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0. INTRODUCTION

0.1. In [K1], the notion of a crystal base is introduced and its existence
and uniqueness are proved in the case of 4,, B,, C, and D,. This result
is generalized to any integrable representation with highest weight of the ¢-
analogue of arbitrary symmetrizable Kac-Moody Lie algebra [K2]. This
is also studied by G. Lusztig [L1, L27] in a different point of view.

295

0021-8693/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.




296 KASHIWARA AND NAKASHIMA

In this paper, we give their explicit description for 4,, B,, C, and D,.
In particular, in the A,-case, the crystal bases are labelled by the semi-
standard tableaux.

0.2. We explain here the labelling of crystal bases used in our article.
Since the other cases are similar, we explain this by taking A4, as an
example. Let o, ---, o, be the simple roots of 4, such that («;, «;) =1 and
(a;, ;)= —1/2 for |i—jl =1 and let A4, be the fundamental weights.

(1) The crystal graph B(A,) of the vector representation V(A4,) is
easily obtained by the explicit construction of V(,). They are labelled by
e {l I1<ig<n+1 } and the crystal graph is

(2) Let V(Ay) be the irreducible representation with the fundamental
weight A, (1 <N<n) as highest weight. We embed V(4 ,) into V(4,)®",
Accordingly, B(A,) is embedded into B(4,)®". Then we see that B(A4y)
consists of ® - ® with 1 <i; < - <iy<n+ 1. We write

for [i]® - ®[i].

(3) In general, for A=37_, 4, , with I<m,; < --- <m,<n, let Y(4)
be the corresponding Young diagram, namely the Young diagram with p
columns with m,, .., m, as their lengths. By the embedding of V(4) into
V(A4,)® --- ®V(4,,), B(1) is also embedded into B(4,,)® --- ® B(4,,,).
We write for an element #; ® --- ®u, in B(4,,)® --- ® B(4,,) the Young
tableaux

THEOREM. B(1) coincides with the set of semi-standard tableaux with
shape Y(A).
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This statement is proved by using the relation,

p—1

B()»); m B(Aml)® ®B(Am,n;)

i=1
®B(Am,+ Arn,.H)®B(Am,~+g)® o ®B(Am,,)’

which permits the reduction to the case A= A4,+ 1,.

0.3. The labelling of crystal bases in the C,-case is similar to the A4,-
case. Let (e, .., £,) be the orthonormal base of the dual of the Cartan
subalgebra of C, such that a;,=¢;,—¢,,, (1 <i<n) and a,=2¢, are simple
roots. Hence, «, is the long root and «,, .. a,_; are short roots. Let
{A:}1<i<n be the dual base of {h},<,<,. Hence A,=¢g + -- +¢
(1<i<n).

Then the crystal graph of V(4,) is given by

Here, |/ | has weight ¢; and | j | has weight —e;.

The representation V(A4 ,) with highest weight 4, (1 <N <#) is embed-
ded into V(A4,)®". We give the linear order < on {i,7;1<i<n} by
1<2< ---n<iA< --- <2<T1. Similarly to the 4,-case, the crystal base of
B(Ay) is given as :

GB(/I )®N. (]) 1<i1‘< "'<iN<17
Yo ) ifiy=pand i, =p, thenk+ (N—1+1)<p

By embedding V(A +Ay) into V(A,)®@V(Ay), B(A,+A4y) is the
connected component of B(A,,)® B(A ) containing u,, ®u,,.
For

: i |y

:
u= € B(A,,) and v= € B(A ), u®v will be denoted by | : E )

T

DEerFINITION. For 1<a<b<n and u, v as above, we say that
u®veB(A,)® B(Ay) is in the (a, b)-configuration if u® v satisfies the
following: There exist 1 <p<qg<r<s<M such that i,=aqa, j,=0b, j.= b,
Jjs=aori,=a, i,=b, i,=b, j =a
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This definition includes the case a=b, p=g¢q, and r=s. Now, we define
pla, b; u®uv)=(q—p)+ (s—r). Then we have

Ly

B(Ay+Ay)=qw= € B(4,,)® B(4y);

M|

w satisfies the conditions (M.N.1) and (M.N.2)

(M.N.1) S Jjpfor 1<k M.
(M.N.2) if w is in the (a, b)-configuration, then p(a, b; w)<b—a.

In general, for a dominant integral weight A=37_, 4,

(1<l << --- <I,<n), an element

4
0W® - Qu,= |1 I €B(4,)® --- ®B(4,)

is called a semi-standard C-tableau of shape A if u, ®u, ., € B(A, + 4, )
for any k.

THEOREM. The crystal graph B(2) of the irreducible U ,(C,)-module V(1)
with highest weight A coincides with the set of semi-standard C-tableaux of
shape 2.

For the cases B, and D,, see Theorem 5.7.1 and Theorem 6.7.1. Note
that analogues of semi-standard tableaux are already known (e.g., cf. [K-E,
S1). But ours are different from theirs.

We thank M. Jimbo, T. Miwa and M. Okado for helpful conversations.
Special thanks are due to D.S. McAnally for pointing out mistakes in the
first version.

1. CRYSTAL BASE

1.1. Definitions

Let g be a finite-dimensional simple Lie algebra with a Cartan sub-
algebra t, the set of simple roots {«;et*},.,, and the set of simple coroots
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{h;et};c,, where [ is a finite index set. We take an inner product ( , )
on t* such that (a;, a;,)eZ.o and {h;, 1> =2(a;, A)/(a;, o;) for Aet*. Let
{A;};c, be the dual base of {h;} and set P=3 Z A, and P*=3 Zh, Then
the g-analogue U,(g) is the algebra over Q(q) generated by e;, f;, and q"
(h e P*) satisfying the relations

g"=1 if h=0 and g¢"¢" =¢"*", (1.1.1)
h —h __ ol hooy
qgeq "=q 7%,
, ! o ; (1.1.2)
q'f;9 "=q ",
t—t7!
Le,, f;i1=10,, ql,_ ',~1> where ¢;=¢""* and t,=¢"*"  (1.1.3)

For i#j, we have, setting b=1— {h;, @;),
b b
Z ef.“’e_,.ef.b‘”’z Z fﬁ"’fj fe=m =0, (1.1.4)
n=0 u=0 .

Here e =ef/[k],!, [ =f1/[k]! [n]i=(q7—q;")/(¢;i—q;"') and
[k]!= §=1 [n].

For a finite-dimensional U,(g)-module M and AeP, we set M, =
{ue M; q"u=q"* u}. We call M integrable if M = @ M. Then we have

M= @® fOM,,.nKere,). (1.L.5)

kZ0, —<hi 25

We define the operators &,, f; acting on M by

ef P u=f*"1y and  FifFu=fEry, (1.1.6)
for ue M, nKere; and (4, k) as above.

DermutioN 1.1.1. Let A be the ring of rational functions regular at
g=0. A pair (L, B) is called a crystal base of a finite-dimensional integrable
representation M if the following conditions are satisfied:

(1) L is a free sub-4-module of M such that Q(g) & L= M,

(2) B s a base of the Q-vector space L/gL,

(3) L=® L,,B=]1B,,where L,=LnM,and B,=Bn(L,/qL,),
(4) fiLcL,and &L L,

(5) fiB<BuU{0}and é&B=BuU {0},

(6) Foru,veBand iel, u=2¢u if and only if v = f,u.
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Then the following results are proved in [K1] for g=4,, B,, C, and
D, and in [K2] in the general case. Let Ae P, = {Aer* (h,A)eZ ,}
and V(1) be the irreducible integrable U, (g )module generated by the
highest weight vector u; of weight A Let L(2) be the sub-A-module
generated by the vectors in the form f;, --- J; u, and let B(4) be the subset
of L(4)/qL(4) consisting of the non-zero vectors in the form 7, < faus
mod gL(1).

THEOREM 1.1.2. (L(A), B(L)) is a crystal base of V(A).

TueoreM 1.1.3. If (L, B) is a crystal base of an integrable U, (g)-module
M, then there is an isomorphism

M=® V() by which (L, B)= @ (L(4;), B(4))).
i

THeOREM 1.1.4. Let (L, Bj) be a crystal base of an integrable U, (g)-
module M; (j=1,2). Set L=L,®,L,cM,®M, and B={b,®b,;b;€ B,
(j=12) }cL/qL Then we have

(1) (L, B) is a crystal base of M, ® M,.

]b ®b, 7B b 1)>¢:(by),
@ Ji(br®b)= {b ®Tb, i b)) <e(b)
b ®éb, i @i(by)<ei(by),
é:b,®b, if @,(by)=ei(by).

Here, ¢,(b) =max{k >0;8b#0} and ¢,(b) =max{k=0; f*b#0}.

5,-(b1®bz)={

CoroLLARY 1.1.5. For b;e B, (j=1,2),

(b, ®by)=max(e,(b,), e:(by) +¢;(b) — (b)),
@b, ®by)=max(g,(h,), 0,(b))+ @:(by) —¢;(b3))

DeriniTION 1.1.6. The crystal graph of a crystal base (L, B) is the
colored and oriented graph B, with the arrows

i

u—— v ifand only if v=fu

ExampLE 1.1.7. Let g=gsl, and let V, be the (/+ 1)-dimensional
irreducible integrable U, (sl,)-module.

(i) The crystal graph of V, is given as

L I I ]
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(ii) The crystal graph of V is given as
e ——> 0 —) O P O

(iii) By Theorem 1.1.4, the crystal graph of V;® V, is visualized as

Vi o— 0 — o — e

Vs
! l
! { |

2. REMARKS ON CRYSTAL GRAPHS

2.1. The Actions of &, and J, on Tensor Products

Let us investigate the actions of &, and f; on the tensor product of several
crystal bases.

Let (L, B;) be a crystal base of an integrable U,(g)-module M;
(j=1, .., N).

PropoSITION 2.1.1.  For iel and b;e B; (j=1, .., N), we set

a= Y (@b)—¢ei(b;y\)  for 1<k<N. (2.1.1)

Isj<k
Remark that a, =0.

(0) We have

e(b,® - @by)=¢,;(b;)—min{a,; | <k <N}

I

max{ oedb)— X <Pf(b,-);1<k<N},

1<j<k 1<j<k

01(by® - ®by) = max {m,-<bN>+ S (gulb) e, 1)): <k<N}.

k<j< N

(1) If a,za, for 1<v<k and a,>a, for k<v<N (ie., k is the
largest element such that a, =min{a;; 1 <j<N}) then we have

Fib,® - ®@by)=b,® - Qb @b @by 1 ® -+ Rby.
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(1) If a,>a, for 1<v<k and a,za, for k<v<N (ie, k is the
smallest element such that a, =min{a;; 1 <j< N}) then we have

eh® - ®by)=bH,® - @by . 1 Qb @b ® - Qby.

Proof. The proof being similar, we only give the proof of (0) and (i).

Let us prove {i) by the induction on N. Let us take &, such that a, > a,
for 2<v<k, and a,>a, for k, <v<N. Then, by the hypothesis of the
induction we obtain

Jib:® - ®@by)=h® - @b, ® - ®by,
£(h,® --- @by)=2¢;(by)— Z ((Pi(b,')—gi(bml)):(Pi(bx)_ak,-

2 )<k

Hence

Jb®@b,® - ®by il a,>0,
b@F(b,® - ®by) if a,<O.

Since k=1 or k, according to a,, >0 or g, <0, we obtain (i) and a, =
min(0, a,,). Then we have

.7,-(b1®~--®bN)={

e (b, ® - @by)=max(e, (b)), &,(b,® - ®by)+ei(b))— (b))
' =¢,(h,) +max(0, —ay,)
=¢;(b))—ay.

