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§0. Introduction. The notion of the g-analogue of universal enveloping algebras
is introduced independently by V. G. Drinfeld and M. Jimbo in 1985 in their study
of exactly solvable models in the statistical mechanics. This algebra U,(g) contains
a parameter ¢, and, when g = 1, this coincides with the universal enveloping algebra.
In the context of exactly solvable models, the parameter q is that of temperature,
and g = 0 corresponds to the absolute temperature zero. For that reason, we can
expect that the g-analogue has a simple structure at ¢ = 0. In [K1] we named
crystallization the study at g = 0, and we introduced the notion of crystal bases.
Roughly speaking, crystal bases are bases of U,(g)-modules at g = 0 that satisfy
certain axioms. There, we proved the existence and the uniqueness of crystal bases
of finite-dimensional representations of Uy (g) when g is one of the classical Lie
algebras A4,, B,, C, and D,. K. Misra and T. Miwa ([M]) proved the existence of a
crystal base of the basic representation of Uy (4") and gave its combinatorial
description.

The aim of this article is to give the proof of the existence and uniqueness theorem
of crystal bases for an arbitrary symmetrizable Kac-Moody Lie algebra g. More-
over, we globalize this notion. Namely, with the aid of a crystal base we construct
a base named the global crystal base of any highest weight irreducible integrable
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U,(g)-module. In the case of 4,, D,, and E,, this coincides with the canonical base
of Lusztig introduced in {L1]. (Cf. [L2].)

Let us explain more precisely our results. Let U,(g) be the g-analogue of universal
enveloping algebra. (Cf. §1.1.) For an 1ntegrab1e U,(g)-module M (cf. §1.2), we
introduce the endomorphisms & and f; of M. (Cf. §2. 2) Then we define the notion
of crystal base of M. (Cf. Definition 2.3.1.)

For an integral dominant weight 4, let V(1) denote the irreducible U,(g)-module
with highest weight 1. Let u, be the highest weight vector of V(1). We denote by A4
the ring of rational functions in the variable g regular at ¢ = 0. Let L(4) be the
smallest sub—A-module of V() that contains u, and that is stable by the actions of
f Let B(4) be the subset of L(4)/qL(4) consisting of the nonzero vectors of the form
f . f,,u , mod gL(4). Our first main result is an existence theorem.

THEOREM 2 (existence). (L(4), B(4)) is a crystal base of V(A).

Similarly to the case of an integrable U,(g)-module, we define the endomorphisms
& and f; on U, (g). (Cf. (3.5.1).) They satlsfy &.fi = 1. Here U, (g) is the subalgebra
of U,(9) generated by the f;. We denote by L(o0) the smallest sub-A-module of
U, (g) that contains 1 and that is stable by the actions of f;. We denote by B(0) the
subset of L(o0)/qL(c0) consisting of vectors f fh 1 mod gL(c0). Then (L(c0), B(c0))
has a similar property to crystal bases.

THEOREM 4. We have that

(i) &L(o0) = L(c0), fiL(c0) = L(c0), and &B(0) = B(oo) L {0}, f;B(0) = B(c0);
(ii) B(o0) is a base of L(00)/qL{00); and
(iii) if b € B(co) satisfies &b # 0, then b = f,&,b.

The relations of (L{c0), B(o0)) and (I{A), B(1)) are given by the following theorem.

THEOREM 5. Let m,: U, (g) — V(A) be the U, (g)-linear homomorphism sending 1
to u;. Then

(1) my(L(c0)) = L(4).
Hence m, induces the surjective homomorphism 7;: L(c0)/qL(c0) = L(4)/qL(4).
(i) By =;, {b € B(co); T,(b) # O} is isomorphic to B(4).
(iii) fio Ty = 7, o f;.
(iv) If b € B(0) satisfies 7;(b) # 0, then &7,(b) = &,(E;b).

These three theorems are proven simultaneously by the induction on weights.
The good behavior of crystal bases under tensor products plays a crucial role in the
course of the proof.

Thus, we can construct bases of U, (g) and V(4) at g = 0. Similarly, we can define
bases at ¢ = oo. Then we can define bases of U, (g) and V(4) which give the crystal
bases at ¢ = 0 or co. Let U7 (g) be the sub-Z[q, g~*]-algebra of U,(g) generated by
the f;”, introduced by Lusztig. Let — be the ring homomorphism of U, (g) given
by 4= q7%, f; = f;. Let us denote by V,(4) the Uz(g)-module U; (g)u; and let —
denote the automorphism of V(1) defined by Pu, = Pu, for any P € U, (g).
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THEOREM 6. (Q ® Uz (8)) » L(00) N L(00)™ 53 L(00)/qL(0) and (Q @z Vz(4))
A L(A) n LA™ = L(1)/qL(4) for any integrable dominant weight A.
Let b G(b) be the inverse of these isomorphisms. Then we have another theorem.
THEOREM 7. Let n be a nonnegative integer and i € I.

(i) We have

U7 (@U@= @ Zlg,q1Gb).

be frB(w)

(ii) For any dominant integral weight 4, we have

V)V = @  ZIg 9 '1GD).

beB(2) nf7B(A)

These results were announced in Comptes Rendus ([K2]).
The author would like to acknowledge E. Date, M. Jimbo, T. Miwa, T. Nakash-
ima, and T. Tanisaki with their discussions related to this subject.

PART I. CRYSTALLIZATION

§1. The g-analogue of universal enveloping algebra

1.1. Definition of U,(g). We shall review the definition of U,(g). Suppose that the
following data are given.

(1.1.1) a finite-dimensional Q-vector space t,
(1.1.2) a finite index set I (the set of simple roots),
(1.1.3) a linearly independent subset {«; € t*; i € I'} of t* and

asubset {h;et;iel}oft,
(1.1.4) a (Q-valued) symmetric form ( , ) on t*, and
(1.1.5) a lattice P of t*.
We assume that they satisfy the following properties.
(1.1.6) <h;, o;) is a generalized Cartan matrix (ie. <h;, 0> =2, <h;, > € Z ¢
for i#£]j and Chyy oy = 0 Chy, 0 = 0).

(117 (o, )€ Zsy.



468 M. KASHIWARA

2(0x, 4)

(1.1.8) <hy, A = )

for any i and Aet*.

(1.1.9) «;eP and hye P*={het;<h, P> = Z} for any i.
Hence {{h;, a;>} is a symmetrizable generalized Cartan matrix. Let g be the asso-
ciated Kac-Moody Lie algebra; i.e., g is the Lie algebra generated by t, ¢,, and f;
(i € I) with the following fundamental commutation relations.
(1.1.10) t is an abelian subalgebra of g,
(1.1.11) [h el =<hape,  [hfil= —<hadf,
(1.1.12) Lei, ;1 = 0k, and
(1.1.13) (ade;)t = Mo, = (adf)!~Peef, = 0 for i#j.
Then the g-analogue U,(g) of the universal enveloping algebra U(g) is by definition
the algebra over the rational function field Q(g) generated by the symbols e, f; (i € I)
and g" (h € P*) with the following fundamental commutation relations.
(1.1.14) ¢*"=1 for h=0.
(1.1.15) q*q" =q"*™"  for  h, h' € P*.
(1.1.16) g*eq™"=q"*e; and  g"fiq" =g P
for he P* and iel.

t. — !
(LL17) Settingq; = ¢  and £ =q®=h,  [e,f]=06; .
J Jq_ _ q 1

(1.1.18) Fori #j, setting b=1~—<h,a),

M

b
(= 1releel™ = 3 (—1PFOLA0 =0,

n

Here we set

n

(1.1.19) (], = 29t = 1T 161,
q; — 4q; k=1

nt [n];!
[m:li = 7[m],~![n m_— fornzm>=0and



CRYSTAL BASES 469
e = ef/[n]), i = f"/[n]:!.

We understand e = £ = 0 forn < 0.
Note that we have

(1.1.20) gl = gfhead = g2ees),

Let U, (g) (resp. U, (g)) be the sub—Q(g)-algebra of U,(g) generated by the e; (resp.
£.). Then we have (cf. [L1], [L2], [L3]1)

(1.1.21) U0 = U; (9 & Q@ P*] K U (9)-
Q) 0@
Here Q(q)[P*] is the group ring @, »+Q(q)q" We set

1122  0=YZ0,0,=Y7Z5% and Q-=—0Q..
We use frequently the formula

(1'123) tiejti_l — qi<hi,¢j>ej, tlfj‘tl—l — qi—<hi,¢j>f} and

qf'_mt.

_ —k),(n—k) ) i i

e fm = Z fm=R o= L ]
k=20 i

Here we use the notations

1, ] tai )

(1124) {x}h=(x—-x")g—q¢") and { =Tl

niy.

Hence we have

F form=n>=0,
qa 0 forn>m>0,
1.1.2 =
( ) { n }i (=1L ™) fornz0>m,
1 forn = 0.
Note also that
(1.1.26) [n]te qi—"(n—l)IZ(l + gA) and

[7:] eq"m (1 +qA) for m>=nz=0.

Here A is the subring of Q(g) consisting of rational functions without poles at g = 0.
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We have
(1.1.27) 2P,Q)c Z,
(1.1.28) A ez for any AeQ,
(1.1.29)

ALA—(uwwez for any AuebP such that A—uneqQ, and
(1.1.30) 2015 A2) — 2py, mp) € Z
for any A u;€ P such that Ai—~weQ(j=12).

In fact, (1.1.27) follows from (1.1.7) and 2(4, &) = (o;, ;) <h;, ), (1.1.28) follows from
(1.1.7) and 2(Q, Q) < Z, (1.1.29) follows from (4, ) — (u, ) = (A — p, A — p) + 2
(4, 4 — w), and finally (1.1.30) follows from 2(4,, A,) — 2(uy, py) = 2(A; — g, A,) +
2(uy, A — pp) and (1.1.27).

Remark 1.1.1. We may replace the inner product ( , ) on t* with ¢( , ) for a
positive integer c¢. This gives the same effect as replacing q with ¢°.

1.2. Integrable representations. Let M be a U,(g)-module. For any 4 € P, we set
1.2.1) M,={ueM;q"u=q*"u  forany heP*}.
We say that M is integrable if M satisfies the conditions that

(122) M=@M,,

AeP

(1.2.3) dim M, < o0 for any A, and
(1.2.4) for any i, M is a union of finite-dimensional U,(g;)-modules.

Here U,(g;) is the subalgebra generated by e; and f;. In this paper we consider only
integrable representations. Note that the condition (1.2.3) is less important and that
most of our results hold without this condition.

Remark that for any a € P/Q, letting p be the projection P — P/Q,

(1.2.5) Mu= @ M,

Aep~la)

is a U,(g)-module and M = @, M,
We set

(1.2.6) P, ={AeP;<h, Ay =0 for any iel}.
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Let 2 € P, and let ¥(4) be the irreducible U,(g)-module with highest weight 4. Let
u, be its highest weight vector. Then we have (cf. [L1], [L2], [L3])

(127 vy = Uq(g)/<z U (g)e; + Zh: Uy(9)(q" — g™») + Z U (@it "2

zq@ﬂ@%@M“%”

Let 0,,, denote the category of integrable U, (g)-modules M such that there exists

a finite subset F of Pwith M = @, . r.o_M,. Thenitis known (cf. [L1], [L2], [L3],
[R]) that O, is a semisimple category and that its irreducible objects are isomorphic
to some V(A).

1.3. Automorphisms of U,(g). We denote by * the antiautomorphism of U,(g) as
Q(g)-algebra given by

(1.3.1) e¥=e,f*=f and (¢"*=q".

We denote by — the automorphism of U,(g) given by

(13.2) e=e, fi=f, d'=q"

(1.3.3) alqu = alg)u for any a(g) € Q(q) and u e Uya).

We can check easily that they are well defined. They preserve U, (g) and U, (g).
Moreover, we have

(1.3.4) —— =sx=id and @ *— = —-.

1.4. Comultiplications. We shall define two comultiplications A.: U/(g) —
U,(g) ® U,(g) that satisfy the coassociative law:

Ul —— U0 Ue
(14.1) Ax As®id
Uy(6) ® Uyl9) ——5 U,(6) ® U,(6) ® U,(s)
is a commutative diagram.
(1.4.2) A(@"y=4q"® 4",
Ae)=eR1+1,®e;,

A()=fi®t* +1®f;
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(14.3) A (@) =q"®4",
Ale)=e,®t+1®e;,
A_(f)=£i®1+48f.

The well-definedness of A, and (1.4.1) can be easily verified. These two comultiplica-
tions are related as follows. Via A, the tensor product M ® N of U, (g)-modules
M and N has two structures of U, (g)-module. We denote by M ® . N the U,(g)-
module M ® N via A, . Now assume that M and N have weight decomposition

(1.4.4) M=@M, N=@N,.

