Inventiones

mathematicae
© Springer-Verlag 1984

Invent. math. 77, 185-198 (1984)

The characteristic cycles of holonomic systems
on a flag manifold

related to the Weyl group algebra

M. Kashiwara! and T. Tanisaki?

1 RIM.S, Kyoto University, Kyoto 606, Japan
2 Mathematical Institute, Tohoku University, Sendai 980, Japan

1. Introduction

1.1. Joseph [10] considered the characteristic varieties of the highest weight
modules of a complex semisimple Lie algebra, and Hotta [7] gave a proof of a
conjecture of Joseph in [10] concerning the so-called Springer representations
of the Weyl group. These results give a relation between the characteristic
varieties of the simple highest weight modules and the representations of the
Weyl group (see Sect. 6).

On the other hand the so-called Kazhdan-Lusztig conjecture [15] concerning
the characters of simple highest weight modules was proved in Brylinski-
Kashiwara [6] and Beilinson-Bernstein [3] using the holonomic systems on
the flag manifold associated to the simple highest weight modules (see Sect. 2).

The purpose of this paper is to give a relation between the characteristic
cycles of these holonomic systems and the representations of the Weyl group.

1.2. Let G be a connected, simply-connected, complex semisimple algebraic
group and B a Borel subgroup of G. We denote the half of the sum of the
positive roots by p and the Weyl group by W. For we W let M,, be the Verma
module with highest weight —w(p)—p and L, its simple quotient. We denote
by 3, and 2, the regular holonomic systems on the flag manifold #=G/B
corresponding to M, and L, respectively (see Sect.2). The characteristic
variety Ch(L,) of L, is a subset of the dual space g* of the Lie algebra g of G,
and the characteristic variety Ch(2,) of € is a subset of the cotangent bundle
T* 4. Under the natural map T*Z%-1>g* Brylinski showed that y(Ch(Z,))
=Ch(L,) (see Proposition 2). Thus Ch(£,) has more information than Ch(L,).
Each irreducible component of Ch(&,) is the closure of the conormal bundle
Tz % of a Schubert cell %,=ByB/B for some yeW. Let A be the abelian
category consisting of the regular holonomic systems on # whose characteris-

tic varieties are contained in [ Tj 4. Then the Grothendieck group K (A) is
weW
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decomposed into the direct sums:

K(l)= @ Z[M,]= ® Z[L,)

weW

We consider not only the characteristic variety of 9ie.# but also the multiplic-

ities m, (M) along the irreducible components Ty %, that is the algebraic
cycle:

Ch@)= Y, m, (W) [T, %],
weW

which is called the characteristic cycle of 9. Then Ch defines an additive map
from K(.#) into the group of the algebraic cycles of T*%. Let h be the Z-
linear isomorphism from K(.#Z) onto the group ring Z[W7] determined by
h([M,])=w. There exists a unique basis {c(w)}, . of Z[W] so that h([IN])
=Y m, () c(w) for any Me.#, and hence Ch(h~*(c(w))=[T; %]

weW

In the studies of the Springer representations of the Weyl group, Kazhdan-

Lusztig [17] defined a basis of Z[W] which is also parametrized by W. Our
main theorem is that this basis of Kazhdan-Lusztig coincides with our
{eW)}yew (Theorem 6). This theorem was conjectured by the second-named
author in [24].

1.3. Set a(w)=h([L,1)= ) m,(2,) c(y). The basis {a(w)},.y is related to the
eWw

left cell representations oyf the Weyl group, which arose from the studies of the
primitive ideals of the universal enveloping algebra Uf(g) of g (see Sect. 6).
Hence our theorem gives a relation between the two bases {a(w)},., and
{eW)} . Oof Z[W], which are related to the left cell representations and the
Springer representations of W respectively, in view of the holonomic systems
on the flag manifold associated to the simple highest weight modules. As an
application to our theorem we give some relations between the left cell repre-
sentations and the Springer representations using the results of Joseph and
Hotta.

We remark that the results of Joseph and Hotta together with an un-
published result of Borho-Brylinski give a unified proof of the irreducibility of
the associated varieties of the primitive ideals of U(g), which was proved by
Borho-Brylinski [4] using case-by-case computations (see the remark at the
end of Sect. 6). We learned that Joseph also gave the similar proof.