Finally we have

0;(b;® - ®by)
=max(@;(by), ,;(b,® - @by_ 1)+ @i (by)—e:(by))

=maXx (‘Pi(bN)’ max {(pi(bN« D+ @i (by)—ei(by)

+ Y (eib)—eib ) 1<kSN— 1})

k<j<N—1
—max{p(b)+ T (ob)=n(h, )k 1<k<N[.  QED,
k<j<N

Remark 2.1.2. We can restate the preceding proposition when b, is
either u,, u_, uy,, where u, > u_, &u, =fu =8&uy=fu,=0.
(0) We neglect u,.

(1) Ifthereisu, Qu_ inu=5b,® --- ®by, then we neglect such a
pair. We continue this procedure as far as we can.



CRYSTAL GRAPHS 303

(2) Then &, changes u_ in the rightmost to u, and f; changes u, in
the leftmost to »_. If there is no such u_ (resp. u. ), then &u=0 (resp.

Tu=0)

ExampLE. For

Uu=u_Quo@u, Qu, Qu_Qu_Qu,,

bu=u, Quo®@u, Qu, Qu_Qu_Qu,,
Ju=u_Qu,®@u, Qu,Qu_®u_Qu_,
SEu=1u=0.

Remark 2.13. In the case when b; is either wuy, u;, u,, u; where
Uy = Uy > Uy, 81y =Fiuy = &1 —]uO—O we can describe the actions of &,
and f; on their tensor products by the identifications

U, - u, Qu,, Uy > U_QuU,, Uy o u_Qu_, (2.1.2)

since we have the crystal graph
u+®u+—i-—>u_®u+—i—>u,®uA. (2.1.3)

EXAMPLE. Foru=u,Qu @u:;Quo®@u;®u,@u, , by (2.1.2), u can be
identified with

(U Qu, )@, Qu, ) _Qu )Quy®(u_Qu _ )Quo@u,.
By Remark 2.1.2, we obtain
E((u_Qu )R, ®u )R uU_Qu_)Quo®@u_Qu_)Que@u.,)
=(u_Qu, )@, Pu )QU_Qu_)Q®u;®(u_Qu,)Qu,@u,,
Filw - ®u)® W, ®u )®u_Qu )Quy® u_®u_ )®u®u,)
=u_Qu )®@u, Qu, )®U_Qu_)Quy® (u_Qu_)Qu@u_.
Hence
e, ®u @us Quo@us Quo@u, ) =u, @u;, Qus Quo@u, Quo@u .,
T, ®u; ®@u; ®uo®@u; Quo@u, ) =1, Qu, Q@ us Qg @ us @ o @ .

Furthermore,

Fu_Qu, )@, ®u ) U_Qu_ )Quo® (u_Qu_)Quo®u,)
=(Ll+ ®u+)®(u+ ®u+)®(u—®u-)®uo®(u~ ®u+)®u0®u+7
FH - ®@u,)®u, ®u, )®W_®u_ )®u,®u_Qu_ )Que®u,)=0




304 KASHIWARA AND NAKASHIMA

Hence,

E (U, QU QU; @U@ U Qug R U ) =u; QUi QusRuoR@ Uy, Rue@u .,
_7f(u2®u1®u3®u0®u3®u0®u+)=0,

22. Now let U,(g) be the g-analogue as in Section! and let
AlyoniyeP, and A=3,;4,. Then there is a unique embedding

ViM)s V(AL )® - ® V()N) sending u; to u; ® --- ®u;,. Hence B(4) is
embedded into ®j,l (4;).

PROPOSITION 2.2.1.  Assume the following condition for any k (1 <k <N).
If ue B(J,, ) satisfies
(i) u,@ueB(i+ Jpo 1) and
(ii) &,u=0 for any i such that {h;, .> =0 for v<k, (2.2.1)

thenu=u, .

Then we have

N—1

V)= () V(A)® - @ V(A )@ V(A + ki)

k=1

® V(A 12)® - @V (Ay), (2.2.2)
N-1
B(i) = ﬂ B(A)® - @ B(Ay )@ B(Ay+ Axi 1)

k=1

® B(As42)® -+ ® B(Ay). (223)

Proof. Let W be the right hand side of (2.2.2), and H= {ue W;e,u=0
for any i}. In order to prove (2.2.2) it is enough to show

(HAL)/[q(HNL)=Q(u;,® - @uj,). (2.2.4)

In fact, (2.2.4) implies H V(4); and hence W=V(L). Let ve(Hn L)/
g(Hn L)c L/qL = ®;(L(4;)/qL(4;)). Then, é;v=0 for any i. On the other
hand for any k,

Ve (L(A)/gL(A1))® -+ @ (L(Ax+ Ak 4 1)/ qL(Ax + Ai s 1))
® - ® (L(Ay)/qL(A
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Hence when we write v as a linear combination of vectors in B(4,)®
-+~ ® B(Ay), any component belongs to B(4,)® -+ @ B(Ae+ A ) ® ---
® B(4y) for any k, and it is annihilated by all &;. Hence in order to prove
(2.2.4) it is enough to show

If ue VY2 BA)® - @BA+ Ay 1)® - @B(Ly) is
annihilated by all &, then u=u; ® --- Qu;,. (2.2.5)

We prove this by induction on N. Writing u=0v®w with ve B(4,)® ---
® B(4y_,) and we B(dy), we have &,v=0. Hence, v=u; ® --- ®u;, , by
the hypothesis of the induction. If i satisfies <h;, 4,> =0 for v< N—1, then
év=fv=0 and hence &w=0. Since u;, , ®w belongs to B(Ay_,+in),

(2.2.1) implies w=u;,. The property (2.2.3) follows immediately from
(2.2.5). Q.ED.

3. CrystaL GRrRAPHS FOR U, (A4,)-MODULES
3.1. Notations

We define U,(4,). Let t=@7_, Qh, and let {A,et*;i=1,..,n} be the
dual base. We set ¢;=A4,—A;,_ for 2<i<n and ¢, =4, and ¢,,,=

—(e,+ --- +¢,). Define a;,=¢;,—e¢;, . We give the inner product { , )of
t* by
L, i=],
(aia a/)z "1/2a |l“][:19 (311)
0, li—j]> L.

Then (3.1.1) is satisfied and we define U,(4,) as in Section 1 from these
data by (1.1.1)-(1.1.4).

3.2. The Crystal Graph of the Vector Representation

First let us construct the vector representation V(,. Let V., be the
(n + 1)-dimensional Q(g)-vector space with {; i=1,.,n+1 } as a basis.
We give the U, (4,)-module structure on V', as

q" =g ]
elil=0,,[J=1 (<ismi<j<n+1) (32.1)
fi=5i.j-




306 KASHIWARA AND NAKASHIMA

Here we understand [/]=0 unless 1 <j<n+1. Then [1]is the highest
weight vector of ¥ with highest weight A,. The crystal base (L(V),
B(V3)) of V. is given by

n+1

LV )=@® 4[i} BV )={{ilmod gL(V );1<i<n+1}.

i=1

Note that

elj]=0,,.J—1, and Jll=0,L+1. (322

Therefore the crystal graph B(V ) of V' is given by

-2 =5 h-he]. (3.2.3)

3.3. The Crystal Graph of the Fundamental Representations

For 1<N<n, the representation V(A,) appears once in VE".
Hence, B(A,) is contained in B(¥_)®" in a unique way. The base
u,,N=®® -~~® is annihilated by all &, and it has weight

Ay=¢,+ --- +&y, the crystal graph B(A4 ) is the connected component of
B(V:)®" containing [1]® --- ®[N] We write

PrROPOSITION 3.3.1. (i) By the identification above,

1< - <iysn+1). (3.3.1)

(ii) The action of & and f; on ue B(Ay) is given as follows.
(a) If i appears in u and i+ 1 does not, then J;u is the one obtained
by replacing i with i+ 1. Otherwise, fiu=0.
(b) If i+ 1 appears in u and i does not, then &u is the one obtained
by replacing i+ 1 with i. Otherwise, &u =0.

Proof. Let I be the right hand side of (3.3.1). Then, for ue I, the rules
in (i) follow from Remark 2.1.2. Then, one can check easily that JU {0} is
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stable by &, and J,. Hence it remains to prove that if u=[i,] ® --- Qlix] eI

satisfies &,u =0 for any i, then u=® ®. If there is £ (1 <k <N)

such that i,=v <k and i, >k, then &,  u#0, which is a contradiction.
Q.ED.

Remark 3.3.2. We have é2u=f?u=0 on B(4y).

3.4. The Crystal Graph of the Irreducible Representation V

Let Y be a Young diagram with size (/,, ..., /), i.e,, [; is the length of the
jth row of Y. Let V, be the U,(A4,)-module with highest weight
i bg =20 (=1l ) A (L =0).

Before discussing the general case, we treat a Young diagram with two
columns, which means, with weight 4,,+ A, (1 < M < N <n). In this case,
V(Ay+ A4y) is contained in V(A4,,)® V(4y) and hence B(A,,+ A ) is the
connected component of B(A4,,)® B(4y) containing u,, ® u,,, where u
is the highest weight element of B(A,,). We write

Iy

ProposiTION 3.4.1. (1) Let

iy 1<y < -+ <iy<n+1,
B(Ay +Ay)= TJ 1<), < - <jy<n+l,
E_— W <Jje for 1<k<M

(2) If ueB(Ay) satisfies éu=0 for M<i<n, and if u,,
QueB(Ay+ Ay), then u=u,,.

Proof. Let J be the right hand side in (1). We show first that Ju {0}
is closed by &, and 7,. By Remark 3.3.2 and Theorem 1.1.4 we have, for any
ue B(A4,,) and ve B(A4,),

Tu®vu if fu#0 and &,u=0

Jiu®v)= {u@f,v otherwise, (34D
é,(u®v)={zf®eiv if e,-v?éO and fu=0 (342)
eu®u otherwise.

Now assume u®veJ and f,(u®@v)¢Ju {0} or &(u®v)¢Ju {0} Then
one of the following cases occurs.
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(I) There exists 1 <k < M such that i, =j, =i and i, =i is changed
to i+ 1 by the action of .

(IT) There exists 1 <k <M such that i, =j,=i+1 and j,=i+1is
changed to i by the action of é,.

Case (1). In this case, f,(u®v) =u®f;v. Since there is i in v, &v=0,
then we have 7,u=0 by (3.4.1). Then i+ 1 occupies the box under i in u.
Hence, by the definition of J, i+ 1 also occupies the box under i in v.
Hence f,v =0, which is a contradiction.

Case (I1). The proof is similar. We have é,(u®v)=éu®uv. Since
Ju=Ff26,u=0, we have &v=0. Hence, i appears above i+ 1 in v, and
hence i appears above i+ 1 in . This contradicts &,u 0.

Next, we show that

If u®veJ satisfies &,(u®uv)=0 for any i, then u=u,,, and v=1u,,.
(3.4.3)

Since &,(u® v) =0 implies &u =0, u must be u . Then fu=0 for i> M.
If &,v#0 for such i, we have &, (u®v)=u®é&v+#0 by (3.4.2), this con-
tradicts the assumption of (3.4.3). Therefore &,v=0 for i> M. Thus, we
reduce (3.4.3) to

If ve B(A ) satisfies é,v=0 for i> M and u,,®velJ, thenv=1u,,.
(3.4.4)

Let v= ® - ®, then u,,®@veJ implies i,=v for v< M. If k
(M <k < N) satisfies that i, =v for v<k and i, >k, then k> M. Therefore
iyzk>Mand &, ,v#0.

This is a contradiction and thus we obtain (3.4.4). This implies (1), ie.,
J coincides with the connected component of B(A,)® B(A4,) containing
uy, ®u,, and (3.4.4) shows (2). Q.E.D.

