DUALITY OF D-MODULES ON FLAG MANIFOLDS
DANIEL BARLET AND MASAKI KASHIWARA

ABSTRACT. We shall give the duality of D-modules on the flag
manifold which corresponds to the duality of Harish-Chandra mod-
ules. This duality is not algebraic but analytic. As an application,
we show that the characteristic variety of the dual of an arbitrary
Harish-Chandra module is the complex conjugate of the original
one.

1. INTRODUCTION

Let g be a complex semisimple Lie algebra with an involution # and
¢ the Lie subalgebra of the fixed points of . Let K be a connected re-
ductive algebraic group with Lie algebra ¢ and assume that the adjoint
action of € on g lifts to an action of K on g.

Recall that a (g, K)-module is a module endowed with a g-module
structure and a K-module structure such that the two induced actions
of ¢ coincide. A (g, K)-module is called a Harish-Chandra module if any
irreducible representation of K appears in it only finitely many times.
It is known that any Harish-Chandra module is finitely generated over
Ul(g)-

For a Harish-Chandra module M, its dual M* is defined as the sub-
space of ¢-finite vectors of Home¢ (M, C). It has a canonical structure of
a Harish-Chandra module. Then M +— M* is a contravariant functor
and we have a functorial isomorphism

(1.1) M 2 M.

For a finitely generated U(g)-module M, we can define its charac-
teristic variety (sometimes called associated variety) as follows. Let
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F(U(g)) be the increasing filtration of U(g) defined by

0 for n < 0,
(1.2) F,(U(g)) =4 C for n =0,
F.—1(U(g)) + 9F—1(U(g)) for n > 0.

Then Grf(U(g)) is canonically isomorphic to the symmetric algebra
S(g). Let us take a filtration F'(M) of M compatible with F(U(g))
and finitely generated. Then Gr” (M) is a Gr”(U(g))-module and its
support is regarded as a subvariety of g* = Spec(S(g)). This does
not depend on the choice of such filtrations F' of M, We call it the
characteristic variety of M, and denote by Ch(M).

In [6], the second author asked what is the characteristic variety of
the dual of a Harish-Chandra module. In this paper we shall give an
answer to this question. Let us choose a compact form K, of K and
let €, be its Lie algebra. Let us choose a #-stable compact form g,
of g containing ¢,. These choices are unique up to the conjugacy by
K. Let ¢, be the complex conjugation of g with respect to g,. Then
this complex conjugation commutes with . Let us denote by the same
letter c, the induced complex conjugation on g*.

Theorem 1.1. For any Harish-Chandra module M, the characteristic
variety of M* is the complex conjugate of Ch(M).

Remark 1.2. The complex conjugation c, depends on the choice of a
compact form g,, but it is unique up to the conjugation by K. Since
the characteristic variety is invariant by the action of K, its complex
conjugate does not depend on the choice of a compact form.

The main novelty in our proof of this theorem lies in the use of the
conjugation functor for regular holonomic D-modules introduced by the
second author ([5]). It is straightforward to generalize it to the case of
twisted regular holonomic D-modules on the flag manifold relative to
the complex conjugation induced by a compact real form g, of g. It
allows us to show that for a weight A satisfying certain conditions and
for a coherent (Dx », K)-module M, the dual of the Harish-Chandra
module I'(X; M) is given by I'(X; C\(M)), where C\(M) is the conju-
gate of M in the previous sense. Then the generalization of a result of
Borho-Brylinski [2] is used to conclude the proof of the main theorem.

Remark that the use of conjugation functor which is transcendent
does not allow us to get an algebraic proof of this result.
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2. TWISTED SHEAVES AND RING OF TWISTED DIFFERENTIAL
OPERATORS ON THE FLAG MANIFOLD

Let us take a semisimple algebraic group G with g as its Lie algebra.
Let X be the flag manifold of G.

Let us take a Borel subgroup Bj of G’ and a Cartan subgroup 7j of
By. We take a maximal compact subgroup Gy of G such that (7p), :=
TyNG, is a maximal compact subgroup of 7. Let o € X be the point
corresponding to byg. Let U be the unipotent part of By. Let bg, t
and ngy be the Lie algebra of By, Ty and Uy, respectively. Let A be the
root system A(g, t), and let AT be the positive root system consisting
of the roots appearing in ny.