AeP AeP

Assume that 2(P, P) = Z for the sake of simplicity. Then we define
(1.4.5) Ooun MO _ N-ME, N

by oy ® v) = **Pu® v)forue Myandve N,.
Then we can check easily that ¢, y is a U,(g)-linear isomorphism. Moreover, if
(4, A) € Z for any A € P, we define y,, € Aut(M) by

(1.4.6) Yp() = g% u for ueM,;
then the following diagram commutes:
M®_ N -2, M®, N
(14.7) l'ﬁ»f@_:v Iu® g ll/'zw@w
M®_ N — M®, N.

We leave the verification to the reader. Note that we can endow the structures of
Hopf algebra on U,(g) with A, as comultiplication.

Remark 1.4.1. 1If 2(P, P) = Z is not satisfied, then, assuming M = M, and
N = Ny, (a, b e P/Q and i, € p~'(a), po € p~*(b), see (1.2.5)), replace 2(Z, p) in the
definition of @y y by 2(4, u) — 2(Ao, p1o) and replace —(4, 1) in the definition of ¥,
by —(4, A) + (Lo, 40)- Then 2(4, ) — 2(4y, o) and —(4, 1) + (4, 4o) are integers by
(1.1.29) and (1.1.30), and hence ¢, y and ¥, are well defined.

§2. Crystal base

2.1. Upper and lower crystal bases. In [K1] we introduced the notion of crystal
base. We shall call it upper crystal base, and we shall introduce here lower crystal
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base. We shall see later that they are related as follows: (L, B) is a lower crystal base
of M if and only if y,,(L, B) is an upper crystal base.

2.2. Operators & and f;. Let M be an integral U,(g)-module. Then by the theory
of integrable representations of U,(sl,), we have

(2.2.1) M= @ fKerenM,).
iy

0<n< (hy,
We define the endomorphisms &,, f; of M by
22.2) fi( fiPy) = £y and E(f;Pu) = f" Dy
forueKere;n M, with 0 < n < {h;, A).
Similarly, we have

(2.2.3) M= e (Ker f;n M,).

osng —(hy,pd
These two decompositions are connected as follows:
224) fosn<<h, 2y andueKere,n M,,
then v = f"*)y belongs to Ker f; n M, ;) and f;"u = &{<he-2>"myp,
Here s;(1) = 4 — {h;, A)>a;. Hence we obtain
(2.2.5) file™v) =€ Vv and  E(efv) = ey
forveKerf,n M, with0 <n < —<hy, p).

Note that f(f{"”u) = £;"*Vu and &(ef”v) = e*Vv hold whenever e,;u =0 and
fiv=0.

2.3. Crystal base. Let M be an integrable U,(g)-module. Let 4 be the subring of
Q(q) consisting of rational functions regular at ¢ = 0.

Definition 2.3.1. A pair (L, B) is called a lower crystal base of M if it satisfies the
following conditions:

(2.3.1) L is a free sub-A-module of M such that M =~ Q(q) ®, L,
(2.3.2) B is a base of the Q-vector space L/qL,

(2.3.3) &L c Land f,L c L for any i.
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By this f; and &; act on L/qL.

(2.3.4) EB<Bu{0} and fBcBu{0}.
(2.3.5) L=@L, ad B=|]|B
AeP AeP

where L, = LM, and B,=Bn(L,/qL,).
(2.3.6) For b, b’ € B, b’ =fibif and only if b = &b’

Let us study elementary properties of crystal bases.

PROPOSITION 2.3.2. (i) For (4, n)e P x Z with0 < n < <h;, 4), let a; .(9), b (@)
be an element of 1+ qA. We define endomorphisms & and f; of an integrable
U,(g)-module M by

@3.7) R0 = af (@ fi
&) = b, ()"
forueXere;n M, with0 < n < {h, ).

Then the definition of lower crystal base obtained by replacing é; and f; with & and
fi is equivalent to the original one.

(i) Let (L, B) be a crystal base. Let 2 € P and let u =Y f"”u, be an element of L,
with u € Ker ¢, My, 0 <1 < (hy, A+ na). Then

(a) all u, belong to L,

(b) if umod gL belongs to B, then there is ny such that u, € gL for n # ny,
u,, mod gL belongs to B and u = f"u, mod qL, and

(c) & =& and f; =f,on L/qL.

Proof. Let L be a sub—A-module of M such that &L c L, fifLc L and
L = @®,.pL,. We shall show first that, if u =) I_, f;*u, belongs to L;, eju, =0
and u, = 0 except when 0 < n < <h;, 4 + na;), then u, belongs to L. We argue by
the induction on N. If N = 0, this is trivial. If N > 0, then

N
— i —1)
- Z al+mx,~,nf;(n un € L
n=1

Hence, by the hypothesis of the induction, a“,,, .U, belongs to L for n > 1. Since
@} 4na,,n 1S an invertible element of 4, u, belongs to L for n > 1. Then fi"u, is a
multlple of £y, by an invertible element of A. Therefore, f;"u, belongs to L for
n > 1. Hence u, belongs to L. Thus we have proven that all u, belong to L. The rest
of the statements are its direct consequence except (i) (b). We shall prove (ii)(b) by
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the induction on N. If N = 0, then it is trivial. If u = Y, f# Yy, e gL, then
u,eql for n > 1 and u = u, mod gL. If &u ¢ gL, then &u mod gL belongs to B.
Hence there is ny = 1 such that u, € gL for n # ny by the hypothesis of induction.
Hence &u = f;" Yy, . By (2.3.6), u = fig;u = f"u, . QE.D.

_2.4. Upper crystal base. For any integrable U,(g)-module M, we define & and
f asin [K1]:

A= ‘1i~1 6+ gt + (g — Qi_l)zeifi —2,¢ = (qitiAi)_llzei and f;’ = (‘Iiti_lAi)—l/zﬁ-

We say that (L, B) is an upper crystal base if (L, B) satisfies the conditions in
Definition 2.3.1 with &/ and f, instead of & and f;. Then for A€ P and n with
0 < n< {(h, A) we have

& f"u = g2~ R A(L — gl D)1 — gD (] g2)ifeety,
f”i,fi(n)u _ qi—1+<h‘»,l>—2n(1 o qi1+<h,-,/1>)—1(1 o in"+2)(1 _ qiz)—1fi(n+1)u
for u € Ker ¢; n M,. Hence we have, assuming (u, u) € Z for any p € P,
Uad e fiu = (1 = g+ )L = gEh DTN (1 - gB) by
and
UM g S = (1 — g R P) (L — @) — g2) O,
Hence, by Proposition 2.3.2 we obtain the following lemma.

Lemma 2.4.1. (L, B) is a lower crystal base if and only if Y, (L, B) is an upper
crystal base.

Moreover, Proposition 6 in [K1] and (1.4.7) imply the following theorem.
THEOREM 1. Let M, and M, be integrable U,(g)-modules and let (L;, B;) be a lower

crystal base of M;(j=1,2).Set L=L, ®,L, = M; ® M, and B = {b; ® b,; b;e B;
(j=1,2)} = L/qL. Then we have the following.

() (L, B) is a lower crystal base of M{ ® - M,,.
(ii) For b, € B,,b, € B, and i € I, we have

fi(b1 ®b,) = {.lf}bl ® b, if thereexistsn = 1such thatf"b # 0and &b, = 0;
1

fib, otherwise.

b, ® &b, if thereexistsn > 1suchthat &b, # 0and f*b, = 0;

gi(by ®b,) =
&by ®b,) {gibl ® b, otherwise.
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We can rewrite the formulas in Theorem 1 (ii) as follows. For a lower crystal base
(L, B) and b € B, we set

(2.4.1) g,(b) = max {n; &'b # 0} = max{n; b € f;"B}
@i(b) = max{n; f"b # 0} = max{n; b € &'B}.

Then we have

(24.2) (hy A = @ib) — &(b) for beB,.

In fact, by Proposition 2.3.2 there exists n > 0 and u € L., such that b = f®u
mod gL and e;u = 0. Hence, if we set b’ = u mod gL, then &b’ = 0,b = f"b’, b’ # 0
and b’ =é&rb. Hence n=¢(b). Set [ =<h;, i+ no)=0. Then u=e®fOu,
£4+1y = 0. Hence, f;*1b' = 0, b’ = &' f'b’, and f'b’ # 0. This shows @,(b) = [ — n.
Therefore, we have @,(b) = (h;, > + n = <{h;, A) + &4(b), which shows (2.4.2).

Now (ii) can be rewritten as

7 _ J};b1 ® b, ifgi(by) > &ib,);
(243 Jilby ®b;) = {bl ®fiby ifei(by) < &(b,).

€b, ® b, ifgby) = eib,);

Z(b:® by) = {bl ® &b, ifeby) < &(by).

In particular, for i € I, integrable U,(g)-modules M, M, and u; € (M), such that
eu; = 0(j = 1, 2), let L be the A-module generated by f;"u; ® f;™u,(n, m > 0).
Then we have, modulo gL

~ Dy @ f™u, for<hy, > —n > m;
244)  F(f™ )= J I B L b M :
GA4) I ©f ) {fi(")ul ®f " Pu, forlh, Ay —n<m.

£, @ fiMu,  for (hy, 4> —n=m;

Ei(fi(")ul ®fi(m)u2) = {fi(")lh ®fi(m_1)u2 for <hia /11> —n<m.

Here we assumed 0 < n < <h;, ;> and 0 < m < (h;, 4,). This is obtained by
applying Theorem 1 to the sl,-case. (Cf. [K1].)

2.5. Inner product. Let M be a U,(g)-module. Let (,) be a bilinear symmetric
form on M satisfying the property that

(2.5.1) (q"u, v) = (u, g"v),
(fiu, v) = (u, g7 t;e,0) and

(eiu’ v) = (U, qiti_lﬁv)-
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LemMa 2.5.1. Let M; (j = 1, 2) be two U,(g)-modules and let (,) be a bilinear
symmetric form satisfying (2.5.1). Define the bilinear symmetric form(,)on M, ®_ M,
by

(2.5.2) (1 ® uy, v, ® ;) = (uy, uy)(vy, v,)
Sor u;, ;€ M;.

Then (,) on M; ®_ M, satisfies (2.5.1).

The proof is straightforward.
For 1 € P, there exists a unique bilinear symmetric form (,) on V(1) satisfying
(2.5.1) and

(2.5.3) (uy, 1) = 1.

This is an easy consequence of (1.2.6) and the fact that g*— g", fir>q;  t,e;, ;>
g;t;” f; defines the antiautomorphism of U,(g).

Let 4, u € P, andlet ®(4, p): V(A+p)— V(1) ®_ V(p)and W(4, w): V(A) ®_ V(w)—
V(4 + w) be the unique U,(g)-linear homorphisms such that

(2.5.4) QA 1) (Uz4,) =u;, @u,
YA, ), @u,) =uzy,.

Then we have

(2.5.5) WA, 1) o (4, @) = idy ey -

Let (,) be the bilinear symmetric forms on V(1 + ) and V(1) ® V(u) defined as
above. Then we have

(25.6) (P W), u) = (w, (4, 1) ()
for weV(A)®@ V() and ueV(i+ p.

This follows easily from the uniqueness of a bilinear form (,) on (V(2) ® V(1) x
V(A + p) satisfying (2.5.1) and (1, ® Uy Ugey) = 1.

2.6. Existence and uniqueness theorems. Hereafter, crystal base means lower cry-
stal base. Let A € P, and let V(A) be the irreducible U ,(g)-module with a highest
weight vector u, with weight 1 as in §1.2. Let L(1) be the A-module generated by
fll f,lu 1 Let B(4) be the subset of L(4)/gL(4) consisting of the nonzero vectors of
the form f f,lu 2

THEOREM 2. (L(4), B(A)) is a crystal base of V().
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The proof will be given in §4.
The following theorem is proven in [K1] under the assumption that Theorem 2
holds.

THEOREM 3 (uniqueness). Let M € 0,,, and let (L, B) be a crystal base of M. Then
there exists an isomorphism M =~ @; V(4;) by which (L, B) is isomorphic to @;,(L(4)),
B(4))).

We shall give here a simpler proof of this theorem admitting Theorem 2.
LeMMA 2.6.1. Let A€ P,. Then

(i) {ue L(L)/qL(A); &u =0 for any i} = V(),, and
(ii) {ue V(L) &ue L(A) for any i} = L) + V(4);.

Proof. (i) It is enough to show that for p # A and u e (L(A)/qL(4)),, if &u =
for any i, then u = 0. Let us write u = Zbem) a,b with a, € Q. Then, for any i,
{b € B(A),; &b # 0} > B(2),4,, by b &b. Hence )’ a,é;b = 0 implies a, = 0 when
&b # 0. Since all b € B(1), have some i with &b # 0, all g, vanish.

(ii) For u # A and u € V(4), with &u € L(2) for any i, we shall show u € L(A). Let
us take the smallest n > 0 such that u € g "L(4). Assuming n > 0, let us derive the
contradiction. Set b = g"u mod gL(A). Then &b = 0 for any i. Hence b = 0 by ().
Therefore u € g "L(4), which contradicts the choice of n. Q.ED.