For a general Young diagram Y with p columns, let m; (1 <;j<p) be the
length of the jth column. Then the corresponding U,(A4,)-module V', has
a highest weight A=4,, + -+ +4,, (m < <m,) Then, we embed
Vy into V(4,,)® --- ®V(4,,). In this case by Proposition 2.2.1 and
Proposition 3.4.1 (2), we have

p—1
B(A)= () B(4,,)® - @ B(A,, ,)®B(A,,+ A,

k=1

®B(A,,,)® - ®(4,,). (3.4.5)
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For u;® --- ®u,, we write

Then by Proposition 3.4.1 and (3.4.5), we obtain the following.

THEOREM 3.4.2. (i) For any Young diagram Y, the crystal graph B(V )
of the corresponding U, (A, )-module V is the set of semi-standard tableaux
with shape Y,

I tye{1,2,..,n n+1} satisfies
y
B(Vy)=<u= | ! ; (where 1 <k <p, 1 <I<my)

< and 1 < tf

(ii) The actions of &, and f, are described by Remark 2.1.2. An element
u of B(Vy) can be expressed as in the form ® ®® ®

€ B(V5)®=") and apply Remark 2.1.2 by identifying [i] with u ,
with u_ and others with u,.

ExaMmpLE 34.3. For g=A4; and A=A+ 4,4+ A;, we consider the
actions of &, and f, on

313]

€B(A, + Ay + 45).

<
Il
[&[0o]—
~

By the construction of crystal graphs, it can be expressed

2,3

|
4 =E®® =Blel2]o4]e[l]e2]e[4].
4

BEE

(1) If we consider the actions of &, and f,, the vector v can be iden-
tified with u_ Q@u, @ uy®uy®u, ®u, and by Remark 2.1.2,

u_Qu, Quo®uo®u, Quo)=u, Qu, Quo@uo@u., @ u,
7(14,®u+®u0®u0®u+®u0‘)=u_®u_®u0®u0®u+®uo.
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Thus,

5 (Ble2le4e[le2lel4]) =2]le2]e4]le[l]e2][4],
7.GlekleMlelel]e4)=BleBlel4]e1o[2]e4].

Hence, we obtain

ro

3]
4 =214
4]

w

3]

N
had

[\

3]
—

IE

~
Il

[&]o]—
S

[&]0]=

[&]]—

(2) 1If we consider the actions of é; and 75, the vector v can be iden-
tified with 1, Quo®u_ ®u,®@u,®u _ and by Remark 2.1.2,

U, Quo®@u_ Quo@uo®@u_)=u, Quo®@u_Quo@uo®@u,,
](u+ Ruo®@u_ Rue@uo@u_)=0.
Thus,
5 Bleedee2]el) =Ble2lel4s(lle2]e(3],
7. Gle2leldete2]e4])=0.

Hence, we obtain

o
e
o

1]2]3]

4 =214l . T

3

[\

3]

IAN»—*
N
]
o

[&]]=

4. CrysTAL GRAPHS FOR U, (C,)-MODULES

4.1. Notation

We treat the C,-case in this section. Let (¢, ..., &,) be the orthonormal
base of the dual of the Cartan subalgebra of C, such that o;=¢,—¢;,,
(1<i<n) and a,=2¢, are simple roots. The Dynkin diagram is

o o B o S s S O B O I
1 2 3 n—2 n—1 n

Hence, a,, is the long root and «,, ..., &, _, are short roots. Let {A;}, < <,
be the dual base of {h;},<,<,. Hence A,=¢,+ --- +¢; (1<i<n)
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4.2. The Crystal Graph of the Vector Representation

First let us construct the vector representation V(5. Let V', be the 2x-

dimensional Q(q) vector space with {E] ; I1<ig n} as a basis. We give
V.. the U,(C,)-module structure as

q"= g , q": g ’
e il=6,..,0=1, e[f]=6.,UF1] (<i<n 1<j<n) (421)
VA VS | N A S Vs
and
enzo’ enzém,
nlil=e.lal,  fli=o0

Here, we understand =EZ]= 0 unless 1 <j<n
Then the crystal base (L(V ), B(V 1)) is given by

(1<j<n) (4.2.2)

LV,)= (4[il@Ali
Vo) ,-C_J_Bl( [eali) (4.2.3)

BVy)={lil[i];1<i<n}

and the crystal graph B(V ;) of ¥, is given by

[ P I oy BN B NI s BN 3 |

(4.2.4)
Remark 4.2.1.
Z=f2=0 on B(V). (4.2.5)

Hence, the actions of &, and f;, on B(V5)®” are given by identifying

and [i+1] with u,, and [/] with u_, and others with u, in

Remark 2.1.2.

4.3. The Crystal Graph of the Fundamental Representation

The representation V(A ,) with highest weight 4, (1 <N <n) is embed-
ded into V&M, Similarly to the A,-case, the connected component of the
crystal graph B(V)®" containing ®® ® is isomorphic to
B(Ay).
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We write

M
I for ®~-®‘

We denote by u,, the highest weight vector ® ®. We give the
linear order < on {i, i; 1 <i<n} by

1<2< - <n<i< - <2<1. (43.1)

This ordering is derived from the crystal graph (4.2.4). We set

(1) 1<, < - <iy<T,

432
(2) ifi,=pand i,=p, thenk + (N— [+ 1)<p (43:2)

Lemma 4.3.1. Assume [ ® - ®[in] IO, If iy=a and i=b
(1<k<I<Nand a,be{l,..,n}), then k+(N—1+1)<max(a,b).

Proof. 1f there is pe{1,..,n} such that i,.=p, i,=p for 1 <k'<k,
[<I"< N, then take the largest p among such p. If there is no such p, then
we set p=0, k'=0, and /= N+ 1. Then by the choice of p, {41 - ix )
and {ij,..,i,_,} have no intersection. Hence their union has the car-
dinality k—k'+1'—1 On the other hand, this union is contained in
{p+1, .., max(a, b)}. Thus we obtain

k—k'+ 1 —I<max(a, b)—p. ' (4.3.3)
When p > 0, the definition of I'¢’ implies
K+(N=I'+1)<p. (4.34)

If p=0, k=0, I'= N+ 1, this is trivially satisfied. Then (4.3.3) and (4.3.4)
imply the desired result. Q.E.D.
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PROPOSITION 4.3.2.  B(Ay) coincides with I'$) (1< N<n).
Proof. In order to see this, we have to show the following statements.

(a) I§"U {0} is stable by 7; and é,.
(b) If uelly satisfies &u =0 for any i, then u=u,, =[1]® --- ®[N].

In order to prove (a), assuming that uel'’ and fu¢I{$' U {0},
we derive a contradiction. Under this assumption, there are the
following possibilities, because f,u always satisfies the condition (1) of
(4.3.2).

(I) 1<i<n and there exists | <k </<N such that i, =i, j,=i+1,
k+(N—I+1)>i+1 and i, =i changes to i+ 1 by the action of 7.

(I) 1<i<n and there exists 1 <k </<N such that i, =i, j,=i+1,
k+(N—I+1)>iand i=i+1 changes to { by the action of 7.

The case (I) cannot occur by Lemma 4.3.1. In the case (II), since i+ 1
changes to 7 under the action of 7, u contains i+1, ie., i, =i+ 1
by Remark 4.2.1. Therefore k+ 1+ (N—I+1)>i+1, which contradicts
uelly). Thus, we conclude that I'C’U {0} is stable by 7. A similar
argument shows the stability of /i’ U {0} under the action of &, This
shows (a).

Let us prove (b). Assume that uell;) satisfies &;u=0 (1<i<n). If
u=[]® - ®ix] #[1]® --- ®[N], then there is k (1 <k < N) such that
i,=vforv<kand i, >k If ie {k+1,.., n}, then &,u+0 with p=i, — 1.
If iy e {k, .., i}, then é,u#0 with i, =p. If i, e {1, ..., E:—l} and k> 1, set-
ting i, = p then we have p+ (N —k+ 1) > p, which contradicts the condi-
tion (2). Therefore i, =k, which contradicts the hypothesis. Q.E.D.

Remark 433. (i) & =f}=0for I<i<nand &2=72=0 on 1.

(i) Ifuell$ satisfies f2u #0, then u contains i and 7+ 1 but neither
i+ 1 nor i If uely satisfies 21 # 0, then u contains i 4+ 1 and 7 but neither
inor i+ 1.

(iil) If ue IS satisfies f;u #0 and &,u#0, then u contains i + 1, 7+ 1
but neither 7 nor 1.

4.4. The Crystal Graph of V(A + Ay)

Now, we investigate the crystal graph of V{4, +A4,) with 1<M
< N<n By embedding V(A4 + Ay) into V(A,,) @ V(Ay), B(Ay+ Ay) is
the connected component of B(4,,)® B(A4 ) containing u,, @ u,,.
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For
= - e 1\Q) and p=

U Jy

lil

u@vel'$® I will be denoted by

]

DEFINITION 4.4.1. For 1<a<b<n and u, v as above, we say that
uuelQ@I'E is in the (a, b)-configuration if u®v satisfies the follow-
ing: There exist | <p<g<r<s<Msuchthati,=a,j,=b, j,=b,j,=aor

i,=a,i,=b, i,=b, j,=a
This definition includes the case a=b, p=gq, and r=s. Now, we define
pla, bu®v)=(g—p)+(s—r) (4.4.1)
Let us set
L
g : ' satisfies the conditions
(O =1 el & 9. wsa . (442
e =\W=1 G SO INE (N and (MN2) (44.2)
Lin]

Here the conditions (M.N.1) and (M.N.2) are

L, for 1<k M.

(M.N.1) i,
If w is in the (a, b)-configuration, then p(a, b;w)<b—a

(M.N.2)
Note that any vector of 1) v, is not in the (a, a)-configuration, because
pla, a; w)=0.
LEMMA 4.4.2. Assume that a vector w in I\S) \, satisfies (with the nota-
tion above) i, =a, j,=b and assume either i, =a', i,=b" or j.=a, j,=b
with k<k'<I'<l, 1<a<a <n, 1<bgsb <n Then (k'—k)+({-1)

< max(a’, b') — min(a, b).
The proof being similar to that of Lemma 4.3.1, we omit it

PROPOSITION 4.4.3. B(A,, + Ay) coincides with 1§ .
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Proof.  First, we show that I5) \, U {0} is closed by the actions of &,
and f;. In order to see this, we remark the following.

I w=u®velll®I{ and f(u®v)=u®fv#0, then by
Theorem 1.1.4 and Remark 4.3.3 there are two possible cases (4.4.3a) and
(4.4.3b):

Fu=0 (4.4.3a)
F2u=0, Ju#0, and &uv#0. (4.4.3b)

The remaining cases cannot happen because /7 =0 on I'S’ and 820 #0
imply fio=7282u=0.
Now, assuming that w=u®uvel() . and fiw#0, we prove that

(M.N.1) holds for f,w. Otherwise there are the following possible cases:

(1-1) i<n and there exists 1 <k <M such that i, =j, =i and i, =i
changes to i+ 1 by the action of 7.

(I-i1) i<n and there exists 1 <k< M such that iy=j, =i+ 1 and
ir =141 changes to i by the action of f;.

(1-1ii) i=n and there exists 1 <k < M such that i, =j, =n and iy=n
changes to 7 by the action of 7,.

In those cases, v changes by the action of f; and therefore (4.4.3a) or
(4.4.3b) holds.

Consider the case (1-i). If (4.4.3a) occurs, u contains i+ 1 or i. Hence
Jik+1=1i+1 or there exists 1 </<n such that j,=i The last case does not
occur because of (M.N.2). In the first case, if we set i, , , =a, then by the
definition of I{5) ,, i<o=<i+1 and hence o =i+ 1. This contradicts the
fact that / in v changes to i+1 by f. If (44.3b) occurs, this implies
that &v#0, fv#0 then by Remark 4.3.3 (iii), v does not contain i
This fact contradicts i, =i. Then the case (4.4.3b) does not occur. Thus the
case (1-i) cannot occur. Similar arguments show that the cases (1-ii) and
(1-iii) do not occur. Therefore, if we I{5) ) and f,w #0, then f,w satisfies
(M.N.1).