For any point z of X, let b(z) be the corresponding Borel subalgebra,
and let n(z) be the nilpotent radical of b(z). Then there is a canonical
isomorphism b(z)/n(z) =% ;. Let us denote by ¢,: b(z) — t; the
canonical projection. Then, the following diagram commutes for any
geGandze X.

b(z) =% b(ga)
(2.1) P
t

In this reason, we call (ty, A™) the universal Cartan subalgebra.

Let ¢, be the complex conjugation of g with respect to the Lie algebra
gu of Gy. We have by N ¢y (bg) = t. Let us define the automorphism
cx (over R) of X by

bcx (7)) = cu(b())-

We sometimes denote by — instead of cx or c,. Hence, By and U, are
the complex conjugates of By and Uy, and by, ny are their Lie algebras.
Note that we have the following commutative diagram:

to — by
(2.2) wor | Pzo 4
C &

Here wy is the longest element of W.

Let us review twisted sheaves and rings of twisted differential oper-
ators in our context (see [4] for the details). For an algebraic variety
Y, let us denote by Y,, the underlying complex variety. For A € tj, let
£, be the holonomic Dg,-module generated by w) with the defining
relation

(2.3) Rawy = AM(A)w, for A € by.
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Here, we regard A\ as a linear form on by by by — t EN C, and for
A € by, R4 denotes the vector field on By induced by the right action
of By on By. Then

L,\ = %omDBO (2,\, OBOan)
= {¥ € Opga; Rap = A(A)p for any A € bo}

is a locally constant sheaf on By,, generated by a (multi-valued) func-
tion b, where b* = eM4) for b = e? (A € by). Hence Ly has the
monodromy 2™V =1\ Let us recall that X ~ G /By is the flag variety.
A twisted sheaf with twist A on an open set U of X,, is by definition
a sheaf F on p~'U C G,, satisfying (with a rough language)

Fy-1~F,® (L)), forany g€ p'(U)and b € B.

We denote by Mod*(Cy) the abelian category of twisted sheaves on U
with twist A.

Then U +— Mod*(Cy) is a stack (a sheaf of categories) on X,,. It
is locally equivalent to the stack of sheaves on X,,. Let us denote
by Ox,. () the sheaf on G, of holomorphic functions f(g) such that
f(gb) = b*f(g) for b € By,, sufficiently near to the identity. Then
Ox,.()) is an object of Mod*(Cy,, ). For an open set of X,y if there
is a continuous section s of p~'U — U, then we have an equivalence of
categories

MOd)\((CU) — MOd((CU)

given by F + s~ ' F. If moreover s is holomorphic, Ox,, ()) corresponds
to Ox,, by this equivalence .

In fact, Mod*(Cx) depends on the choice of a Borel subgroup By.
Let B; be another Borel subgroup and let x; be the corresponding
point of X. Let p; : G — X be the morphism g — gx,. Let us choose
g € G such that z; = gxy. Then we have the commutative diagram

Ry

G = G
ml  owl
x Mx,ox

Here Ry : G — G is the right multiplication map on G by g from the
right. Let us denote by 'Mod*(Cx) be the category of twisted sheaves
defined by B; instead of By.

Then ¥, : F — (Ry)*F defines an equivalence of categories

W, : Mod*(Cx) =% 'Mod*(Cx).
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Note that ¥, depends on the choice of g, but up to scalar. Namely if
g1 = gb for b € By, then there is a functorial isomorphism in F:

Uy, (F) = (Ln)s ®c Yy (F).

We denote by Dx,, » the subring of the endomorphism ring of Ox,, ()
consisting of endomorphisms locally expressed by finite-order differen-
tial operators. Hence Dx,, » is a sheaf of rings on X,,, locally isomor-
phic to Dx,,. It is algebraically defined. Namely, there is a ring Dx
on X containing Ox as a subring such that its pull back to X, is
isomorphic to Dx,, x.

We call a coherent Dy, y-module 9 a good Dx,, r-module, if M is
a sum of coherent Oy, -submodules. Then, by the theorem of GAGA,
the category Modeon(Dx,x) of coherent Dx y-modules is equivalent to
the category Modgeod(Dx,,,2) of good Dx,, r-modules by the functor

M = MM = DXan,)\ ®DX,)\ .

There is a canonical ring homomorphism U(g) — ['(X; Dx »).