LEMMA 2.6.2. Let A € P, and Lbe a sub—A-module of V(4)suchthat L= @, p L,
and L, = Au,.

() If fiL = L for any i, then L(J) = L.
(ii) If &L < L for any i, then L c L(4).

Proof. Part (i) is obvious. In order to prove (ii) let us show L, = L(4),. By the
induction on u, we may assume that p # 4 and L., < L(4),.,, for any i. Hence
&L, < L(%) for any i. Then the preceding lemma implies the desired result
L, c L(A),. Q.E.D.

Theorem 3 is easily reduced to the following lemma.

LEMMA 2.6.3. Let M € Ob(0,,,) and i € P, such that M;,, =0 for any i. Let
(L, Bybeacrystalbase of M. Let M = N; @ N, with N; = Uy (@)M,.SetL;= N,n L,
B; = B (L;/qL;). Then we have

(2.6.1) L=L,&®L,, B=B;L1B,,
(2.6.2) (Ly, B) = (L(A), B(2))® ™M,

Proof. Since N; = V(1)¢ ®B: and (N,), = M,, N, has a crystal base (L, B) such
thatL, = L,, B, = B;and (L, B) ~ (L(}), B(A))GBB* Then the preceding lemma holds

by replacing (L(4), B(4)) and V(4) with (L, B) and N,. Hence L, = L. Moreover, p
is the projection M — N, (L) = L. Then they imply L = L, @ L,. Now, we shall
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show B, = Eu U(B,), for any pe P. If u is not a weight of V(4), then this is
trivial. Hence we may assume p € 4 + Q _. If 4 = A, this is also trivial. Hence by the
induction of u, we may assume u # 1 and B,,, < BUB, foranyi. Forbe B, write
b =uy + u, withu; € L;/qL;. Ifu; = 0, then there is nothing to prove. If u; # 0, then
there exists i such that &;u, # 0 by Lemma 2.6.1. Since &b = &u, + éu, € B, =

B, 14, L1(B3)u44,, We obtain &b e EHM‘,. Hence b = f;¢;b € B. Thus we obtain B =
BLIB,. Since B B, and B, N B, = ¢, we have B, = B. Now the rest of the steps
are straightforward.

Thus Theorem 3 is proven under the assumption that Theorem 2 holds.

§3. Crystal base of U, (g). In this section we shall define the crystal base of
U, (g9). We regard U, (g) as the projective limit of V(4). Then the endomorphism
t;e; on V(1) converges to an operator on U, (g) with respect to the g-adic topology.
With this operator we can define the notion of crystal base on U, (a).

3.1. Q-analogue of boson. Let # be the algebra over Q(q) generated by two
elements e and f with fundamental relations

(3.1.1) ef =q *fe+ 1.

If we put g = 1, then this is a commutation relation of boson. The commutation
relation (3.1.1) implies

(3.1.2) efm = z": g~ 2mmtntmy=(v(v~1)/2) [”:I fm=vgn=y,

v=0 v

Here we set

wm _ ) JS"/m]! form = 0;
=%

form < 0.
3.2. Decomposition of B-module. Let M be a #-module such that
(3.2.1) for any u € M there is n > 1 such that ¢"u = 0.
We define the endomorphism P on M by
(3.2.2) P =) (=1)yqg o= f@en

PrOPOSITION 3.2.1.  Let M be a B-module satisfying (3.2.1).

(a) For any u e M there exist unique u, € M (n > 0) such that

(3.2.3) eu,=0 foranyn,
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(3.24) u=0  forn»0,
422 w=3

(b) We have u, = q""~/? pe™y,

(c) M=1Im f®Kere.
(d) P is the projector onto Ker e according to the direct sum decomposition in (c).

Proof. We shall prove first
(3.2.6) Pf=eP=0.
We have
Pf =Y (—1yq =2 feigng

= z (_1)"q—("(n“l)/Z)f(n)(q—anen + ql—n[n]en—l)
= Z (_1)nq—(n(n—1)/2)—2n[n+l]f(n+1)en+ Z (_1)n+1q—(n(n+1)/2)—n[n+1]f(n+1)en
n=0 . nz0

=0,
and
eP =3 (~ g V(g 2 Ve 4 g V)"
— Z (_ 1)nq—(n(n—l)/2)—2nf(n)en+1 + z (_ 1)n+1q—((n+1)n/2)—nf(n)en+1
=0.
Hence we have (3.2.6). Now we shall show
3.2.7) 1=Y g2 fmpen,

We have

f(n)Pen — Z (_ l)mq-—(m(m—-l)/Z) [Yl + mjlf(n+m)en+m

n

I

(_ 1)m+nq—((m—n)(m—n—1)/2) I:m:lf(m)em
n

mzn

(_ 1)m+nq—(n(n—l)/2)+(m—1)n—(m(m—l)/Z) [m:lf(m)em .
n

mzn
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Hence (3.2.7) follows from Y 7, (—1)"[7]q™ V" = 0, which is a consequence of

(3.2.8)

=
gk

(_ l)n I:;::| x" = l'jl (1 _ q—l—m+2vx).

Thus it remains to prove the uniqueness of u, and (b). Assume eu, =0 and
> S ®u, = u. Then we have for any n

eu=y e"f™y,

m

_ —=2nm+v(n+m)—(v(v—1)/2) h
= Z q y

:|f(m—v)en-—vum

Since Pf™ ™Me" "u,, = 0 except n = m = v, we obtain Pe"u = g~ ™~ 1/2)y
QED.

3.3. The reduced q-analogue. Let %,(g) be the algebra generated by e/, f; (i € I)
with the commutation relations

(3.3.1) eif;=aq; " fel + 5.

(3.3.2) Fori # j,settingb =1 — {h;, o;),

i( I)n[] mr/anZ( l)nlijl nffbn_

We call #,(g) the reduced g-analogue. Then 4,(g) has the antiautomorphism a
defined by

(3.3.3) a(f) =e; and ae;) = f;.

3.4. #(g)-module structure on U, (g). Let U, (g) be the subalgebra over Q(q) of
U,(g) generated by f;. Then by [L1], [L2], [L3] the fundamental relations of f; are

(3.4.1) Z(—l)"[ <h"w]fffl BDN=0  for Q).

LEMMA 3.4.1.  For any P e U, (g) there exist unique Q, R € Uy (g) such that

50 — ;'R
(34.2) [e;, P = —~—'Q '_1
q; — 4g;

Proof. The uniqueness follows from (1.1.21). Since U, (g) is generated by the fi
and the lemma is true for P = 1, it is enough to show that if the lemma is true for
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P, then the lemma is true for f;P. Assume (3.4.2). Then

— ¢t (1.0 — t;1
y(t; t—ll )P+];(tlQ t:1R)'

[eia fJP] = [ei’.f_}]P + f]"[ei: P] =
q; — 4q; qi — 4q;

Hence we obtain

ti(qi<hi’1j>f}Q + 0;P) — ti_l(q;<h"aj>f;'R + 0;P)

343 » ;P =
(43 [enfiP] L

QED.

By this lemma, if we set Q = €/(P) and R = ¢/(P), then ¢; and e are endomorphisms
of U; (g). Moreover, (3.4.3) gives

(3.4.4) e/f; =g fef +6; and e f;=qi "V fie] + .

Here f; acts on U, (g) by the left multiplication.

LEMMA 3.4.2. U, (g) is a left B,(g)-module.
H - . b m ¢ th— :
Proof. Tt remains to prove that fori #j,$ =Y (—1) " e{"eje;””" vanishes as
an endomorphism of U, (g). Here b =1 — {h;, o;). In order to see this we shall
calculate the commutation relation between S and f,. We have by (3.1.2)

e"f, = qi "MOfiel + 6yqi "[nlie" .

Hence we have (see (1.1.20) and note g; »* = ¢}™!)
b
Sfe=2 (=1 l:"] ei"ej(qr OV NN feP™" + Sy qi TM[b — nlie” ™)
b —(b— i — (B0 ’ h—
=y (—1y |:n:|.ef"(¢1i ® ")<h"a">(61j Giaof el + Gy el ™"
+ 8yqi "' [b — nlieje !

b e N — - —_ : 1, - m-— I tD—
= Z (= |:n:| {Qi e ")<h"ak>qj' <h"ak>(‘1i "<h"1k>fkei" + 5ikqi1 "[n];e" l)ejeib "
i

+ 8 q; OV PomOe + 5, Vb — n)ief"eje)) "
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- b - m—1 1 tb—n
= g Pt IS + Gy Y (— 1) |:n:|,qin *[n]ie" lejel”
b
+ Oy 2,(— 1y [n] q; """ b — n]ie{"e}efb_"—l
n b ~(b—n)<{h;,a;> ,1b
+5jk§,(—1) n 4 ve.

b .
Since[ _l:_ J qr 1 +n]; = [ :I q! ~"*"[b — n];, the second term and the third
n ; n |;
cancel out. The last term vanishes by (3.2.8). Thus we obtain
(34.5) Sty = g 2 Mo~ head g g

Then S = 0 follows from (3.4.5) and §-1 = 0. Q.E.D.
The following lemma makes explicit a #,(g)-module structure on U, (g).
LemMA 3.4.3. U7 (8) = B,(0)/Y: B,(9)e].

Proof. Since 1 is annihilated by e, we have a surjective morphism
%@ﬂ;%@dﬁqm»
If C is the subalgebra of %,(g) generated by f;, then we have
C5 A9 / % B, (@)el 5 Uy (q).

It is clear that y and ¢ are surjective. By the fact that (3.4.1) is the fundamental
relations of U, (g), ¥ o ¢ is an isomorphism. Hence ¢ and ¥ are isomorphisms.
Q.E.D.

PROPOSITION 3.4.4.  There is a unique symmetric form( , )on U, (g) such that
(3.4.6) (fin, v) = (u, €jv),
1L, n=1.

Proof. The uniqueness is clear. We shall prove the existence. Let us endow
M = Hom(U, (g), Q(g)) with the structure of a left #,(g)-module via a; i.., we have

(3:4.7) (fi0) (W) = oleiu)
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(eip)() = o(fiu)
forue U, (g) and peM.

Let ¢, be an element of M such that

(3.4.8) oo(l)=1 and @, (ZﬁU;(g)> =0.

Since e;@, = 0 for any i, we have a homomorphism

(349) wwwz%@ﬁﬂmM»M

which sends 1 to ¢q.
Now, we define a bilinear form ( , )on

(3.4.10) (u, v) = (Y W) () foru,ve U, (9).

Then we have

(3.4.11) 11)=1
(fiu, v) = (u, e;v) and (efu, vy = (u, fiv).

One can see easily that such a bilinear form is unique. Since (u, v) = (v, u) satisfies
the same condition, ( , )is symmetric. Q.E.D.

For (e Q_, we set
(34.12) U;(g:={PeU;(@;q"Pq"=q™¥P foranyhe P*}.

If P is an element of U, (g)., then we say that ¢ is the weight of P.

PRrOPOSITION 3.4.5. Fori,j e I, we have
eje] = gi"efe; in  End(U; (9))-
Proof. For kel wehave
i) f = ellaffee] + )
= g (q; Wefie; + Ou)e] + Gei

_ q;(hk,ai)+ <""‘“f>fke’e}' + 5kiqi<h.~,aj>e}/ + 5jke£.

i
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Similarly, we have
eje; fi = g™ Mot elel + 8;q; M e) + Syef.
Hence, if we set S = eje] — gf*»*’¢]e;, then
ka — qéhk’aj>_<hkvai>f;cs.

Then S-1 =0 gives S = 0. Q.E.D.

COROLLARY 3.4.6. Leticl and let P be an element of U, (g) of weight £ Q_
which satisfies e;P = 0. Then for any element u with weight A€ P of a U, (g)-module
such that e;u = 0, we have
n(2<h;, A+E>+3n+1)

q;

tle!Pu = (e/"P)u.

(4 — )
Proof. We shall prove it by the induction on n. We have
ti el Py = t;t]e;ef Pu
= gi"t;e;t]efPu
= g AT, — gy g e e Pu.

Since

tie(e/"Pyu = t;[e;, e/"Plu

_ tie{"'p — e{e,f"'Pu

4 —q;
By the preceding lemma we have eje/”P = 0. Hence we obtain
tin+lelp+1Pu — qlp(Z (h,-,ﬂ.+§)+3n+3)(qi _ qi—l)—n—lin (h,~,l+<§+(n+1)a,~>(el{m+1P)u.
Then the assertion follows from
n(2<hy, A+ &> +3n 4 3) + 2(<h, A + &) + 2(n + 1))
=m+ 1)Q2<h, A+ & +3n+4). Q.E.D.

We shall prove that the inner product on U, (g) is nondegenerate.

LEMMA 3.4.7. Let P € U;(g). Then, if e;P =0 for any i, then P is a constant
multiple of 1.
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Proof. We may assume P € U, (g),. We shall prove it by the induction of |£].

Here [£] = ) |ny| for & = ) n;a;. We may assume £ # 0.

(a) Case |¢] = 1. In this case, P has the form cf; for some i and ¢ € Q(g). Therefore,
c=eP=0.

(b) Case |¢| > 1. For any j e I, we have eje/ P = q{""*%’¢]e;P = 0. Hence ¢/P =0
by the hypothesis of the induction. Hence ¢;P = Pe; for any j. Now let 4 € P,
satisfy (h;, A > 0 so that U, (g); =3 V(4)z4¢ by the homomorphism U, (g) 2
Q+> Qu,. Then e;(Pu;) = 0for any j. Since V(2)is irreducible and U, (g)Pu; does
not contain u;, Pu; = 0 and hence P = Q. Q.E.D.

COROLLARY 3.4.8. ( , )is nondegenerate.

Proof. We shall prove that ( , ) is nondegenerate on U, (g), by the induction on
|€). If & = 0, this is trivial. Assume |£]| > 0. If P € U, (g), satisfies (P, U;(g)) = 0,
then (e/P, Uy (8)z+q,) = (P, ;U7 (8)z+4,) = 0, and hence e/P =0 for any i by the
hypothesis of induction. It remains to apply the preceding lemma. Q.ED.

COROLLARY 3.4.9. U (g) is a simple 2,(g)-module.

Proof. Let M be a nonzero submodule of U, (g). Taking a highest weight vector
of M, M contains a nonzero element P such that ;P = 0 for any i. Then P is a
constant multiple of 1, and hence M = U, (g). Q.ED.

Remark 3.4.10. Let O(%,(g)) be the category of #,(g)-modules M such that
for any element u of M there exists an integer [ such that ¢; e;,...eju = 0 for any
i, ..., i€ I. Then it is not difficult to prove that O(%,(g)) is semisimple and
U, (g) is a unique isomorphic class of simple objects of O(%,(g)). Since we do not
use this result, we leave the proof to the reader.

Remark 3.4.11.  48,(g) has a similar structure to Hopf algebra. Let us define the
comultiplication

A: B(9) > Uy(g) ® £,(9)
by
(3.4.13) Af)=®1+14Rf,
A(ez{) = (qi_l - qi)tiei ®1+1t;.

Then A is a well-defined Q(g)-algebra homomorphism, and it satisfies the coassocia-
tive law:

Bl ——  U(e)® B0

A A_®id

Uy(0) ® B,(8) —2 U,(8) ® Uy(a) ® Z,(s)
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is commutative. Hence, for a left U,(g)-module M and a left %,(g)-module L, M ® L
has the structure of a %,(g)-module, and there is a natural isomorphism

MON)QL~M®(N®L)

for a 4,(g)-module L and U,(g)-modules M and N.

3.5. Crystal base of U;(g). Let M be a #,(g)-module in O(%,(g)). (Cf. Remark
3.4.11)) Let i be an element of I. Then we have by Proposition 3.2.1

M=@ f”Kere|.

n>0
We define the endomorphisms &; and f; by
(3.5.1) &(f"u) = f* By and
FUf™Pu) = Y% forueKere].
Note that
(3.5.2) &fi=1.

Moreover, f;&, is the projector to f;M with respect to M = Ker ¢/ ® f;M.
A crystal base of M is by definition a pair (L, B) satisfying the following properties.

(3.5.3) L is a free sub—-A-module of M such that M =~ Q(q) ® L.
(3.54) B is a base of the Q-vector space L/qL.
(3.5.5) &L < Land f,L = Lfor any i.

By this f; and é;acton L/qL.
(3.5.6) &B < Bu {0} and f;B c B.
(3.5.7) For b € B such that &b € B, b = f:&,b.

Let L{o0) be the sub—A-module of U, (g) generated by fil . fil *1. Let B(cc) be
the subset of L(00)/gL(c0) consisting of the vectors of the form S fio L
THEOREM 4. (L(c0), B(o0)) is a crystal base of U, (g).

This theorem will be proven in the next section.
The relations of (L(c0), B(c0)) and (L(4), B(1)) are given by the following theorem.
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THEOREM 5. Let ;: U, (g) - V(4) be the U, (g)-linear homomorphism sending 1
to u,. Then

(i) 7y (L(c0)) = L(A).
Hence 7, induces the surjective homomorphism T;; L(0)/qL(00) = L(A)/qL(A).
(ii) By @, {b € B(c0); 7;(b) # 0} is isomorphic to B(4).
(i) f,om, =70 f;.
(iv) If b € B(oo) satisfies T,(b) # O, then g;7,(b) = T, (ED).

The proof of Theorem 5 will be also given in the next section.

Remark 3.5.1.  We can prove the following theorems (cf. Theorems 3, 1), but we
omit their proofs.

THEOREM. Let (L, B) be a crystal base of a #,(g)-module M in O(B,(a)). Then
(L, B) is a direct sum of copies of (L(c0), B(c0)).

THEOREM. Let (L, B,) be a crystal base of an integrable U,(g)-module M, and
(L,, B,) a crystal base of a 8,(g)-module M, in O(%,(g)). Then (Ly, B;) ® (Lo, B,)is
a crystal base of M| ® M, in O(%,(g)), and the actions of & and f; on B, ® B, {0}
are described by the same formula as in Theorem 1.

§4. Grand loop

4.1. Preliminaries. We shall prove Theorems 2,4, and 5 at once by the induction
on weights. For 4, u € P, we denote as in §2.5 by ®(4, p): V(4 + p) > V(A ®_V(w
and W(4, p): V(A) ®_ V(w) = V(A + p) the U,(g)-linear homomorphisms such that
O(A, ) (uy4,) = u; ® u, and ¥(4, W(u, ® u,) = u;,. Hence we have
(4.L.1) W, 1) o D(A, ) = idyy-
Therefore, we have

4.1.2) V(1) ®_ V(1) = Im ®(4, 1) ® Ker (4, ).

Since W(4, u) and ®(4, p) are U, (g)-linear, they commute with & and f;. We also
define the homomorphism S(4, p): V(4) ®_ V(i) = V(4) as

(4.1.3) . SAhLwu®uv,)=1u for ue V() and
S(4, u)<V(/1) ®. fiV(u)> =0.

By the definition of A_, we have f(u®v) = fu®v + tu® fiv, and the last terms
are sent to zero by S(4, p). Hence we have that

4.1.4) S(4, p) is U; (g)-linear.
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Therefore, S(4, p) o ®(A, p): V(A + w) > V(4) is a unique U, (g)-linear homomor-
phism that sends u;,, to u;.

Hereafter, we denote ®_ by ®.

4.2. Induction hypotheses. For ¢ e Q_ we write ¢ = > n,a;, and we set

@.2.1) 1E] =3 Inyl.
We also set
4.2.2) Q- (h=1{¢cQ_;1EI<1}.

If [} =0, then &£ =0, and, if || =1, then ¢ coincides with some —a; Let
7;: Uy (g) = V(4) be the U, (g)-linear homomorphism sending 1 to u,. Let C, be the
collection of following statements.

(G.1) For {eQ_(I), & L(0): = L(c0).
(G.2) ForleQ (and AeP,,&L(A);.; <= L(A).
(C.3) ForleQ_()and ie P, m;(L(c0),) = L(A)z4e.
(G4) For { e Q_(l), B(wo), is a base of L(0),/qL(0),.
(G.5) ForleQ (l)and A€ P, B(%),,, is base of L(A);4¢/qL(A) 14 ¢-
(C.6) For&eQ (I—1)and A€ P,, fi(Pu;) = (f;P)u, mod qL(4) for P € L(c0),.
(G,.7) For {eQ_(l)and A e P,, we have & B(c0), = B(oo) L {0} and €B(M)y1e =
B(A)L1{0}.
(G.8) ForéeQ_(l)and 4, u € P, ,wehave ®(4, u)(L(1 + Wirp+re) © L(A) @ L(p).
(C,.9) Forée@Q_(l)and A, ue P,, we have
W4, (LA ® L(W) 4 p+e) = LA + p).
(C1.10) For e Q_(D) and 4, pe P,, ¥ (4, 1) (B(A) ® B(1))s+,+2) = B(A + p) L1 {0}
(C.11) ForéeQ_()and Ae P,,

{b € B(c0)g; W) # 0} — B(A)4,-

Here 7@,: (L(00)/qL(c0)), - (L(4)/qL(4));+¢ is the homomorphism induced
by =,. (Cf. (C,.3).)

(Gi.12) For £ € Q_(1), A € P, and b € B(w0), such that 7,(b) # 0, we have &,7,(b) =
7T,(8:b). 5

(C,.13) ForéeQ_(),Ae P, andbe B(A)1¢and b’ € B(A);¢44,, b = f;b" if and only
if b’ = &ub.

(C.14) For £ e Q_(lyand b € B(0), if &b # O, then b =f~iéib.

We remark that these statements are not independent. For example (C,.10) has
meaning only under the hypothesis (C,.9), etc.

We shall prove C; by the induction on . We may assume that {h;ic I} is
linearly independent by taking an extension of t if necessary. For i € I let A, be an
element of t* such that {h;, A;) = §; for any j. We may assume that P contains A;
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without loss of generality. In fact, P + ) ZA, satisfies the properties (1.1.9) and
(P + YZA)* = P*.

4.3. Consequences of C,_,. Now assuming C,_,, let us prove C,. Since C, and C,
are almost trivial, we may assume

(4.3.1) 1> 2.

Heredfter, C,_, is assumed.

LEMMA 43.1. Let £€Q_(I— 1), A€ P, and ue L(0), (resp. L(A);1¢). If u=
Y fi®u, and if eju, =0 (resp. u, € V(A)s+z4na,» €ty =0, and u, =0 except when
{hyy A+ &+ na;) = n > 0), then all u, belong to L(0) (resp. L(A)). If moreover u
mod gL(c0) (resp. qL(2)) belongs to B(c0) (resp. B(4)), then there exists n such that
u = f{®u, modulo qL(o0) (resp. gL(4)).

Since the proof is similar to that of Proposition 2.3.2, we omit it. We remark that
we need only (C,_;.1) and (C,_, .2) in order to prove the first statement.
For £ € Q_(I — 1) and b € B(4); 4, (resp. € B(o0),), we set

4.3.2) &;(b) = max{n; &'b # 0}.

By Lemma 4.3.1, for ¢ € Q_(I — 1) and b € B(4); (resp. B(0),), there exists u €
LA 3+ £+e by, (188D L(00)g4s,p),) SUch that eu = O (resp. eju =0) and b = fila®ly
mod gL(A) (resp. mod gL(c0)). Note that u mod gL(2) (resp. g¢L(c0)) belongs to B(4)
(resp. B(o0)).

LemMa 432, Let& EeQ_(I—1),A ueP,,andiel

@ f;(L(i)}&: ® L(I‘)wg') < L(A) ® L(p)and éi(L(A)Hg ® L(ﬂ)u+§') c L(A)® L(w.
(ii) If b € B(2);+¢ and b" € B(p),+¢» then we have

~ o (fb®b if (b d+ & + &lb) > ad),
fi(b@b)‘{b@ﬁb' i o 4+ 85 + 6,0) < eib');

L ®b) = b®&b' if Chyy A+ &) + &(b) < &(b),
: Clab @b if (hi A+ &) + (b)) 2 &),
Here the equalities are those in L(A) ® L(yt)/qL(A) ® L(u). 3
(iii) For b @b’ € B(A)1+e @ B(1t),+e, €(b @ b') # O implies b ® b’ = f;&,(b @ b').
(iv) For be B(A);+; and b’ € B(1),¢, if &b ®b') =0 for any i, then { =0 and
b = ul.

(v) Forbe B(A),, flb ®u,) = fib®u, or fib=0.

Proof. (i) By Lemma 4.3.1 it is enough to show that, for ue L(4)4¢1n,
and v€ L({),+z+ms, Such that eu=ev=0, {hy, A+ E&+ny)>n>0, and



CRYSTAL BASES 491

Chiyp+ &+ mu) >m >0,
(4.3.3) fi(fi(n)u ®f;(m)v) € L(A) ® L(p)

E(f™u @ f™v) e L(2) ® L(p).

Let M be the A-modules generated by f;*'u ® f7v. Then M is stable by &, and f
by Theorem 1. Then (4.3.3) follows from M < L(4) ® L(p).

(ii), (iti), and (iv) We may assume b = f;{”u mod gL(4) and b’ = £," v mod gL(y) as
above. Then ¢;(b) = n and (b') = m. Set a = (h;, A + & + na;)> and let M be the
A-module generated by £;"u ® £;*7v. Then by Theorem 4 (see also (2.4.1)—(2.4.4)),
we have mod ¢;M

"Dy f™y fora—n>m,

(4.3.4) i Pu @ fmy) = {J;

Pu® £y fora—n < m;

Pu® £y fora—n<m,

&fi"u @ fmv) = {’;

Dy ® ™y fora—n>m.