Next, we assume that w=uQ®uve Iﬁfj ) and Zw =u' Qv #0 for some i,
and we show that f,w =’ ® v’ satisfies the condition (M.N.2). In this situa-
tion, we assume that ' ® v’ is in the (a, b)-configuration.

We set

URv= and ¥’ @ v’ =

SR

£
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Then i,=a and j,=a for some p and s and the following cases can occur:
(2-i) i,=aandj,=a
(2-i1) i,=aandj,=a+1
(2-ili) i,=a—1andj,=a

First let us consider the cases (2-i) and (2-ii). In these cases, if i <a, then
pla, b; u' ®v')<b—a because u®v satisfies (M.N.2), therefore we may
assume that i > a.

If we set v*=® @ and u*: ® - ®, then both »*
and u* are elements of 1!, | for the subalgebra U,(C, _,.,) of U, (C,),
generated by e, and f; (e<i<n). Note that s—p+1<n—a+1 by
Lemma 4.4.2.

In this notation, by (4.3.2), a certain vector ® - ® is an element
of I'© ., if and only if

s—p+1
(1) a<lp<[p+l<"“<1x<a?
(2) Ifi,=band/,=b, then (k—p+1)+(g—m+1)<b—a+1

By the fact that i>a, f;u* and f,0* are in I\, | for U,(C,_, ). Since

s—p+1
® .- ®[it] is equal to v* or f,v* and ® --- ®[/i] is equal to u*
or f,u*, hence u' ® v’ satisfies (M.N.2) by (2).

Finally, let us consider the case (2-iii). In this case, not @ in u but a—1
in v changes to a by f,. This implies that there exists a— I just under 4 in
u, ie., j,, =a—1. Hence, considering ® ® , ® ---
® and U,(C,_,) instead of v*, u*, and U (C, _,+1) in the preceding
case, respectively, u'®uv' satisfies (M.N.2). Therefore, we obtain that
Igf) U {0} is closed by 7. Similarly to the f; case, we can also obtain that
185} vy w {0} is closed by &,

It remains to prove that if w=u®uvel , satisfies &w=0 (1<i<n)
then w=u,, ®u,,. Since &w =0 implies &u =0, u must be u,,. Hence
this follows from the following lemma.

LemMa 4.44. If u,,®vells) , satisfies év=0 for M<i<n, then
V=1,

Proof. We set v=[i;]® --- ®[ix] €I'. Then by (M.N.1) we have
i,=v for v< M. Since vel'S’, v does not contain 1, .., M. If there is j
(M +1=<j=<n) in v, take the largest j among such j, then &v #0, which is
a contradiction. If j+ 1 is in v and j is not in v (M + 1 <j<n), then v +#0,
which is a contradiction. Hence if v contains j + 1, then v contains j. There-
fore v=1,,. Q.ED.

This completes the proof of Proposition 4.4.3. Q.E.D.
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4.5. The Crystal Graph of V(1)

Let A=37_, A4, (1</,<l,<--- <n)be a dominant integral weight. Let
us consider B(4).
For

we denote

U® - Qu,= e[}lf)®...®1§p0_

We define

t}
I=qu® - Qu,= |1} elf® - @I

foranyk=1, .-, p—1,

4.5.1
W ®uy el (4.5.1)

les 1)

An element of 17 is called a semi-standard C-tableau of shape A.
With this definition, the following theorem is an immediate consequence
of Proposition 2.2.1, Proposition 4.4.3, and Lemma 4.4 4.

THEOREM 4.5.1. Let AeP,.

(i) B(4) coincides with the set of semi-standard C-tableaux of shape 1.

(i) The actions of &, and f, (1<i<n) are given by identifying
and with u, , and and with u_, and others with u, in
Remark 2.1.2. The actions of é, and f, are given by identifying with u .,
with u_, and others with u, in Remark 2.1.2.
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EXAMPLE 4.52. For g=C, and i=24,+ A,+ A;, we consider the
actions of &; and 7, on

21313
3 € B(2A, + A, + A45).

EEE

By the construction of crystal graphs, it can be expressed

3] 1]
=E®E®E®E=ﬂ®!®ﬂ®ﬂ®!®ﬂ®ﬂ.
3

373]

wo

ru»w —

(1) If we consider the actions of &, and 75, the vector v can be iden-
tified with u, ®u_ Qu, ®u_ Quo®u_Q®u, and by Remark 2.1.2,

du, Qu_Qu.,. Qu_Quo@u_Qu.)
=u, Qu_Qu,Qu_Quo®@u, Qu,,
Ju,®u_Qu,@u_Qui@u_Qu,)
=u, Qu_Qu, Qu_Quo@u_Qu_.
Thus, '

& (3]e3]e2]e3]ell]e3]e[3])
=BlelBle2lel3le(llo2]®[3],

7(leBle2le3]e[1e3]®[3])
=Ble3]el2leBlele3]e[2].

Hence, we obtain

2[3]3]
3 . )

31313]

313[3]
3 — —

2[3]3]

€;

[ w]=
{ulw»—
(S]
[ro] ] =
(U'S)

rwn\) —_

(2) If we consider the actions of &, and f, the vector v can be iden-
tified with u_ Qu, Quo®u, ®uo®u, @u_ and by Remark 2.1.2,

du_Qu, Quo@u, QuoQu, @u_)
=u, Qu, Qus®u, Quo®@u, du_,

fu_ Qu, Quo@u, Quo@u., u_)
=u_Qu_Quo®@u, Quo@u, Qu_.
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Thus,

2 (3]e3]e2]eB]e[1]e3]1e[3])
=Blel3lel2]eBle[lle2]e3],

L(3le3le2le3]e[1le[3]®[3])
=[3eBle2]eB3le1]e3][2]

Hence, we obtain

112[3[3] [1]2]3]3] 11213[3] [112[3]3]
& [3]3 =313 . 33 =[3]3
3] 3 3 Kl

5. CrYSTAL GRAPHS FOR U, (B,)-MODULES

5.1. Notation

We treat the B,-case in this section. Let (¢, &5, ---, &,) be the orthonor-
mal base of the dual of the Cartan subalgebra of B, such that ¢, =¢;,—¢,, ,
(1<i<n) and a,=¢, are simple roots. The Dynkin diagram is

o e —C O => 0,
1 2 3 n—2 n—1 n

Hence, «,, .., «,_, are long roots and «, is the short root. Let {4}, <<,
be the dual base of {4,);<;<,. Hence A;=¢,+ --- +¢,(i=1,..,n—1) and
Ar1=(81+ +8r1)/2'

5.2. The Crystal Graph of the Vector Representation

Let us construct the vector representation V. Letting | i | (0 <i<n),
(1 <i<n) be the base of Q(q)®*"* !, the vector representation V', of U, (B,,)
is explicitly given as

¢il=q" ] ¢"[[=¢">[] ¢[=[0] 21
€i=5i+1,ja 91=5i,j, e,-@=0
fli=o,U+1, fli)=6...,i=1], rlo]=0

€,,=O, en@z [2]n’ enmzan,j@
fnzan,j@’ f"@=[2]”, fn=0

(I<i<n 1<j<n)

(5.2.2)

(1<j<n)  (523)
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In (5.2.2), we understand =Dj=0 unless j=0,1,2, ---,n. Then the
crystal base (L(V ), B(V)) is given by

- @ (4[He4[[)e4[0)

i=1 (5.2.4)

B(v.)={[il.[i}1<i<n}u([0)).

From (5.2.2) and (5.2.3) we obtain the actions of é; and 7, by replacing e;

and f, with &, and f; except the actions of &, and 7, on @ Those are given
as

¢,[0]=[r] and 7,([0]=[a]. (525)

Then the crystal graph of V. is given by

-2 - 5 H- 0]
AN ) LN ) | (5.2.6)

5.3. The Crystal Graph of Anti-symmetric Tensor-Representations

We set w,=¢,+ --- +¢& (1<i<n) and call the irreducible representa-
tion with the highest weight ; “the anti-symmetric tensor representation
with the highest weight w,” Remark that w,=4, (1<i<n) and w,=24,.

The anti-symmetric tensor representation ¥(w ) with the highest weight
wy can be embedded into V2" (1< N<n). Similarly to the 4, and C,
cases, the connected component of the crystal graph of B( VEN) =

B(V,)®Y containing [1] .®.® ®m is the crystal graph of B(wy).

We denote by u,, the highest weight vector ®® ®. We give
the linear order on {i, ;; 1 <i<n}u {0} by

1<2< - <n<0<a< - <2< (5.3.1)

This ordering is derived from the crystal graph (5.2.6). Now using the same
expression as in Subsection 4.3, we set

(D) 1< < <L
but any element other than 0

N, cannot appear more than once. . (53.2)
(2) ifiy=pand i;=p (1<p<n),
thenk+(N—I1+1)<p.

PROPOSITION 5.3.1. B(wy) coincides with I}).
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The arguments are similar to Proposition 4.3.2 and we omit the proof.
We remark that the actions of &, and f, (1 <i<n) on I'®) are given by

identifying [ ] and with u and with u_, and others

with u, in Remark 2.1.2 and the actions of &, and f, are given by identifying
with u, [0] with u,, [7] with u;, and others with u, in Remark 2.1.3.

Remark 5.3.2. By Remark 2.1.2 and Remark 2.1.3, we obtain
(i) &=fi=0onI¥.
(i) If ueI'? satisfies f2u#0 (1 <i<n), then u contains i and 7+ 1

but neither i+ 1 nor £ If ue 1% satisfies 2u # 0 (1 <i<n), then u contains
i+ 1 and i but neither i nor i+ 1.

(iii) If u satisfies f;,u#0 and &u#0 (1 <i<n), then u contains i + 1
and 7+ 1 but neither i nor 1.

(iv) If uel? satisfies f2u #0, then u contains n but no 7. If ue I{®
satisfies &2u # 0, then u contains 7 but no n.

(v) If u satisfies 7,u#0 and &,u# 0, then u contains 0 but neither n
nor 7.

Remark 5.3.3. We can define I'’ by the formula (5.3.2) for an arbitrary
N. Even if N>n, I'? is a crystal subgraph of B(V)®" (ie., stable by &,
and f;). The proof is similar to Propositions 4.3.2 and 5.3.1.

5.4. The Crystal Graph of the Spin Representation

The finite-dimensional irreducible representation with the highest weight
A, is called the spin representation and denoted by V,,. It has the explicit
description as follows (cf. [Re]); we set

Bsp: {U=(il, i29 "'7in); l/: i}’

Vo= @ Qlg)v.

ve By

We define the actions of generators of U,(B,) as

1 n
q"v=qg" "y where wt(v)=§ Y g forv=(i}, ., i,); (54.1)
J=1
. . (iys o 1,740 0 0y) =—andi, =+,
j 9 s Py = ) . 542
& (01 o i) {0, otherwise; (542)
. . (ili“'ﬁ :i_,j:l,u-, in), lJ: + and ij+l=—’
Alys o 1,) = . 543
s ) {0, otherwise, ( )

for j=1,.,n—1;
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. . (il""7 l'nwl’ :)’ =,
e , 5.4.4
€uliys s i) {0’ otherwise; (44
. . (ila ey in-»l’ ’—I )’ in: +’
iy i) = ) 54.5
Sulivs s 1) {O, otherwise. (542)

If we set L,,= @ .cs,Av, then (L, B,,) is the crystal base of V,,. The
actions of &, and 7, are given by the same formula (5.4.2)-(5.4.5).