Let 3(g) be the center of U(g). For A € t, xx: 3(g) — C is the
infinitesimal character associated with the Verma module with lowest
weight A. Hence we have for any w in the Weyl group W,

Xwox = XX

where wo X\ = w(\ — p) + p.
Let U(g)» denote the ring U(g)/(U(g) Ker(x»))-
Theorem 2.1 (Beilinson-Bernstein[1]). (i) I'(X;Dx) =~ U(g)a.
(i1) Assume that A— p is integrally anti-dominant (i.e. (A\—p, ) ¢
Ziwq for any o € AT).
(a) For any coherent Dx x-module I, we have

H(X;9M)=0 for anyi# 0.
(b) For any U(g)x-module M,
M = F(X;DXM\ ®U(g)>\ M)

(iii) Assume that X\ — p is regular and integrally anti-dominant (i.e.
(A= p, ") & Z>y for any o € A*Y). Then the abelian cat-
egory Modcon(Dx ) of coherent Dx y-modules is equivalent to
the abelian category Modsgz(U(g)x) of finitely generated U(g)x-
modules by the functor I'(X; e).

When ) is not regular, we have the following result instead of (iii).
For an integrally anti-dominant A € t}, let us denote by N, the full sub-
category of Mod.,, (Dx ) consisting of objects 9 such that I'(X; 9) =

coh
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0. Then N, is invariant by extensions, subobjects and quotients. We
have the equivalence of categories:

F(X; . ) : MOdCOh('DX,)\)/N)\ = MOdfg(U(g))\).

3. DE RHAM FUNCTOR AND COMPLEX CONJUGATION

Let X be a complex variety. Let us denote by Reg(Dx) the abelian
category of regular holonomic D x-modules. Let us denote by Perv(Cx)
the abelian category of perverse sheaves on X. Then the de Rham func-
tor DR(9M) = R.#om p, (Ox, M) gives an equivalence of categories:

DRx : Reg(Dx) == Perv(Cx).

Let X¢ be the complex conjugate of X. Then the two abelian cat-
egories Perv(Cx) and Perv(Cx.) are canonically equivalent. Let us
denote by Dby the sheaf of distributions on X regarded as a real vari-
ety. Then Dby is a Dx ® Dx.-module. Hence for any Dx-module 9N,
C (M) := Homp, (M, Dbx) has a structure of Dxe-module.

Theorem 3.1 ([5]). (i) For any 9 € Reg(Dx), we have
Exth, (M, Dbx) =0  fori#0.
(ii) The functor M — C(IM) gives an equivalence of categories:
C : Reg(Dx)® = Reg(Dx-).
(iii) For any M € Reg(Dx),
DRx.(C(MM)) =~ R Homc, (DRx (M), Cx).

Let us return to the original situation where X is the flag variety.
A coherent Dx y-module is called regular holonomic, if it is a reg-
ular holonomic Dx-module by any local isomorphism between Dx
and Dy. Let us denote by Reg(Dx ) the abelian category of regu-
lar holonomic Dx y-modules. Similarly we can define the notion of
twisted perverse sheaves, and let us denote by Perv*(Cy,,) the cate-
gory of twisted perverse sheaves on X,, with twist \. Then the functor
DRX (M) := RA#omp,_ ,(Ox,,(A), M*) gives an equivalence of cat-
egories:

DR : Reg(Dx,) =% Perv*(Cx,, ).
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4. DUALITY ON THE FLAG MANIFOLDS

Let p;: X x X — X be the i-th projection (i = 1,2). There is a
unique open orbit of X x X with respect to the diagonal action of G,
which we shall denote by Z. Then we have

Z ={(z,y) € X x X;9=b(z) + b(y)}.
The open orbit Z contains (2o, %o), and the isotropy subgroup of G at
this pOiIlt is T() = B() N B().
Let us set
Zr ={(z,y) € X x X;z =7}
Then Zgi is a compact real analytic submanifold of Z, and Z is a

complexification of Zig. By the first and the second projection, Zy is
isomorphic to X:

e 25 X
pd ex
X.

Proposition 4.1. For any A € t, there exists a unique holomorphic
function f\(g1,92) defined on an open neighborhood of

{(gla 92) S Gan X Gan;gl_192 S UOan . UOan}
1N Gan X Gan such that

Mg, 9)=1 forgeg@,
Fr(g1b1, g2bo) = 07763 fr (91, 92)
for g1, g2 € Gan, and by € Byan, ba € Byan close to the identity.
Moreover fx can be continued as a multi-valued holomorphic function
on the open subset Byan - Boan 0f Gan X Gan.
Corollary 4.2. Mod™ “N(Cy, ) is equivalent to Mod(Cg,, ).
Remark 4.3. The shift wy arises because of (2.2).

