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CRYSTAL BASES OF MODIFIED QUANTIZED
ENVELOPING ALGEBRA

MASAKI KASHIWARA

0. Introduction.

0.1. G. Lusztig gives the crystal base on the modified quantized enveloping
algebra U, ,(¢) in [L2]. The algebra U ,(g) is obtained from the quantized universal
envelopmg algebra U,(g) by mod1fymg the torus part P p+ Q(g)g" to @1 Qlg)a,,
where a; is the projector to the weight space of weight 4 (see §1.2). He gives also
several conjectures on its properties in [L3]. The purpose of this paper is to study
the structure of crystal bases B(U (g)) of U ,(a) and to give an affirmative answer to
some of his conjectures.

0.2. Letus explam the results obtained here more precisely. We establish that the
crystal structure of U 4(8)1s described by those of U, (g) and U, (g). Namely, let B(co)
be the crystal base of U; (g) and B(—c0) the one of U, (g). Let T, be the crystal
consisting of a single element of weight A. Then the crystal base of U, ,(g) is isomorphic
to the direct sum of B(c0) ® T; ® B(—o0) (Theorem 3.1.1). This fact 1s a reflection of
U,(8) = @, U; (9) ® U;(g) ® Q(g)a;. The algebra U () has the antiautomorphism
* that sends e¢;, f; to themselves and a; to a_,. We prove that the crystal base is
stable by * (Theorem 4.3.2). This is one of the conjectures of Lusztig [L3]. This
automorphism sends b, @1, ® b, € B(c0) ® ) T; ® B(—0) = B(U (@) to b¥®
L j—wib;—wib, ® b3 . By this automorphism, B(U (g)) has another crystal structure.
These two structures are compatible (see §5), and B(U(g)) may be regarded
as a crystal over ¢ @ g. This is a reflection of the U ,(9)-bimodule structure of

Uy(9).

0.3. In [K2], the author introduces “the dual algebra” A,(g) of U,(g) and its
crystal base B(4,(g)). This algebra has the Peter-Weyl-type decomposmon

A0 = D VD) VA).

Ae Py

Here P, is the set of dominant integral weights and V(A) and V() are the left and
right highest-weight module with highest weight 1. Accordingly B(A,(g)) has the
crystal structure

B(4,(9)) = @D B(})® B().

AeP,

Received 25 March 1993.

383




384 MASAKI KASHIWARA

When g is finite-dimensional, B(U () is isomorphic to B(A,(9))- When g is affine,
U (g) is the direct sum of three algebras U, (94 U (8)o, and U ,(8)-. They consist of
elements of positive level, level 0, and negatlve level, respectlvely Accordingly

(U (g)) is the direct sum of B(U (8)+)s B(U (g)o), and B(U (g)-). The crystal struc-
ture of B(U (g);) is rather simple. Namely, (U (9),) ® B(0) is isomorphic to
B(A,(g)). Here B(0) is the crystal base of the trivial representation. However,
the author does not know much about the structure of B(U (g)o). The result of
[IIJMNT] suggests that B(U (g)o) is a direct sum of the affinization of the crystals
of finite-dimensional | U ,(g)-modules. We show here one property: for any connected
component B’ of B(U (g)), {(wt(b), we(b)); b € B'} is bounded from above (see §9.3).

0.4. We show also that the Weyl group operates on B(Uq(g)) or more generally
on the crystal base of integrable U,(g)-modules. The action S; of simple reflection is
given by

fihowiOp if Chy, wiby =0
Sib =Y 5= <hswib :
&7 hewi®dp if Chy, wib) < 0.

We show (Theorem 7.2.2) that {5} satisfies the braid relation. We call a crystal base
b an extremal vector if, for any we W and i € 1, S,,b is killed by either &; or fi. We
show another remarkable property of B(U (g)). Let B’ be a connected component
of B(T, ,(9)). Then B" may not contain either a highest-weight vector or a lowest-
weight vector, but it always contains an extremal vector.

1. Notations.

_LL Definition of quantized enveloping algebra. Let us recall the definition of
U,(g) (cf. [K]). We prepare the following data:

(1.1.1) a free Z-module P (weight lattice),
(1.1.2) an index set I and o; € P and h; € P* = Homy(P, Z)foriel,
(1.1.3) a Q-valued symmetric bilinear form ( , )on P.

We assume for the sake of simplicity that there exist A; € P such that {h;, A;> =

for any j € I. We call A, the fundamental weight. We assume further that {o; }le 1 1s
linearly independent. Many of the results in this paper still hold without these
assumptions. Assume that they satisfy the conditions

(1.1.4) (o, %) €2Zs, foriel,

2(0t;, 4)
(s, 0t;)

(1.1.6) (o, 0) <0 fori#jel.

forieland Ae P,

(1.1.5) Chy Ay =
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The quantlzed enveloping algebra U,(g) is the Q(g)-algebra generated by e;, f; (i € I),
and ¢" (h e P*) satisfying the deﬁnmg relations

(1.1.7) q"=1 for h=0;
(1.1.8) qhq" = gM*h for hy, h, € P*;
(1.1.9) gte.qg" = g™,  and

q"fig™" =g "L

-1
(1.1.10) e, f;] = 5,; - Z{‘
where g; = %2 and t; = g2,

(L.1.11 fori#tjel, setting ¢ = 1 — {hy, o),

ZO (_)nelgn)ejei(c—-n) —_ Z (_)nfi(n)fj‘_ﬁ(c—n) =0

Here [n]; = (¢i — ¢;")(q: — ¢;'), [n]:! = fl [k]i,ef = e}/[n]!, and ) = f/[n];!.

We set {x} = (x — x"!)/(g — q”!) and { } D {qu’;X}. We denote by UZ(g) the

h{q

Z[q, g~ ]-algebra generated by e™, £, g", (ielLhe P*,neZ,).

Let U, (g) (resp. U, (g)) be the Q(g)-subalgebra of U ,(g) generated by the e;’s (resp.
the £7’s) and U (9), (resp U, (g)z) the Z[q, q - subalgebra generated by the e{™’s

(resp. the f‘"”s) We set UQ(g) Q[4, 47'] ®zy UZ(g), etc. For ¢ € Q = @Za;, we
set

Uy(9): = {P € Uy(a); ¢"Pqg™" = ¢ for any h e P*},

Ui (9)s = U () 0 Uy(g).

We set |€] = Zin[ for & =3 no;€ Q. We define the filtration F of UZ(g) by

F, (U (@) = @|§[<n q (Q)§
We say 4 € P is dominant (resp. antidominant) if (hy, A = 0 (resp. <h;, A> < 0) for
any i. We write P, for the set of dominant (resp. antidominant) integral weights.

1.2. Definition of modified quantized enveloping algebra. Let Mod(g, P) denote
the category of left U, (g)-modules M with the weight decomposition

Mz@MA

AeP
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where
M, = {ue M; q"u = g™ *»ufor any h e P*}.

Let (forget) be the functor from Mod(g, P) to the category of vector spaces over
Q(q), forgetting the U,(g)-module structure. Let R denote the endomorphism ring
of (forget). Hence to give an element of R is to associate an endomorphism ¢(M) of
M with each M in Mod(g, P) such that, for any morphism f: M — M’ in Mod(g, P),
o(M') o f = f o @(M)holds. Note that R contains U,(g). For 4 € Plet a; € R denote
the projector M — M, to the weight space. Then the defining relation of a; (as a left
U,(g)-module) is

(1.2.1) q'a, = g™ *a,.

We have

(1.2.2) a,P = Pa,;_, for £ € Q and P € Uy(g);,
(1.2.3) aa, =90, ,0a;.

Then R is isomorphic to the direct product [ [;.p U,(g)a;. We set
ﬁq(g) = }@) Uq(g)al

Then U ,(g) is a subring of R by (1.2.2) and (1.2.3). Hence any object M in Mod(g, P)
may be regarded as aleft U, (g)-module. We set

(1.2.4) UF(g) = @ UZ(g)a;,
(1.2.5) Ux(g) = ge UZ(g)a, = ep a,UZ(g).

They are subrings of f]q(g).

1.3. The automorphisms of U/(g). Let » denote the antiautomorphism of U,(g)
given by

(1.3.1) g=q, @"Y=q" e =¢,  fF=/f
Let ¢ be the antiautomorphism of U,(g) given by

(1.3.2) ol@=q, olg)=q", of)=1f, ole)=e.
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Let us denote by v the automorphism @ o * = * o ¢ of U,(g). Hence we have
(13.3) ' =q, @V=qg" e&=f £ =e.
Let — be the automorphism of U,(g) given by

(1.3.4) g=q", @y =q" € =e, fi=1

They commute with each other. B
These automorphisms and antiautomorphisms are extended to those of U,(g).
We shall denote them by the same letter. We have

(1.3.5) ai=a_;, ola;) = a,, aj =a_,, d,=a,.

1.4. Tensor product. In this article, we take the comultiplication A of U,(g) given
by

Aqh — qh®qh)
(1.4.1) Ae;=e, @17+ 1 ®e;,
Ai=fi®1+4Q® f.

By this comultiplication, the tensor product of U,(g)-modules has a structure of
U,(g)-module.

For an automorphism g of U,(g) and a U,(g)-module M, let us denote by M? the
Uj(g)-module {u’; u e M} with Pu? = (g(P)u)’ for ue M and P € U,(g). With this
notation we have

(1.4.2) MON)"=ZN"@M"

by(u®v)* —v" ®u” forue M,ve N.
1.5. Crystals. Let us recall the definition of crystals (cf. [K3]).
Definition 1.5.1. A crystal B is a set with the following data:

(1.5.1) amapwt: B— P,
(1.5.2) eg:B—Zui{—w}, @:B->Zii{-c0} foriel,
(1.5.3) ¢&:B—>BuL{0} and f:B-BL{0} foriel.

They satisfy the following axioms.
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(1.5.4) Forbe B,  ¢b)=¢&(b) + {h, wt(b)).
(1.5.5) For b e Bwith ébe B,
wt(Z;b) = wr(b) + o;.
(1.5.6) For b e B with f;b € B,
wt(f;b) = wt(b) — o;.
(1.5.7) Forb,,b,eB, fib,=b,  ifandonlyifé&b, =b,.
(1.5.8) Ifg(b) = —c0  then &b = fib=0.

Definition 1.5.2. A morphism : B — B, from a crystal B; to a crystal B, is a
map ¥: B, L1 {0} — B, L1 {0} satisfying the following axioms:

(1.59) ¢(0)=0
(1.5.10) if b € B, and y(b) € B,, then

wt( (b)) = wi(b), &) =e(b) and  @U(b)) = ¢i(b);
(1.5.11) if b € B, satisfies y(&;b) # 0 and Y (b) # 0, then Y/(é;b) = &y (b);
(1.5.12) if b € B, satisfies (f;b) # 0 and y(b) # O, then Y(fib) = Sy (b).

The definition of morphisms is slightly different from [K3].

Let ¥(I, P) denote the category of crystals.

A morphism : B; - B, of crystals is called strict if the associated map from
B, L1 {0} to B, L1{0} commutes with all & and f;. If the associated map is injective,
then  is called embedding.

A crystal B is called seminormal if, for any b e B and i€ I, &(b) and ¢;(b) are
nonnegative integers and

gi(b) = max {n > 0; &/b € B},
@:(b) = max {n > 0,f"b € B}.
In such a case, we set

gmasp = g8®p  and

f‘imaxb — j:‘/’i(b)b‘
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A crystal B is called normal if, for any subset J of I such that {(«;, &;)}; ., is a
poisitive-definite symmetric matrix, B is isomorphic (in €(J, P)) to a crystal base of
an integrable U,(g;)-module. Here U,(g,) is the quantized universal enveloping

algebra generated by e, f; (j € J), and q" (h € P*).
For crystals B; and B,, let us define their tensor product B; ® B, by

(1‘5.13) BI®B2 = {bl ®b2; bl EBI, bzeBz},
(1.5.14) wt(by @ by) = wi(b;) + wt(b,),
(1.5.15) &i(b; ® by) = max(ei(by), &i(by) — <{hy, wt(by))),

@;(by ® by) = max(g;(by), ,(by) + {h;, wt(b,)),

&b, ®b, ifgyby) = ei(b,)

(1.5.16) Zibi ®b2) = {bl ®&b, il b) < cilby),

x _ fib,® b, if i(by) > &;(by)
10,08 = N oo 2

Here 0 ® b and b ® 0 are understood to be 0. Then ® is a functor from (I, P) x
%(1, P)to ¥(I, P) and satisfies the associative law: (B, ® B,) ® By = B, ® (B, ® Bs)

by (b ® by) ® by = b; @ (b, ® by).
For a crystal B, let us denote by B” the crystal defined by

(1.5.17) BY = {b¥;be B},

(1518)  wi(b*) = —wi(B), &) =qb), @b")=eb),
&b*)=(fb)* and  fi(b*)=(@Eb)".

Then we have (cf. (1.4.2))

(1.5.19) (B ® B,)" = BY ® BY by  (b;®by)V by @by .

Example 1.5.3.
1. C = {c} with

wt(c) =0, glc) = pi(c) = 0,
gic=fic=0.

For any seminormal crystal B, B® C and C ® B are isomorphic to B.
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2. For e P, T, = {t,} with
wi(t;) = 4, &l(t;) = @ilt;) = —0,
&, = fit, =0.

We have T, ® T, = T;,, and B® T, = T, ® B = B for any crystal B.
3. Foriel, B, = {b(n), n € Z} with wt(b;(n)) = na,

gbi(n) = —n,  @bi(n) =n,

gi(bi(n)) = @by(n)) = —c0  forj#1i,

and &b =bm+1), fibn)=bn-1),
&b(n) = fibm)=0  forj+#i.

We write b; for b;(0).

4. B(co) denotes the crystal associated with U, (g). We denote by u,, the vector
of weight 0.

5. B(—o0) = B(o0)". This is regarded as the crystal associated with U,/ (g). We
set u_, = Ug.

6. For 1 e P,, let B(4) denote the crystal associated with the irreducible module
V(%) of highest weight A. Set B(—4) = B(4)". Then B(—4) is isomorphic to the
crystal associated with the irreducible module V(— 1) of lowest weight — 4. Then C
is isomorphic to B(0).

Let us recall that the automorphism = of U, (g) induces the automorphism of
B(o0) (cf. [K3]). We shall also denote it by . We set & (b) = &;(b*), ¢f*(b) = ¢,(b%),
&¥b = (¢;b*)*, and fi*b = (fib*)*. For A € P,, there exists a unique embedding B(4)
into B(c0) ® T, whoseimageis {b ® t, € B(c0) ® Tj; &f(b) < <{h;, A>}. Similarly, we
define =, ¥, etc., for B(—o0). Then, for A € P_, B(4) is isomorphic to the subcrystal
{t,®be T,® B(—oo); 9(b) < — <y, 4D} of T, ® B(—c0).

Let us also recall that, for any i € I, there is a unique strict embedding

®,: B(c0) — B(0) ® B,
such that @,(u,) = u, ® b;. We have
@,(b) = &7 @ f b,
Also we have

(1.5.20) B(0) ® B; = @ B(0) ® T, -
nz0
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Taking v we obtain
®;": B(—w0) — B; ® B(—0) and

B, ® B(—0) = @0 T, ® B(—).

1.6. Balanced triples. Let us recall the definition of balanced triple.

Let V be a vector space over Q(g). For a subring B of Q(q), a B-lattice of Vis a
B-submodule M of V such that V = Q(q) ®; M.

Let A (resp. A) be the subring of Q(q) consisting of functions regular at ¢ =0
(resp. ¢ = o). Let Vy be a Z[q, g *]-lattice of V, L an A-lattice of ¥, and L an

A-lattice of V. Then we have the following lemma.

LemMa 1.6.1 [K1]. Set E=Vy,nLnL. Then the following conditions are
equivalent.

(i) E— V4o L/V, ~qL is an isomorphism.

(i) E— VznL/Vzq L is an isomorphism.

(iil) (Vz nqL) ® (Vz L) — Vy is an isomorphism.

(V) AQLE-L, AQzE—~L, Z[q, ' 1Qz E - Vg, Q(q) ®z E — V are iso-
morphisms.

We call (L, L, V) balanced if these equivalent conditions are satisfied. Let us
denote by G the inverse of the isomorphism E — V, N L/Vz n qL. If B is a base of
Vz 0 L/Vz gL, then {G(b); b € B} is a base of V. The following proposition is easily
proven (e.g., by (iii)).

PROPOSITION 1.6.2 (Triangular property). Let0Q — V, =V, = V3 > 0 bean exact
sequence of vector spaces over Q(q). Let Vg (resp. L;, L;) be a Z[gq, q~*]-lattice
(resp. A-lattice, A-lattice) of V; (i = 1, 2, 3). Assume that

0->Viz - Vaz - Viz -0,
0-ViznLi=»VognL, > Va0 Ly >0 and
0-V,znL;—»V,z20L, > Va,nL;—0

are exact. If two of (Vig, L;, L;) are balanced, then so is the other.

2. Resuit of Lusztig [L2].

2.1. Global base of ﬁq(g). Let us recall the result of Lusztig on the crystal base
of U,(g). For a dominant integral weight A € P, let us denote by V(1) (resp. V(— 1))
the irreducible module with highest- (resp. lowest-) weight 4 (resp. — ). Let u, (resp.
u_,) be the highest- (resp. lowest-) weight vector. For A e P, e P_,weset V(4, y) =
V(%) ® V(w). Then V(4 p) is generated by u, ® u, as a U,(g)-module, and the
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defining relation of u; ® u,, is

@2.1.1) g, ® ) = ¢, @ u,),
(2.1.2) e} =By, ® u,)=0

SRR, @ u,) =0

Let us define the automorphism — of V{4, ) by
(2.1.3) (Pu; @u,))” = Pu, ® u,) for P e U,(g).

We set L(4, u) = L(A) ®, L(p) and B(4, p) = B() ® B(p) = L(4, u)/qL(4, ). Then
(L(A, 1), B(A, w)) is a crystal base of V(4, p).

Set Va(dp) = UMe)w,®u,) = U (u, ® U (@u, and Volh ) =
UqQ(g)(u 2 ® u,). The following results are due to Lusztig.

ProposiTION 2.1.1 [L2].  (L(4, u), L(A, &)=, Vz(4, ) is balanced.

Let G be the inverse of the isomorphism L(4, ) N L(4, p)~ N Vi(4, p) = L(4, )/
qL(;t’ /J) Then VZ(}" N) = @beB(). ) Z[qa _IJG(b)

TueOREM 2.1.2 [L2]. There exist a unique A-lattice L(U (g)) of U ,(9) and a unique
base B(U (g)) of L(U (g))/qL(U (a)) satisfying the following properties.

(@) (LT, (9)), L(T(8))", UH(g)) is balanced.

(ii) Let G denotethei mverse of L(U (g)) m L(U @) n UQ(g) ~ L(U (g))/qL(U (@)
L(U (@) = @AGPL(U (g)a;) and B(U, UAGPB(U (9)a,) where L(U (@)a, =
L(U,(g)) " Uy(@)a; and B(Uy(@)a,) = B(U (9)) N (L(Uy(g)a)/aL(U,(g)a,))-

(iii) Forany ¢ e P, andn € P_, let ®(, n) denote the U,(g)-linear map U,(8)d¢., —
V(&) ® V(n) sending ag., to u; ® u,. Then ®(¢, n)L(Uq(g)aéJr,,) = L(&) ® L(n).

(iv) Let ®(&, n) be the induced homomorphism L;(Uq(g)a§+,,)/qL(Uq(g)a¢+,,) to L(&)
® Li)/aL(&) ® L(n). Then {be B(U,(@)az,); D& nb #0} = BE) @ Blr) and
(&, n)G(b) = G(Q(E, mb) for any b e B(Uy(8)az+,)-

(v) B(U,(a)) has a structure of crystal such that

B(¢) ® B(n) —» B(U(9)4;+,) = B(U,(9))

is a strict embedding.
The crystal B(Uq(g)) is therefore a normal crystal.

2.2. Arguments of Lusztig. Since we use the arguments of Lusztig later, we shall
review his argument briefly. The following lemma is easily checked.

LemMMA 2.2.1. Letl,, l_e€Z,,and Ae P, peP_.
() F (U, (@) F, (U] (9)(u; ® u,) = F (U () FL(U; (9) (1, ® u,)
= (F_(U; (@)u,) ® (F, (U] (9)u,)-
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(i) For P, € F, (U*(g)), we have
(P-1) ® (Py,) = P_P.(u; ® u,) = P, P_(u; ® )
mod F,__ (U (8))u; ® Fy, 1 (U, (9)u,, -
(i) L2, W~ 0 F_(Ug (8))u, ® F (U (g))u,
= (L) 0 FL(U; (9)uz) ® (L(1) 0 F, (U] (9)w,)
mod Fi__(g)u; ® Fi,_,(9)u, .
(iv) u®v—u®0 € (U;(9)>0 1) ® (U, (9)s0 0). Here we set U, (8)>0 = 3. U (9)e;
and Uy (9)>0 = X Uy (8)f:-
The property (iv) follows from the existence of the universal R-matrix (cf. [L2]).

PROPOSITION 2.2.2. Let A€ P, and ue P_, and let N be a U, (g)-submodule of
V(Z) and N’ a U (g)-submodule of V(u). Assume that N and N’ are generated by
global bases, i.e, N = Dy p,Q(q)G(b) and N’ = P, .5, Q(q)G(b') for some By <
B(4) and By < B(w). Then (L(A 5)nN @ N', L(4, ) "N ® N’, N, ® Ny) is bal-
anced. Here Nz = (). 5, Z[q, 4 *1G(b), etc.

Proof. Set F(N) = N n F(U,; (g))u; and F;(N') = N' n F(U,;f (a))u,. Then F(N)
(resp. Fy(N")) is a U,"(g)- (resp. U, (g)-) submodule and is generated by global bases.
Hence it is enough to show

(2.2.1), (L(4, ) 0 B(N) ® F(N"), L(4, p)™ 0 F(N) ® F(N'), Fi(Nz) ® F(Nz))

is balanced. We prove this by the induction on I. Assume that (2.2.1),_, is satisfied.
Let Gr/N, etc., be the gradation with respect to the filtration F. Then Lemma 2.2.1
implies

Gr(L(4, Wy "N ® N') = Gr(L(2) n N) ® Gr(L(p) n N')
Gr(L(L, §) "N ® N') = Gr(L(}) 0 N) ® Gr(L(x) N N').

Hence (Gr(L(4, )y "N ® N'), Gr(L(4, &) n N ® N'), Gr(Nz ® Ny)) is balanced.
Then we obtain (2.2.1), by the triangular property of balancedness (Proposition
1.6.2). Q.ED.

Applying this lemma to N = V(1) and N’ = V(u) we obtain Proposition 2.1.1.
We also obtain the following lemma.

LemmA 2.2.3. Let A€ P, and ue P_. Then for be B(4), b’ € B()

G ®b)=G(b)® G(b') mod . Q@\{o} VDwisy+e @ V()¢ -
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Here Q. is the set of linear combinations of simple roots with nonnegative integer
coefficients.

3. Description of B(U,(g)a,).

3.1. Relation with B(co) and B(—o0). Let A be an integral weight. For £ e Py,
n € P_such that 1 = ¢ + n, B(¢) ® B(n) is embedded into B(U,(g)a;). Since we have
B(&) = B(0) ® Ty and B(n) = T, ® B(—c0), B(¢) ® B(n) is embedded into the crys-
tal B(o0) ® T; ® B(—o0) through T; = T, ® T,. Now take { € P.. Then it is easy to
see that

B+ ) ® By — {) = B(0) ® T, ® B(—)
%
B(¢) ® B(n)

commutes. Thus we obtain the following theorem.
THeOREM 3.1.1. B(U,(9)a;) = B(0) ® T, ® B(—00).

Note that B(¢) ® B(n) is a strict subcrystal of B(c0) ® T, ® B(—co).
By Lemma 2.2.1 (i) and Lemma 2.2.3, we have, for b; € B(c0) and b, € B(—c0),

B.11) G(b; ® t,® by) = G(by)G(by)a; mod Fiyup, -1 (Ug (8) Fiyen, -1 (U (8))as

3.2. Filtration by Bruhat order. Let W be the Weyl group. For w € W, let us take
a reduced expression w = s; -*-s;. We define a subset B, (c0) of B(co) by

(3.2.1) = {fi ffug ay, ..., a2 0},

Then B,,(00) does not depend on the choice of reduced expression (see [K3]), and

(22 @D Zleq'I6b)= ¥ Zlea IR

b € B,,(c0) Ay, a;e Zz20
Set B, (—) = B,(c0)” = B(—o0). Then we have

(3.2.3) @D Zlg,q7'16(b) =Y Z[q, g Jeff” - el

be B, (—w)

We set for any i e I
(3.2.4) U2 =@DZlg. g e,  and

07 )7 = @ 2[4, 471",
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THEOREM 3.2.1. Letw,w' € W,andletw = Si, 7 Sips w = Sj T S) be their reduced
expressions. Set Bw,w,(ﬁq(g)) =| |1 B,(o0)® T; ® B,,(—x©) = B(ﬁq(g)). Then

®_ Zlg.q71GH)

b& Boy. i Ugla)
is equal to the Z[q, q* J-module U; (g)%--- U; ()2 U, (@)% -~ U (g)Z .
This follows immediately from Proposition 2.2.2. by taking

A=¢+nwithé, —ne P, and
N= P Q@G(bu, andN' = P )Q(q)G(b)u,,.

b e B, (o) beB., (-

This theorem shows an affirmative answer to a conjecture of Lusztig [L3].

4. A metric of Uq(g).

4.1. General facts. Let us define a metric on ﬁq(g) that behaves well with crystal
bases. Let §/ be the antiautomorphism of the Q(g)-algebra U,(g) defined by

4.1.1) Wle) = g 't ',
Y(f) = qi 'tie;,
vig" =q".

Let M, and M, be U,(g)-modules, and let ( , )y, and (, ), be a symmetric form
on M, and M, satisfying

(Pu, v)pr, = (4, Y(P)0)yy, foru,ve M;, PeUfg).
We define the symmetric form (, Jon M = M; ® M, by
(uy ® uy, vy @ v,) = (Uyg, V1), (U2, V), for u;, v, e M;.
Then it is known (cf. [K17]) that ( , ) satisfies
(4.1.1) (Pu, v) = (u, y(P)v) foru,ve M.

Let us call this metric the tensor product of ( , )y, and (1, )y,

4.2. Definition of a metric on Uq(g), For A€ P, u(—P,), there exists a unique
nondegenerate symmetric bilinear form ( , ) on ¥(4) such that

@421 (uu)=1

(Pu, v) = (P, y(P)v) for any u, ve V(4) and P e Uyfg).
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Therefore, for A, p € P,, the tensor product of those metrics gives a metric on
V(1) ® V(—p). Let us take an arbitrary A€ P. For (e P, n(1 + P,), V(iE)®
V{4 — &) has a metric.

LEmMA 4.2.2. For any P, Q € U,(g), there exists a unique polynomial f(x) in
x = (x;); s Such that, for any £ € P, n(A + P,),

(P(u: ® uy—g), Qu: @ u;_;)) = fx) with x; = g7 "<,

Proof. Let us take PP e UX(g)® Q(g)[q"; he P*] such that Y(Q)P =
Y PP Then

(P(“a,= &® uz—g)a Q(“g ® u).-—cf)) = z (Pi”)(ué ® ua—g): lp(Pf))(ug ® “A-—g))-

Hence we may assume that P and Q belong to U, (g) ® Q(q) [q"; h € P*]. Since
q"(uy ® uy_g) = 4" (u; ® u,_¢), we may assume P, Q € U; (g). In this case Pu:®
u;-¢) = Pu; ® u;_, and hence (P(u; ® u;-y), Q(us @ u;_,)) = (Puy, Qug). Then the
result follows from [K1, Lemma 4.7.1]. QED.

We define a metric on U,(g)a, by

(Pa;, Qa;) = f(0)

where f is the polynomial given in Lemma 4.2.2. Hence (Pa;, Qa;) is the limit of
(P(u; ® uz—g), Q(u; ® u;_)) when all Chy, &) tend to infinity. Here we regard |q| < 1.
We extend this metric to the metric of U,(g) such that U,(g)a; and U,(g)a, are
orthogonal for different 4, p.

In [K1], we define a metric on U (g). The relation is given by the following
formula (4.2.3).

(423) (Pa;, Qa)=T](1—g?)(P,Q) forP,QeU; ()  withl =} nay.

Hence, we can apply the result of [K 1]. The relation (P, Q) = (P*, 0*) [K1, Proposi-
tion 5.2.1] implies

(4.2.4) (w,v) = (¥, v*)  foru,ve Uy (g = P U (9)a;.
A

Lemma 4.2.3. Forue ﬁq"(g) and v e U, (g), (u, vfy) = (uqiti e;, v).

Proof. Setu = Pa;,,,v= Qa,forAe P,P,Q¢€ U, (g). Takel e P,,ne P_ such
that 1 = & + 7. Then Pe;(u, ® u,) = P(u; ® e;u,). On the other hand, we have

AP=P®1 +1e{P® f; modc @ U (9)® Uy (g);-
#

0, —a;
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For the definition of ¢, see [K1]. Hence we obtain with £, = (h;&D, etc.
Pe,(u; ® u,) = Pu; ® u, + t;e/ Pu; ® fie;u,
= Pu; @ u, + aF [ —n1(Adt,e{ Pu; ® u,.
Thus

i+l qiii—qi-i-l

1—qf

&i
(Pey(ue ® u,), Qu; ® u,)) = &

((Adt;ei Pyu;, Que)

Letting ¢ go to infinity, we obtain

A+l

(Pe, 0a,) = =3 al@) (Adt)el P, O)

Here a(g) = [[(1 — ¢?)" and wtQ = Y nm;e;. By [K1, Lemma 5.2.2], we have

(4.2.5) ((Adt)eiP, Q) = (P, Qf).
Finally we obtain
(Payiqqiti e, Qa;) = g7 ~H(Pe;a;, Qay)
= (Pa;14, Qfi0i1q,)- Q.ED.

LemMa 4.2.4.  (u, vf;) = (uq; 't;e;, v) for any u, v e U,(g).

Proof. Assume first ue U ¢ (9). Let us write v = Pw for Pe U, (g), we ﬁq'(g).

Then (ue;, v) = (Y(P)ue;, w) = (Y(P)u, wq;t, f;) = (4, Pwq;t; f;) = (u, vq;t;f;) by the
last lemma. Hence the lemma is true if u € U (9). In general case, writing u = Pw
with Pe U (g)and w e U (g), we can argue snnllarly Q.E.D.

Set Y*(P) = (Y (P*))*. Then y*(f;) = q;t; 'e;. Hence Lemma 4.2.3 implies
(Wfi, v) = (u, v*(£)).
This implies easily the following lemma.
LemMA 4.2.6. (uP, u) = (u, v*(P)) for any u, v € Uq(g) and P € U,(g).
PROPOSITION 4.2.5.  (u, v) = (u*, v*) for any u,ve U ,(9).

Proof. Thisis already shown foru,v e U (9)- Ifu € U, (g), then, writing v = Pw
with Pe U (g) and w e U (g), we have

(U, v) = (P (P)u, w) = (W (P)*, w¥*) = (u*, w*P¥*) = (u*, v*).

The general case can be argued similarly. Q.E.D.
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4.3. Metric and crystal base. The relation of the metric of V(1) and its crystal
base implies the properties

4.3.1) (L(T,(a)), LT, (0))) < 4,
(4.3.2) (G(b), G(t)) = 8, mod gA.

Thus ( , ) is a nondegenerate metric on Uq(g). Let A, be the subring of Q(g)
generated by g, (1 — ¢™)~! (n > 0). Then one can see easily

(4.3.3) (02(g), UZ(g)) = Az[q7'].

Hence we can apply the similar arguments as in [K2, §6.1]. Thus we obtain the
following.

ProrosiTon 4.3.1. (i) L(U (@) ={uel (9); (u, u) € A},
(11) If ue Uz(g) and (u,u)e 1 + qA4, then u = G(b) mod qL(U (g)) for some be

B((U,(9)) — B(U,(g)).

We have Theorem 4.3.2 below as a corollary.

THEOREM 4.3.2. (@) L(U (@) is invariant by *.

(ii) B(U,(9))* = B(Uy()).
(i) G(b*) = G(b)* for be B(U (@)

The proofs of (i) and (iii) are similar to [K1]; we will prove only (ii). For be
B(U (g), b* e B(U (@) (— B(U (). Write b = b; ® t, ® by, I, = |wtb,|. Then

G(b) = G(b;)G(b)a, mod Fy, (U, (8)Fy,-1(U; (8))a;.
Hence we obtain
G(b)* = a_;G(b)*G(by)* = a_,G(b3)G(bY) = G(bF)G(bY)a,
= G(b})G(b%)a, mod F,_,(U; (9))F,-1(U[ (8))a,
with
U= —A— wthy — wtb,.
Since G(b)* = G(¥') for some b’ € B(U,(g)) s — B(U,(g)), b’ must be b} ®t, ® bj.

(See (3.1.1).)
As seen in the course of the proof above, we have the following.

COROLLARY 4.3.3.  For b, € B(), b, € B(—00), we have
(by @ t; ® by)* = bF @ t_3 b, ~wib, @ b3 -

Theorem 4.3.2 is conjectured by Lusztig [L3].
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5. Right structure.
5.1. Two crystal structures on B(ﬁq(g)). We define for b B(ﬁq(g))

(5.1.1) e¥(b) = &(b*),
@ (b) = @i(b*),
éfb = (g,b*)* and
fi*b = (fo*y*.
Then this defines another crystal structure on B(ﬁq(g)). By Corollary 4.3.3 we obtain
easily the following formula for b, € B(c0), b, € B(—), 1 € P:
(5.1.2) & (by ® t; ® by) = max(ef(by), p¥(b,) + {h;, 1)),
@by ® 1; ® by) = max(ef(b;) — <{hy, 4, ¢ (b,)),
PF(b; @1, ®by) — ef(b; @ t; ®by) = — by, 4D,

a efb, ®t,_, ®b, ifef(b) = @F(by) + {hy, A)
* = g

GL3) &b ®n®b) {bl ® 110 ® 2, ifet(by) < @F(by) + <hy 23,
> fi*b1 ® 144, ® by ifef(by) > @i (by) + <hy, A
.* = ' ~

GLA) fFb ®n0b) {bl ® thna, ® by ife3(B1) < @F(by) + <y 15

We prove that these two structures of crystal may be regarded as a crystal structure
over g @ g. This is compared with the fact that the bimodule structure of ﬁq(g) may
be regarded as a left U,(g @ g)-module structure.

In order to see this, it is enough to show the following theorem.

_ THeorREmM 5.1.1.  &Fand fi¥ are strict morphisms of crystals (with respect to &; and
Ji)-

In order to prove this theorem, we use the following lemma. The proof being
straightforward, we omit it.

LEMMA 5.1.2. For any i and A € P, let us define the map E;: B;® T, ® B, - B®
E“d,’ ® Bi by

b(n+ 1)@t ®bi(m) ifn+m+ <hy, A <0,

Eibiln) ® £, ® bi(m)) = {bi(n) @ty ®bm+1) ifn+m+ <k, A>>0.

Then E; is a strict morphism of crystal.
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Now, there are strict embeddings from B(co) into B(co) ® B; and from B(—0)
into B, ® B(—c0). There are also strict morphisms from B(co) ® B; to B(o0) and
from B, ® B(—o0) to B(—o0) (cf. (1.5.20)). Thus we obtain a chain of strict mor-
phisms of crystals

(5.1.5  B(c0)® T, ® B(—0) » B(c0) ® B,® T, ® B; ® B(—0)
5 B(oo) ® B,® T;_,,® B,® B(—0)
- B(00) ® Tj_,, ® B(—c0).

LEMMA 5.1.3.  The composition of the morphisms (5.1.5) coincides with &F.

This follows immediately from the formulas (5.1.2) and (5.1.3). Thus &F is a strict
morphism of crystal. Similarly f;* is a strict morphism of crystals.

6. Properties of global bases.

6.1. Preliminary. We study in [K2] the properties of global bases of integrable
modules. They give the properties of the global bases of U ,(g) reducing to those of
V(&) ® V(n). For N > 0, we set

= Z Uq(g)e:v + Z Uq(g)sz

1

PROPOSITION 6.1.1. Let n be a nonnegative integer and iel. Then ue ﬁq(g)
satisfiesu € f"U,(g) + Iy (resp.u € e}U,(q) + Iy) for any N if and only if uis a linear
combination of G(b) with g;(b) = n.

Proof. Assuming u € Uy(g)a,, let us take ¢ e P,, n € P_ such that 4 = &+
Then ®@,,(u) € f"(V(¢)® V(n) if and only if uef’ U,0) + Y.; U (g)e} =" +
Y Uy(e) /i + "%, Hence taking € such that (hy, £ » Ofor all j, we obtain the lemma
by the corresponding result of global bases of V(&) ® Vin). Q.E.D.

6.2. Definition of Vi(4). To get more precise results than Proposition 6.1.1, let
us generalize the results of Lusztig little bit.

Foriel and 4 e P, let V()L) be the U,(g)-module generated by u; , with the
defining relation g"u; , = ¢ *u, ,, eju; ; =0 for any je I and f'* Py, ; = 0.
Similarly for e P, let V(1) be the U, (g) -module generated by u; , with the deﬁmng

relation q"u; , = ¢"*’u; ,, fith;, =0 for anyje I and e} ~*#%y, = 0.Then
(6.2.1) Vi(A) = Uq—(g)/Uq—(g)ﬁluhi,w,
(6:2.2) Vi(w) = U (9)/U, (g)ef ~ 2.

Now consider the U,(g)-module ¥;(4) ® V,(u). One can see easily that this is a U,(g)-



CRYSTAL BASES ... 401

module generated by u; ; ® u; , with the defining relation
q (U, Q@u; ) = g™ u, , ® w;,)  foranyhe P*,
[P ®u;,) =0 and el "My, ®u;,) = 0.
Hence there is a chain of surjective homomorphisms
Ug( @)z~ V() ® Vi() ~ V() ® V().
6.3. Refinement. For ¢ e Q,, let us denote

F{ qu(g) = rleg_t:BQ qu(g)n .

For ¢, e P, we set
Fe, e Ulg) = F., (U] (@) F, (U] (8)T

= F; (U7 ) F., (U] (9) 7,

where 7 = Py p. Q(g)q" For £ € Q. we set F U,(8) = F _:U,(g). Then, by Prop-
osition2.2.2, F; . U,(g)a;. ,is generated by global bases. The purpose of this section
is to prove the following proposition.

PROPOSITON 6.3.1. Set L(V(4) ® Vi(w) = @} ,(L(U,(9)a,+,)). Let &, . be the in-
duced morphism L(U,()a;.,,)/aL(Uy(8)a, +,) = L(Vi(2) ® Vi(1)/aL(V{(A) ® Vi(w)). Set
B(V() ® Vi(w) = {®} ,(b); b € B(U,(9)ay+,)}\{0}. Then:

(@) (L(Vi(A) ® Vi(w), B(V(A) @ V() is a crystal base of the integrable U,(g:)-
module Vi(1) ® Vi(u). Here U,(g;) is the subalgebra of U,(g) generated by e;, f;, and
q" (h e P*).

(ii) Forbe B(Uq(g)a“ﬂ_), 5§,u(b) # 0 if and only if ¥(b) < (h;, AD.

(iii) {b e B(Uy(8)a;+,); @, ,(b) # O} is isomorphic to B(Vy(1) @ Vi(1)).

(iv) {G(b)(u; ® Eiu)} Jorms a base of Vi(A)® V(n) where b ranges over
{b € B(Uy(9)as+,); @5, ,(b) # 0}

(v) ®,, is @ morphism (in ({1}, P)) from B(Uy(9)a;.,) to BIVi(A) ® Vi(x)).

Proof. Let us take ¢ € Q.. Since V(4) ® Vi(u) is integrable as U, (g;)-module,
Fri0a,Uy(8) (43 ® uy,) is stationary when n increases. Take N such that
Ff:ﬂ\razi Uq(g)(uu ® um) = F¢+na,- Uq(g) (U ® uip) for n> N. Then F§+Nai Uq(g) (U, ® “iu)
is a finite-dimensional U,(g;)-module. Taking # € P, such that Chiym) » O0forj#i
and <h;, #)> =0,

Feing Up(@) (i @ ) > VA + 1) @ V(e — 1)




402 MASAKI KASHIWARA

is injective. Now consider the chain of homomorphisms
U (@)1, —2 Vi) @ Vi(W) —2> VA + 1) ® V(i = 11).

Then pq)s.,u(Fé-%-Nai Uq(g)al-ht N L(Uq(g)a}.+p)) = F§+Na,' Uq(g)(ul+n ® uu—r,) N L('l + }7)
® L(i — ). Hence Fryy,, Uy(0) (i ® uy) 0 LIV ® V(w) is contained in

p_lp(Di).,u(F§+Na:,~ Uq(g)alﬂt )l L(Uq(g)al+u)) < p—l(O) + (Di,u(?:ﬁ-ﬂ\laz,» Uq(g)al-!—u n
L(U/(g)a;+,))- Since P H0) N Fring, Ug(9) (i, ® uy,) = 0, we obtain

Fetn, Ug(8) (i ® ,) 0 LIV ® Vi) = O (Feno, Ug(8) @i 0 LAUB) i) -
Thus, we obtain
(Frane, Ug(8)) @54, 0 LUy(8)a14,)
= (Fysno, Ug(9)) (i3 ® ) 0 LV(A) ® Vi(w)
2 (Feana, Ug(@) (g ® U, —g) N LA + 1) @ L{p — 1).

Now, let us prove Proposition 6.2.1. For example, let us show that L(Vi(A) ® Vi(w)
is a crystal lattice. Since Fiyng, Uy(@) sy @ uyy) "LIVA + 1) @ V(n — 7)) is
a crystal lattice of the integrable U,(g;)-module Fyyy Up(@) 14y @ ty—y);
Fring Ug@) (i ® uy,) N LVi(H) ® Vi(w) is a crystal lattice of Fyy,, Uy(9) (4 ® Uiy)-
Since V;(A) ® Vi(y) is a union of Fy.y,, Uy(a) (i ® uy), LVi(A) ® Vi(w) is a crystal
lattice. The other statements can be proven similarly. Q.ED.

6.4. Interpretation of ¢ and ¢. By using Proposition 6.3.1, we can sharpen
Proposition 6.1.1. Set

I = Uyg)el + U a)f.

Then the proof of the following proposition is similar to the one of Proposition 6.1.1.

PROPOSITION 6.4.1. Let n be a nonnegative integer and iel. Then ue Uq(g)
satisfies u € f{*U,(g) + I} (resp.u € efU,(9) + Iy ) for any N if and only if u is a linear
combination of G(b) with g(b) = n.

PROPOSITION 6.4.2. Fora,ceZ,,andic€l,

(6.4.1) efU(g) + feU,(9) = (—bBQ(q)G(b).

Here b ranges over {b € B(Uq(g)); @;(b) = a or g(b) = c}.
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Proof. Taking =, it is enough to show
(6.4.2) Ug)eia, + Uy9)ffa, = @ Q@) G(b).

Here b ranges over {b € B(U (8)az), ¢#(b) = a or e¥(b) = c}.
(Step I) The case where (h;, A) = ¢ — a. Let us take ¢ € P, and 5 € P_ such that

A=E¢41, <hpy &y =1+e, hpyny = —1 —a.

Then the left-hand side of (6.4.2) coincides with the kernel of ®(&, n). Since the kernel
of ®(&, n) is generated by G(b) with b e B(U (8)a)\B() ® B(n) = {b, ®t, ® b,;
& (b;) < ¢, @ff(b,) < a}, we obtain the desired result.

(Step II) General case. We define 4, é by

o
I

— <y A if<h, A <c¢—a,

¢,

=a, = A>+a  if<h, A >c—a.

N

Then ¢ > c and @ > a. On the other hand, e*(b) — p¥(b) = {h;, Ay implies that the
condition ¢*(b) = a or e¥(b) = cis equlvalent to *(b) = d or e¥(b) = & Hence the
right-hand side of (6.4.2) is equal to U, J@efa; + U, (8)fa;. Then it is enough to

apply
Uq(g)efai, -+ Uq(g)ﬁfal = Uq(g)e?al + Uq(g)ﬂcai - QED

Let us remark that g(b) = n does not imply G(b) € /" 0 ,(9) in general. This is only
true modulo I or modulo ¢ U, (g).

ProPOSITION 6.4.3.  For b e B( Uq(g)),
(6.4.3) fPG®) = [8"(1’): "]» G(f"b) + 2 B3 @G

Here b’ ranges over the set of B(U (9)) such that &(b') > &,(b) + n and Fii(q) e
Z[q, q7']. In addition,

(6.4.4) e{"G(B) = [(pi(b31+ n] G(erb) + Y Ein.(q9)G(b').
i b’
Here b’ ranges over the set of B(U (9)) such that p,(b') > @,(b) + n.

Formulas (6.4.3) and (6.4.4) follow immediately from the corresponding results
on global bases of integrable modules (see [K2]).
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6.5. Further property. The following results are used later.
LemMA 6.5.1. If {hy, A) = k, then
L(U,(0)a-1 )% < @i~ @ LT,(@) + Ty(@)e; + Tyl@)fit ™.
Proof. Taking * and changing 4 with — 4, it is enough to show
a, fOLT(@) < g+ M LT (@) + e 0,(g) + £~ "+ Tilo)
when Chiy A + k<0,

or for b € B(U,(g)) of weight 1 + ka;, writing F9G(b) =Y ¢, G('),

k(ke+ <Ry A3)

(6.5.1) @b')y=0 implies ¢, € g;
This reduces to the same statement for b € B(V(¢) ® V(n)) for e P, and ne P_.
Write G(b) = Y f;"u, with e;u, = 0 and wt(u,) = A + (n + k)o;. Then u, & LE®

L(y) and 9G(b) =Y. " Z k] fermy Ik + n # (b, A+ (0 + ke, then 5,

belongs to e,(V(&)® V(n)). If k + n = <h;, A+ (n + k)o;), then 4 Z k Sty
belongs to g;"™L(¢)® L(n) = g™ *¥L(E)® L(n). Hence fPG(b)egf (<h"'{>+k)L(§)
® L(n) + eV(E) ® V(n)). This implies (6.5.1). QED.

7. The Weyl group action on crystal bases.

7.1. Action of simple reflections. Let B be a normal crystal. We define the action
of the Weyl group W on the underlying set B. For i € I and b € B, we set

(7.L.1) Sb = {ﬁ“'“"‘””b if Chy, we(b)y > 0

&7 Chinwi®)p if Chy, we(b)y < O
Then we have the obvious relation

(7.1.2) wt(S;b) = si(wt(b))

where s;(4) = A — <h;, A) o is the simple reflection,

(7.1.3) St =id,

(7.1.4) 587 = f.

We show that this extends to the action of the Weyl group. In order to see this, it
is enough to check the braid relation for a finite-dimensional g of rank 2.
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7.2. Braid relation. Set I = {1, 2} and assume g is finite-dimensional. Let w, =
s;, =+ s;, be a reduced expression of the longest element of W. There are two choices.
We show that

(72.1) S -

ty

S;,b does not depend on the choice of reduced expression.

In order to see this we may assume that we(b) is dominant. If we(b) is not regular,
(7.2.1) is trivial. Hence we may assume wt(b) is regular and dominant.
For any normal crystal B, set /b = f#®p, Then we have that

(7.2.2) f:{“a" : f 7**b does not depend on the choice of reduced expression.

In fact this vector is the unique lowest-weight vector in the connected component
containing b (cf. [K3]).
Now we remark

" feomatah @ fmaxh,  ifgu(b,) > e(bs)
723)  f™xb, @b ={ roman :
(123) S0 @) =9, g ey, it i(by) < iby).

LemMA 7.2.1. Let b be a vector with {h;, wt(b)) > 0. Then, for any b’ in any crystal
B, there exists an integer m and b” € B®™ ® B’ such, that for any n > m,

fr 2" @ b') = (52" @ b,
Proof. We have for 1 < v
t(b®" @ b') = max{s(b) — k<h, we(B)(0 < k < ), &(b) — vChy, wi(b)))
= max(e(b), &,(b') — v<hy, wi(b))).

Hence if &(b") — v{h;, wt(b)) < &,(b), (7.2.3) and ¢,(b) — &;(b) = {h;, wt(b)> imply
£ B @ b)) = S;b ® f™*(b® ® b'). Thus we obtain the desired result.
QED.

This lemma implies that £;"2x - .- fimax(p®n) — S;, -+ 8;,b ® b’ for some b’ € B
if n > 0. Thus (7.2.2) implies the following result.

THEOREM 7.2.2. {S,} satisfies the braid relation.

7.3. Application. ForAePandwe W, take a reduced expression w = s; **- s;,
of w. Then the condition <k, , s - S Ay 2 > <h;,, A> = 0 does not depend on
the choice of reduced expression. If this condmon is satisfied, we say that A is
w-dominant. If 2 is w-dominant, we set f, , = f;(husu-r = sut> . - filha >,

ProrosITION 74.1.  If A € P is w-dominant, the definition of fw 1 does not depend
on the choice of reduced expression of w. Here we regard fw 2GS an operator on normal
crystals, B(o0) or B(—o0).
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Proof. It is enough to show this on B(co). Then it follows from
(742) Si, Si (0 ® Lhosury @ U—0) = Foab ® thmiry ® s QED

Remark 7.4.2. wa; = o; does not imply S,,&;S,,' = & even in the 4,-case.
J y w Jj 2

8. Extremal vectors.

8.1. Definition of extremal vectors. Let M be an integral U,(g)-module. A weight
vector u of weight 4 € P of M is called i-extremal if e;u = 0 or fu = 0. In this case,
we set Sju = f{ My or ef 2y, respectively.

Definition 8.1.1. A weight vector u is called extremal if, for any [ > 0, S;, -+ S;u
is i-extremal for any i, iy, ..., ;€ I.

This notion generalizes that of highest-weight vector. A similar definition is
possible for an element of a normal crystal. An element b of a normal crystal B is
called i-extremal if &b = 0 or f;b = 0.

Definition 8.1.2. An element b of B is called extremal if, for any [ > 0, S; - S;,b
is i-extremal for any i, iy, ..., i€ L.

8.2. Modules generated by extremal vectors. Let A € P be an integral weight. Set
+=Yansolh AAjand A =1, — e P,. Then V'(2) = V(A,)® V(—4.) is
isomorphic to

U@a,/ Y Uf@e ®P+ 5 Ulafitt™?,
Chi

#A>=0 Chi, A7<0

and V'(4) has a global base: V(1) = Pyrp= . 1>, Q@G(D). Let p;: Uy(g)a, —~ V'(A)
be the projection.

LEMMA 8.2.1. Foriel and ) e P, consider the commutative diagram
Ug)a,—*— U (9)a,,;

¥ Ps.a

i

V'(s;4).
Here y, is given by

PRTRIER LA A e
@) = oy, i iy <0

ki

Then for b € B(U,(a)a;) we have Y/(G(b)) = ps,sG(Sb). Here Sitb = (S, (b*N*.

Proof. The other case being similarly proved, let us assume <h;, 1) > 0. Then
Y(G(b)) = p,,G(b)e{ "= *Va ;. 1f e¥(b) > 0, then G(b) € U,(g)e; + Iy for any N >0
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and hence p, ;(ef"*’*'a, ;) = 0 implies Y(G(b)) = 0. If ¢*(b) = O then
G(b)e{"*) = G(&;"*b) mod Uj(g)es"»*! + Iy .
Therefore we have

Y(G(b)) = p,,2(G@E "*b)ay,;). QED.
Thus, repeating this procedure, we obtain the following,

PROPOSITION8.2.2.  For A € P,set B"*(4) = {b € B(U,(g)a,); b* is extremal} and

I = @ Q(9)G®).

be B(Ug(g)ay) \B™*(2)

Then we have:

(i) I is a left U,(g)-submodule of U,(g)a.

(ii) V™*(2) = Uy(g)as/I, is an integrable U,(g)-module.

(i) Let p;: Uy@g)a, — V™*(4) be the projection and u, = p,(a;). Then u, is an
extremal vector of weight A.

(iv) For any i€ I, we have an isomorphism

V™) 3 V(5. A)
by U = Sug .
Moreover this isomorphism sends the global base to the global base.

(v) Forany i, S¥ gives an isomorphism B™*(1) ~ B™(s;1).

We have

(8.2.2) VmE () = \ P Y Q(q)G(b).

€ Brax(

Thus B™**(1) is a crystal base of ¥™2*(4).
If  is dominant (resp. antidominant), then ¥™*(4) is the irreducible U,(g)-module
with highest- (resp. lowest-) weight 1.

8.3. A proof of the Parthasarathy-Varadarajan-Rao conjecture. For A e P,let us
denote by B(4) the connected component of B( U,(g)a;) containing a,. Let us write
u; € B(4) for a,. Then S} = S, gives an isomorphism

(8.3.1) B(4) ~ B(wl) foranywe W.

If 2 is dominant (resp. antidominant), B(4) and B™*(}) coincide with the sixth
example in Example 1.5.3. (cf. the proof of Lemma 10.2.1.).
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LEMMA 8.3.1. For Ae P, and pe P, B(A+ p) is isomorphic to the connected
component of B(1) ® B(u) containing u; @ u,.

Proof. This follows immediately from the following chain of morphisms
B(A + ) <> B(A + 14) ® B(—p) <> B(A) ® B(uy) ® B(—p-) <> B(A) ® B(n).
Q.ED.

As an application, we can obtain a new proof of the Parthasarathy-Varadarajan-

Rao conjecture:

(832) ForiueP,,w,weWifw@ld+wyeP,, then V(w'(1 + wu))
appears in V(1) ® V(p).

In fact, it is enough to show that B(w'(4 + wy)) appears in B(1) ® B(p). However
this follows from B(w’(4 + wy)) = B(A + wy) = B(4) ® B(wp) = B(1) ® B(w.
9. A property of L(Uq(g)).

9.1. Property of L(ﬁq(g))u. Let us investigate properties of L(ﬁq(g))u for an
element u of an integrable U,(g)-module.

ProposITION 9.1.1. Let M be an integrable [[q(g)-module, A€ P, and u an element
of M,. Then L(U,(g)a;)u is invariant by &; and f;.

Proof. Take N such that eMu = f;¥u = 0for any i. Then take { € P,, 7 € P_ such
that 4 = & + 5 and <hy, &) > N, —<hy, ) > N. Then the morphism U,(g)a; —» M
splits through V(&) ® V(n). The result follows from the fact that any U, (g)-linear
homomorphism commutes with &; and f;. Q.E.D.

PROPOSITION 9.1.2.  Let L be a crystal base of an integrable U,(g)-module M. For
A€ P, set

N ={ueM; L(Uq(g))u < q°L for some c}.

Then N is a U,(g)-module.

Proof. Ttis trivial that N is a Q(g)-vector space. Hence it is enough to show that
N is invariant by ¢; and f;. Thus the proposition is reduced to the following
statement.

(9.1.1) Ifue M, satisfies L(U,(g)a;)u = L, then L(U,(g)a;-,,)fiu = q°Lforsomec.
Let us take N such that f;¥*'u = 0. We shall show

9.1.2) L(o)u < g7 NL.

Forany P € L(c0), there exists @, € L(o0) N Ker e} such that P = Y. 0, /i (cf. [K1]).
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Then
Pu=Y 0,/ fu
=) [n + 11,0,/ Vu.

Since f;¥*!'u = 0, we may assume that n ranges over the integers n < N. In this case
[n+ 13,0, /""u < ¢;"L(U,(g)a;)u < g; VL. Thus we obtain (9.1.2). To complete
the proof, it is enough to apply the following proposition. Q.ED.

PROPOSITION 9.1.3.  Let M be an integrable U, (8)-module and L an A submodule
of M invariant by & and f;. Let Y:Ulgla, - M be a U,(g)-linear homomorphism such
that y(L(co)a,) = L. Then !//(U (g)al) < L.

Proof.  Since y splits Uy(g)a; — V(¢) ® V(n)forsome ¢, —y e P, with A = & + n,
the result follows from Lemma 9.1.4. below.

LEMMA 9.1.4. Let £ € P, and ne P_. Then L(¢) ® L(n) is the smallest A-module
of V(&) ® V(n) that is invariant by &; and f, and that contains L) ® u,.

Proof. Let L be an A-submodule of V(¢) ® V(y) invariant by & and fi. For
w e W, with reduced expression w = s5; -5, set V,(4) = Y Q(q)f;@ -+ fiu; and
Vo) =Y Q@I - ef*u,. Then V¥, (A) and V,(n) are finite-dimensional sub-
modules. Set Lw(/l) L(l) m V,(4) and L,,(n) = L(u) n V,,(A).
In order to prove the lemma it is enough to show that,

(9.1.3) ifs;w > w,s;w’ < w'andif L o L,(¢) ® (L) N V,,(n)), then L = L, (&®
(L) N Vo).

Let us take b; € B,.(¢) and b, B,,,.(n). Then fim‘”‘bz € B,,(n), and there is ¢ such
that

fimax(b1 ® bz) = ficbl ® ﬁmaxbz .

Hence fb; ® f;™*b, belongs to L.,.(£) ® L,(n) mod gL,,(¢) ® L, (). Hence b; ®
b, belongs to L mod gL, (¢) ® L;,,,(n). This shows that

Lw'(é) ® Lsiw(r’) cL + qu’(é) ® Lsiw(n)'

Nakayama’s lemma implies the desired result: L,,.(¢) ® L, () < L. Q.E.D.
9.2. Crystal lattice and L((j(g)).

THEOREM 9.2.1.  Let M be an integrable U,(g)-module and L a lower crystal lattice
of M. Then

L= El}—) {ue M;; L(U,(g)a,)u = L}

is invariant by &** and f;**. (For 2" and f*? see [K2]).
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We remark that, by the relation of upper and lower crystal bases, the statement
above is equivalent to the statement that

@ {ue My; L(Uy(g)a;)u = gHRuAr-ar)

is invariant by é; and fi. Here c is a number such that || 4] 2 _ ¢ e 2Zfor any weight A
of M. Here |[4]? = (4, ). Note that, if 4, u € P satisfy A — pe ), Za;, then A% -
lul? € 2.

We shall prove the theorem under the last form. Set L' = @ {ue M;;
L(Uy(g)a)u € ¢*1* 7L}

LEmMma 92.2. If eu=0and if ue L, then fPue L.

Proof. We may assume k< {hy, A). Since |4 — koy|* = NAI2 + k(o o)
(k — <h;, 1)), it is enough to show

L( Uq(g)al—kai)fi(k)u < q!{((k—(h,», A»L( Uq(g)al)u .
This is reduced to the statement
92.1) LU@)a1-)fi® © g% ®ILU)a,) + Tylg)e; + Tyla)fi* »

This follows from Lemma 6.5.1. Q.E.D.

Proof of Theorem 9.2.1. Let us take an element u in L' of weight A. We write
u="Y e fi"u, with esu, = 0 and wt(u,) = 4 + no;. By the preceding lemma, it is
enough to show u, € L'. We begin with induction on N. We have

{(h;y, A+ Noy)
P = ey = [ uy
i

N

and ey =0.

The crystal lattice of U(g) has the property
922) LU(8)az:ny)e™ < LU, (@)a;) + Uy(@)el** + 1, foranym.
Admitting this, let us finish the proof of Theorem 9.2.1. We have

LU (@)@ n0 )ty = 47" H VLU, (9) v el

5 o A=
o gMED N (g)az)u < gt VIO

= gUAUatNa o]
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Thus uy belongs to L. This implies f;™uy € L' and hence Y nen fi®u, also belongs
to L. Thus the induction proceeds.

_ Now it remains to prove (9.2.2.). For b e B(Uq(g)), if y¥(b) > 0, then G(b)e!™ <
U,(g)e}** + I, for any m by Proposition 6.4.2. If y*(b) = 0, then Proposition 6.4.4
implies G(b)e{™ = G(&}*b) mod U,(g)eN*! + I,,. This completes the proof of Theo-
rem 9.2.1.

9.3. Applications. Let us give applications of Theorem 9.2.1.

ProposITION9.3.1.  For i € P, let L*?(}) be the upper crystal lattice of V(A). Then
L(U,(@)L*(4) = L(A).

Proof. Set L' = {ue V() L(ﬁq(g))u < L(4)}. Then L, = Au,, and L' is invariant
by &!¥ and f;"7. Hence L' = L*P(}). QE.D.

PROPOSITION 9.3.2.  For any connected component B’ of B(ﬁq(g)), {lIlwe(d)|1%;
b e B'} is bounded from above.

Proof. Let us take £ € P, and n e P_ such that B' = B({) ® B(#n). Let us take
by € B’ and let A, be the weight of b,. Then by Lemma 9.1.2 there exists ¢ € lAoll? +
2Z such that

L(T,(8)G(bo) = ¢4 1*-91&) @ L(y).

Set
L'= El‘) {ue (L&) ® LM LU (g)a)u = g2IAP=9L¢E) @ Lin)}.

Then L' is invariant by &, and f; by Theorem 9.2.1. Let Y be the map L' —» L(A) ®
L(n)/qL(¢) ® L(n). Then y is invariant by & and f;, and hence the image of Y contains
B'.For any b € B/, let us take v € L’ such that y/(v) = b. Then v ¢ qL(¢) ® L(n) and
ve L( ﬁq(g))v c g P-91 () ® L(x). They imply || wt(b)]? < c. Q.ED.

For a connected component B’ of B(ﬁq(g)), anelement b € B’ is an extremal vector
if lwe¢(b)||? is maximal. Hence we obtain the following corollary.

COROLLARY 9.3.3.  Any connected component of B(ﬁq(g)) contains an extremal
vector.

We obtain Corollary 9.3.4 by applying this to b*.

COROLLARY 9.3.4.  Any connected component of B(ﬁq(g)) can be embedded into
some B™**(4).

In the course of the proof of Proposition 9.3.2, if B is the connected component
B(4) of B(U,(g)) containing a,, we can take b, = a; and ¢ = 0. Thus we obtain the
following.

PROPOSITION 9.3.5.  For any b € B(3), |wt(b)|*> < |4~
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Remark. The result of Proposition 9.3.2 gives a strong constraint on the crystal
structure of B(Uq(g)). For example, for A € P_ and p € P,, the connected component
B of B(1) ® B(u) containing u; ® u, does not satisfy the bounded condition in
Proposition 9.3.2. In fact, taking & successively, B contains u,; ® u, for any
w e W. However {||wi + u||*; w e W}is not bounded from above even in the affine
case (if A, u are regular).

10. Comparison with the result of [K2].
10.1. Relation of A,(g) and Uq(g). In [K2], we define the crystal base of 4,(g).

Let us recall that

Aylg) = @ {u € (U,(g)*);; there exists [ > O such that e; -+~ e;u = ufy, - f, =0

for any iy, ..., i € I}.

A,lg) = Picr, VIHB V() and A,(g) has an upper global base. Here V() is the
irreducible right highest-weight U,(g)-module generated by the highest-weight vec-
tor v,. We have B(4,(g)) = @, B’ () ® B(4). There exists a canonical coupling

(10.1.1) <, > A8 ® Ty(e)~ Q@)

Set AZ(g) = {ue A,(a); {u, UX(g)) = Z[g, ¢"*1}. Then we can see easily

(AZ(9), U9)z> = Qlg. q7'].
THEOREM 10.1.1. There exists a unique embedding : Q(Aq(g)) < B(ﬁq(g)) such
that (G(b), G(b')) = Sy),» Jor any b € B(A,(g)) and b’ € B(U,(g)).

Proof. There exists a unique embedding of crystals over g@® g
B'(2) ® B(2) - B(Uy(9)

that sends v, ® u, to a, for A€ P,. This gives an embedding B(A,(9)) = B(ﬁq(g)).
In order to see that this satisfies the required property, let us remark the following
lemma.

Lemma 10.1.2. (L(4,(9)), L(T,())) = 4.

Proof. By the definition, it is enough to show L (VT(A), L(Uq(g))L“"(l» < A
Since {u € V(A); {LL"P(A), up < A} = L'*(J), this follows from Proposition 9.3.1.
Q.E.D.

Thus we obtain (G(b), G(b)> = AnAnQlg,q'1=Q for be B(4,(9)), b €
B(U,(g)). Since < , > is invariant by &, f;, & and f*, we obtain Theorem 10.1.1,
because {G(v; @ u,), a;» = vy, u;> = L.
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10.2. Finite-dimensional and affine case. Let us regard B(A4,(g)) as a subs:?t of
B(U,(g)). Then B(A,(g)) is the smallest subcrystal (with respect g @ g) of B(U,(9))
that contains all a,(4 € P).

Let us denote by T the Tits cone; i€, T= | ), ey wP,.

Lemma 102.1. If 4 € T then B™*(2) = B(A,(g)).

Proof.  Forw e W, S} sends B™*(1) onto B™*(w/). Hence we may assume 1 € P,
from the beginning. If b=b, @1, ® b, € B™(J), then ¢*(b) = max(p}(b,),
ef(by) — <h;, A)) = 0. Hence ¢#*(b,) = 0 for all i and hence b, = u_, and gf(b,) <
<h;, 4. This shows B™*(1) = B ® t, ® U_,- Then the desired result follows from
the connectedness of B(4). Combining this with Corollary 9.3.3 and 9.3.4 we obtain
the following result.

ProposITION 10.2.2. (i) If g is finite dimensional, B(4,(g)) = B(f]q(g)).
(i1) If g is affine, let B( ﬁq(g)+) be the subcrystal of B(U'q(g)) consisting of vectors
with positive level. Then B(A4,(g)) = B(U,(a))+ | |{ao}-

Recall that when g is affine we take c e Y. Z.oh; with {c, 2,> = 0 for any i. Then
¢, Ay is called the level of A e P.
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