We give another expression for B,.

First we give the linear order on {1,2, .., 7, 7, ..., 2, 1} as in (5.3.1), then

(1) e {1,2, s 7. 2, 1},
D) < <y . (5.4.6)

(3) iand 7/ do not appear simultaneously

In this description, i corresponds to the ith + and 7 corresponds to the ith
— in the former description. The actions of £, e,, f;, and e, are given in the
following remark.

Remark 54.1. For ue B,, in the latter description,

(1) q"u=q""” uwhere wt(u) = (L; <, &, — 2ia67)/ 2. Remark
that j=j.

(2) For j=1,.,n—1, if u contains j and j+ 1, then fu=Fu is
obtained by replacing j with j+ 1 and replacing j+ 1 with j. Otherwise,
Sfu :f,u =0.

(3) For j=1,.,n—1 if u contains j+1 and j, then eu=2&u is
obtained by replacing j+ 1 with j and replacing j with j+ I. Otherwise,
eju=¢&u=0.

(4) If u contains n, then f,u=f,u is obtained by replacing n with 7.
Otherwise, f,u=Ff,u=0.

(5) If u contains 7, then e,u=8&,u is obtained by replacing 7 with n.
Otherwise, e, u=2¢€,u=0.

(6) From (2)~(5), & =f?=0 on B,, for any .

7

In the rest of this paper, we use the latter description.

5.5. The Crystal Graph of V(wy + wy)

Now, we investigate the crystal graph of V(wy +owy) (1S M<SN<n).
Most of the arguments are similar to the C,-case; V(w, +wy) can be
embedded into V(w,)® V(wy) uniquely and B(w, + w,) is identified
with the connected component of B(w,,)® B(w,) containing the highest
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weight vector u,,, ®u,,. We express u®@v (ue B(w,,) and ve B(wy)) as in
Subsection 4.4.

DeFiNitioN 5.5.1. (1) For 1<a<b<n, we say that w=u®vue
1P @ 1P is in the (a, b)-configuration if w = u ® v satisfies the same condi-
tion as Definition 4.4.1. :

(2) For 1<a<n, we say that w=u®velIP®I? is in the (a, n)-
configuration if there exist 1<p<g<r=¢+1<s<M such that i,=a,
Jjs=4a and one .of the following conditions is satisfied:

(1) i,and i, (=i,,,)aren, 0, or 7.
(i) j,andj, (=/,,,) are n, 0, or 7.

(3) Wesay that w=u®uvelP®I'? is in the (n, n)-configuration if
there are 1 <p<q< M such that i,=n or 0 and j,=0 or 7.

This definition includes the case a=b, p=g¢, and r=s.
Now, for w in the (a, b)-configuration we define

pla, b;w)=(q—p)+(s—r) (5.5.1)

If a=b=mn, we set p(a, b; w)=0.
Let us set -
I |
: tisfies

i B I R Ny (-
= w=u@u=1 1 FHELIO IR N1 and (MN2)

1

(5.5.2)
Here, {M.N.1) and (M.N.2) are the following conditions.

(M.N.1) i <, for 1 £k < M, and i, and j, cannot be 0 simultaneously.
(M.N.2) If wisin the (a, b)-configuration, then p(a, b; w)<b—a.
(5.5.3)

When a=b=n, (M.N.2) means that there is no 1< p<qg< M such that
i,=nor 0 and that j,=0 or a
PROPOSITION 5.5.2.  B(wy + wy) coincides with I{;) .

Proof. First, we show that I{5) . U {0} is closed by the actions of 7,
and é;. In order to see this, we remark the following.
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fw=u@uvell?®IY and f(u®v) =u®fv #0, then by Theorem 1.1.4
and Remark 5.3.2 there are two possible cases,

Tu=0. (5.5.42)

FPu=0, Ffu#0, and &uv#0. (5.5.4b)

Now, assuming that w=u®vel}f)‘,‘,) and fiw#0, we prove that
(M.N.1) holds for f,w. Otherwise, there are the following cases:

(i) and (ii) These are the same as (1-i) and (1-ii) in the proof of
Proposition 4.4.3.

(1ii) i=n and there exists 1 <k < M such that i,=j,=n and i, =n
changes to 0 by the action of f,.

(iv) i=n and there exists 1 <k< M such that iy=n, j, =0, and
i, =n changes to 0 by the action of f,.

In these cases, f;(u®v)=u®f,v and hence (5.5.4a) or (5.5.4b) holds. We
can easily obtain that (i) and (ii) cannot occur by similar arguments to the
proof of Proposition 4.4.3. In the case (iii), if (5.5.4a) occurs, u contains 7.
This contradicts (M.N.2). If (5.5.4b) occurs, we have that &,v#0, but i, =n
implies é,v =0, this is a contradiction. Hence, (iii) cannot occur. Similarly
the case (iv) cannot occur. Thus (M.N.1) holds for we I(§) | with f,w #0.
By a similar argument, (M.N.1) holds for we I}, », with &w #0.

By a similar argument to the C,-case and Remark 5.3.3 instead of
Lemma 4.4.2, the condition (M.N.2) is preserved by & and 7. Thus, we
obtain that /{3 ,, U {0} is closed under the action of f; and &,

It remains to prove that if w=u®uvelf;) ,, satisfies &w=0 (1<i<n)
then w=u,, ®u,,. This is easily obtained by the following lemma.

LemMA 5.53. If u,, ®vely) , satisfies év=0 for M <i<n, then
V=1U,,,
The proof being similar to the proof of Lemma 4.4.4, we omit it.

Thus, we complete the proof of Proposition 5.5.2. Q.ED.

5.6. The Crystal Graph of V(wy + A,,)

We consider the crystal graph of V(wy,+4,) (1<M<n). The
crystal graph B(w,, + A4,) is the connected component of B(w,,)® B(A,)
containing u,,, @ u 4. .
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€B,,, uQvely ® B,, will be denoted by |:

S

Here, v is expressed by (5.4.6).

DeFINITION 5.6.1. Let ue i} and ve B,, be as above. For | Sa<b<n
we say that w=u®v is in the (a, b)-configuration if w satisfies the same
condition as Definition 5.5.1. We define p(a, b; w) by the formula (5.5.1).

Let us set
i/
: satisfies the conditions
I8 = = = FHeI®® B, ; W
s =AW EHOV= OB (Msp.1) and (Misp.2).
I

(5.6.1)

Here, the conditions (M.sp.1) and (M.sp.2) are
(Msp.l) i <jfor 1<k M,
(M.sp.2) If wis in the (a, b)-configuration, then p(a, b; w)<b—a.

Remark 5.6.2. 1f wis in the (a, b)-configuration, a pair (b, b) or 0 can
appear only in ue I'2.

PROPOSITION 5.6.3. B(wy, + A4,) coincides with 147 .

Proof. Similarly to the previous arguments, we first show that
1490 {0} is closed under the action of & and f;. In order to see this,
remark the following.

Remark 5.64. If w=u®vel?®B,, and f(u®v)=u®fv+#0, then
by Theorem 1.1.4 and Remark 5.4.1, there is only one possible case, f;u = 0.
(B)

Assuming that w=u®uvel},, , and fiw#0, we prove that (M.sp.1)
holds for 7;w. Otherwise, there are the following cases:

(i) i<n and there exists 1 <k< M such that i, =j, =i and i, =i
changes to i+ 1 by the action of 7.
(ii) i<n and there exists 1<k<M such that i,=j, =i+ 1 and
ir=1+1 changes to { by the action of f,.
(iii) i=n and there exists | <k < M such that i,=j,=n and i, =n
changes to 7 by the action of f,.
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(iv) i=n and there exists 1 <k< M such that i,=n, j, =0, i,=n
changes to 71 by the action of f,.

In these cases, not u but v changes by the action of ;. Therefore we can
apply Remark 5.6.4. It is easy to see that (i) and (ii) cannot occur by a
similar argument to that in the proof of Proposition 4.4.3.

In the case (iii), v contains », and then v does not contain 7i by the defini-
tion of B,,. Hence i, ,>n—1, and (M.sp.1) implies j, , , =n — 1. There-
fore 7 does not appear in u. Then f,u#0 and &,0=0, which contradicts
Remark 5.6.4. Thus, the case (iii) cannot occur. The case (iv) cannot occur
by the same arguments as in the case (iii). Thus, we have (M.sp.1) for 7;w.

By Remark 5.6.2, we can prove that (M.sp.2) is stable by 7; as in the
C,-case. Thus we have shown that I‘A‘j’w is stable by 7. Similarly, we
can obtain the stability of I}’ by &. Now, it remains to see that if

w=uQ®vel\ satisfies &w=0 (1<i<n), then w=u,, ®u, . Since
éw=0 (1<i<n) implies &,u=0 for any i, u must be u Hence, this
follows from the following lemma.

wp-*

LEemMMa 5.6.5. If uwM®vele satisfies e,v=0 for M<i<n, then
U=uA".

Proof. We set

Then by (M.sp.1), we have i,=v (1 <v<M). If M =n, there is nothing to
prove. If M <n, é,v=0 implies that v does not contain 7. Hence, v contains
n. Since &,_,v=0, v does not contain n— 1. Hence, v contains n— 1.
Repeating this argument we have that v=1u,, . ‘ Q.E.D.

Thus we complete the proof of Proposition 5.6.2.

5.7. The Crystal Graph of V(1)

Let 1 be a dominant integral weight. Let us consider the crystal graph
of V(). We can classify 4 into following two types:

)

l,_1<n)

(E) 1= Z_xw/ (I<h<--<
0) A=X"2wp+4, (1< < -

=1

I,<

n
SIS
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When 4 is of type (E), we define

o t}'
IP={u,® - Qu,= |1} s el - ®I‘B’

uk®uk+1€[§fl§?/k+l) >
fork=1,.,p—1 '

A=

Here, for

we denote

1
U, ® - @u, by |17 I eI;f”@-n@I}pB’.

When A is of type (O), we define

tll
I8 = u1®'“®u - tl17' 61513)®"'®I(B)®B-“P;

A P Ihy

(B)
w®u 1 €140,

B
U, 1 Qu,el?

lp~1.sp

fork=1,.,p—1

—_—
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Here, for u, e I} (1 <k <p) (with the same expression as above) and,

we denote

t
u1®...®up by [7, l E[ZB)®"'®I(B)®BW‘

I

An element of 1% is called a semi-standard B-tableau of shape A.

By the proof of Proposition 5.5.2 and Proposition 5.6.2, we get that
Wy, .., w, and A, satisfy the hypothesis of Proposition 2.2.1. Along with
Proposition 5.5.2 and Proposition 5.6.2, we obtain the following theorem.

THEOREM 5.7.1. Let AeP,.

(i) B(4) coincides with the set of semi-standard B-tableaux of shape J.

(i) The actions of &, and f; (1<i<n) are given by identifying ,
and the pair (i, i+ 1) in an element of B,, with u  , and ,
and the pair (i+1,1) in an element of B, with u_, and others with u, in
Remark 2.1.2 and the actions of &, and [, are given by identifying with
Uy, @ with u,, with uy in Remark 2.1.3 and n in an element of B, with
u,, niin an element of B, with u_, and others with u, in Remark 2.1.2.

ExaMPLE 5.7.2. Forg=Byand A=A, + A, +34;=w,+w, + w5+ A5,
we consider the actions of &; and 7; on

T[27370]

3 e B(A).