Hence, Mod®# (Cy, ) is equivalent to Mod(Cy,. ) provided that \+
wop € P. Let Cg;; and Dby, be the sheaf of C*-functions and distri-
butions on Zg, respectively. When A + wou € P,

C%}?{ ()\’ lu') = C%?{ ®OXan><Xan OXanXXan ()\i :u’) and
DbZR()\’ :u‘) = DbZ}R ®0Xan><Xan OXan X Xan ()" :U‘)
are well-defined sheaves and they have a Dxy x,(x,-module structure.

The function fy € CZ (A, —woA) is a unique section of Db(Z’\R’_wO)‘) in-

variant by G, up to a constant multiple.
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For a regular holonomic Dx -module 90,
P2« %Ompl—l’px)\ (pl_lmt, DbZR(/\a —’U)())\))

is a regular holonomic Dx,, _x-module by Theorem 3.1. Let us denote
by C(90) the regular holonomic Dy, . -module such that

CA(DN)* =~ po, Hom ,-1p, | (p; ', Db, (A, —wol)).
By the same theorem, we have an equivalence of categories:
(4.1) Ch : Reg(Dx ) =5 Reg(Dx,—won)-
and the isomorphism
(4.2)  DR™MCA(M)) ~ c'RAom c(DRY (M), Cx,.),
or the following diagram (quasi-) commutes:
Reg(Dx,») RN Reg(Dx,—wonr)

DR} lDR;”O)‘

o=t
Perv *(Cx,,) == Perv**(Cy,,).

For 9 € Mod(Dx,y), we have a g-linear homomorphism
L(X;9M) @c T'(X; Ch(ON)) — [(Zgr; Dby (A, —woA)).
Since Ox(2p) = Q¥mX by multiplying f12,, we obtain
['(Zs; Dbz, (A, —wp))) 222 T(Zy Dby, @0 Q4m0) L ¢
Thus we obtain the g-invariant coupling
(4.3) L(X;9m) x T(X;C\(9m)) — C.

Proposition 4.4. Assume that A\ — p is integrally anti-dominant and
M is generated by global sections. Then the homomorphism

T(X; Cy(9M)) — Home (P(X; m), C)
18 tnjective.

Proof. By the definition, I'(Zg; Dby, (A, —wo])) is the topological dual
of I'(Zr; C% (—A+2p, woA+2p)). Note that woA+2p = —wo(—A+2p).
For ¢ € T'(X; C5(9M)) such that

[ 96 sz =0 forany s € D0 ),
Zr
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let us show ¢(s) = 0. We have for any P € U(g)

[ eP9foris = [ (PODR 1= [ 6P @1 sz

ZR ZRr ZRr

Here P — P* is an anti-automorphism of U(g) sending A € g to —A.
Hence it is enough to show that U(g @ g))f-x+2p = (U(g) ® 1) f-ri2p
is dense in I'(Zg;C% (—A + 2p, woA + 2p)). Setting p = —A + 2p, the
weight p — p is integrally dominant. Hence this is a consequence of
Proposition 4.5 below that we will prove in the next section. ]

Proposition 4.5. Assume that X — p is integrally dominant. Then
the U(g @ g)-submodule generated by fy is dense in the Fréchet space

For a simple root «, let X, be the partial flag manifold associated
with . Hence there exists a projection p,: X — X, whose fiber is
isomorphic to P!.

We have the following theorem.

Theorem 4.6 ([4]). Assume the following conditions.

(a) A\ — p is integrally anti-dominant,
(b) Ag(A—p) :={a € A;{a¥,\ — p) = 0} is generated by simple
T0018.

Then for any coherent Dx x-module M, ['(X;9M) = 0 if and only if
there exists a finite filtration 0 = 9M_1 C My C --- C My =M of M
by coherent Dx -submodules of M satisfying the following condition:
for each j, there exists a simple root a; € Ag(A—p) such that M;/M;_,
is the pull back of a coherent module on X, by pa, -

Proposition 4.7. Assume that )\ satisfies the conditions (a) and (b)
in Theorem 4.6. Then for any M € Reg(Dx ), I'(X;CA(IM)) = 0 if
and only if T(X;9M) = 0.

