16)

heb iel

N = Ulg) / (Z Ulg) (h = AR) + > u(g)fi) : (1.17)

heb iel

where U(g) denotes the enveloping algebra of g. Let M*(A) be the g-module consisting of
h-finite vectors in Homg (N(—A), C). The irreducible g-module L(A) with highest weight A is

naturally isomorphic to the image of the unique nonzero homomorphism M(A) — M*(A).
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2 The flag manifold

We fix a Z-lattice P of h* satisfying

o« €P, (h,P)eZ foriel (2.1)
Fora =) ;. mio; € AT set |&| =) ;.;my, and let
n = @ gay N = @ g« for k € Z>,. (2.2)
acAt aeAt
lo| 2k || >k
Define group schemes by
T = Spec(CIPI), (2.3)
U= l(%nexp(n/nk), (2.4)
u = LiLnexp(n‘/ng), (2.5)
k
B = (the semidirect product of T and U), (2.6)
B~ = (the semidirect product of T and U"™). (2.7)

Here, for a finite-dimensional nilpotent Lie algebra a, exp(a) denotes the unipotent alge-

braic group with a as its Lie algebra. We have natural isomorphisms

exp : H g — U, exp: H go —> U™, (2.8)

aeAt aeAt

In [K1] the first-named author constructed the flag variety of (g, b, P) as the quo-

tient
X = G/B, (2.9)

where G is a scheme with locally free right action of B.

Let A € P. We denote the composite of the homomorphisms
A
B—T— G,

by b — b*. Let t : G — X be the canonical morphism. An invertible Ox-module Ox(A) is
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defined by
F(V; OX(A)) = {(p e N V; Og) | @lgb) = @(g)b™ for (g,b) e TV x B} (2.10)

for any open subset V of X.

We have natural left actions of the group scheme B~ and the braid group W of W
on X. Let Y be a T-stable subset of X. For w € W/, the set W'Y depends only on the image
w € W of w' under the canonical homomorphism W' — W, and hence we simply denote
it by wY.

Let Bg be the subgroup of B generated by T and the elements of the form exp(x)
with x € gq, @ € A,. Note that By is not a scheme but an inductive limit of schemes. We
have a natural left action of By on X compatible with those of B~ and W'. Let x¢ € X be

1 mod B. Then xq is a unique Bg-fixed point. We set
XY =B wxg, Xw = Bowxg forw e W. (2.11)

Proposition 1 [K1]. (i) X" is a locally closed subscheme of X with codimension l(w), and
if g is not of finite type, it is isomorphic to the infinite-dimensional affine space A*.
(ii) X = UppewX™.

(iii) X" = >wXY.
Moreover we have the following results.

Proposition 2. (i) X,, is a locally closed subscheme of X isomorphic to the affine space

Al(w).

(ii) Uwew Xy is naturally isomorphic to the “flag manifold” treated in [KP], [T], and
others.

(iii) X,, = Ly < Xy-
3 D-modules

For a finite subset F of W set

XF= X", Xe = Xn (3.1)

weF weF

By Propositions 1 and 2, the set X" (resp. X;) is open (resp. closed) if and only if F satisfies

weF yeWw, y<w=vy ek (3.2)
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A subset Y (resp. Z) of X is called an admissible open (resp. closed) subset if Y = X" (resp.
Z = Xy) for a finite subset F of W satisfying (3.2).

Let Z be an admissible closed subset of X. In this case Z is projective. Take an
admissible open subset Y of X containing Z. We can take such Y since we have X" O Xr
if F satisfies (3.2). For k=0 set U, = exp(] [ wea+ 9-o) C U™. If k is sufficiently large, then

la| 2k
U, acts on Y locally freely, and hence the quotient U, \Y is a finite-dimensional smooth

variety. We do not know if U, \Y is separated or not. If k is large enough, the natural

morphism Z — U_\Y is a closed immersion. Fix such Z, Y, and k. For 1=k set

Yi=Uup\Y (3.3)
and let

m:Y—Y (3.4)

pr: Yy — W (3.5)

W:Zi— Y] (3.6)

be the natural morphisms. For A € P, we can naturally define an invertible Oy,-module

Oy, (A) satisfying

7Oy (N = 0x(\) | Y and (3.7)
POy, = Oy,,, (V). (3.8)

Let Dy, be the sheaf of differential operators on Y;, and set

Dviyy-v = Oy, (X)pfl(i)yl pl_LDYw (3.9)
Dy, (A) = Oy, (=A) ®oy, Dy ®oy, Oy, (A), (3.10)
‘DYHI—’YIO\) = OY1+1 (=A) ®Oyl+l ‘DYHl—)Yl ®pl_loY1 pl_l(‘)YlO\). (3.11)

Then Dy,(A) is a ring acting on Oy,(—A) from the left, and on Qy, ® Oy,(A) from the right.
Here Qy, is the sheaf of differential forms of degree dim Y. We have a natural (Dy,_, (A),
p; ' Dy, (N))-bimodule structure on Dy, , v, (A).

Let H be the abelian category of right holonomic Dy, (A)-modules supported in Z.
For M € H we define M* € H by

M* = Qy, ® 0y, (2N ® ext%j;g; (M, Dy, (N) . (3.12)
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This defines a contravariant exact functor * : Hy — H such that xx = id. For M € H,; we
define [, M € Hy by

J M = (p). (M, ) D). (3.13)
n

Since iy41(Z) S 42), jm induces an equivalence Hjy,, S H,.
We define an abelian category H = HI(Z, A, Y, k) as follows. An object is a family
M = Mu)i> € [][;>y Ob(Hy) together with isomorphisms

T J M — My, (3.14)
Pl
and morphisms are given by

Hompy (M, N)

= ((pl) (S] HHomHl(Ml,J\h) | QroTry =m0 (J (p1+1> for lzk . (315)
1>k b1

Note that H is equivalent to H. The duality functor * : H — H is defined by

Since fm commutes with the duality, this is well defined. It is a contravariant exact
functor such that x*x = id. Note that the category H(Z, A, Y, k) does not depend on Y and k.
Moreover for A, A € P, H(Z, A, Y, k) and H(Z, ', Y, k) are equivalent by M; — M; ® Oy, (A" —A).

For M € H the homomorphism Oy,,, — Dy,,,.v,(A) induces a homomorphism

pPuMir1 — My, which gives a homomorphism

H (Yig1; Miga) — HU (Y M) for i=0. (3.17)
Set
HYY; M) = im HY(Y;; M) for i>0. (3.18)
<—

1
Proposition 3. For M € H, H'(Y; M) carries a natural structure of a g-module.

There is no homomorphism from g to Dy, (A) because there is no action of g on ;.
However, we can construct a section of Dy, eV (A) corresponding to A € g if m > 0. This

induces an action of g on H'(Y; M).
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For w € W such that X,, C Z, we define B,,, M,,, £,, € Ob(H) by

(B = IR (0 @0, 04 ), (3.19)
M,, = B}, (3.20)
L., = the image of the natural morphism M,, — B,,. (3.21)

Then L,, is a simple object of H satisfying L}, = L,,.
Let Hy = Ho(Z,A,Y, k) be the full subcategory of H consisting of M € H whose

composition factors are isomorphic to L., for some w € W satisfying X,, C Z.

4 The main result

We fix p € h* satisfying
(hi,p) =1 foranyiel. (4.1)
Define a shifted action of the Weyl group W on P by
woA=wA+p)—p. (4.2)
Assume that A € P satisfies the following:

(hi,A\) < —1 foranyiel; (4.3)

the Verma module M(}) is an irreducible g-module. (4.4)

We keep the notation of Section 3. Let F € W be such that Z = X;. Then we have the
following theorem.

Theorem.
i) H™Y; M) =0 for any M € Hp and n > 0;
(i) HO(Y; %) defines an exact functor from Hy to the category of U(g)-modules;
(iii) HO(Y; B,,) = M*(w o A) for any w € F;
(iv) HO(Y; M) = M(wo A) for any w € F;
(v) HO(Y; L) = Liw o A) for any w € F.
Here M*(w o M) is the completion of M*(w o M), etc.

By [KK] the condition (4.4) is satisfied if g is an affine Lie algebra and if A satisfies
(4.3). The conjecture of Lusztig is easily derived from this theorem along with the standard

arguments.
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The proof of this theorem is accomplished by showing the following statements
by induction on the dimension of Z.

For M € Hy, p € P, and n € Z, the weight space H™(Y;; My),, is
constant for 1 > k. (4.5)

This implies that H™(Y; M) is isomorphic to [], (l(iLnH“(Yl; My)y). We denote
1
@u(l(i£1H“(Y1; J\/Kl))FL by H™(Y; M). Hence H™(Y; M) is the set of h-finite vectors of H™(Y; M).
1

H™Y;: M) =0 for M € Hp and n > 0. (4.6)
Homy, (M, N) >~ Hom, (l:lo(Y; M), HO(Y; N)) for M, N € Hp. (4.7)
HO(Y; M) @ DA) =M for M e H. (4.8)

Let M € Hy and let N be a U(g)-submodule of HO(Y; M).

If N® D(A) = M, then N = HO(Y; M). (4.9)
HO(Y; B,,) = M*(wo]A)  forweF (4.10)
HO(Y; M,,) = M(w o A) forw e F. (4.11)
Ho(Y; L,) =LwodA)  forweF (4.12)

In (4.8) and (4.9), for a U(g)-submodule N of H°(Y; M), N ® D(\) denotes the subobject
of M “generated by” N. We remark that we do not know how to construct the functor

M — M®D(A) from a category of g-modules to Hy, but there is no problem in constructing
N ® D) € M for N c HO(Y; M.
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