<
il
o
T/ ST TN

3

By the construction of crystal graphs, it can be expressed

213]0] 5 A ) o
2313 =@®E®E®2=@®ﬂ®ﬂ®ﬂ®ﬂ®ﬂ®l
32 2] B 3]
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The vector v can be identified with 4, ® u; ® 3 ® uy® u; ® uy®@ u , , which
is the same one in the example in Remark 2.1.3 and then

S, QU RUs R U R Us RUe U )=, QU QUs QU@ U QU@ ut .,
7(“2@”1®U3®uo®u3®uo®u+)=uz®u1®u3®u0®u3®u0®u_.

Thus,

é{@@!@ﬂ@!@ﬂ@ﬂ@%
3
=@®!®E®E®@®ﬂ®%
3

1]
f%@@!@ﬂ@!@ﬂ@ﬂ@é
1

1]
=@®®®®®®
3

Hence, we obtain

12]3]0] [1[2]3]0] i[2]3]0] [i[2]3]0]
& 2303 =203 . A233] =233
372 32 372 33

6. CrystaL GRAPHS FOR U, (D,)-MODULES

6.1. Notation

We treat the D ,-case in this section. Let (¢, ¢,, .., &,) be the orthonor-
mal base of the dual of the Cartan subalgebra of D, such that o;=¢,—¢,
(1<i<n) and a,=¢,_; +¢, are the simple roots. Let {4}, <<, be the
dual base of {h;};<;<,. Hence A,=¢ + ---+¢ (i=1,.,n—2) and
An——l :(81 + o +8n—l“8n)/2a An:(‘gld— +8n—1+8n)/2'
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6.2. The Crystal Graph of the Vector Representation

Let us construct the vector representation V.. Letting E] (1<ign)
be the base of Q(g)®?, the vector representation Vo of U,(D,) is
explicitly given as

g"]=q"" [}, ¢"[F=q"[f], (6.2.1)
ei=5i+1,j= e,»=5,.‘j
fi=5f.j, fi=5i+L_I’
if j=n—1,
e J1=0, e, [f]={[n—1 if j=n,

(1<i<n 1<j<n), (62.2)

0 otherwise, a ) (62.3)
<j<n). 2.
if j=n-—1,
n=0 rli= it j=n,
0 otherwise,

Here, we understand = m =0 unless j=1,..,n
Now, the crystal base (L(V ), B(V)) is given by

LVe)= & ([l AT,
i=1 (6.2.4)

B(Vo)={lil[i];1<i<n}.

From (6.2.2) and (6.2.3) we obtain the actions of &; and f; by replacing e;
and f, with &, and f;. Then the crystal graph of V, is described as

n-1 n
-5 E- - 2 ] e R 1 R i

\, /—1 (6.2.5)

6.3. The Crystal Graph of the Anti-symmetric Tensor Representations

We set w,=¢,+ --- +¢; (1<i<n) and 0,=¢,+ --- +¢,_,—¢,. We
call the irreducible representation with highest weight w,; (resp. ,) “anti-
symmetric tensor representation with highest weight w, (resp. w,)” and
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denote V(w;) (resp. V(w,)). Here, remark that w,=4; (1<i<n—2),
W, 1=A,_+A4,, w,=24,, and w, =24, _,.

V(wy) (1 <N<n) (resp. V(w,)) can be embedded into VE" (resp. V'Z").
Similarly to the previous cases, the connected component of B(VE")=
B(V,)®" (resp. B(VE¥)=B(V,)®") containing [1]® --- ®[N] (resp.
(e - ®lr=1] ®[i]) is Bwy) (resp. V(@,))

We denote by u,,, (resp. ug;) the highest weight vector ® ®

(resp. [1]® --- ®[n—1] ®[7i]). We give the ordering on {i, ; 1 <i<n} by
1<2< ~-~<n—1<2<-‘n—"“1'< <2< (6.3.1)

Remark that there is no order between n and 7. This ordering is derived
from the crystal graph of ¥, (6.2.5). Using the same expression as Subsec-
tions 4.3 and 5.3, for 1 <N <n we set

(1) i, 2i,,, for ISv<N,
e B(V )@Y, 2) ifi,=pandi,=p(1<p<n) ;. (632)

thenk+(N—I+1)<p

Remark 6.3.1. (1) The condition (1) in (6.3.2) is equivalent to saying
that for any v either i, <i,,,, or (i,,i,,,)=(n,#A) or (7, n).

(ii) The actions of &, and J; (1 <i<n) are given by identifying lII
and with u,, [i+1] and with #_, and others with u, in
Remark 2.1.2. The actions of &, and 7, are given by identifying and
with u ., and with u_, and others with u, in Remark 2.1.2.

PROPOSITION 6.3.2. B(wy) coincides with I'?) (1 < N <n).

Proof. In order to see this, we have to show the following two
statements:

(a) I? U {0} is stable by & and: f;.
(b) If uel'? satisfies &,u=0 for any i, then u=[1]® --- ®[N].

Here, (a) can be easily obtained by Remark 2.1.2, Remark 6.3.1, and a
similar argument to the proof of Proposition 4.3.2.

Let us show (b). Assuming that u=[i,]® --- ®[in] € I’ satisfy &u=0
for any i and u;é® ®, we take k (1 <k < N) such that i,=v for
v<k and i >k I ie{k+1,.,n—1}, then &, ,u#0 and if
ire{k, ---,n—1}, then there exist some p such that i, =p and &,u#0
by Remark 2.1.2 and Remark 6.3.1. If iy=n or 7, then i, _,#n—1
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by k<N<n and then &, u#0 or &,u#0, respectively. If
ir=pe{l, ---,k—1}and k> 1, then p + (N — k + 1) > p, which contradicts
the condition (2) of (6.3.2). Thus we get i, = k, which contradicts the defini-
tion of k. Hence, we obtain u =® ®. Q.E.D.

Next, we set

TP (resp. [P = e B(V _)®r,

(1) and (2) are the same conditions as in (6.3.2)
(3) If i, =n, then n—k is even (resp. odd)
and if i, = 71, then n — k is odd (resp. even)

(6.3.3)

Remark 6.3.3. (i) Any element of I'?’ or I'”’ contains either n or 7.
This can be proved similarly to Lemma 4.3.1.
(ii) Under the conditions (1) and (2) in (6.3.3), if (3) is satisfied for
some k such that i, =n or i, then it is satisfied for all k since n and 7
appear in u alternatively and successively.

PROPOSITION 6.3.4. B(w,) (resp. B(w,)) coincides with 1P (resp. I').

Proof. Similarly to the previous proof, we have to show the following
two statements:

(a) I'® U {0} (resp. I'\"' U {0}) is stable by 7; and &,.
(b) If uel® (resp. I'?) satisfies éu=0 for any i, then u=

[1® - ®[n] (resp. [® - ®@[n—1] ®[a]).

We can easily obtain (b) by a similar argument to the proof of Proposi-
tion 6.3.2.

For ueI® (resp. I?"), (a) follows as before if f,u and &u satisfy the
condition (3) or are zero. Now, we assume that =[] ® - ®[i,] eI
(resp. I'”) and f,u #0 for some i, and does not satisfy the condition (3).
Under this assumption, there are the following two possibilities:

(i) There exists k such that n—k is odd (resp. even) and i, =n—1
changes to n by 7, _ ;.

(ii) There exists k such that n—k is even (resp. odd) and i, =n—1
changes to 7 by f,.
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In both the cases, u contains n or 7 by Remark 6.3.3(1), hence we know
that both the cases contradict Remark 6.3.3(ii). Then we obtain that for
uel'P (resp. I'?"), f,u satisfies the condition (3) or vanishes. We obtain
the same conclusion for &u by similar arguments. Q.ED.

Remark 6.3.5. By Remark 2.1.2, we obtain

& =f1=0o0n I and I'".

(i) I uel'? or I'” satisfies f2u+#0 (1<i<n), then u contains i
and i+ 1 but neither i+1 nor i If uell? or I'?) satisfies &;u+#0
(1<i<n), then u contains i+ 1 and / but neither / nor 7+ 1.

(i) If uel'? or I'P) satisfies fu#0 and é;u#0 (1 <i<n), then u
contains i+ 1 and 7+ [ but neither / nor «.

(iv) U uel'? or I'? satisfies f2u #0, then u contains n— 1 and n. If
ue I or I'P) satisfies é2u#0, then u contains n—1 and 7 but neither
n—1 nor n.

(v) Ifuel'? or I'P satisfies f,u#0 and &,u #0, then u contains n
and 7 but neither n— 1 nor n— 1.

6.4. The Crystal Graph of the Spin Representations V') and V"

For D, there are two spin representations ¥\’ and V(). They are the
finite-dimensional irreducible representations with highest weight 4, and
A, _ 1, respectively. They have the explicit description as follows (cf. [Re]);
we set

B! (resp. B, )= {v= (i}, .. I,); ;= £, iy - i, = + (resp. —)},
ViE'= @ Qlg)v

()
veB.\_,7

We define the actions of U,(g) on V"' as

1 &, . :
th-_—'q(h"”(U))U, Where Wt(U)z'i Z ljﬁj fOI' U:(ll’ MY ln);

(6.4.1)

e)(iy, o i,,)—{(i"' o ), g;e;w?;d er= (6.4.2)
(j=1, --,n=1)

i {g, T, i;,&)é;i:e.and i,=+, (64.5)
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If we set L} = @ ez Av, then (L{¥), B\)) is the crystal base of pix

with the same actions of &, and f; as those of ¢, and f; in (6.4.2)-(6.4.5).
Now, similar to the B,-case we introduce another expression of B}’ and

B! ). We give the order on P={1,2, .., n,7, .., 2, 1} as the same as (6.3.1).
Then we set

Lep
il<i2'< <in— 1<in
i and { cannot appear simultaneously

—
o

o~~~
~

If i, =n, then n— k is even (resp. odd)

)
)
(3)
)
)

—_~
w

If i, =1, then n — k is odd (resp. even)

(6.4.6)

‘In this expression, i corresponds to the ith + in the previous expression
and 7 corresponds to the ith —. This gives the actions of & and 7.

Remark 6.4.1. Let ue B{}’ be with the notation as in (6.4.6).

(1) For j=1,..,n—1if u contains j and j+ I, then fu =fju is the ele-
ment of B{) obtained by replacing j with j+ 1 and replacing j+ 1 with j.
Otherwise, f;u =]}u =0.

(2) For j=1, .., n— 1 if u contains j+ | and j, then e;u=&;u is the ele-
ment of B{*’ obtained by replacing j+ 1 with j and replacing j with j+ 1.
Otherwise, e;u=¢é;u=0.

(3) If u contains n—1 and n, then u=f,u is the element of Biﬂi’
obtained by replacing n— 1 with 7 and replacing n with n—1. Otherwise,
P ﬂu = ?7u = 0'

(4) If u contains 7 and n—1, then e, u=¢€,u is the element of Bﬁ.;—"

obtained by replacing 7 with n— 1 and replacing n—1 with n. Otherwise,
e,u=2¢&,u=0.

(5) From (1)—~(4), &2=f?=0 on B!}’ for any i.
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6.5. The Crystal Graph of V(wa + wy)

We investigate the crystal graph of V(w, +wy) (1< M<N<n). The
representation V(w, +w,) can be embedded into FV(w,)® Viwy)
uniquely and B(w,, + wy) is the connected component of B(w,, + w,) con-
taining the highest weight vector u,,, ®u,,,. Similarly to Definition 4.4.1
and with the same notations there, we give the definition of the (a, b)-
configuration in the D, -case.

DEFINITION 6.5.1. (1) For 1 <a<b<n, we say that uQuvelYy® 1Y’
is in the (a, b)-configuration if ¥® v satisfies the same condition as in
Definition 4.4.1.

(2) For 1<a<n, we say that u®uvelY’®1Y is in the (a, n)-
configuration if there exists 1<p<g<r=g+1<s<M such that i,=gq,
j,=a, and one of the following conditions is satisfied:

(i) i,and i (=i,,,)are nor A
(i) j,and /. (=j,, ) are n or a.