Proof. Since any object in Reg(Dx ) has a finite length, we may as-
sume that 91 is a simple object. By the preceding theorem, I'(X; 9) =
0 if and only if there exist a simple root « € Ag(A — p) such that
DR (9M) is constant along the fibers of p,. Let 3 be the simple root
—wpa. Then there is commutative diagram
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In virtue of this diagram, the condition above is equivalent to the
condition that cx' DR (M) is constant along the fibers of ps. Since
DR (C5(IM)) ~ c* DRX (9M), we obtain the desired result. O

Proposition 4.8. Assume the conditions (a) and (b) in Theorem 4.6.
Then for any M € Reg(Dx ), the homomorphism

D(X; Cy(9M)) — Home <F(X; m), C)
1S tnjective.

Proof. Let 9t be the image of Dx , ® I'(X;9M) — 9. Then My is
generated by global sections. Set 9% = 9/9My. Then T'(X; M) =
['(X;90) and ['(X; 9% ) = 0. The preceding proposition implies I'(X; Cx(9M,)) =
0. Hence I'(X; C5(9M)) — ['(X; Cx(My)) is an isomorphism. Hence the
assertion follows from Proposition 4.4. O

Remark 4.9. Proposition 4.7 still holds only under the condition that
A—pis integrally anti-dominant. This can be proved by the braid group
action on the category of modules over the rings of twisted differential
operators. Hence Proposition 4.8 and Theorem 4.10 below are also true
only under the condition of integrally anti-dominance. Since we do not
use these facts, we do not give the proof.

Now let us return to the Harish-Chandra module case. Let 91 be a
coherent (Dx », K)-module. Then I'(X; ) is a Harish-Chandra mod-
ule. Moreover Cy(9M) is a coherent (Dx _yr, K)-module. By (4.3), we
have the homomorphism of (g, K')-modules I'(X; C\(9)) — [(X; )"
Now assume the conditions (a) and (b) in Theorem 4.6. Then, by
Proposition 4.8, this homomorphism is injective. By replacing 9 with
C\(9M), the homomorphism ['(X;9M) — ['(X;C\(9M))* is also injec-
tive. Thus we obtain the following theorem.

Theorem 4.10. Assume the conditions (a) and (b) in Theorem 4.6.
Then, for any coherent (Dx x, K)-module 9, I'(X; Cx(M)) is the dual
Harish-Chandra module of T'(X;9M).

Let p: T*X — g* denote the moment map. Then we have the
following proposition proved by Borho—Brylinski (when A = 0).

Proposition 4.11 ([2]). Let A € &, and let M be a coherent Dx x-
module.

(i) Ch(I'(X;9)) C u(Ch(M)).
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(ii) Assume that that O is generated by global sections. Then we
have

Ch(T(X;900)) = u(Ch(am)).

Proof. Let us take a coherent filtration F(90t) of 9. Then Gr” (90)
is a coherent module over Gr¥ (Dx,) =~ So,(©x). Here Ox is the
sheaf of vector fields on X. By the definition, Ch(90) is the support
of the coherent Op.x-module Gr” (90t) associated with Gr” (90). Set
M = ['(X;9M) and let Fp(M) C M be the image of I'(X; Fj(9M)).
Then we have
Gr M c T'(X; Gr"'(IM)).

Note that

[(X;Grf(9m)) = T(g7; p. (G (9M)7)).
Since p is a projective morphism, this is a S(g)-module of finite type.
Hence F(M) is a coherent filtration of M and Ch(M) is the support
of Gr®(M). Hence we obtain

Ch(M) = Supp(Gr’(M))
C Supp (F (X; GrF(EUI)))
C  p(Supp(Gr™(9M)7)).
Next we shall show (ii). For a point p outside Ch(M), let us show that
p is not contained in Ch(90). By the condition, Dx ) ®u(), M — M
is an epimorphism. Let u; (j = 1,---,r) be a system of generators of
M. Then there exist m; and A; € F,,;(U(g)) such that Aju; = 0 and
the image a; € S™i(g) of A; does not vanish at p. Hence we have an
epimorphism
@(DX,/\/DX,/\A]') — IN.
J
Therefore
Ch(ﬂﬁ) C UCh(DX,/\/DX,)\Aj) C U,u_laj_l(()).
J J
O

Now we are ready to prove the following theorem stated in the in-
troduction.

Theorem 4.12. Let M be a Harish-Chandra module. Then Ch(M*) =
cu(Ch(M)).