Since M <= L(4) ® L(u), the second assertions hold, (iii) follows from this formula,
and (iv) follows from the fact that b = u, if &b = 0 for any i.
Part (v) also follows from (4.3.4). Q.E.D.

Now we shall give several corollaries of this lemma.

COROLLARY4.3.3. For¢,&'eQ_(I—1)and A, pe P, f(B(A),1s ® B(k),+s) and
€i(B(A)3+¢ ® B(p),+y) are contained in B(2) ® B(u)Li{0}.

CorOLLARY 4.34. ForéeQ ()and A, ue P,,
QA 1) (LA + Warure) = L(A) ® Lw).

In fact, this follows from (C,_;.8), Lemma 4.3.2, and L(A + Witpre =, fiL(A +
Witptera for & # 0.

COROLLARY 4.3.5. Fori,,...,i;elandueP,,set)=A, .Then

S fw®u)=v®w in LA)® L(1)/qL(2) ® L(1).
Here, v € B(A);1¢, w € B(t),1p U {0} for some &, &' € Q_(I — 1)\ {0}.
Proof. Assume first i, # i;_;. Then Ji,u; = 0 implies
fla®u) = [, ®u) = 4,1, ® fyu, = 0, ® ().
Since éil_lf;u" =e¢; f,u,=0and j:,-l_lu,1 = f,_,us # 0, we have

4.3.5) Jo Sulw, @ u) = (fi,_,u;) ® (f,u,) mod gL(A) ® L(p).
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If i, = i,_,, then
S, ®u) = (fu) ®u,,

and, since f;?u, =0, fif(u,l®uu) Ef:,ul®f:,uw Hence in the both cases, (4.3.5)
holds. Then the assertion follows from Lemma 4.3.2. Q.E.D.

COROLLARY 4.3.6. Let A, ue P, and £ € Q_(I). Then

LA ® L(I"'))}.+u+§ = Z ]F:(L(ll) &® L(ﬂ));_+.§+a,~ +u, ® L(ﬂ)wg-

Proof. Let L be the left-hand side and L the right-hand side. We already know
L <L ForéeQ_(I—1)\{0}andbe B(A);+s ® B(4), ¢ there exists i such that
é,b # 0 by Lemma 4.3.2(iv). Then Lemma 4.3.2(iii) implies b = fié;b. Therefore, we
obtam LA ste @ L(W)yse—g = L + gL. Hence we have

LcL+LA)®u,+qL.
For f;, " fi,us € B(A);+, we have

(fi, - fiw) ®u, = fi,((f, fos) ® u,) mod gL(A) ® L(w)

by Lemma 4.3.2(v). Thus we obtain L < L+ gL. Then Nakayama’s lemma implies
the desired result. Q.ED.

COROLLARY 4.3.7. For A, ue P, and i,, ..., i, €I, we have one of the following
two cases.

O f,-fiuse k.
@) £, Sy ®u) = (i, foua) @ u, mod gL(A) @ L(w).
This follows immediately from Lemma 4.3.2(v)

LEMMA 4.3.8. Let A, ueP,.

(i) S(4, wW(L(2) ® L(p) = L(4).
(ii) For e Q_(I—1),

(L() ® L(W/qL() ® L(W)arpre —2  (LIY/GLAY);

.ii ii
(L(A) ® L()/qL(D) ® L)1y en, ——2 (LAYGLA) 34 2-a,

commutes.
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Proof. Part (i) follows immediately from L(u), = Au,. Let us prove (i)). For
we (L(l)@L(u))HMé, we shall show f;S(4, pyw = S(4, u)fw mod gL(%). (L(A) ®
L(14));14+¢ is generated by vectors of the form f;®u ® f;™v with u € L(3), v € L(u)
and e;u =0, e;p = 0. Hence we may assume w = fPu® fv. Let M be the
A-module generated by f®u® f*’v. Then M < L(4)® L(p). Then fiw=
£y @ f™y or f;Pu® £V mod gM. Hence S(4, u)(fiw) and fi(S(A, p)w)
belong to qL(4) except when v € L(u), and m = 0. Now assume v = u,. Then
ffPu®@u,) =" Yu®u, or f™u ® fu, mod gM according to whether
S Dy # 0 or f#*Vyu = 0. Hence S(4, w)fi(fiPu ® u,) = f;*Vu = f,f”u. QED.

LemMA 4.39. Let £€Q_(I) and ue V(A),4¢, and n, ke Z .o with n+ k> 1.
Assume

(4.3.6) tleMue gttt OqL(l)  foranyvsuchthat1 <v <n+k.

Then we have

4.3.7) firf®y = £&y mod qL(4),
(4.3.8) erf Wy = £% "y mod qL(4).
Proof. We write

(4.3.9) u=7 f"u,

with u,, € Ker ¢, V(D)4 z4ma» <his A+ &+ ma;> > m > 0. Then we have, setting
a= <his A‘ + €>’

v

v
£ ", = t:fi‘"'—”[

= gre+?v [V +a+ m] fimy

Hence by Lemma 4.3.1 we obtain (see (1.1.26))

_m+<hi,l+f+mai>]u

gerMgretmy e g?Ot"HgL(d) for m>v and I<v<n+k.
Hence we obtain
g Py, eql(A) for m>v and 1<v<n+k.
Hence settingv = n + kwhenm > n + kand v = mwhen0 < m < n + k, we obtain

(4.3.10) g™y, eql(l)) for m>0.
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Now we have

frfoy =¥ |:m + k:l flwrkmy
m .

3

and

fi(n+k+'")um'

13

m+n+k
m

fi(n+k)u — z |:

Therefore, (4.3.10) implies that both f*®u and f"*¥4 are equal to £;"*®u, modulo
qL(4). This proves (4.3.7). We have

k
Y= ﬁ‘”‘““"’[m; ]umsﬁ<'°-">uo mod gL(2),

m=n—k i

and, when k > n,

w-my,, | T k=n| wii-n
fetu=g [T g,
Hence both &7, ®u and f* "u are equal to f;* ™uy, modulo qL(A). Q.ED.

4.4. Proof of (C,.3) and (C,.6). We shall first prove (C;.6) when {h;, i) > 0.
Lemma4.4.1. Letiel,ée€Q_(I)and Pe U, (g);. Then for A€ P, ,with{h;, 1) >0,

(f:P)u}. = fi(Pu,l) and
(é;P)u, = &(Pu;) modulo qL(4).

_Proof. We may assume P =f;Q with ¢;Q =0 and Q€ U_(8)s+i,- Then
(f:P)u, = £*™)Qu, and (&;P)u, = f{* V' Qu,. By Corollary 3.4.6 we have

t7eMQu, e ;¢ VgL(A) for 1<v<1+k.

Then the lemma follows from Lemma 4.3.9. Q.ED.
Now we shall show (C,.6) for arbitrary 4.
* PROPOSITION 4.4.2. For £ € Q_(I — 1) and P € L(),, we have for any A € P,

(4.4.1) (fiP)u, = fi(Pu;) mod gL(}).
Proof. Let us take u such that (h;, u> » 0. Then by the preceding lemma

(44.2) (fiP)u,4, = fi(Puzy,) mod gL(A + ).
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Hence by applying ®(4, p) to (4.4.2), Corollary 4.3.4 implies
(/:P)u, ® w,) = fi(P(u;, ® u,)) mod ¢L(2) ® L(4).
Then applying S(4, 1), Lemma 4.3.8 implies
(fiP)u; = fi(Pu;) mod qL(%). Q.E.D.
COROLLARY 4.4.3. For any A€ P, and & € Q_(l), we have
T(L(00)e) = LAz
Proof. By the preceding proposition we have
ma(L(20)g) = L(A)4¢
and
LW © 1(L(00)g) + AL (A

Then Nakayama’s lemma implies the desired result. Q.ED.

By this proposition n, induces a surjective homomorphism 7, : (L(0)/qL(0)); —
(L(AY/aL(A)+¢-
COROLLARY 4.44. For (e Q_(I)and A € P, , we have

(EAB(OO)g)\{O} = B('l),ug-

This follows immediately from Proposition 4.4.2.

COROLLARY 4.4.5. If A € P, satisfies {h;, A) > O for any i, then for any £ € Q_(1),
L(o0); =3 L(A);4¢ and B(Oo)é\{o} 3 B(M)ze-

This follows from U, (g); 3 V(4) s+

4.5. Small loop. We shall show & L(o0); = L(00) and &L(4);,, = L(4). We fix
¢ e Q_with[£| = I. Take afinite set T of P, such that T e A;for anyj. We shall show

(4.5.1), &L(00); = q~"L(c0) and éL(2); = q"L(4) for AeT

by the descending induction on n > 0. If n> 0, then (4.5.1), is obvious. Now
assuming (4.5.1), for n > 0, we shall derive (4.5.1),_,. By Lemma 4.4.1, (4.5.1), and
Corollary 4.4.3 imply

(4.52) LA = q "L(A) for AeP, with {hyy A > 0.
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LemMA 4.5.1 For Ae T and u e P, with {h;, u) > 0,

LA ® L(#))}.+u+§) < g "L{(A) ® L(p).

Proof. Letue L(2);+y and v € L(p) ., with £ = & + {”. We shall show that
&,(u ® v) belongs to g "L(1) ® L(x). When || and |£”] are less than [, it is already
proven (Lemma 4.3.2). Hence we may assume either £’ = 0,¢" = £oré’ = £, £" = 0.

(a) ¢ = 0and &" = £ We may assume u = u,. Write v = Y f™v,, with ¢;v,, = 0.
Here the summation runs over m such that <h;, A + & + mea;) > m > 0. Then é,v =
Y [ Yy, e g"L(w) by (4.5.2), and hence v,, € g""L(y) for m > 1. Since

GU®v) = Z &(u; ® fv,,),

m>1

this is contained in the A-module M generated by f;"™u; ® f;™"v,, with m > 1 by
Theorem 1. Then the result follows from M = ¢7"L(4) ® L{u)

(b)¢ =¢&and £” = 0. The proofis similar to the case (a) by using (4.5.1), instead
of (4.5.2). Q.ED.

Now, we shall show another lemma.

LemMa 4.5.2.  If A€ P, satisfies Chj, A) > O for any j, then

&L(A)+: = ¢'"L(A).

Proof. Tt is enough to show that
(4.5.3) &(fs, - fun) € 4 "LA).
Set Ao = A;,_, and u = A — A,. Then by Corollary 4.3.5 we have
4.5.4) w= fil - -fil(u,10 ®u,) =v® v mod gL(4) ® L()
with &, &”e Q_(I — 1\ {0} and v € L(Ay);,+e» V' € L(1t) 4. By Lemma 4.3.2 we

have &,(v ® v') = L(4,) ® L(u). Hence, &w belongs to &(qL(4) ® L(x)) + L(4) ®
L(y). Then the preceding lemma implies

(4.5.5) gweq ™(L4)® Lt st p+z+a;-
Applying ¥(4,, 1) to (4.5.5), we obtain by (C,_;.9)
(4.5.6) &fiy e fittagrn € 4 "LAo + 1) Q.ED.

Take A€ P, such that {h;, i) » 0 for any j. Then Lemma 4.4.1 implies that
é,(Pu;) = (é;P)u; mod gL(4) for Pe L(),;, and hence (&;P)u, € q¢'""L(1) by
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Corollary 4.4.3 and the preceding lemma. Thus we obtain by Corollary 4.4.5
- (4.5.7) &;L(c0); = q*""L(0).
Now it remains to prove
4.5.8) &L(A)+e = q' " "L(A)  for AeT.

For w= f:l . -fi,u,l, we shall show &w e g ' ™"L(A). If we qL(4), then we have
&w e q'""L(4). Whenw ¢ qL(1),take u € P, with (h;, u> > Ofor anyj. Then we have

4.59) fi o fiu, ®u,) = w®u, mod gL(2) ® L(p)
by Corollary 4.3.7. On the other hand, Lemma 4.5.2 implies &; f:l filuH,‘e

g "L(A + w), and hence Efil . -f:,(u,l ®u,) € ¢""L(4) ® L(w) by (C,_,.8). This im-
plies, along with Lemma 4.5.1 and (4.5.9), that

&(w®u,) e q' "L(A) ® L(1) + q&(L(A) ® L(w) < ¢ "L(A) ® L(n).
Now write w =Y f;™w,, with e;w,, = 0. Then &w =Y. f{" Dw,, € ¢""L(J) implies

Wm € ¢ "L(A) for m > 0. Letting M be the A-module generated f,"w, ® fu,
(m > 0), we have

EwQu) =3 &(f"w,®u)= Y f"Vw,Qu,=8&w®u, modgM.

m>0 m>0

Since gM < ¢'""L(4) ® L(p), we obtain &w @ u, € ¢' "L(4) ® L(y). By applying
S(4, ), we obtain &w e g* "L(A).

In both cases we have &w e g'™"L(J). Therefore, we obtain (4.5.8). Thus the
induction proceeds, and we can conclude &;L(o0), = L(o0) and & L(4);+, = L(4) for
e @_(l)and A € P,. Thus (C,.1) and (C;.2) are established.

Then the following statements are similarly proven asin Lemmas 4.3.1 and 4.3.2.
(4.5.10) Foru =Y f{”u, € L(4);+¢such that

l € P+’€ € Q—(l)9 u, € V(A)A.+§+mz‘~,eiun =0
andu, = Oexcept<{h;, A + & + na;,> = n,
we haveu, € L(4).

(4.5.11) For¢',¢" e Q_(l)and 4,y € P, ,

E(L(AW)z+g ® L)) = L(A) ® L(p).



498 M. KASHIWARA

4.6. Proof of (C,.7) and (C;.12). We have already shown (C,.1), (C,.2), (C,.3),
(C,.6), and (C,.8). We shall now prove (C,.7) and (C,.12).
The following lemma can be proven as in Lemma 4.3.2.

LEMMA 4.6.1 Let A, ue P, & e Q_(l). Then for any u € L(J); 4,

&(u®u,) = &u® u, modulo qL(A) ® L(y).

Proof. Write u =) f®u, as in (4.5.10). Then all u, belong to L(1) by
(4.5.10). Hence, we may assume u = fw with e;w =0, and w € L(4);1¢4p,,- Let
M be the A-module generated by f”'w ® f,*"u,. Then by Theorem 1 we have
&(fPw®u,) = £ Yw® u, mod gM. Then the lemma follows from M < L(}) ®
L(w). QED.

Let w =fi,“‘fi,‘ 1. Then, taking 4 = A; _,, pe€ P, with <{h;, u> > 0 for any j,
Corollary 4.3.4 implies

(4.6.1) fi fia ®u,) = v ® wmod gL(4) ® L(p)

with v € L(4);4» and w € L(p),,.- and &', " € Q_(I — 1). Moreover, v and w belong
to B(4) and B(u) v {0} at g = 0. Hence, we obtain

4.62) &f, [, ®@u)=85m@®w)=Ev®w or v®é&wmod gL(4)® L(p).

Therefore, applying ¥ (4, u), we obtain by (C,_,.7), (C,_,.9) and (C,_,.10)

(4.6.3) & f, - filuzs,) € BO + wya{0}.

Hence, by Corollary 4.4.5 and Lemma 4.4.1 we obtain

4.6.4) &fi,f,,-1 € B(co) L1 {0}.

This proves & B(0); = B(co)L1 {0}, which is a half of (C,.7). o
Now we shall show (C;.12). Let Ale P, and P=f; - f,-land w=f; -~ fiu, =

Pu,; mod gL(4). Assume that w does not belong to gL(4). Then, for e P, with

Chj, uy » 0 for any j, Corollary 4.3.7 implies f; - f;(u; ® u,) =w ® u, mod

qL(3) @ L(y).
By Lemma 4.4.1 and (C,.2) we have

éi(fi, . 'ﬁ,ul+u) = &(Pu;.,) = (&;P)u,,, mod qL(A + p).
Hence, applying ®(4, u), we have

&( [y Suls ® u,)) = (€:P)u, ® u,) mod gL(%) ® L(w).
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Thus, we obtain by Lemma 4.6.1
EwQu, =&w®u,) =&(f,...f,, ®u,) = @P)(w, ®u,) mod gL(A) ® L(y).

Hence, by applying S(4, u) we obtain &w = (&;P)u, mod gL(1). Thus we proved
(C;.12). Then &B(4);+, < B(4)s{0} follows from & B(c0), = B(co)L1{0} because
we already know 7, B(c0)\{0} = B(4) by Corollary 4.4.4. This completes the proof
of (C,7).

4.7. Partial proof of (C,.9). Let us denote by L(c0)* and L{A)* the dual lattice of
L(o0) and L(co0) with respect to the inner product introduced in Proposition 3.4.4
and §2.5, respectively. This means

4.7.1) L(c0)* = {P € U, (g); (P, L(c0)) = A} and
L(A)* = {ue V(4); (u, L(A)) = 4}.

We shall see later (Propositions 5.1.1. and 5.1.2) that they coincide with L(co) and
L(2). The following lemma shows the relation of the inner products on U, (g) and
V(A).

LEMMA4.7.1. Foré = —Y mo;€ Q_and P,Q,e U; (9)e, there exists a polynomial
J(xq5 .05 x,) in x = (X;);c with coefficients in Q(q) such that

(472) (Pu}.a Qul) :f(x) Wlth x,‘ = q,z <hi"'>.

(4.7.3) J0) = (H - tﬁ)”"") (P, Q).

i

Proof. We shall prove by the induction on |€]. If |€] = 0, it is obvious. When
|€| > 0, we may assume Q = f;R with R € U; (9);4q,-

(Puy, Qu,) = qi_l(tieipub Ru,)

tte/(P) — ej(P
:q,ﬂ(,e,( ) — e )ul,Rm)

i -1

q; — 4;
= (1 — g) ! (ei(P)uy, Ruy) — g7 "e4754e0(1 — 7)™ (ef (P)u,, Ruy).
Hence (4.7.2) follows. The last equality follows from (P, Q) = (e; P, Q). Q.ED.

LemMa 4.7.2.  If A € P, satisfies {h;, A) > 0 for any i, then m,(L(c0)}) = L(A)f for
any £ € Q_(1).

Proof. Since n;(L(00)) = L(4) and U, (9); 3 V(4),+¢, this follows immediately
from the preceding lemma.
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PropoSITION 4.7.3. Let Ae P, and £e€ Q_(I). If ne P, satisfies {h;u> > 0 for
any i, then we have

(4.7.4) W, 1) (L) ® L(w)irure) = LU+ Wipne

Proof. Wemayassumen, ., (L(0)}f) = L(2 + w},,+eand 7, (L(c0)}) = L(p)¥, ..
By Corollary 4.3.6 we have

475) (L) ® L(i)aspre = LIALA) ® L)ty gra, + 4z @ Lt -
On the other hand, for u € L(4 + W}, ,+, we have, by (2.5.6) and (C,_, .10),
@.7.6) (@4, 1)), fLA) ® LI 1t s era,)

= (u, ;P (4, W) (L(A) ® L)1 prera) S W iILA + 1)1t prera) < A.

Let us write u = Pu,., with P € L(c0)¥. Then, writing £ = —)_ n,a;, we have
4.7.7) A_(P)= <]_[ t;'*‘) ® P mod (Z fi Uq(g)> ® U; (9)-
Hence,

O, 1) (Pia) = (H t?‘w) ® Pu,

= <]_[ q?"“’"’”) u, ® Pu, mod <Zﬁ V(l)) ® V().

Therefore, we obtain

(@(4, ) (W), u; ® L(W)yre) = <H qp e >> (Puy, L(i)y4e) = A.

Thus, we obtain
@ W)@, LA ® LW)ipre) © A forany  ue LA+ pfope.
This implies
(LA + Wivpre, Y, (L) ® L(1))s4pse)

= (®(4, WL + N)f+u+§a LA ® L(I"))).+u+§) c A,
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and hence W(4, 1) (L(A) ® L(1));+,+¢) = L(A 4+ 1);+,+¢- The other inclusion follows
from L(A + Wirp+e = P4, )@, p)L(A + p);4,+¢ and Corollary 434.  QE.D.

4.8. Proof of (C;.13) and (C,.14).  First, let us prove (C,.14). Let b € B(0), with
&b #0.Setb=f; ...f;,- 1. Then, for 1 = i,_, and p with {h;, u» > 0 for any j,

4.8.1) fil .. .f,-l(u,1 ®u,) =v®wmod qL(4) ® L()

with &', £"e Q_(I — 1), ve L(A)y, w € L(p),.. Moreover, v mod qL(4) € B(4) and
w mod gL(u) € B(u) 0. We have by (4.5.11)

&ifry - Ji s ® u;) = &(v ® w) mod qL(2) ® L(w),

and hence ¢; fll ]jluﬂﬂ = &,(¥(4, w(v ® w)) mod qL(4 + u) by (C,_;.10). Since
Tyeu(@b) = &:f;, ... fius+, # 0 by Lemma 4.4.1 and Corollary 4.4.5, &,(v ® w) does
not belong to gL(1) ® L(y). Thus, we obtain w mod qL(u) € B(u). Therefore, we
have by Lemma 4.3.2 (iii)

482  f,...filus®u,) =fé(f, .. [, ® u,)) mod gL(A) ® L(y).
Then Proposition 4.7.3 implies
f:l...fi,uhu Ef,-éifil...ﬁluﬂu mod gL(A + p).
Then Lemma 4.4.1 implies
TaruB) = Tar (fiED).

Thus b ﬁe b follows from Corollary 4.4.5. This proves (C;.14).

Let us prove (C,.13). Let b € B(4), . such that &b # 0. Then there exist be B(0);
such that b = n,l(b) Then (C,.12) implies 7,(&,5) = &b # 0. Hence &b # 0. Now
(C,.14) implies b = f,b. Finally, we have

ﬁéib =ﬁﬁl(5i5) = ﬁl(ﬁéil;) = ﬁz(l;) =b by (Cl-6)-

Now assume that be B(4),.+4,, satisfies fib #0. Let beB(oo)¢+a such that
7,(b) = b. Then 7,(f;6) = f;b # 0, and hence (C,.12) implies

éiﬁb = éi"_f/l(fib) = ﬁl(éiﬁb) = ﬁx(b) =b
This completes the proof of (C,;.13).

4.9. Proof of (C,.4) and (C,.5). The proof of (C,.4) being similar, we only give the
proof of (C,.5). Assuming Y , . 5 D:.:90 = 0, let us show a, = 0. For any i we have

Y a,&b=0.
b
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Since &b # 0 implies b = f;&;b by (C,.7) and (C,.13), {&:b; b e B(A),4¢, &b # 0} is
linearly independent by (C,_,.5). Hence a, = 0 if &;b # 0. Since there exists i such
that &b # 0 for any b, all a, vanish.

4.10. End of proof. 'We have proven C, except (C,.9), (C,.10), and (C,.11). We shall
show the remaining statements. First, we shall prove a lemma.

LemMmaA 4.10.1.  For £ € Q_()\{0} and A € P,, we have

(4.10.1) {u € (L(0)/gL(0)); gu =0 forany i} =0,
(4.102) {u e (LAYqLA));0g &u=0 forany i} =0,
(4.10.3) {ue U7 () &ueLlg) forany i}=L(w), and
(4.10.4) {ue Vg eue L(A) forany i} = L(),...

Proof. The proof being similar, we shall prove only (4.10.2) and (4.10.4). Assume
that u € (L(A)/qL(4)); satisfies &u =0 for any i. Write u =), B, 4D Then
Y a,é,b = 0. Hence a, = 0 if &b # 0 for some i. Therefore, all a, vanish.

Let us prove (4.10.4). Let u € V(1);,. and assume &u € L(A) for any i. If u € g~ L(4)
for n > 0, then &(q"u) € gL(%) for any i. Hence (4.10.1) implies u € g* ~"L(4). This
shows u € L(A) by the induction on n. QED.

Now we shall prove (C,.9).
COROLLARY 4.10.2. For e Q_(I), A, neP,,

P (LA ® L()zsyre) < LA + p).

Proof. Wemay assume |£| = [ = 2. By (4.5.11) we have &,((L(}) ® L) s4p+e) ©
L(A) ® L(u). Hence

&Y, (LA ® L(ﬂ))).+u+§)
< WA, (L) ® L) a+prere) = LA + p).

Then the preceding lemma implies the desired result. Q.ED.

Let us prove (C;.11). Since we know already B(4); = 7, B(0),\{0}, it remains to
prove that, for b, b’ € B(0),, T;(b) = 7,(b) # 0 implies b = b’. There exists i such
that &m,(b) # 0. Hence, by (C,.12), 7)(&;b) = 7,(¢;b") # 0. Thus, &b = &b’ # 0 by
(C,.7) and (C,_,.11). Then (C,.14) implies b = b’.

Finally, we shall prove (C;.10). First, note that, C, being all proven except (C;.10),
Lemma 4.3.2 is still valid with &, £’ € Q_(I). In particular we have that

(4.10.5) for ¢ e Q_(), &((B(4) @ B(W)i+y+e = B(A) @ B(w)u {0},  and
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(4.10.6) if b e (B(4) ® B(1)s+u+e and &b +#0, then b =f~iéib.

Now let b e (B(1) ® B(1)+,+2 If there is i such that &b e B(%) ® B(uw), then by
(4.10.5), (4.10.6), and (C,_,.10), ¥(4, w)(b) = ¥, p)(fi&; b) fi®(4, p)(&;b) belongs
to B(A + )1 {0}. If &;b = O for any i, then &¥ (4, u)(b) = O for any i. Hence (4.10.2)
implies ¥(4, p)(b) =

Thus we have proven (C,.1)—(C;.14), and the induction proceeds. This completes
the proof of the Theorems 2, 4, and 5.

PART II. MELTING THE CRYSTAL BASE

§5. Polarization

5.1 Inner product. 1In this section we shall investigate the properties of crystal
bases with respect to the inner products on ¥(4) and U, (g). (Cf. §2.5 and Proposition
344)

PROPOSITION 5.1.1. Let A€ P,.
(i) (L(4), L(A)) = A.
Let ( , )o be the Q-valued inner product on L(A)/qL(4) induced by ( , )|,=¢ on L(A).
(i) (8u, v)o = (u, fiv) for u, v e L(A)/qL(A).
(iii) B(X) is an orthonormal base with respect to ( , ). In particular, ( , ), is positive
definite.

(iv) L(2) = {u e V(4); (u, L(A)) = A}.

Proof. (i) We shall prove (L(4);+¢, L(4);4+¢) = A by the induction on [¢|. If
|| = 0, then this is trivial. Assume {£| > 0. Since L(A);4; =, fi L(A)s4g4q, it 18
enough to show

(5.1.1) (fiu, v) = (u, &v) mod gA
for u€ LA zsetq and ve L(A) -
We may assume u = f;u, and v = f™v, with e;uy = e;0, = 0, <y, A+ &+ (n +

Day=znand <y, A+ E+ma) =2m.
Then, we have

(fi("H)“o,fi(m)Uo) =

Fhte) " Vug, vo).

1
[m]!
Since (g7 't;e,)" = g; g ™™ Vel = g7 ™ tl"el, we have, setting g = A + £,

(f;'(n+1)u0,fi(m)vo) — qi—mZ(timegm)ﬁ(n+1)uo’ UO)

2 hi, 1 i
5n+1m l_m <t1m|:< ﬂ+r(:+ )a>] Ug, Uo)
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_m2+m(higll+m'1i> [:<hi’ u> + 2m] (uo, UO)

= n+1,mqi
m

.(“o’ vp)-

13

= m(<hi,u>+M)[
n+1,mdi
m

Chiy > + 2'n]

Since (uy, vo) € A by the hypothesis of induction and gr{<h#>+m [ hik>+2m] pelongs
to 1 + gA (cf. (1.1.26)), we obtain

(512) (ﬁ(n+1)u0’ﬁ(m)vo) = 5n+1,m(u09 UO) mOd qA'
Similar arguments show that
(5.1.3) (fiuo, i 0g) = Gy41,m(tto> Vo) mod gA.

Hence, we obtain (5.1.1.). Thus, we obtain (i} and (ii).
Let us prove (iii). We shall show (b, b"), = J, ;- for b, b’ € B(4);.,¢ by the induction
on |&|. If| €] = 0, thisis obvious, and if |£| > 0, taking i such that &;b € B(1), we have

(b, b')o = (f;éib, b’)o = (éiba 5ib’)o = 55,.1:,5,-1:' = 5bb'-

Part (iv) follows easily from (i) and (iii). Q.ED.
Similar arguments show the following proposition.

PROPOSITION 5.1.2.

(i) (L{c0), L(0)) = A.

Let (, )o denote the Q-valued inner product on L(co)/qL(c0) induced by ( , )| ;o on
L(o0).

(i) (&1, v)o = (u, fiv)o for u, v € L(c0)/qL(o0).
(iif) B(oo) is an orthonormal base of ( , )o. In particular, ( , ), is positive definite.
(iv) B(0) = {P € U (g); (P, L(o0)) = A}.

Now the following is the consequence of the positivity of ( , ).
PRrOPOSITION 5.1.3. For A e P, , we have

(5.1.4) L{oo) = {ue U; (g); (u, u) € A},

(5.1.5) L(A) = {ue V(A); (u, u) € A}.

Proof. The proof of (5.1.4) being similar, we shall only prove (5.1.5). For
u e V(4), with (u, u) e A let us take the smallest n > 0 such that ue g "L(4). If
n > 0,(q"u, g"u) € gA. Hence, v = q"u mod qL(4) satisfies (v, v), = 0. Then the posi-
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tive definiteness of ( , ), implies » = 0, or equivalently u € g*™"L(4). This is a
contradiction. Therefore u belongs to L(4). Q.ED.

5.2. The #-operator. In this section we shall prove the following proposition and
its consequences.

PROPOSITION 5.2.1.  For P, Q € U, (g) we have
(5.2.1) (P*,Q*) = (P, Q).

Here * is the antiautomorphism defined in §1.3.
In order to prove this we shall prepare several lemmas.

LemMa 5.2.2. (i) For any i, j we have

(5.2.2) (Ad(t;)el) o e; = ej o Ad(t;)e; .

(i) We have

(5.2.3) (Pf;, Q) = (P, Ad(t))e; Q) for any P, Qe U, (9).
Proof. Part (i) follows immediately from Proposition 3.4.5.

Let us prove (ii). When P = 1, (f;, f;) = (1, Ad(t;)e! f;) implies (5.2.3) for any Q.
Hence it is enough to show that, if P satisfies (5.2.3) for any Q, then we have

(5.2.4) (f;Pfir @) = (f;P, Ad(t)e} Q).
By using (5.2.2) we have
(fiPfi @) = (Pf;, €/Q)

= (P, Ad(t;)e] ¢,Q)

= (P, ej(Ad(t;)e{')Q)

= (f;P, Ad(t;)e} Q). QED.

LEMMA 5.2.3.  We have

(5.2.5) (e)(P¥))* = Ad(t)e!P  forany  PeU; (q).

Proof. We have
(tief P —t;'e;P)

[ei7 P] - —1
q; — 4;

((Adt;)e] P)t; — ((Adt; e P)t; !
= q; — q._l ’
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Hence taking =, we obtain
t; ' ((Adt;)e] P) — t((Adt;})e; P)*
4—4q' '
Thus we obtain the desired result. Q.ED.

[P*a ei] =

Now we are ready to prove Proposition 5.2.1. Since (5.2.1) is true for P = 1, it is
enough to prove that (5.2.1) implies

(5.2.6) ((PH)*, @%) = (Pf;, ©).
We have, by (5.2.3) and (5.2.5),
((P)*, Q%) = (fiP*, Q%) = (P*, ¢;Q%)
= (P, (€;2%)*) = (P, Ad(t;)e/ Q)
= (Ff;, Q).

This completes the proof of Proposition 5.2.1.

Then Proposition 5.2.1 and Proposition 5.1.3 immediately imply the following
result.

PROPOSITION 5.24. L{00)* = L(0).

Here * is the antiautomorphism of U, (g).

§6. Global crystal bases

6.1. Z-forms. Let us denote by U/(g) the sub-Z [q, g~*]-algebra of U,(g) gen-
erated by £, e, and g", {%'} (h € P*). Let U; (g) denote the sub—Z [g, g *]-algebra
of U,(g) generated by f™. Then U/(g) and U7 (g) are stable by the automorphisms
* and —. By the commutation relation (3.1.2)

(6.1.1) U; (g) is stable by e..

Thus, Proposition 3.2.1 implies that

(6.1.2)

if )’ f™u, belongs to Uz (g) and if eju, = 0, then all u, belong to Uj (g), and
(6.1.3) Uj; (g) is stable by &, and f;.
We set

(6.1.4) (U7 @) =£"U; (9 n Uz (9).
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Then (6.1.2) implies that

(6.1.5) (fU7 (@) = kg Uz (g).

Infact, Y f{"u,(e;u, = 0) belongsto f;"U, (g)ifand only if u, = Ofor k < n. Let us set
(6.1.6) L;(0) = L(c0) n Uy ().

Then, by (6.1.3), L (o) is stable by f,and &,
We have therefore

(6.1.7) B(w) © Lz(00)/qL z(00) = L(o0)/gL(0).

Let A, be the sub—Z-algebra of Q(g) generated by g and (1 — ¢*") ' (n > 1). Let K
be the subalgebra generated by Az and ¢g~*. Then we have

(618) AZ=Asz.

We can easily see

(6.1.9) (Uz(g), Uz (9)) = K7,
and hence
(6.1.10) (Lz(0), Lz(0)) = A5.

Since f(0) is an integer for any f€ A, we obtain
6.1.11) (.o is Z-valued on L z(o0)/qL 7(00).

PROPOSITION 6.1.1. (i) Lz{(0)/qLz(0) is a free Z-module with B(co) as a base.
(i) B(0)w(—B(00)) = {u € Lz(00)/qL(o0); (u, u)o = 1}.

Proof. (i) IfY a,b belongs to L(o0)/qL z(c0), then, for any b’, (3" a,b, b}y = ay
belongs to Z.
(i) fu =Y ayb € Ly(c0)/qL4(o0) satisfies (u, u), = 1, then Y a7 = 1.
Since a, are integers, there exists b, such that a, = +1 and a, = 0 for b # b,.
QED.

COROLLARY 6.1.2. L (c0)* = Ly(o0) and B(c0)* = B(o0) U (—B()). Here, * is
the antiautomorphism of U,(g) defined in §1.3.

This follows from Propositions 6.1.1 and 5.2.4.
We conjecture that B(co)* = B(c0). This is shown by Lusztig [L1], [L2], [L3] in
the A,, D,, E, case.
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We set, for Ae P,
(6.1.12) Vz(2) = Uz (g)u; -

Then V() is a U}(g)-module by (1.1.23). Note that V,(J) is not stable by &, and f;
in general. We set also

(6.1.13) (fTVANE = (£"U; @) u = 3 2V2(D),

kzn
(6.1.14) Lz(A) = Vz(2) n L{4).
Let — be the automorphism of V(1) defined by
(6.1.15) (Pu))” =Pu, for PeU(g).
This is well defined by (1.2.6).

Then V4(A) and (f;"V(A))? are stable by —.
Since L(A) = 7,(L(c0)), we obtain

(6.1.16) (L z(o0)) = La(4),
and hence
(6.1.17) B(A) « Lz(A)/qL3(4) = L(A)/qL(4).

As seen later (or proven similarly as in Proposition 6.1.1), L;(1)/qLz(4) is a free
Z-module with B(A) as a base.

PrOPOSITION 6.1.3. Let M be an integrable U,(g)-module and let M be a
sub—UJ(g)-module of M. Let A € P, and i€ I. Assume that n = —<h;, A> > 0. Then

(6.1.18) (Mz); = ’; [P (M2)) 1 ks, -

This follows immediately from the following lemma.

k—
LEMMA 6.14. Whenn > 1, we have u = Y 5, (— 1)~ "[ :I f®e®y for any
ueM,.

Proof. We may assume u = f;"v with v € Ker ¢; » M, ., withm > n. Then we
have

Z( 1)" n[ ]fz(k) (k)u
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= }nl: (— 1 [k : i]f,-(k) [(k —m) *;((2'" - ")]ﬂm—k)v

el

Hence this lemma follows from the identity

(6.1.19
Z( l)k[k+n :l[k+m+n:|[m+n:|=1 for m=0,n>1.

m k+n

Proof of (6.1.19).  The following formula is known (e.g., see [A], p. 37,(3.3.11)).

[a, + a, + by + b, + k]!
6120 2. {iiita, — kiTa, — k1B, + KI5, + KT

_[aytay+b + b,'[a, + a, + b N[ay + a, + b, ]!
[a,'[a,]![a, + b;]'[a, + by1'[a, + by1[a; + b,]!

Here a;, b, > 0, and we understand 1/[n]! = Oforn < 0.If weseta, =m,b; = b, =n,
and x = ¢%, it reduces to

m m+n qm+2nx qm+2nx qm+nx
6.1.21 = .
( ) ;{}I:k+nj|{n+k} {m+n m
(See §1.1 for the notation.)
k+n—1

Then setting x = ¢~ " and using {z} = (—1)"|: k :|, (6.1.21) reduces to
(6.1.19). Q.ED.

§7. Proof of Theorems 6 and 7

7.1. Triviality of vector bundles over P'. We shall give some preparatory lemmas
for the proof of Theorems 6 and 7. Remember that 4 is the ring of rational functions
regular at g = 0. Hence, A4 is the ring of rational functions regular at g = co. Here
— is the automorphism g+ q~*

LemMmA 7.1.1. Let V be a finite-dimensional vector space over Q(q), M a sub—
Z[q, g *]-module of V, Ly a free sub—A-module of V, and L, a free sub—A-module
of Vsuchthat V= Q(q) ®, Lo = Q(g) ®z L



510 M. KASHIWARA
(i) Assume that M N Ly " L, — (M 0 Lo)/AM  qLy) is an isomorphism. Then
MnL,=Z[q]®;(MnLynL,),
MnL,=Z[q7'1®z (M LynLy),
M=7[qq"']®; (MnLynL,),
MnLynLy3MAL,/M~nqg'L, and
Q@®M)NLyNnL, ~Q®z(Mn Ly/MngqLy)

~ (Q(g) ®z14,411 M) 0 Lo /(Q(q) ®z1g,e1 M) N gLy .

(ii) Let E be a Z-module and ¢: E — M ~ Ly 0 L, a homomorphism. Assume that

(@ M =Z[g,q ' ]o(E) and
(b) E— Ly/qLgy and E — L, /q 'L, are injective.

Then, E>M N Ly L, — M n Ly/M gL, are isomorphisms.

Proof. Note that L, is finitely generated over A.
(i) Set E=MnLynL,. Then E < L,/qL, implies that E is a torsion free Z-
module. Moreover, A ®; E < L, and Q(q) ®7 E = V.
By the assumption we have M n L, < E + M n gqL,. Hence, we obtain easily by
the induction onn > 0 '

(7.1.1) MALyc k\; Z¢'E + M A q""'L,.
Now we shall show

(7.1.2) MnLynqg'L, = kio Zq"E.

By (7.1.1), we have

MAnLyng'L, = (Z Z4*"E + M n q"+1Lo> nq"L,,
k=0

= kzo Zq"E + q"(M nqLo N L,).

Since M n gLy 1 L, = 0, we obtain (7.1.2). This implies the first isomorphism. Then
the third follows from M = Z[q, '] ® z,; (M " L,). By (7.1.2) wehave M N L, =
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U.q™"(M nLongq"L,) = Z[q™*]E = Z[q~*1® E. This implies the second iso-
morphism and M L /M g 'L, = E gives the fourth isomorphism. The last
isomorphism follows from (Q ®; M)NLoNL, = Q®; M nLynL,)=Q®z E
and (Q(q) Rzg 1y M)NLe=S"MNL=8S'MnLy=A®;E. Here §=
{f(g) € Z[4]; £(0) # O}.
(i) Note that E is torsion free. Condition (b) implies Q(q)®z E =V and
Qg ®z;EnLy=A®;E. Hence (a) implies M = Z[q, g '] ®z E. Therefore,
MALy,cZ[q,q ' 1®EnA®z E=(Z[g, 91" A) ®; E = Z[q] ®; E, which
implies M 1 Lo = Z[q] ®; E. Similarly, M n L, = A ®z E. Therefore, we have
MALynL,~(Z[q,4']1nAnA)®; E=~ Eand M " Ly/M ngqL, = E.
Q.E.D.

LemMa 7.1.2. Let V,M, Ly, and L, be as in the general assumption of the preceding
lemma. Let N be a sub—Z[q, g ' ]-module of M. Assume the following conditions.

i) NnLynL, > NnLy/NngL,.
(i) There exist a Z-module F and a homomorphism ¢: F - M n (Lo + N)n (L, + N)
such that
(i) M =27[g,q ' 1p(F) + N and
(i) two homomorphisms induced by ¢, F EA (Lo + @ ® N)/(gL, + Q@ ® N) and
F - (L, + Q®N)/(q'L,, + Q ® N) are injective.
Then we have
@) M~ Lo~ Ly — Mn Lo/M gLy is an isomorphism.
(i) 0> NnLy/NngNy—>MnLy/MngLy5 (Lo + Q® N)/(gLo + Q® N) is
exact and g(M N Lo/M n qLg) = Y(F).
Proof. Replacing F with a finitely generated sub—Z-module F' and M with
Z[q, g ']1o(F’) + N, we may assume from the beginning that F is finitely generated.

Since F is torsion free, F is a free A-module. Since N = Nn L, + Nn L, by the
preceding lemma, we have

Mn(Lo+Nn(Ly, + Ny=N+MnLyn(L, +N)
=N+MnLyn(L, + NnLy)
=N+MnLynL,.

Hence, by changing ¢ we may assume from the beginning that o(F) c M n Ly L.
In the commutative diagram

0— NnLynL, —F®NNLyNnL)—> F —0

J l w

0— QR(NNLynL,)—> Lo/qL, — (Lo + Q®N)/(gqL, + Q®N)
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the rows are exact by the preceding lemma. Then the injectivity of § and v
shows that a is injective. Similarly F@® (N n Ly~ L,)— L,/q 'L, is injective.
Hence, applying Lemma 7.1.1 (ii) with E = F ® (N n L, 1 L), we obtain (i) and
FOWINNLynL)SMnNnLynL,3MnNLy/MngL,. Q.E.D.

We remark that Lemma 7.1.1 and Lemma 7.1.2 can be translated by the language
of vector bundles on P! as follows. Let X be the Z-scheme P! and U, = Spec Z[q] <
X and U, = Spec Z[q™'] = X so that X = U, u U,. Let i,: Spec(Z) - X be the
section given by g = 0. Let & be a torsion free coherent Oy-module given by
F(Uy; FY=LonM, T(Uy; FY=L,"M. Then MnL,nL, =T(X; %) and
MnLy/MngLo =T (Spec(Z), i F). Therefore, for example Lemma 7.1.1 (i) is trans-
lated to the statement that I'(X; #)  I'(Spec Z, iy #)implies F =~ I'(X; F) ® Oy.

7.2. Induction hypothesis. Let us consider the following collection (G,) of state-
ments for I = 0. (Cf. (4.2.2).)

(G.1) = ForanyéeQ_(l),
Uz(8): n Lz(00) N Lg(00)™ — Lz(00)¢/qLz(0),
is an isomorphism.
(G.2) Forany (e Q_(I),and e P,,
Vz(i)ug NLz(A)nLz(A)” - LZ()“)M»é/qLZ(}”)j&{

is an isomorphism.

Let us denote by b— G(b) and b G,(b) the inverse homomorphisms of these
isomorphisms.

(G.3)  ForéeQ_(I),n>0,and b e f"(B(00)s )
G(b) € U, (g)-

1.3. Consequences of G,_,. We shall prove G, by the induction on [ Since G, is
obvious for I = 0, let us assume ! > 0 and G,_,. Then we shall prove G,.

LemMma 7.3.1. For £ e Q_(I — 1) we have

(7.3.1) Uz(g)e N La(0) = . @) Z[4]1G(b),

(7.3.2) Uz (8): = \ g—(D) Z[g, 1 1G(),

(7.3.3) Vidiren L) = P  Z[q1G,(b), and
bGB(l)).-)-z;

(7.3.4) ViWire = . %}) Z[g, 37 *1G;(b).
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Proof. They follow easily from Lemma 7.1.1, (G,_, .1), and (G,_; .2).
The following lemma also follows easily from (G;_;).

Lemma 7.3.2. For £eQ_(I— 1), be L(0)/qLz(0):, and € P,, G(b)u, =
G,(7,b).

LEMMA 7.34. For € Q_(1 — 1) and b € Ly(00)/qL5(00), we have

(7.3.5) Gb) = G(b).

Proof. Set Q = (G(b) — G(b))/(q — q~*). Then Q belongs to Uz (g); N gL(o0) N
L(0)~, and hence it vanishes. Q.E.D.

74. Triviality of fV(3) for n > 1. The first step is to prove the following
proposition.

PropoSITION 7.4.1. ForéeQ_(), Ae P, ,n=1l,andiel,

(74.1) (f"VODE e LY A LA™ 3 (VDT 0 LAY/a(fV ()i 0 LA))-

~ @ .

be B(A)1+enSTB(A)

Proof. We shall show this by the descending induction on n. Remark that
(fi'V(2))1+e = 0 and B(4)4¢ 0 f"B(%) = ¢ for n > I. Hence, we may assume

(14.2)
(T YV ANE e A LA A LAY 3 (V)i 0 LAOAUS TV (A)ive N aL(D)

~ Zb.

beB(1)+n ST B(R)

When n+ by A+ &> <0, B()y:nfB() = B(A)een fi #++B(2), and
Proposition 7.1.3 implies

SV NFee = (i B OV V(A -

Therefore, we can reduce to the case n = — (h;, A + £). Hence we may assume from
the beginning
(7.4.3) n+<h, A+ & =20.

By the definition we have

(FVODTee = FOVeDarerna) + (V) ie -
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Since n = 1, (G,_,) gives

Vz('l)/1+¢+mz,. = (“B VAL'S qml]G(b)“A-

b & B(0O)g +ng;
wa(b)#0

If &b # 0, then G(b) € (f;U, (8))* by (G;—;.3), and hence
(FV(D)ise = bZS Z[g,q ' 176G, + (7 V(D)ise -

Here, S={be B(0) g4 a(b) # 0,8b =0} ~ {be B(A)i+e4na; €0 = 0}. Now let
us prove (7.4.1) by using Lemma 7.1.2 with V = V(1),4,, M = (f"V()%ss, N =
o V('D)fﬂ:’ Ly = L(A);+¢ Lo = L{A)74;and F = @bes ZfMG(b)u,. We have (see
(6.1.2))

f"G(b) = f"P,G(b) mod (fU; (g))

where P, is the projector to Ker e; with respect to the decomposition U, (g) =
Ker ¢} @ f,U, (g). Moreover, fi"b = f ® P.G(b) mod gqL(co). Hence we have

(7.4.4) M A L/M A gL > @ Z7,(fb),
beS

and  fGbu;eMn(Ly+N). Set H=(L,+Q®N)/{(gLo + Q®N) =
(Lo/qLo)/(Q&® N nLy/Q ® N ngLy). By (7.4.2) and Lemma 7.1.1 (i), we have

@®N)NLo/(Q® N) gLy = @  ab

beB(A);+en ST B(A)
Hence H = @be Buiyre\ /By @b. Moreover, the image of £;"G(b)u, to H is 7T,( fb).
By (7.4.3), § is isomorphic to B(4),., A fPB\ f**1B(4) by b 7,(f"b). Hence,

F — H is injective, and (7.4.1) follows from Lemma 7.4.2 and (7.4.4) because the
condition at ¢ = oo can be verified by taking —. Q.ED.

COROLLARY 7.4.2. ForteQ_(),n=1andiel, we have
(74.5) (f'U; @)F 0 L(o0) n L(o0)” 5 (7U; @)E 0 Lico)/( Uy (@)  aLi(<0)

~ P Zb.

be f7B(c0)nB(o0);
Proof. 1t is enough to remark that, for 4 with {h;, 1> » 0 for any j, we have

U (9: 3 VNares (U7 @) 3 (VI

L{0) 3 LM+ L(0); 3 L{A);4 e
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and

Zb P Zb. QED.

be fTB(e0)NB(0)s beB(A)z+:nSTB(A)

7.5. End of proof. For ée Q_(l)and i€ I, let us denote by G, the inverse of the
isomorphism

(7.5.1) (iU @EnL(@)nL(o) 5 D  zb.

be f;B(w)nB(oo),
We have by Proposition 7.4.1
(152) (f"U; @)f = P Z[g,q7'1G,(b)  for n > 1, where the direct sum
ranges over b € f"B(c0) N B(©0);.
The next step is to prove the following lemma.

LemMa 7.5.1. Leti,jel, Ee Q_(I) and b € f;B(c0) N f;B(c0) N B(0),. Then we
have G;(b) = G;(b).

Proof. Let us write b = f,-l e for L.
Let us take 4 € P, with (h, A> = 0 and <h,, 1> » O for v € I\ {k}. Then

(7.5.3) V(MDare =~ U7 (9)e/ Uy (8)er0 Sr -

Now <k, 4> = 0 implies f,u, = 0 and hence 7 1(b) = 0. Therefore, G,(b)u, € qL(A).
Hence, G;(b)u, belongs to (f;V(4))7+: N gL(1) N L(4)~, which is zero by Proposition
7.4.1. Thus, we obtain G,(b)u, = 0. Hence, (7.5.3) implies G;(b) € U, (g)f,. Similarly,
G;(b)e U, (9)fy- Therefore, Q = G;(b) — G;(b) belongs to U, (g) f, ngL z(c0) N L(c0)™.
Proposition 5.2.4 implies Q* € £, U, () N gL z(c0) n Lz(c0)”. Then it remains to
apply Corollary 7.4.2. Q.ED.

Thus we can define G: L(0),/qL(0), » Uz (g); N L(c0) N L(c0)~ by G(b) = G;(b)
for b € f;B(c0) N B(c0),. Then we have

(7.5.4) b = G(b) mod gL(co),
155 (FU;@E= @  ZlgqIGB) forn>1.
be f7B(c0)NB(w0)s

Since Uz (g): = ) :(f;U, (9))#, we obtain

(7.5.6) Uz(9): = , BZ( ) Z[q, q ' 1G().
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Then (G;.1) follows from Lemma 7.1.1 (ii), and (G;,.3) follows from (7.5.5). Finally, let
us show (G,.2).

LEMMA 7.5.2. Let¢e Q_(l),be B(w):,and /. € P, . If m;(b) = O, then G(b)u, = 0.

Proof. Takeisuchthatéb # 0.Then G(b)u; € (f;V(A)%:: N gL(A) N L(A)~ = 0.
Q.ED.

By this lemma we have

Vz(/l)ug = . BZ( \ G(b)u, .
i}.(”)#é

Then, (G,.2) follows from Lemma 7.2.1 (ii), and {b € B(c0),;7,(b) # 0} ~ B(4) 4.
Thus, the induction proceeds, and (G,) is valid for any I > 0. Now Theorems 6 and
7 follow from (G,;), Lemma 7.2.1, Proposition 7.4.1, and Corollary 7.4.2.
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