(3) We say that u®@vel'Y’®1 is in the (n, n)-configuration if
there exist 1 <p <g< M such that i,=n or 77 and that j,=n or A

(4) For 1<a<n, we say that u®vellY®I?) is in the a-odd-
configuration if u®v satisfies the following conditions; there exist
I <p<g<r<s< M such that

(a) r—g+1is odd.
(b) i,=aandj,=a.
(c) j,=n, i, =norj,=n,i=n

(5) For 1<a<n, we say that u®@uvel'D@I'? is in the a-even-
configuration if u®v satisfies the following conditions; there exist
1<p<g<r<s<M such that

(a) r—g+1is even.
(b) i,=aandj,=a
(¢} j,=n, i,=norj,=n,i=n
If wis in the (a, b)-configuration for 1 <a < b <n, we define p(a, b; w)=
{(g—p)+ (s—r). When a=b=n, we set p(a, b; w)=0.

If WEI( )®[( ! is in the a-odd-configuration or the a-even—conﬁgura—
M N g
ﬁOD, we define

qla;w)=s—p. (6.5.1)
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For 1 < M < N<n, let us set

w satisfies the following
(M.N.1)-(M.N.3)

Ly

D )= B I D D).
I yy={w=u®uv=|": e I 1P,
M

iv

(6.5.2)

Here, the conditions (M.N.1)-(M.N.3) are as follows.

(MN.1) < for I<k<M.

(M.N.2) If wis in the (a, b)-configuration, then p(a, b; w) <b—a.

(M.N.3) If wis in the a-odd-configuration or the a-even-configura-
tion, then g(a; w)<n—a.

When a=b=n, (M.N.2) means that there is no 1 <p<g<M such that
i,=nor i1 and that j,=n or i

PROPOSITION 6.5.2.  B(w,, + wy) coincides with I'Y) ., for IS M < N<n.
Proof. We have to show

(1) 12, L {0} is stable by & and 7.

(2) f wellh) , satisfies that &w =0 for any i, then w=u,, ®u,,.
First we show (1). In order to see this, we remark that if w=

u@velP@IP and f(u®v)=u®fv#0, then by Theorem 1.1.4 and
Remark 6.3.5 there are two possible cases:

]‘,.u——-O (6.5.3a)
72u=0, fu#0, and &v#0. (6.5.3b)

Assuming that u®vel®%) ,, and [ (u®v)#0, we prove that (M.N.1)

holds for f,(u® v). Otherwise, there are the following cases:

(1-i) i<n and there exists 1 <k <M such that i, =j, =i and i, =1
changes to i+ 1 by 7.

(1-ii) i<n and there exists 1<k <M such that i, =j,=1+1 and
i, =7+ 1 changes to i by ..

(1-iii) i=n and there exists | <k <M such that i, =j,=n—1 and
i, =n—1 changes to 77 by 7

(1-iv) i=n and there exists | <k <M such that iy =j, =n and i, =n
changes to n—1 by f,.

(1-v) i=n and there exists I <k <M such that i, =n— 1, j,=n, and
i, =n—1 changes to 7 by 7.
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(1-vi) i=n—1 and there exists 1 <k < M such that i,=n—1, j, =17,
and i, =n— 1 changes to n by 7, _,.

In the case (1-i), not u but v changes by f,. Then we may consider
(6.5.3a) and (6.5.3b). If 7,u =0, then u contains i+ 1 or i In any case, we
can easily derive a contradiction similar to the C,-case. If (6.5.3b) occurs,
v contains i+ 1 and 7 because &+ 0. This is a contradiction to the fact
that 7 in v changes to i+ 1. Thus (1-i) cannot occur.

In the case (1-ii), not u but v changes by 7, hence (6.5.3a) or (6.5.3b)
occurs. If (6.5.3a) occurs, u satisfies j, .., =1 by applying Remark 2.1.2 and
Remark 6.3.1 to (6.5.3a). Hence, we get i+ 1 =i, <i,,;<Jis; =1 This
implies i, , ,; =i, which contradicts the fact that i, =7+ 1 changes to & If
(6.5.4b) occurs, v contains i+ 1 by Remark 6.3.5(iii). Thus u®v is in the
{i+ 1, i+ 1)-configuration, which contradicts (M.N.2). Hence, (1-ii) cannot
OCCur.

In the case (1-iil), i, =n—1 in v changes to 7. Then (6.5.3a) or (6.5.3b)
occurs. If (6.5.3a) occurs, then u contains n— 1 or 7. If u contains n— 1,
u®v is in the (n—1, n— 1)-configuration, then this cannot occur by
(M.N.2). If u contains 7 and no n— 1, u satisfies j, , ;, =7. Then we have
n—1=i,<i,, =<Jr,1 =1, this implies i, , =n. This contradicts the fact
that i, =n— 1 changes to n. Hence (6.5.3a) cannot occur. If (6.5.3b) occurs,
F.0#0, &,0#0, and i, =n— 1. This contradicts Remark 6.3.5(v). Thus (1-
i) cannot occur.

In the case (1-iv), i,=n in v changes to n— 1. This implies that
ir,1>n—1, then j,,,>n—1. Hence, f,u#0. We may consider only
(6.5.3b). By €,v#0, we have i,_,>n, which implies that ¥®v is in the
{(n, n)-configuration. This contradicts (M.N.2). Thus (1-iv) cannot occur.

In the case (1-v), since v changes, we may consider (6.5.3a) and (6.5.3b).
If (6.5.3a) occurs, u contains 7 or n— 1. If u contains 7, then j, ., =7 and
therefore we have n—1=i, <i,, <J,,,=#n This implies i,,,=#, and
this contradicts the fact that i, =n — 1 changes to 7. If u contains n— 1 and
no 7, then i, ;=n—1 and we have n—1=i,<i,, <j,.,=n— 1 This
implies i, ,=n, A, or n— 1. First i, ., = never occurs because i, =n— 1
changes to 7. If i, ,,=n—1, then i,=n—1 does not change by 7, by
Remark 2.1.2. If i, ., =n, then u®v is in the (n— 1)-even-configuration
(p=qg=k and r=s=k+1 in Definition 6.5.1(4)) and ¢g(n—1;u®v)=
(k+1)—k=n—(n—1), which contradicts (M.N.3). Thus (6.5.3a) cannot
occur. If (6.5.3b) occurs, &,u#0 and f,u # 0 contradicts the fact that v con-
tains » — 1 by Remark 6.3.5(v). Thus (1-v) cannot occur.

In the case (1-vi), v changes. Then (6.5.3a) or (6.5.3b) holds. If (6.5.3a)
occurs, then j,, ,=n or n—1 because f, ,u=0. If j,,,=n, we have
n—1=1i,<i,,<Jes,=n This implies i,,,=n, which contradicts the
fact that i, =n—1 changes to n. If j, . ,=n—1, then we have n— 1=
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i <iys1=<Jrs1=n—1 This implies i, ,,=n, A, or n—1. If i, =n or
n—1, this contradicts the fact that i;=n—1 changes by 7., by
Remark 2.1.2. If iy, ,=#, u®u is in the (n— 1)-even-configuration and
gin—1,u®v)=(k+1)—k=n—(n—1), which contradicts (M.N.3). Thus
(6.5.3a) cannot occur. If (6.5.3b) occurs, f, ,v#0, &,_,0#0, and v
contains n— 1. This contradicts Remark 6.3.5(iii). Hence, (1-vi) cannot
occur. Thus (M.N.1) is preserved by 7. By a similar argument, (M.N.1) is
preserved by é;.

We can obtain that (M.N.2) is stable by ¢&; and f; by similar arguments
to the cases of B, and C,,.

Finally, assuming that w=u®vel'?',, and f;w#0, we prove that f,w
satisfies (M.N.3). Otherwise, there are the following cases.

(2-1) There exist I1S<p<g<r<ss<M and 1<a<n—1 such that
i,=a,j,=n (resp. i), i,=1 (resp. n), jy=a+ I, and i, =a changes to a + 1
by 7,, then f,w is in the (a+ 1)-odd-configuration and g(a+ 1, 7,w)>
n—(a+1).

(2-ii) There exist 1<p<g<r<s<M and 1<a<n—1 such that
i,=a, j,=n (resp. i), i,=n (resp. n), jy=a+ 1, and j,=a+ 1 changes to
a by 7,, then f,w is in the a-odd-configuration and ¢(a; /,w)>n—a.

(2-iii) There exist 1 <p<g<r<s<M and 1 <a<nsuch that i, =a,
Jjy=h,i,=n—1,j,=a and i,=n—1 changes to n by f,_1, then £, ,wis
in the a-odd-configuration and ¢(a;f,_w)=n—a.

(2-iv) There exist | <p<g<r<s< M and 1 <a<nsuch thati,=a,
j,=n—1,i,=n, j,=a, and j,=n—1 changes to 7 by 7,, then f,w is in the
a-odd-configuration and g(a; f,w)>n—a.

(2-v) There exist I <p<g<r<s<Mand I<a<n such that i, =a,
jo=ni,=n—1,j,=ad and i,=n—1 changes to 7 by f,,, then f,w is in the
a-odd-configuration and g(a;f, w)=n—a.

(2-vi) There exist 1 <p<g<r<s<M and | <a<nsuch that i, =a,
Jo=n—11,=8j.=a and j,=n—1 changes to n by 7,_., then f,_ wis
in the a-odd-configuration and g(a; f, _ ,w)=n—a.

Cases (2-vii)—(2-xii) are the cases where a-even-configuration appears.

In the case (2-1), i, in v changes. Then (6.5.3a) or (6.5.3b) occurs. If
(6.5.3a) occurs, then j,,, = a because 7,u=0. This implies that w is in the
a-odd-configuration and

qla; w)=q(a+1;]{,w)+l>n-—(a+1)+1=n~a.

This contradicts (M.N.3). If (6.5.3b) occurs, we get that f,v# 0 and &,v #0.
This contradicts the fact that v contains a by Remark 6.3.5(iii). Thus (2-1)
cannot occur.
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In order to derive a contradiction from (2-ii), we prove the following
lemma.

LEMMA 6.53. Let u®velly) \ (where u contains j,, ..., jy and v con-
tains iy, .., iy) and r—q+1 is odd for 1 <q<r<M. If either j,=n and
i,=norj,=n and i,=n, then there exists some t such that q<t<r and

i<n—1 and "=I<j,,,. (6.5.4)

Proof. Assuming that there is no such ¢, by (1) in (6.3.2) there exists
some s€ {g, ..., r} such that i,=j,=n or 7. In both cases, s —g and r —s+ 1
are both even or both odd by the condition (1) or (6.3.2). This implies that
r—qg+1=(s—q)+ (r—s+ 1) is even, which is a contradiction. =~ Q.E.D.