Proof. We may assume that M is irreducible. Then we may assume
that M has an infinitesimal character yx, with A\ satisfying the con-
ditions (a) and (b) in Theorem 4.6. Set M = Dx x @y M. Then
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9 is a coherent (Dx 5, K)-module and I'(X;9) ~ M. Theorem 4.10
implies M* = I'(X; C,(9M)). By the preceding proposition, Ch(M) =
©(Ch(9M)) and Ch(M*) = u(Ch(Cx(9M))).

Now let us denote by SS(DR% (90)) the micro-support of DR (97)
(see [8]). Then by [8, Theorem 11.3.3], we have Ch(90t) = SS(DR (9M)).
On the other hand, we have

SS(cx DRx (M) = c7. < (SS(DRx (M))).

Here crx is the automorphism of 7* X induced by the automorphism
of X. Hence the theorem follows from the commutative diagram
T*X X T*X
w wi

cll

g — g

5. PROOF OF PROPOSITION 4.5

Let us denote by Q(X) the space of g,-finite function in I'(Zg; CZ (A, —woA)).
Since Zp is a homogeneous space of Gy, the functions in Q(\) is real

analytic, and they are the restrictions of functions in I'( Z,y; Og}\a:;” )0(231)

Since I'(Z; 0L V) is the space of G-finite vectors in T'( Zyy; Og?a;:’ )Of)a\r),)’
we obtain

P(Z;083") = Q).
The space Q(A) has a U(g @ g)-module structure, and f, is a unique
(up to a constant multiple) vector of Q(\) invariant by the diagonal
action of g.

Let us denote by M (A) the Verma module (with respect to by) with
highest weight A\, and by M*(\) the dual Verma module with highest
weight A\. Let us denote by M_()) the Verma module with lowest
weight A and by M*(\) the dual Verma module with lowest weight .
Namely, they are defined by

M) = Ulg)/(Ulgmo+ Y Ulg)(H — A(H))),

Hety

M_(3) = U(g)/(U(g)no+ > _ Ulg)(H — A(H))),

Heto
M*(\) = Homc¢(M (=), C)yfin,
M*(A) = Homeg(M(—A),C)iy—fin-
Here the subscript “ty-fin” means the space of ty-finite vectors.
Proposition 5.1. Q()\) ~ Hom¢(M(—A), M*(—X))g—fin-
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Proof. Let us denote by p the point (z¢,Zy). Then the formal comple-
tion of Oxy«x (A, —wpA) at p is isomorphic to

L :=Hom¢(M(—X) @ M_()\),C)

as a g ® g-module. Hence, Q()) is isomorphic to the space Ly gy of
g-finite vectors in L. Here, g acts on L by the diagonal action. On the
other hand, we have

L = Homg (M(—)\), Home(M_(—\), C)) .
Hence we obtain
Lg_ﬁn ~ HomC(M(—)\), M*(—)\))g_ﬁn.

d
The canonical morphism M (A) — M*()\) gives an element in Q(\)
This corresponds to fy.
The following result is due to Nicole Berline.

Proposition 5.2 ([3]). If \+p is anti-dominant (i.e. (A\+p, ") & Zg
for any o € A%), then Homc(M(X), M*(N))g—sin i generated by the
canonical element as a U(g @ g)-module.

In fact, because M(\) == M*(\) in this case and they are irre-
ducible, we can apply [3, Corollary 6.9, page 398|.

Combining these two propositions, we obtain the following result
stated in § 4.

Proposition 4.5. Assume that \ — p is integrally dominant. Then
the U(g @ g)-submodule generated by fy is dense in the Frechet space
['(Zg; CF, (A, —wo])).

Alternative proof of Proposition 4.5 We can prove Proposition 4.5,
by a different method. Let ¢;: Z — X be the first projection, and set
N = ¢1.(Oxxx (A, —woA)|z). Then N is a quasi-G-equivariant Dx -
module (see [4]). By Theorem 4.10.2 in [4], the category of quasi-
G-equivariant Dx y-modules is equivalent to the category of locally bo-
finite g-modules on which t; acts semisimply with characters in —A\+ P.
Now, the g-module corresponding to I is

s:ﬂ(CEO) = P(BZE(), Ox(—wo/\))

It is isomorphic to M*(—\) (e.g. by [7]). Since —A+p is integrally anti-
dominant, M*(—\) is isomorphic to M(—A). Hence M is isomorphic
to Dx . Therefore I'(Z; Ox« x (A, —woA)) is isomorphic to I'(X; Dx ).
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By this correspondence, f, corresponds to the identity in I'(X; Dx ) ~
U(g)x. Hence I'(Z; Oxxx (A, —woA)) is generated by f,.
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