It is desirable to find an algorithm for computing the multiplicities m (2,),
or at least Ch(f,)). Since the Weyl group as a Coxeter group does not
determine them (see the example in 5.4), we must take the root system into
account.

1.4. The authors express their hearty thanks to Professor R. Hotta for leading
them to this problem and making many valuable suggestions in private com-
munications. They also thank Professor J.-L. Brylinski for useful advices. The
second-named author thanks Professor N. Iwahori for kind encouragements.
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2. Review on the results of Brylinski-Kashiwara [6]
and Beilinson-Bernstein [3]

2.1 Let G be a connected, simply-connected, semisimple algebraic group over
the complex number field C. We fix a Borel subgroup B of G and a maximal
torus H of G contained in B. We denote the Lie algebras of G, B and H by g, b
and D, respectively. Let U(g) be the universal enveloping algebra of g and 7,
the sheaf of the algebraic differential operators on the flag manifold %= G/B.
U(q) and 2,4 have natural increasing filtrations:

0=Uy(@cU(gc...cUlg (Ug= UU (),
0Dy =Dy =...cDy, (QQ—U@@,i.

The natural action of G on % 1nduces an algebra homomorphism U(g)-2->
I'(%, 24) and a linear map U(g)—~+ F(.@ D4..)- Let 3 be the center of U(g).

Proposition 1 (Beilinson-Bernstein [3]). D; is surjective with Ker D, = U,(g)n
U(g)(@U(g)n3). Thus D is surjective with Ker D= U(g)(gU (g)N3).

We set R=U(g)/Ker D=I'(#,2,4). For a finitely generated R-module M,
we have a coherent & 4-Module 9 ,®, M

Theorem 1 (Beilinson-Bernstein [3]). (i) Let M be a coherent 9 z-Module. Then
I is generated by its global sections (i.e. D4z I'(B, M)=M) and H (B, M)=0
Jfor j>0.

(i) 25Qr(*) gives an equivalence between the abelian category of finitely
generated R-modules and that of coherent 9 ,-Modules.

2.2. Let 4 be the root system of (g, b). For a root a4 we denote by g, the root
space. We choose a positive root system A" so that b=h+ ) g, and set p

acd™

=( ). a)/2eb*. Let W be the Weyl group of (g, ). For we W we denote by M,
aed*

and L, the Verma module with highest weight —w(p)—p and its simple

quotient, respectively. Let (9 be the abelian category of finitely generated R-

modules which are locally fmlte as U(b)-modules. The Grothendieck group
K(0,) is decomposed into the direct sums:

K(@o)= @ Z[M,]= @ Z[L,]
weW
We set 4,,=BwB/B. Then %, is isomorphic to the I(w)-dimensional affine
space where [(w) is the length of w with respect to the simple reflections, and %

= [ 4, gives a cellular decomposition of %. %,, is called a Schubert cell and
weW

its closure 4,, is called a Schubert variety. We denote by .# the abelian
category consisting of regular holonomic %2,-Modules 9 whose characteristic
varieties Ch (9R) are contained in H 1, %, where 15 2 is the conormal bundle
of &, in A. Set d=dim 4. wew
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Theorem 2 (Brylinski-Kashiwara [6], Beilinson-Bernstein [3]). (i) For M ely D4
®gr M belongs to M and this gives an equivalence between O, and M.

(ii) M,,: =Dy ® M, is isomorphic to (#y5, '™ (0z))*, where Oy is the struc-
ture sheaf of the algebraic variety 4.

(ili) Q,:=D,®gL, is the minimal extension of M, |%—0%,, to # as a
regular holonomic system, where 0B , =% ,—%,,.

Let 0,  be the sheaf of the holomorphic functions on 2. For Me. A we set
DR =R Homg, (Ug,, M,.), where Dy =05 ®0,9, and M, =Dy
@M (sce Kashiwara [14]). 22(M) belongs to the abelian category & con-
sisung of the perverse complexes on % whose cohomology sheaves are con-
stant on each 4.,

Theorem 3 (Brylinski-Kashiwara [6], Beilinson-Bernstein 3D G) 2Z gives a
category equivalence between M and F .

(i) DAM,)=Cgqy, [—(d—1(W)], where Ty is the constructible sheaf whose
stalks are 0 on #—AB,, and C on % .

(iii) 2R(8,)="Cy [—(d—1(W))], where ™Cg4 s the Deligne-Goresky-
MacPherson extension of C,4_to %,

2.3. For Me.A and weW we set x, (D)= (—1) dim #(ZZ(M)),,z and h(M)
=) (=17t (M)yweZ[W]. Then h(,)=w and h induces an isomor-

weW

phism K (.7)—> Z[W]. Set a(w)=h(2,). From a theorem of Kazhdan-Lusztig
[16] we have:
a(w)= Z (__1)1(w)+l(y) Py,w(l) v,

yEw

where < is the Bruhat order on W and P, ,, is the Kazhdan-Lusztig poly-
nomial defined in [15]. Thus we have the following theorem.

Theorem 4 (Kazhdan-Lusztig conjecture [15], Brylinski-Kashiwara [61,
Beilinson-Bernstein [3]). In the Grothendieck group K(0O,) we have:

(L=, (=)0 P (1) [M,].

yEW

2.4. The decomposition of % x # to G-orbits is given by % ><95’='U %, with
weW
% =G-({eB} x4#,). Let us denote by .# the abelian category consisting of the

regular holonomic 9,4, ,-Modules whose characteristic varieties are contained
in H T (% x #). Then the functor - M (M—IM|{eB} x B) induces an

weW
isomorphism K(M)— K (A). The homomorphism K (.#)—Z[W] induced by
h:K(M)Y—Z[W] is also denoted by h. We have a multiplicative structure on
K(4) by

L
(R, [T = (— 1) [, (052 T P2 T
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where p;;: B x B x B—H xH are the obvious projections. This induces a ring
structure on K(.#) so that h is a ring homomorphism (see Lusztig-Vogan [19]
and Springer [22]).

3. Characteristic cycles

3.1. We denote the multiplicity of a holonomic system Me.# along Tx % by
m,,(M). Then the characteristic cycle Ch(I) of 9 is by definition the algebraic

cycle Y m,(W)[T; 2]

weW
Lemma 1. (i) Ch(M,)= > 4, W[T;,‘y%’] @,,>0,4d, ,=1)
ysw
(ll) Ch(8 )_‘ Z ey w Tgyg] (ey,w—z—()’ ew,wzl‘)
yEw

Proof. Since Supp(IM,,)=Supp(L,)= @ Ch(9t,) and Ch(£,) are non-negative

Z-linear combinations of [T %] for y<w. We have WM |B—0%,=2%
—6%‘”:%;;“‘”)((9@_6%) because 4, is a closed submanifold of #—04,.

Thus d,, ,=e, ,=1.d, ,>0 follows from the fact that £, is a subquotient of
Mm,, for y<w
Thus we have an isomorphism K(./47)— @ Z [T* #7]. Similarly we can
weW

define K(AH)— @ Z[T; (% x 2%)] and we have a commutative diagram:
K() " @ ZIT3 (Bx B)]

|

K ()2 D Z[T5.4]

Here the right vertical arrow is given by [ 15 (# x %) ]— [T % 1.
Set c¢(w)=ho Ch~*([T; %7). The following is obvious.

Lemma 2. If Ch(R)="Yn, [T %] for We.4, then h(@)=Y n,, c(w).

Remark. By the index theorem of holonomic systems (see Kashiwara [12],
[13]) we have: o
C(W)Z Z (_I)I(W)-Fl(}’) CyB('@w)y>

yEW

where ¢,5(4,) is the local characteristic of ,, at yB defined in [12]. We do
not use this fact in the following.

3.2. For a finitely generated U(g)-module M we can define the characteristic
variety Ch(M) (=g*) of M just like the characteristic variety of a coherent %-
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Module. We identify g* with g by the Killing form. Let A" be the subvariety of
g consisting of the nilpotent elements. Let 1 be the nilpotent radical of b, that
is, n=[b,b]= ) g, The cotangent bundle T*# can be identified with

acdt

{(gB,x)eB x N |g~'xen} by the Killing form. Then the natural
map T* % -5 A" gives a resolution of the singularity of ./, which is called the
resolution of Grothendieck-Springer.

The following proposition is due to Brylinski. We include here its proof,
which is also due to him, because of the absence of this result in the literature.

Proposition 2 (Brylinski). Ch(I'(%, M))=y(Ch(IN)) for a coherent P, -Module
.

Proof. For a good filtration {IM,},., we set M=I(%, M) and M, =T(%,M,). It
is sufficient to show that {M,},., is a good filtration of M, that is, gr M
=@ (M,/M,_,) is finitely generated over gr U(g)=S(g)=C[g].
keZ
Since
00— _ > My - M/, -0
is exact,
0-M,_ > M, —>I(% D/M,_,)

is also exact. Hence we have

or M= @M,/Mk 1c@F(%’ WM, _ ) =1I(2B, gr IN).
Since gr 9N is a coherent gr 2,-Module, M= Orea®p-1(grag P~ HerM) is a
coherent (. ,-Module, where T* %% 4 is the natural projection. Thus y *(i)?)
is a coherent @-Module because y is proper. Hence I' (B, gr M)=T(T* B, M)
=TI(g, y* () and its submodule gr M are finitely generated C[g]-modules
and we are done.

4. Representations of the Weyl group

4.1. In this section we review Kazhdan-Lusztig’s approach [17] to the Springer
representations [21] of the Weyl group and a result of Hotta [7] concermng
these representations.

Set Z={(gB,g'B,x)eBx Bx N |g ' x,g ' xen} and

Z,={(gB,gwB,x)eZ|geG} for weW.

Then dimZ,=2d and Z= () Z,, gives the irreducible decomposition of Z. Z

weW -
can be identified with a subspace of T*(#x %) so that Z =T, (% x%).
Kazhdan-Lusztig [17] defined an action of W x W on the Borel-Moore ho-
mology group H,,(Z)=H,,(Z,C)= @ C[Z,] and showed that there exists an

weW

isomorphism ¥: H,,(Z)—>C[W] as W x W-modules so that ¥Y([Z,])=e. Set
bw)=%([Z,]).
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Proposition 3 (Kazhdan-Lusztig [17]). Let s be a simple reflection of W.

(i) b(w)s= —b(w) if ws<w.

(ii) bw)s=bw)+ Y 5,(y, w)b(y) if ws>w, where 5y, w) is a certain

PS<YyEws

non-negative integer and 6,(ws, w)=1.

We give a geometric description of é,(y, w) due to Hotta in the following.
Let P be the parabolic subgroup corresponding to s, that is, P=BsBUB. Set &
=G/P and #,=BwP/P. Then #,=2, and #?= []| 2, gives the decom-

position of 2 into B-orbits. Let Bx ,T*P 5 T*% and B x , T*P %> T*Pp
be the natural maps.
Theorem 5 (Hotta [7; Theorem 2], [26]). For weW and a simple reflection s
with ws>w, we have

o, (*([(T5,2)= ). 0,0, wIT} 2],

yS<ysws

as an algebraic cycle (see Lemma 3 below).

Hotta’s result in [7] is not exactly of this form. But the proof is the same.

4.2. We denote the nilpotent orbit containing xe. /" by O,. Set
B*={gBeB|g 'xen} and A(X)=Z (x)/Zs;(x)° for xe.V.

It is known that #* has pure dimension d,=d—(dim 0,)/2 (see Steinberg [237).
We have an action of W on H,, (#*) commuting with the natural action of

A(x) which is called the Springer representation. Let A/(;c) and W be the set of
the irreducible representations of A(x) and that of W, respectively. Then as a W
x A(x)-module we have H,, (#9)= @ (V,_ .®¢), where V, . is 0 or an

EXS
Ee A(x)
irreducible W-module. Moreover the mapping from the set

N\
{0,,910,e4/G, CeA(x), Vy . +0}
to W given by (0,, &)—V,_ , is bijective.
For weW we define a nilpotent orbit St(w) by St(w)=Gmnw(n)). Any
nilpotent orbit coincides with some St(w).

Proposition 4 (Kazhdan-Lusztig [17]). For a nilpotent orbit O, © Ch(w) is
W x W-invariant and isomorphic to Stw)=0

O@O(H 20 (B @ H oy ().

5. Main theorem

5.1. Our main theorem is the following.

Theorem 6. b(w)=c(w) for any we W.
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This means that the diagram

K(tt)—"— Z[W]

|,

H,,(Z,C)— s C[W]
commutes.

5.2. In order to prove Theorem 6 we need some general facts concerning the
behaviour of the characteristic cycles of holonomic systems under pull-back or
integration along fibers.

Theorem 7. Let X and Y be projective non-singular algebraic varieties over C
and [+ X —Y be a smooth map. We denote by p;: X xyT*Y—->T*X and w;: X
Xy T*Y— T*Y the natural maps.

(i) Let M be a holonomic [resp. regular holonomic] Zy-Module. Then the
pull-back f*(N) of N is a holonomic [resp. regular holonomic] Zx-Module, and
its characteristic cycle is given by

Ch(f*()=p,, (@} (Ch(9)).

(i) Let M be a holonomic [resp. regular holonomic] & y-Module with Ch(IR)
=Z n,[A], where A runs through the irreducible components of Ch(IN).

(a) The integration | I of M along f is a bounded complex of Py-Modules
so that the i-th cohomology sheaf |’ M is holonomic [resp. regular holonomic].

(b) For an irreducible component A of Ch(MM) we denote the set of the
irreducible components of w(p;'(A)) by 1,. For A'el, there exists an integer
m(A’, A) which depends only on A and A’ (and not on M), so that the following
holds :

Ch(f, W) (=T (1) ChJM)=T ny( T m(4' ) LAY,
A'el 4

(c) If f is non-characteristic for A, that is, dim pfl(/l) dim Y (and hence

p; (M) —w (p5'(A) is finite at the generic points of p;*(A)), then

Y. m(A, WA =w,, (pF(LAD)

Ael 4

(1) is contained in Kashiwara [13]. (ii) follows from Sabbah [20].

5.3. We go back to our situation. We fix a simple reflection s. Set P=BuUBsB
and #=G/P. Let n: # -2 be the natural map. We can check the following
easily. So we omit the proof.

Lemma 3. () w(p™ (T, B))<= | T2 for any weW, and if w<ws, then m is
ys<y
non-characteristic for Tz % and w(p ‘1(T ‘- B)= Tg’l‘ 2.
ys<ysws o

(i) p,ow*([Tx PN=[T; A1 if ws<w (in this case B,=n""(P,)).
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We define an additive map K (.#7)— K (.#) by
(M=M= (=1 [ A (n* [, M)] for Med.

3

Proposition 5. For Me.// we have h([IM]*)=h([IM])(s—e), or equivalently [IN]*
=[M]o[L,]. Here we endow the ring structure via the isomorphism
K (M) - K ().

Proof. By an exact sequence 0— 9, » M — L -0, we have [L]=[IMM]—[M,].
Since hA([M,,])=w, the first assertion is derived from the second (see 2.4). Set E
=B x,B and L,=#7""(# x B). Since E=%_, [2] corresponds to [£,] by the
isomorphism K (.#)— K (). Consider the following diagram:

E = B

N4

ri %’X.@ T

y

K

B
For Me./# and We.# with W | {eB} x B=N we have:

2.

L
(] o [(R] =3 (— 1 [# ([, PY M B, 5, N1

Hence [M]o[L,]= Z (=D [ ()] with

L
9'i=jp2p’fgﬁ@)@@x@ﬂ;:jmjj(ILj*p’fim)=jr2 rf M=n* jnim>
and we are done.

Proof of Theorem 6. We prove this by induction on I(w). If [(w)=0, then w=e
and b(e)=c(e)=e. If I(w)>0, then there exists a simple reflection s so that
ws<w. By Proposition 3 we have

b(w)=b(ws)s—b(ws)— > .y, ws)b(y).

ys<y<w

Thus we have only to prove the following:

cw)s—e(w)= Y d(,we) if ws>w.

yS<ysws

We take Me.# and set Ch(M)= % n,[T; #]. Then by Theorems 5, Theo-
weW
rem 7 and Lemma 3 we have:

Ch([MT)= 3 n,( Y 6,0 wITZ 2]

w<ws ys<ysws

+ 2 n, (Y v wITE 2)),

w>ws ys<y
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where J (y, w) is the integer given in 4.1 and y,(y, w) is a certain integer. Thus
by Lemma 2 and Proposition 5, we have:

h(@)=3 n,,c(w),

h@)s—e)= Y n,( Y omwed+ ¥ nu( X v wel).

w<ws YS<YEWS w>ws ys<y

Since the above formula holds for any .# €./, we have:

cw)s—e)= Y Smwe if w<ws.

ys<ysws

This completes the proof.

5.4. Theorem 6 gives an interpretation of a conjecture of Kazhdan-Lusztig
[17] concerning the Springer representations in terms of holonomic systems.
That is, the following two conjectures are equivalent.

Conjecture. (Kashdan-Lusztig [17]). If G=SL,(C), then

b(w)= ) (=1)/OB (1),

yEw

that is, a(w)=b{w) for any we W.

Conjecture. If G=SL,(C), then Ch(L,)= T (%) for any weW.
In general Ch(2,) is not irreducible.

Example. We consider the case when G is of type B,. Let s [resp. ] be the
simple reflection of W corresponding to a short [resp. long] root. Then Ch(£,)
is given as follows.

Ch(2,)=[T; %] if wist,

Ch(8,,)=[T; #1+[T; %]

5.5. By Theorem 6 we can describe the ring structure of P Z[Z,] derived

weW

from that of Z[W] by ¥. Let % be the abelian category of coherent O,-
Modules and %’ the full subcategory of € consisting of coherent sheaves whose
supports are nowhere dense in Z. Then the Grothendieck group K(%/%’) is
canonically isomorphic to @ Z[Z,] by [Z,]<[0, ] Let us consider the
diagram wel

Z P ZXpgZ "2

|k

T* Be———Z2,

where ZXT&Z={(ng,g2B,g3B,x)e(%"x%’x@x%lxeglnmgznmg3n} and

Pi» D2, p are given by (g, B, g, B, g3B,x)— (g, B, g,B,x), (g,B, g3B,x) and
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(g, B, g4 B, x), respectively. Then the multiplication is given by

. . L
[Fle[F]=Y (1) [R'p,(Lp} F, ®7 s g5, 2 1L P3 F)]

for F,, F,e%.

6. Review on the results of Joseph [10] and Hotta [7]

6.1. We say that a subspace V of C[W] is a-basal if it is spanned by the a(w)’s
contained in it. For we W let VX, VRand VR be the smallest a-basal subspaces
of C[ W] which contain a(w) and are invariant under the left action of W, the
right action of W and both actions of W, respectively. We define a preorder <

and an equivalence relation ~ on W by L
L

w,Sw, iff VEoVE
L

wi wp?
i 7L _ L
Wi~ W) if Vo=V,

We call the equivalence class €% ={weW|w’ ~w} the left cell containing w.

Let K% be the sum of the subspaces VL which are properly contained in VE.
Then the W-module VE:.=VL/KE has a "natural basis corresponding to the left
cell =. We call the representation of W on ¥V the left cell representation. We
can define £, £, ..., etc. similarly.

R LR
Proposition 6 (Joseph [8], Vogan [25]). The following conditions are equivalent.

(i) w,<w,.
L

(i) Annyg, L, =Anngg, L,
(iii) There exists a finite dimensional U(g)-module F so that L., is a
subquotient of L, ®F.

Since representations of W are self-dual, the group ring C[W] is isomor-

phic to the direct sum & (¢®o). We define a preorder < and an equivalence
oeW LR

relation ~ on W as follows. For ¢, and ¢, of W, 01S02 if ¢, is contained in
LR

VIR and ¢, is contained in VER for some weW, and 0103 if they are
contained in the same VXR.

6.2. For weW we define a homogeneous polynomial p,, on §) by

py= 3, (=1 P (D)~ oy,

yEw

where m,, is the least non-negative integer so that the right hand side is non-
zero. This is Joseph’s Goldie rank polynomial up to some non-zero constant
multiple (see Joseph [9]). Let a(w) be the representation of W generated by p,,



196 M. Kashiwara and T. Tanisaki

in $™(H*). Then o(w) is an irreducible representation of W, which is called
Goldie rank representation. Furthermore o(w) appears in S™w(h*) with multi-
plicity one and does not appear in S"(h*) for n<m,. It is known that the
Goldie rank representations are the special representations in the sense of
Lusztig [18] and any special representations occur as Goldie rank repre-
sentations (see Barbasch-Vogan [1], [2]).

Proposition 7 (Joseph [9]). (i) w, ~W, if and only if Cp,, =Cp,,.
(i) cw= @ Cp,,.

LR/~
wie¥L: /L

6.3. For a nilpotent orbit 0, O~n has pure-dimension (dim 0)/2. We say that a

closed subvariety V of n is orbital if it is an irreducible component of Onn for
some nilpotent orbit O. For an orbital variety ¥V Joseph [10] defined a poly-
nomial p, on h* as follows. Set n™ = @ g_,. We identify the coordinate ring

acd™
C[n] of n with the symmetric algebra S(n~) by the Killing form. Let I(V) be
the defining ideal of V. Since V is ad (b)-invariant, we have a natural action of f
on M=S(n")/I(V). For heb* so that a(h) is a negative integer for each axe4™,
set M"={meM|h-m=im} for a non-negative integer i. Then there exists a
unique homogeneous polynomial p, of degree d—dim ¥ so that the following
holds.

M=

dim M!'=(p, (h)/[ T a(h) K™ + O (K™= 1).
acd™t

i=0

Proposition 8 (Gabber, Joseph, see [10]). (i) Ch(L,,) is pure-dimensional and its
irreducible components are orbital.
(i) p,-1=Y,lypy, where V runs through the irreducible components of
14

Ch(L,) and l,, are certain positive integers.

For a nilpotent orbit O with O=0, let V, , be the irreducible repre-
sentation of W corresponding to the trivial character of A(x) (see Sect. 4).
The following is a corollary of a theorem of Borho-MacPherson [5].

Proposition 9 (Borho-MacPherson [5]). ¥, ; appears in S%(h*) with multiplicity
one and does not appear in S"(h*) for n<d,.

Let Sp(0) be the W-submodule of S*(§*) which is isomorphic to V, ;.

Proposition 10 (Hotta [7]). Sp(0)=@ Cpy,, with V runs through the irreducible
components of ONmn. 4
Proposition 11. For each weW there exists a unique nilpotent orbit O,, so that

a(w)=Sp(0,,). Any irreducible component of CIL(EW) is an irreducible component
of 0,,An. Especially, G- Ch(L,,) coincides with O,,,.

Proof. From the definition of the Kazhdan-Lusztig polynomial wL~Rw‘1 for any

weW, hence o(w)=g(w~') by Proposition 7. Thus our claim follows from
Propositions 8, 9 and 10.

Remark. By an unpublished result of Borho-Brylinski, the associated variety of
the primitive ideal Anny, L, coincides with G- Ch(L,,). This together with the
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above Proposition gives a unified proof of the irreducibility of the associated
varieties in the integral case, which was proved by Borho-Brylinski [4] using
case-by-case computations. We learned that Joseph also gave the similar proof
as indicated above.

7. Left cell representations and Springer representations

7.1. The group ring C[W] has two bases {a(w)},,.» and {(b(W)}, .. (W)} .o
is related to the left cell representations and {b(w)},., is related to the
Springer representations of W. Since a(w)= z m,(£,)b(y), relations of the left

=w

- cell representations and the Springer repres;ﬁtations will be deduced from the
knowledge of the multiplicities m (2,). For example if the conjecture in 5.4 is
true, or at least if Ch(L,)=y(13 %) (=Bmnw(n))) for G=SL,(C), the left cell
representations and the Springer representations of a symmetric group coincide
with their natural bases.

7.2. We give below some relations which are deduced from our main theorem
and the results of Joseph and Hotta.

Proposition 12. For each we W VR is contained in @& _Ch(y).

St(y) = 0w

Proof. For zeW set a(z)= ), e, b(y). Then we have Ch(2,)= ) e, . [T5 %]

y=z Y=z

Thus Ch(L,)= U 7(Tz, %) by Proposition 2. Since y(Tz #)=Bnnym), it
ey,z*+0 _
follows from Proposition 11 that O,= | St(y). So it is sufficient to show
ey, zF0
that 0, =0, if z=w. Moreover we have only to consider the cases z=w and
LR R

zzw. If zZw, then z='=w~! by the properties of the Kazhdan-Lusztig poly-
L

R L
nomials. Since there exists a finite dimensional U(g)-module F so that L_ is a
subquotient of L,®F by Proposition 7, we have Ch(L,)cCh(L,) and hence

0,<0,, by Proposition 11. If z=w, then z='=w~"! and hence 0,=0,.,<0,,_,
L R

=O_W. This proves our assertion.
From Propositions 4 and 12, we have the following.

Corollary. Let ¢ and ¢’ be the irreducible representations of W with ¢ special

and o =¢'. Then for nilpotent orbits O and O" with c=V, | and ¢'=V, , for
LR

some &, we have 0" <= 0.
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