In the case (2-ii), by Lemma 6.5.3, there exists ¢ < ¢<r with (6.5.4). Let
t be the smallest one which satisfies (6.5.4) and ¢’ the largest one. Hence
g<t<t <r, moreover j,=n or /i and i, ., =n or . Now, we set

o="{i, 15l B="{Jri1swds)

Since /,< - <i,<xn—1, we have i,<Xn—1—(¢'—1). Similarly we have
Jre1En—1—(—1). Hence,

ac{a+1,.,n—1—('—1)}

and

foco={n—1—(—1), ---,a+1}. (6.5.5)
By the definition of o and f,
#ou+ #L=0—p)+(—t)=s—p—('—1)
=qla;f,w)—(t'—t)=n—a— (' —1). (6.5.6)

By (6.5.5), @ and f are both contained in ¢. By the definition of ¢ in
(6.5.5),
#o=n—a—('—1t)—1 (6.5.7)

By (6.5.6) and (6.5.7), #a + # > # ¢, this implies that & n f # ¢J. Hence,
there exist m and m’ such that p+1<m<1t, t'+1<m'<s, i,,=k, and
J.=k. Let k be the smallest one among such k’s. Then w is in the k-odd
or even-configuration according to whether j,=i,,, (=nori)orj, =i, ,,
(=n or n). We set

Y=L{ipstsenim 1 j{a+1, . k—1},
52 {jm'%—l’ -~'7jx} < {k——l, . a+1}

(where if m—l<p+lL,y=Fandif m+1>s, 6=.)
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By the choice of k, 7N § = and hence #y+ #d<k—a—1. Therefore,
we have

(m—p—1)+(—m)<k—a-1 (6.5.8)
Hence we obtain

glk;w)y=m'—m=s—p—(s—m')—(m—p)
>g(a;fw)—(k—a)zn—k (6.5.9)

This contradicts (M.N.3). Thus (2-ii) cannot occur.
In the case (2-iii), we set

a={i, i fc{a,...,n—1} and  B={i, 41,0}

Since i,=n—1 changes to n by f, _;, we get i, #n fr<sand i ,=n,
w is in the a-even-configuration. Hence g(a; w) = gla;f,_w)<n—a. Then
we may assume r=s or i, = n— L. In both cases, we have

#o+ #B=(r—p+1)+(s—r)=s—p+1
=g(a; [, w)+1>n—a (6.5.10)

Since ¢u f is contained in the set {n—1,..,a} with n—a clements,
(6.5.10) implies &N B +# . The rest of the argument is similar to the
previous case. Thus (2-iii) cannot occur. By a similar argument we get that
(2-iv)-(2-vi) and (2-vii)—(2-xii) cannot occur. Hence, we obtain that
(M.N.3) is preserved by f;. By a similar argument, (M.N.3) is preserved by
&,. Therefore, we have completed the proof of (1).

It remains to prove that if w=u®uvell}) ., satisfies &w=0 (1<i<n)
then w=u,,, ® u,,. Since &w =0 implies &,u =0, u must be u,,, . Therefore
it reduced to the following lemma.

LemMma 6.54. If u,, @velly) , satisfies &v=0 for M<i<n, then
U= Uy

Proof. We set v=[l]® - ®lix] €/, Then by (M.N.1) we have
i,=v for v< M. Hence, if M=N, then v=u,,. In the case M <N,
assuming [,=v for v<k<N, let us show i,=k. Assume first k <n. If
ive{k+1,.,n}, & v#0andif i€ {k, .., i}, ézv#0, which contradicts
the hypothesis. By the condition (2) in (6.3.2), v does not contain 1, .., k.
Then we get i, =k. If k=N=n, the condition (3) in (6.3.3) implies i, =n.

Q.E.D.
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Thus we have completed the proof of Proposition 6.5.1. Q.E.D.

Next, we consider V(w,, + ®,) (1< M <n) and V(2w,). We set

iy |
IR (resp 120 ) =S w=|  izme 1 @11 (resp. 11”7

(7, 1) ZM

w satisfies (M.N.I)-(M.N.3) ».  (6.5.11)

PrOPOSITION 6.5.5. 1 Oy (resp. 18D) coincides with B(w,, + @,) (resp.
B(2w,)).

The proof is similar to the one of Proposition 6.5.1.

0.6. The Crystal Graph of V(wy+A,), Vioy+A,_ ), and V(w,+ A4,_ )

We treat the crystal graph of V(w, +4,) (1<M<n), Vioy+A4,_,)
(1<N<n),and V(w,+A4,_,). They can be embedded into V(w,,)® V",
Vwy)®V,, ', and V(w,)® V., ’, respectively, with multiplicity free.
Similar to the previous cases B(w,, + 4,,), Blwy+ A, _ ), and B(w,+ A4, )
are respectively the connected component of 742’ ® B\, I ® B!, and
I ® B, containing the highest weight vector u,, ®u,,", Uy, @ Uy, 1,
and um®u,,n,1 For u®uvel{Y® B, I(D’®B£Ij), IP® B!, we use
the same expression as in Subsection 5.6 (where the expression of v is the

latter one in Subsection 6.4).

DEFINITION 6.6.1. (1) uuelly) @B, (1<M<n), 1P ®B,’
(1<N<n), IPQ B! is in the (q, b)- conﬁguration (I<agsbsn)ifu®v
satisfies the same condmon as Definition 6.5.1(1), (2), or (3).

2) u@uvel @B, (1<M<n), IP®B,) (1<N<n), [PQB.
is in the a-odd (resp. even)-configuration (1 <a<n) if u@®v satisfies the
same condition as Definition 6.5.1(4) (resp. (5)).

pla, b; w) and q(a; w) are the same ones defined in Definition 6.5.1.
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We set

il jl
(D) : (D) (=)
147 (resp‘IN“"" > = w=|: :_61(40)®B‘+)<resp'11" ® 5, >
Sp o+ (D) T A sp F(D) (—) )
! J ] " ® By,

n

Hosp -

i holds (M.N.1)-(M.N.3) in (6.5.2)

(6.6.1)

PROPOSITION 6.6.2. (1) For 1<M<n, I . coincides with
B(('U/W + An)'

(2) For I<N<n, I\ _ coincides with B(wy+ 4, ).

N.sp —

(3) I'P)_ coincides with B(w,+ A, ).

i, sp—

As the proof is similar to Proposition 6.5.2, we omit it.

Remark 6.63. (1) Foru®uel)’ @B, IV'®B.,’ I ® B, the

actions of &, and f, (1 <i<n) are given by identifying , in u and
the pair (i,7+ 1) in v with u,, identifying , in u and the pair
(i+1,1)in v with _ and identifying others with u, in Remark 2.1.2.

(2) Foru@uvel D®@B, IV @B, I))'® B, the actions of &,

sp°
and 7, are given by identifying , in ¥ and the pair (n—1, 1) in
v with u, , identifyingh , in u and the pair (7, n—1) in v with u _
and identifying others with u, in Remark 2.1.2.

6.7. The Crystal Graph of V(%)
Let A=Y"_.m,A; (m,Z,) be a dominant integral weight of D,. Now,

i=1
we rewrite 4 by use of w,,, @,, 4,, and 4, ;. By the definition of w,, and
@,, we have A,=w, (I1<i<n=2), 4, +4,=0, i, 24, =w,, and

24,_,=uw,. Hence, any A€ P, can be written as

(W1) A=37_,mw,
(W2) 1=3i_,mw;+4,
(W3) A=Y"2! mw+m,0,.

=1

W4 /1: ,";] m,a),—}—m,,.(;)_,,—}-A,, 1
Q=1

Here m;e Z .
If 1 is of type (Wd), we can write A=w, + - + @, +w,  + -+
w,_ + A, with 1</, < <l,<n=l,,,=--=1, . By Proposi-
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tion 6.5.2, Lemma 6.5.4, Proposition 6.5.5, and Proposition 6.6.2, we obtain
that w,, .., w,, 0, .., o, and 4, _, satisfy the hypothesis of Proposi-
tion 2.2.1.

For
t
ue=|:|eliPor I|P (1<k<g—1) and u,=|"|€B),
l
we denote

t]
I [ 5 ® [
0W® - Qu,= |t e(@ 1}[”)@( ® I;A.D)>®B§'p‘)’

k=1 k=p+1

We set
[;D)= |l l ® I D)) (k 4@‘ | ig,\.D)>®B(&/’-)’

w satisfies the following (1)-(4) ,, (6.7.1)

(1) w®uy,,elly),  forany k=1, ., p—1,

2) w,®u, el

(3) w®up, €l p—, foranyk=p+1,..,q-2,
“4) u, ®u,el®

lg—15p-"
Also, for A of type (W1)-(W3), we define !’ similarly. An element of
1PV is called a semi-standard D-tableau of shape 1.
By Proposition 2.2.1, Proposition 6.5.2, Proposition 6.5.5, and Proposi-
tion 6.6.2, we obtain the following result;

THEOREM 6.7.1. Let Ae P,
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(i) B(A) coincides with the set of semi-standard D-tableaux of shape A.

(i) The actions of &, and f; are given by the same rule as Remark 6.6.3.

ExampLE 6.7.2. For D, and A=A, +24,+ A4, we consider the actions
of &, and f, on

3]

RNIROS)
PN N

€ B(A, + 245+ Ay).

Bl —

By the constructions of crystal graphs, it can be expressed,

314]3]

= — [4 2l = - — D

17 -Fe[efle s -TedeilsHe@er
7

(Bl —

The vector v can be identified with v Qu, ®u_Qu, ®u_Q@u, and by
Remark 2.1.2,

du Qu,Qu_Qu,Qu_Qu,)=u, Qu, Qu_Qu,QQu_Qu,,
Fu Qu,@u_Qu, Qu_Qu,)=u_Qu,Qu_Qu,Qu_Qu_.

Thus,
1]
.| Heds@eGleds | |-FHlo@e@eBls@sk.
4
1]
7| Be@eAleRle@e & =®®®®®.
4

Hence, we obtain

37413]

414

A

E-N|RON]

Bl

EN| RS

ENI OS]
N

T4

Il
[l ]—

(wlelo]—

B~
I
ool —



CRYSTAL GRAPHS 345

REFERENCES

[D-J-M] E. DATE, M. JiMBo, AND T. Miwa, Representations of U, (gl(n, C)) at ¢ =0 and the

[D]
1
[K1]
[K2]

[K3]

[K-E]
[L1]
[L2]

[N]

(o]
- [Re]
[Ro]

[s]

Robinson-Schensted correspondence, in “Memorial Volume for Vadim Kniznik,
Physics and Mathematics of Strings” (L. Brink, D. Friedan, and A.M. Polyakov,
Eds.), pp. 185-211, World Scientific, Singapore, 1990.

V.G. DRINFELD, “Quantum Groups,” pp. 798-820, ICM Proceedings, Berkeley,
1986.

M. IimMBo, A ¢-difference analogue of U(g) and the Yang-Baxter equation, Lett.
Math. Phys. 11 (1986), 247-252.

M. KasHiwara, Crystallizing the ¢-analogue of universal enveloping algebra,
Comm. Math. Phys. 133 {1990), 249-260.

M. KasHiwara, On crystal base of g-analogue of universal enveloping algebras,
Duke Math. J. 63 (1991), 456-516.

M. KasHiwara, Crystallizing the g-analogue of universal enveloping algebra, in
“Proceedings of the International Congress of Mathematicians, Kyoto, Japan,
1990,” pp. 791-797.

R.C. King AND N.G.I. EL-SHARKAWAY, Standard Young tableaux and weight
multiplicities of classical Lie groups, J. Phys. A 16 (1983), 3153-3177.

G. LuszTiG, Canonical bases arising from quantized enveloping algebra, J. Amer.
Math. Soc. 3 (1990), 447-498.

G. LuszTiG, Canonical bases arising from quantized enveloping algebra, II, Prog.
Theoret. Phys. 102 (1990), 175-202.

T. NAKASHIMA, A basis of symmetric tensor representation for the quantum
analogue of the Lie algebra B,, C,, and D,, Publ. Res. Inst. Math. Sci. 26 (1990),
723-733.

M. OxkADO, Quantum R matrices related to the spin representations of B, and D,
Comm. Math. Phys. 134 (1990), 467-486.

N. Yu. REesHeTikHIN, Quantized universal enveloping algebras, Yang-Baxter
equation and invariants of links, I, LOMI preprint, E-4-48, 1990.

M. Rosso, Finite dimensional representations of the quantum analog of the
enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117
(1988), 581-593.

S. SunparaM, Orthogonal tableaux and an insertion algorighm for SO(2n+1),
J. Combin. Theory Ser. A 53 (1990), 239-256.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium






