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GLOBAL CRYSTAL BASES OF QUANTUM GROUPS

MASAKI KASHIWARA

0. Introduction.

0.1. In[K,], we constructed the global crystal bases of U, (g) and of the irreduc-
ible U,(g)-modules with highest weight. The purpose of this article is to construct
the global crystal basis of the g-analogue 4 ,(g) of the coordinate ring of the reductive
algebraic group associated with the Lie algebra g. The idea of construction is similar
to [K,]. By the g-analogue of the Peter-Weyl theorem, 4,(g) has a decomposition
@, V(A* ® V(4) as a bi-U,(g)-module, where V(J) is the irreducible U,(g)-module
with a dominant integral weight A as highest weight. Hence A4,(g) has a (upper)
crystal base (L(4,(g)), B(4,(g))) = ©(L(A)*, B(4)*) ® (L(4), B(4)) at g = 0 and simi-
larly a crystal base (L(4,(g)), B(4,(g))) at ¢ = oo (see §7 for their normalization). We
denote by U2(g) the sub-Q[g, ¢~*]-algebra of U,(g) generated by e, £, ¢", and

h

ci . We denote by { , >:A,(g) x Uyg) » Q(qg) the canonical pairing, and we

define
Ad(a) = {u e A, g); <u, UR(g)> = Q[q, q*1}.

Then A2(g) is a subalgebra of 4,(g) satisfying 4,(3) = Q(q) ® gr,, .13 42(g).
Now the main result of this article is the following.

THEOREM 1. (i) SetE = A(?(g)r\L(Aq(g))nL(Aq(g)). Then E — L(A (8))/qL(4,(g))
is an isomorphism, and A‘?(g) =Qlg,q71] ®q E.
(ii) Letting G be the inverse of the isomorphism above, we have

A@) = @ Qlg q'1G®).

be B(44(3)

0.2. Theorem 1 is a consequence of the following theorem, Theorem 2.

Let M be an integrable U,(g)-module with highest weights and M ¢ a sub-U2(g)-
module of M such that Q(q) ® gpg,4-1; Mg = M. Let (Lo, B,) and (L., B,) be an
upper crystal base of M at ¢ = 0 and g = oo, respectively. Let H = {ue M; e;u =0
for any i} be the set of highest-weight vectors.

THEOREM 2. Assume the following conditions:
() {ue M;ef?ue Mg foranyiandn > 1} = Mgy + H;
(i) HhnMgn Lon L, = (H N Ly)/(H n qLy) is an isomorphism.
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Then Mo N Ly N Ly, = Lo/qLy is an isomorphism, and

Mq=Qlg,q7'] %) (Mg Lon Ly).

0.3. The following conjecture is communicated by A. Zelevinsky (in a weaker
form).

Conjecture (A. D. Berenstein and A. Zelevinsky). Assume that g is finite-dimen-
sional. Then there exists a finite subset F of B(4,(g)) satisfying the following
condition:

(0.1) For any b e B(4,(g)), there exist b, ..., b, € F and ne Z satisfying the
following two properties:
@) G(b) = q"G(b,) - G(b,,) for some n;
(ii) there exist integers m;; such that

G(b)G(b) = q™iG(b)G(by)-

1. Notation.

1.1. Definition of U,(g). We shall review the definition of U,(g). We shall follow
the notation in [K]. Let us consider the following data:

(1.1.1) a finite-dimensional Q-vector space t,

(1.1.2) an index set I (of simple roots),

(1.1.3) alinearly independent subset {o;; i € I} of t* and a subset {h; i€ I} of t,
(1.1.4) an inner product ( , )on t¥* and

(1.1.5) alattice P of t*.

We assume that they satisfy the following properties:
(1.1.6) {<h;, a;»} is a generalized Cartan matrix

(e, <y, o) =2, Chy, o) € L for i # jand (hy, o) = 0<Chy, o) = 0);

(1.1.7) (0, 0;) € 225 5

(1.1.8) (hyy A = 24, 1 foranyiel and Jet*;
(ai, OC,:)

1.1.9) w;€eP and heP*={het;<h,P)cZ}.

Then the Q(g)-algebra U,(g) is the algebra generated by e;, fi(i € I) and q"(h e P*)
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with the following defining relations:

(1.1.10) g* = 1for h =0 and ¢"*" = ¢"q";

(1.L11) g*e,q™ = g™ ; and ¢"fig™" = g~ **f;

(1.1.12)  [e;, ;1 = 6;(t; — t71)g; — gi*) where q; = ¢©#*)2 and t; = @2,
(L1.13) Y (—1)efeje™ =Y (- 8™ = Ofori # jand b = 1 — (h;, ).

Here we used the notation [n]; = (¢7 — ¢;")/(q; — ¢; *), [n]:! = [ Ti=1 [k]:s Bﬂ] =
[n1:{/([n — m],![m],"), ef” = e}/[n];!, and f™ = f"/[n];!. We understand e =
f =0forn < 0. We set

(1.1.14) 0=Y2Z20, Q,=Y7Z,o0,andQ_=—Q,.

1.2. Automorphisms of Uy(g). Asin [K,], we define the Q-ring automorphism
— of U(g) by

(1.2.1) g&=e, fi=f, q=q'and(@") =q"

We define the Q(g)-linear antiautomorphisms * and ¢ of U,(g) by

(12.2) ef=e, f*=fi, @V=q"
(123) ele) =1,  o(f)=e,and 9(q") = ¢".
Note that ¢, —, and * commute to each other and #?> = —2 = ¢? = 1.

1.3. Integrable U,(g)-module. We say that a U,(g)-module M is integrable if

(1.3.1) M=@ M,;

AeP

(1.3.2) for any i, M is a union of finite-dimensional U,(g;)-modules.

Here U,(g;) is the Q(g)-subalgebra of U,(g) generated by e;, f;, and g"(h € P*).

Let 0;,,(g) be the category of integrable U,(g)-modules M such that, for any u € M,
there exists | > 0 satisfying ¢; --- eu=~0foranyi,,...,; el

Then O,,(g) is semisimple and any simple object is isomorphic to the irreducible
module V(4) with highest weight 1. These terminologies are slightly different from
those in [K, ] where we added finiteness conditions, but almost all results there hold
with suitable modifications.

For an object M in O,,,(g) and 1 € P,, we set

(1.3.3) I,(M) = Homy,_«,(V(4), M) Q@?) V().
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Hence I,(M) is the isotypical component of M with type V(4), and we have

(1.3.4) Mz= @ I,(M) asU(g)-module.

AePy

We set, for L e P,,

w,M= @& LM,
uePin(A+Q.)

(1.3.5)
W, (M) = @ I,(M).
pePin(A+QN\{A}

Here Q_ is as in (1.1.14). More generally, for a subset F of P, , we set

(1.3.6) WeM)= ) WyiM)= ¥  L(M).

IeF AeP,~(F+Q.)

Thus W forms a filtration of M. We set
(1.3.7) GriM = W,(M)/W_,(M).

Hence Gr)¥ (M) is isomorphic to I,(M).
For a Q-vector subspace S of M, we set

W,(S) = W,(M)n S, Wei(S) = Wy(M) S,
(13.8)
Gry (S) = Wy(S)/W.,(S), etc.

2. Balanced triple.

2.1. Definition of balanced triple. Let A (resp. A) denote the ring of rational
functions in g which are regular at g = 0 (resp. ¢ = o). Hence A/g4 = Q and
A/q™* 4 =~ Q by the evaluation at g = 0 and g = oo, respectively.

Let V be a Q(g)-vector space, L, a sub-A-module of ¥, L, a sub-A-module of ¥,
and Vg a sub-Q[g, ¢~']-module of V satisfying the conditions

(2.1.1) V=~ Q(q) Q[®"] Vo = Q(9) @A; Lo = Q(g) QA;) L.

Note that we do not assume in the beginning that either V), Lo, or L, are free. As
a consequence of (2.1.1), we have

(2.1.2) AQ® (VognLy) =Ly, and 4 ® (VognL, =L,.
Qlq] Qlg~1]

In fact, for any u € L, there exists a nonzero f(g) € Q[q] such that f(q)u € V. Since
VoisaQ[g, ¢”* J-module, we may assume f(0) # 0, and hence 4 ® g (Vo M Lo) —
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L, is surjective. Injectivity follows from

A ® (VQ(\LO)CA ® LogLo.
Qlq] Qlal

The proof is similar for L.

Lemma 2.1.1.  Under the condition(2.1.1), set E = Vo Lo L. Thenthe follow-
ing three conditions are equivalent.

(2.1.3) E — Ly/qL is an isomorphism.
(214 E — L /q™ 'L, is an isomorphism.
(2.1.5) B
Qlg,971] % E—Vy, A %) E—-L, and A % E — L, are isomorphisms.

Note that (2.1.5) implies Q(q) ® o E — V is an isomorphism.

Proof. 1t is obvious that (2.1.5) implies (2.1.3) and (2.1.4). Hence it is enough to
show that (2.1.3) implies (2.1.5). Under the condition (2.1.3), we shall prove

(2.1.6) ( @ QCI") ® E > Vo Ly N q"L,, is an isomorphism
0 Q

<k<n

by induction on n. If n < 0, it is obvious. Assume n > 0 and consider the commuta-
tive diagram with exact rows

k=0

l P

0 — VquLonanw _— VQmLannLoo EE— LO/qLO’

0 —— (k@qu")®E —_— <€?—) Qq")@E —_— E — 0

Since « is an isomorphism by the hypothesis of the induction, f is an isomorphism.
Hence we obtain (2.1.6), and we have an isomorphism, for any a < b,

( @ qu> ®E S VanaLomquoo'
a Q

<k<b

Letting —a and (or) b tend to the infinity, we obtain

(2.1.7) Qlg,97'] % E SV,.
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Qlq] %E > VonL.
Qg '1®E S5VognL,.
Q

Then the desired results follow from (2.1.2). Q.ED.

Definition 2.1.2.  We call (Vg, Lo, L,,) a balanced triple if it satisfies (2.1.1) and
the equivalent conditions in Lemma 2.1.2 are satisfied.

Note that if (Vg, Lo, L) is balanced, then Vy, Ly, and L, are free modules over
Q[q, 971, A, and 4, respectively.

2.2. Translation. Weshall translate the notion above by the language of sheaves
onP*.ForV, Vg, Ly, L,, with (2.1.1), we shall associate a quasi-coherent Op:-module
Z on P! = Spec(Q[q]) U Spec(Q[q']) as follows.

(22.1) T'(Spec(Q[gq]), #) = Vo Lo,
I(Spec(Q[g™']), #) = VonL,, and
I'(Spec(Qlg, g7'1), #) = Vq.

with the obvious restriction map. The existence of such an & follows from

VQ ~ Qlg, 4_1] ®Q[q} (VQ N Ly)
= Q[‘L q—l:l ®Q[q-1] (VQ N Loo)

Thus, & is a torsion-free quasi-coherent Op:-module. Let 0 and co be the closed
point of P* corresponding to g = 0, g~* = 0, respectively. Then

Fo = Op1,0 @ T'(Spec(Q[q]), F) = 4 g([)] (VonLo) = Ly
q

Thus we obtain
(2.2.2) Fox=xL, and £, = L,.

In this way, the set of data (V, Vg, Lo, L) with (2.1.1) is equivalent to the set of
quasi-coherent torsion-free Opi-modules. Let Opi(—1) be the invertible sheaf of
regular functions that vanishes at ¢ = 0.

Lemma 2.2.1.  (Vg, Lo, L) is a balanced triple if and only if H°(P'; #(—1)) =
H' P F(—1))=0.Here F(—1) = F ® Op:(—1).
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Proof. The exact sequence
(2.2.3) 0O-F(-1)>F >F/F(—1)-0
gives the long exact sequence
H(PY; #(—1)— HPL #) — H'PY; #/F(~1)) — H'(P'; F(—1)).

Zf 1

VonLyn L, Lo/qL,

Hence H°(P'; #(—1)) = H'(P!; #(—1)) = Oimplies that (Vo> Lo, L) is balanced.
Conversely, if (Vo> Lo, L) is balanced, then & is a free O-module and
H°(P'; #(—1)) = H'(P'; #(—1)) =0 is a well-known result of algebraic
geometry. QED.

LEMMA 2.2.2. Let
(2.2.4) 0-viLy25y3s o

be an exact sequence of Q(q)-vector spaces. Let V§, L, and Li, be a sub-Q[q, g~*]-
module, a sub-A-module, and a sub-A-module of V;, respectively, and we assume

V2 Q@) ®quen Y§= QD ® Lh 2 Q@ @z L, (j=1,273).
Assume furthermore that (2.2.4) induces exact sequences
2.2.5) 0-Vg—V3—>V3—0,
0-Ly—>Li—>L3—0, and
0->LL L2 L2 0.
Then if two of (V§, Ly, L) are balanced, then so is the third.

Proof. Let #7 be the quasi-coherent Op:-module constructed above from the
data (V/, V§, Lj, L.,). Then the exactitude of (2.2.5) implies that of 0 — #! — #2
2 — 0. Then the preceding lemma implies the desired result. Q.E.D.

LEMMA 2.2.3.  Let V be a finite-dimensional Q(q)-vector space and let (Vo> Los Ly,)
be a balanced triple in V. Set

Vo ={ueV* {u V> = Qlg,q7'1},
Ly = {ue V* <u, Loy = 4},
Ly={ueV*{u L,y c 4}.

Then (Vg,Lg, LY) is a balanced triple.
Q
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The proof is straightforward.

LemMa 2.24. Let V be a Q(g)-vector space and let (Vq, Lo, L,,) and (Vg, Lo, L)
be a pair of balanced triples in V such that Vo = Vg, Lo o Ly, L, © L. Then they
coincide.

Proof. If weset E=VonLonL, and E' = VonLon L, then E > E’ and
Q(9) ® E = Q(q) ® E'. Hence E = E'. Thus the desired result follows from Lemma
2.1.1. Q.E.D.

3. Upper and lower crystal bases.

3.1. Definition. We shall recall the definition of upper and lower crystal bases
(see [K;]and [K,]).

For an integrable U,(g)-module M, we define &7, fup glow Flow a5 follows: for
ueKere,nM;and 0 < n < (hy, A,

(.11 E(fPu) = £ Dy and  flV(fPu) = £,
(3.12)
Fup( fimy) = [(hJ.)[;]ln + Uifg("_l)u and f:up(fi(n)u) - K}E”’}; ?in]ifi(nn)u_

Hence we have
(B13) e((fryw) = [nl(fyu and ()W) = [<hi, A — nd(fi)fHu.
We have also
(3.1.49 eMf MWy = @Y™y =u  forany ue M with ¢;u = 0.
LEMMA 3.1.1. Forn>0andue M, if e!*"u = 0, then (8'?)"u = e{"u.
Proof. We can write

n
u= Y f®y,  witheuv, =0.
k=0

Then the desired result follows from (3.1.4). Q.E.D.

Definition 3.1.2. An upper (resp. lower) crystal lattice at ¢ = 0 of M is a free
sub-A-module L such that

(3.1.5) Mgm®§u
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(3.1.6) L=® L, where L, = LN M,,

AeP
(B.L7) &*L<L and f*Lc L (resp.8*"L<L and f"Lc L).

By replacing 4 with 4 in this definition, we define crystal lattices at q = 0.

Definition3.1.3.  Anupper (resp. lower) crystal base at g = Oisa pair (L, B) where
L is an upper (resp. lower) crystal lattice and B is a base of the Q-vector space L/qL
satisfying

(3.1.8) B=|) B, where B, = Bn(L/qL),
AeP
(3.1.9) é?B< Bu{0} and f’Bc Bu{0},

(resp. &/*B = BLi{0} and f*B < BLi{0}),
(3.1.10) Forb,b'eB, b = fb (resp. b = flo*b)
is equivalent to b = &7b’ (resp. b = &°b’).

Similarly, we can define upper crystal bases at q = oo.

3.2. Relations of upper and lower crystal bases. We shall recall the relation
between upper and lower crystal bases (see [K,] and [K,]). For an integrable
U,(g)-module M, we define the Q(g)-linear automorphism ,,: M — M by Y, (1) =
g *P2yfor le Pand ue M,.

Lemma 3.2.1. (L, B) is a lower crystal base at q = 0 if and only if Y, (L, B) is an
upper crystal base at q = 0.

Another relation is duality. Let M and N be integrable U,(g)-modules such that
dim M; = dim N, < oo for any Ae P and let (, ) be a nondegenerate pairing
between M and N such that (¢(P)u, v) = (4, Pv) for anyu e M,ve N and P e Uy(g).
Then one can easily see

(3.2.1) (@7u, v) = (u, f*v)
and
(322) (f*?u, v) = (u, &lo*y).

For a sub-4-module L of N, we set

(3.2.3) Lt = {ueM;u Ly < 4}.
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ProposITION 3.2.2. (i) L' is an upper crystal lattice of M if and only if L is a
lower crystal base of N.

(ii) If (L, B)is alower (resp. upper) crystal base of N, let B* be the base of L*/qL*
dual to B by the pairing (L*/qL*) x (L/qL) = Q. Then (L*, B*) is an upper (resp.
lower) crystal base of M.

This proposition follows immediately from (3.2.1) and (3.2.2).

3.3. The crystal base of V(A). In[K,], we proved the existence of lower global
crystal bases of V(4). Let us recall it. We fix a highest-weight vector u; of V(4), and
we set

(3.3.1) L*()is the smallest A-module that contains u, and that is stable by f**;

(3.3.2) Blow(/l) — { Flow . ., ';llowul mod quow(l)} \ {0} .

3

By using duality, V(4) has a unique upper crystal base (L*?(1), B“?(1)) such that
(3.3.3) L*P(}), = Au,,
(3.34) B*?(3), = {u, mod qL(4)}.

The following theorem can be proven similarly to Theorem 3 in [K,].

THEOREM 3.3.1. Let M be an integrable U, (g)-module in O,,(g).

(i) If L is anupper crystal lattice of M, then there is an isomorphism M = @; V(4;)
by which L is isomorphic to @ L(4;).

(@) If (L, B) is an upper crystal base of M, then there is an isomorphism M =
@; V(4;) by which (L, B) is isomorphic to @ ;(L*?(4;), B*?(4;)).

Hence, if L is an upper crystal lattice, setting I,(L) = L n I,(M), we have

(3.3.5) L= @ I(L)
AePy
and
(3.3.6) L(L) = (L 0 I,(M),) ® L*(}).

If (L, B) is an upper crystal base, then B decomposes into I,(B) = B n (I,(L)/qI,(L))
and I,(B) is isomorphic to I,(B), x B*?(4).

4. Global crystal base of V(2).

4.1. Q-form. Let U, (g)zbe the sub-Z[gq, g~*]-algebra of Uy(g) generated by e{”,
U, (g) the one generated by £, and UZ(g) the one generated by e{”, f”, ¢*, and
B

4 , where i, n, h range over I, Z,, and P*, respectively. Here, for n > 0 we
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{X} B n ql'—k.)C _ qk—lx—l
n - =1 qk . q—k '
We set Uq+(g)Q = Q ® Uq+(g)Z5 Uq_(g)Q = Q ® Uq.(g)Z’ and UqQ(g) = Q ® qu(g)'

PrOPOSITION 4.1.1.  Let M be a U,(g)-module such that M = @, _p M, and let M
be a sub-UZ(g)-module of M. Then M, = @, .p (Mz  M,).

set

Proof. ForheP*andu =), ,u e M with g"u, = q*u,, it is enough to show
that

ifue My, then all u, belong to M. 4.1.1)

Writing u =), <, 4, we shall prove (4.1.1) by the induction on b — a. If
b — a <0, then it is obvious. Assume that b — a > 0. Then setting ¢ = b — a, we

have (see §1.1)
—~a, h
q % _ k—a _
{ 4 }u_asksb[ c :luk_ub

where the last equality follows from

[k:a:|=0 forc>k—a>=0.

Hence u; € M, and induction proceeds. Q.E.D.

PROPOSITION 4.1.2.  Let M be an integrable U,(g)-module and My a sub-UZ(g)-
module. For A€ P and i€ I, assume n = —(hy, Ay > 0. Then {u € M,; e®u € M, for
k 2 n} - MZ}.'

This follows immediately from the identity (Lemma 6.1.4. in K, D

4.12) u=1Y (- 1)'<-"Bz - i] f%e®y  forue M,.

kzn i

PROPOSITION 4.1.3.  Let M be an integrable U,(g)-module and L an upper crystal
lattice of M. Let Mz be a sub-U,(g)-module. Then L N M5/qL N\ M, = L/qL is stable
by &¢? and f».

The statement for fi“” follows immediately from the following lemma, and the
one for &7 can be proven similarly.

LemMa 4.14. We set B(x) = [ [3=6 (1 — q¥x). We define an endomorphism F, of
M by

4.13) Fw= Z (— l)kqi—(3/2)k(k+1)+k(qi—1 — @)k + 1]1'!Bl(ci)(Qi)ﬁ(k+1)t?+lei(k)u'
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Then F,L < L, for any crystal lattice of M and the induced action of F; on L/qL,
coincides with that of f;**.

Proof. It is enough to show that for u € M such that e;u = 0 and t;u = qlu

(4.1.4) ) |
F((f*®)Yw e (1 + qA) (/") u for 0 < n < I (see [K,], Proposition 2.3.2).

We have

n D \i—
fi(k+1)tgc+le§k)(f;up)nu — f;(k+1)t§k+1) |:k] (ﬁup)n ku

i

l—n+k| x
_ k+na-2n+2i)| T upyn+1
% [k]i[ k+1 :Ii(f; )

Hence it is enough to show

4.1.5) S = ; (— l)kqi(k+1)(l-2n+2k)—(3/2)k(k+1)+k(q;—1 _ qi)k+1

l— k .
[k + ui!m[ o ]_B,?’(q,-)

belongs to 1 + ¢;Z[g;]. In the sequel, we omit the index i (we write g, B, for g, B®,
etc.). Setting [ = n + j (j > 0), we have

l—n+k

k
- v=j=k _ qitk=v
k41 ] 1! (q ")

@' — 9"k + 1]![

k
(k1)) R +1)/2 2(j+k—
_q( YG+k)+k(k+1)/! IIO(I___q(J v))
v

— (1 . qu)q—(k+1)(j+k)+k(k+1)/2Bk(q2j+2).

Hence we obtain

. 20— _ , n ;
S =(1 — g% z (— 1)fg+ii-n+20) k(k+1)+k—(+1)(+k) [k] Bi(q)B.(q¥*?)

= (L—q¥) X (=g m B@)Bulg™").

Hence the statement follows from the following sublemma.
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SuBLEMMA 4.1.5.  We set B,(x) = [ [r24 (1 — ¢**x).
(i) Yi=o(—1)igmnEr*k [Z] By m(9)Bi(gx) belongs to Z[g, x] for any n,m > 0.

(i) Tieo (— g e+ m Bg) = 1

Proof. The second statement follows from the well-known formula

Let us prove the first statement by the induction on n. If n = 0, then this is obvious.

Let us set f, ,, equal to the left-hand side of the equality in (i). Then using [Z] =

gk [n ; 1:' +q"* [Z - i], we have
_ n
Jom =2, (—1)q "(Hl’[ :lBk-f-m(q)Bk(qx)

—1
k
~1

+ ) (—1g™ [Z B 1:|Bk+m(Q)Bk(qx)

=" B@B@a — 1 - g — iy

—1
— Z (_ l)kq—n(k+1)[n B :lBHm(CI)Bk(‘IX)(qZHlx + q2k+2m+l . q4k+2m+2x)

= ¥ (= 1fg-mnoirte [" . I]Bm.(q)Bk(qx)(q“ + (1 — g#+2mHy)
= 0ot + Xyot s -
Thus we obtain the desired resulit. Q.E.D.
4.2. Global crystal base of V(1). We set
4.2.1) V§*(A) = UR(g)u, .
Let — be the automorphism of V(1) defined by
(4.2.2) Pu, = Pu,  for P e Uyg).

Let L'*"(2) be the image of L**(1) by —. Then (V& (A), L*"(4), L"*(4)) is a balanced
triple. Now let (, ) be the symmetric form of ¥(4) such that

4.2.4) (Pu, v) = (u, @(P)v) foru,ve V(4) and P € Uy g);
4.2.5) (U, u))=1.
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We set

(4.2.6) V&) = {ue V), @ Vg"(A) = Qlg, 711},
4.2.7) L) = {ue V(A (u, L**())) = A}, and
(4.2.8) L) = {ue V(A); (u, L**(A)) = 4}.

Then by Lemma 2.3.3 we have the following lemma.
LEMMA 4.2.1.  (V&P(A), L*P(4), L*2(A)) is balanced.

By Proposition 3.2.2, L*P(4) and L*?(1) are upper crystal lattices at ¢ = 0 and
g = oo, respectively, and we have

(4.2.9) L*%(3), = qHP2-wnlplovg)  forpueP.

Now if we set B*?(1), = g »2~ w2 glo(3) , then (L*?(1), B*?(4))is an upper crystal
base of V(A) at g = 0. Similarly, we can define the upper crystal base (L*?(1), B*?(4))
at g = o0.

The vector space V§F(4)is a U2(g)-module, and it is characterized by the following
two properties:

(4.2.10) V&), = Qlg, g7 us;

(4211) {ueV(A);eue Vg(A)foranyieland n > 1} = Vo(4) + Q(q)u, .
Note that (4.2.11) may be replaced by the following property:

(4.2.12) Ve, = {ue V()5 U (8) a-utt € QLg, g7 uy} -

4.3. Global crystal base of U, (g). In[K,], we defined the crystal base (LU (@)
B(U, (g))) of U, (g), and we have

@.3.1) Uy @e= %—)( )Q[q, 471G, (b).

Here G, is the inverse of the isomorphism Uq"(g)QnL(Uq'(g))nL(Uq"(g))—1

L(U; (9))/qL(U; (9)).
If we define 7,: U; (g) = V(4) by P+ Pu,, then =, induces the surjective map
L(U; (g)) = L*(4) and 7,: L(U; ())/qL(U; (g)) — L'**(A)/qL**(4). Then we have

4.3.2) G (b)u;, = G,(T,b) for any b € B(o0)
and

43.3) {b e B(oo); ;b # 0} 5 B(A).
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Here G, denotes the inverse of the isomorphism V§*(4) n L*(1) n LP¥(1) S
L(2)/qL™ (), |

ProrosITION 4.3.1. Let (€ Q_ and K = {be B(0),; 7,(b) # 0}. Let u be an
element of V()4

(i) If b e B(oo);, satisfies 7,(b) = 0, then ¢(G,(b))u = 0.

(ii) u € V§P(A)4¢ if and only if ¢(G(b))u € Q[g, g *u, for any b e K.

(ii)) u € L'?(A),4.¢ if and only if ¢(G(b))u € Au, for any b € K.

@v) If o(G,(B))u =0 for anybe K, thenu = 0.

(V) Uy (@) = @pex QLa 471G () @ (Xs i, 25 Uy (0)0fi™).

Proof. Note that

(Goo(b)ub u) = (u,l: (D(Gw(b))u),

L*(3)ve = © AG()u;, and
€K

Vg" = ® Q4,47 1G b,
They imply immediately (i)—(iv).
(v) follows from the fact that

V(i) = Uy (9) / (z Uq‘(g)ﬁ""”“) and

Uy (e (Z Uy (@f >“> = ><; o Uy (9o fi®. QED.

5. Properties of global crystal bases. Hereafter, a crystal lattice (base) means an
upper crystal lattice (base). We denote Vo (1), L(2), for VP (A), L*2(4), etc.

5.1. Elementary property. Let M be an integrable U,(g)-module and M, a
sub- UqQ(g)-module of M such that M = Q(g) ® Qla.a-'1 M- We do not assume that
M is in O, (g).

Let Lo and L, be upper crystal lattices of M at g = 0 and at q = o0, respectively.

In this section we assume

(5.1.1) (Mg, Ly, L) is a balanced triple.
We set
(5.1.2) E=MgnLynL,,

and we denote by G the inverse of the isomorphism E > Ly/qL,.



470 MASAKI KASHIWARA

By the definition of balanced triple, we have
(513) My=~Qlg,q'1®E, Ly,~A®E and L,~AQE.

LemMa 5.1.1. Letbe Ly/qLyandneZ,.
(i) e!*"G(b) = 0 if and only if &'*'b = 0.
(i) If 8*"b = 0, then eG(b) = G(&'b).

Proof. Assume e}!*"G(b) = 0. Then &'*'b =0 is evident and Lemma 3.1.1
implies &'G(b) = e"G(b)e My Lo L,. Hence ef”G(b) = G(&b). It remains
to prove &b =0 implies &!™G(b) = 0. Take the smallest m > n such that
e} *™G(b) = 0. Then e{™G(b) = G(é!b). Hence if m > n, then e{™G(b) = 0, which is
a contradiction. Q.ED.

COROLLARY 5.1.2 ForanyiandneZ,,,
{ue M; e!*"u = 0} = Q(g) ® G({b € Lo/qLo; &-*"b = 0}).

Proof. Anyue M can be written
(5.1.4) u= Y aG(,)  wherea € Q(g) and b, € Lo/qL,
k=0

satisfies 8¥*1p, = 0 and b, = f¥&*b,.
It is enough to show that, if e! *"u = O and if > n, then g, = 0 or b, = 0. We have
0=e"u=aG(Eb,) Hencea,=0o0r b, =0. Q.ED.

LemMMA 5.1.3. ForanyielandneZ,,
{ue M; e™ue Mg for anym > n} = Mg + Ker ¢f.

Proof. We writeu = Y 40 a,G(b,) as in (5.1.4). Assuming e{™u € My for m > n,
we shall prove u € M + Ker e} by induction onr. If r < n,thenu € Ker ¢/ Ifr > n,
then e{"u = a,G(éb,) € My, and hence b, = 0 or a, € Q[g, g™]. Hence a,G(b,) €
M . Thus induction proceeds. Q.E.D.

LeMMA 5.1.4. Let J,, J_ be subsets of I and for i€ J let a.(i) be a nonnegative
integer. Then we have

(5.1.5)
{ue M;e™ue Mg forie Jyandn > a,(i) and fPue Mg forie Jandn > a_(i)}

=Mg+{ueM:ef*Pu=0foriel and f*Pu=0 forielJ,}.
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Proof. We set (xF)™ = e{® or f;, X = &, or f; according to +. Let K} be the
Q[g, g7']-module generated by {G(b); be Ly/qL,, (%£)+Pb =0}, and S =
{ue M; (x#)™ue Mg for n > a,(i)}. Then by the preceding lemma

St e Mg+ LE.

Let @: M — M/Mq=(Q(q)/Q[4, 4 '])® E be the projection. Then ¢(S%)c
Q(9)/Q[g, g '1® L¥. Hence

(p(ﬂieh Sz+ a ﬂie]. Sl_) < (Q(q)/Q[q9 q—lj)n(ﬂie.h Lin mie.l_ Ll_)9

which gives the desired result. Q.ED.

Remark. We have the isomorphism L,/qL, < E > L, /q ‘L. In general, the
thus-obtained isomorphism L,/qLy > L,/q*L,, does not commute with & or f;.

5.2. Global crystal bases and W. Let us investigate the relation between the
global crystal bases and the filtration W (see §1.3). In this subsection, we assume
that (Mg, Ly, L,) is balanced and that M is in O,,,(g).

ProrosiTon 5.2.1.  For any subset F of P,, (We(M ) Wi(Lo), We(Ly)) is bal-
anced, where Wp(Mg) = Mg N Wi(M), etc.

Proof. We may assume F finite. Set #" = {1 e P,; I,(M) # 0}. We shall show,
forpeP,

G2y We(Mq) N Lo, 0 Legy, = WilLo)u/aWi(Lo),

by the induction of #(F + Q_) " (u + Q,) n #" Note that (F + Q_) n (L+Qy)is
a finite set for any u € P.

IF#F+Q)n(u+ Q.)n# = ¢, then Wp(M), = 0, and there is nothing to
prove. Otherwise, there exist F' = F and 4 € P,. such that

F+Q)n+0)n# = {HUF +Q)n(u+0)n¥.
By the hypothesis of induction, (W (M Qs W (Lo)ys We(Ly,),) is balanced. Hence
(M o/ W (Mg))ys (Lo/Wp(Lo))ys (Loo/We(Ly,)),) is balanced. Since it is enough to
show ((W(Mq)/ Wi (M)} (We(Lo)/Wy(Lo))s (We(L)/Wie(L,,)),) is balanced by
Lemma 2.2.1, we may assume F’ = ¢ by replacing M with M /We.(M). Hence it is
enough to show

(522) forieP,,peP,suchthat(A + Q_)n(u+Q)n¥W = {4},

(VVA(MQ);U M(Lo)ya VV).(LOO);L) iS balanced‘
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Since the injectivity of W;(M o), N Wi(Lo), 0 Wi(Ly,), = WiLo),/qWi(Lo), s evi-
dent, it is enough to show

(5.2.3) if b € Wy(Lo),/aWi(Lo), < Lo/qLo, then G(b) € I,(M).

Let us take the smallest subset F of P, such that G(b) € Y ;. I,(M). If F ¢ {1}, then
take an element Ao € F such that 4, # A and (o + Q+) N F = {4,}. We have
E=pu— AyeQ_. Take any element P of U; (g)q: N L(U; (g))r\L(U (g)). Then
writing G(b) = Y v, with v, € I, (M), o(P)v, = 0 for { # Ag because { + Q_ $ 4. On
the other hand v, € gL,. Hence ¢(P)G(b) = ¢(P)v,, € Mg N qLo N Ly, by Proposi-
tion 4.3.1. Thus cp(P)v,1 = 0. This implies v, =0 “and hence G e ZW 20 ﬂ(M),
which is a contradiction. QE

COROLLARY 5.2.2. Set
(5.24) H={ueM;eu=0foriel}.
Then GriYH n Gr)'E = Gr)'(H N E), where Gr]'H = (W,(M) n H)/(W_,(M) n H),
etc.

Proof. We may assume M = W,(M). Hence it is enough to show
EnW.,, M)+ Hy=EnW_(H)+ EnH.
This follows from E = G(Lo/qLo), W<;(M) = Q(q) ® ¢ G(W<1(Lo/qLo)) and H =

Q(q9) ®q G({b € Lo/qLy; &b = 0}). Q.E.D.

PROPOSITION 5.2.2. Define H and E as in (5.1 2) and (5.2.4). Then for any Ae P,
(Grf (Mg), Gri(Lo), Gri(Ly)) is isomorphic to (Gr}Y (H N E) ® V(4), Gr} YHNE)®
L(3), Gr¥ (H N E) ® L(%)).

Proof. By Proposition 5.2.1 and Corollary 5.2.2, we may assume that M =
L(M). ThenM = (HNE)® V(A),L, =(HNE)® L(A),L, =(HNE)® L(4). Now,
= (H n E) ® Vg(4) follows from Lemma 5.1.4 and (4.2.11).

5.3. Matrix coefficients of e; and f;. Let M, Mg, Lo, and L, be as in §5.1. In
partlcular (Mg, Lo, L,,)is assumed to be balanced. We do not assume in this section
that M isin O, ,(g). Let us assume that Bis given so that (L, B)is a crystal base of M.

For b € B, we set

(5.3.1) ¢&(b)=max{n>0,8'be B} and ¢(b)=max{n=>0; :f"b e B}.

Let G be the inverse of the isomorphism M N Lo N Ly, = Lo/qLo.

PROPOSITION 5.3.1.  Foranyb € B,andi € I, there exist F}, € Q[q, ¢~ ] such that

(5:3.2) £:6(b) = [9:(D)1,G(fib) + ; Fop G(b),
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(5.3.3) Fjp =0 unless g(b') < ¢(b) foranyjel,

(5.3.4) Fyy € 9q; ~*®Q[4].

Proof. (a) Case I = {i}. Then M belongs to O,,(g). If b € I,(B), with A € P, and
pe P, then p = 4 — ¢g(b)a;. Hence G(b) belongs to W, (M) by Proposition 5.2.1 and
£,G(b) = [¢:(b)1;G(fib) mod W._,(M) by Proposition 5.2.3.

Thus we obtain (5.3.2) and (5.3.3). It remains to prove (5.3.4). Let us write

66 = 3 o,
k=0

thh u. e Ker f,n M,_ 1, and n = ¢,(b). Then all u, belong to L,. Moreover,
= f"G(b) by Lemma 3.1.1, and hence

(5.3.5) G(f;b) = &' 'u, mod gL, .
By (3.1.3), we have

n

(5.3.6) fiG) = Z [k1:8f u

. n—1
= [n];G(f;b) + ), [k1:&F *u, mod qq! "L,
k=1
Thus we obtain

(5.3.7) fiG() — [0:0)1:G(fib) € q- g} (Lo 0 My).

Hence we obtain (5.3.4).
(b) General case. By (a), we can write

fiGO) =[o®1G(D) + ¥ FG).

&bV <ei(b)
Then, forany;j # i,settinga = &(b) + 1, we have e/ f;G(b) = f:e/G(b) = 0by Lemma
5.1.1. Hence Corollary 5.1.2 lmphes

fiGl)e > Qlg,q7'1GE),

gi(b') < g;(b)

which gives (5.3.3). Q.E.D.
Remark. (1) By replacing e; and f;, we obtain
(5.3.8) e;G(b) = [;(b)1G(é;b) + Y Ei,.G(b') with
&
(5.3.9) Ei =0  unless ¢;(b') < ¢;(b) forany j e J,

(5.3.10) Ejy € 99; ~®Q[4].
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Note also that (5.3.3) is equivalent to
(5.3.3y Fi,, =0  unless ¢;(b') < ¢;(b) — <hj, a;) forany je J.

(2) The proof of Proposition 5.3.1 shows that forbe Bandi #je [, if fib #0,
then & f,b) < g(b). More precise arguments show the following. For b € B(4), set
Y(n) = g f{'b) &( f**1b) for 0 < n < ¢(b). Then there exist integers co, ¢;
(0 < ¢ < ¢y < @y(b)) such that

@) y(n) = —<{hy, o) for 0 < n < ¢y,

(i) Yy(n) >y + 1) forco <n<cy,and

(iii) Y(n) =0 for ¢, < n < @(b).

(3) For a subset J of I, let W be the filtration of M by regarding M as modules
over the subalgebra U,(g;) generated by e,, fi(ieJ)and g" (h € P*¥). Assume i ¢ J
and AeP. If be W’(B) then f,G(b) e W;_, (M). In fact, setting r= wt(b), for

EeQ\(A+0)—w=0.\(A— )+ Q) — (1 — a))and P € U/ (g,);, we have
Pf.G(b) = f,PG(b) = 0. Hence we obtain

(5.3.11) fiw]B) = W, (B)u{0},
(5.3.12) for b e W/(B), Fi =0 unless b’ € Wi, (B).

6. Sufficient condition for the existence of global bases.

6.1. Statement. In the preceding section, we discussed necessary conditions for
the balancedness of (Mg, Lo, L,,). In this section, we shall study the sufficient
condition.

Let M be an integrable U,(g)-module in O;,,(g) and M ¢ a sub- UqQ(g)-module such
that M = Q(q) ® M. Let L, and L, be crystal lattices of M at ¢ = 0 and g = o
As in the preceding section, we set

(6.1.1) H = {ue M; e;u =0 for any i}.

THEOREM 2. Assume the following two conditions.

(@) (Hn Mgy, Hn Ly, Hn L) is a balanced triple in H.

(b) {ue M;ePue Mg foranyielandanyn>1} = Mg+ H.
Then (Mg, Lo, L) is a balanced triple.

The converse was proven in the preceding section.

6.2. Preliminary reduction. For any finite set F of P,, Wp(M) satisfies the similar
condition. Hence we may assume M = Wi(M). Hence, for any pe P, Wt(M)n
(n + Q) is a finite set. Here we set
(6.2.1) Wit(M) = {Ae P; M, # 0}.

Hence we can modify the statement in the following form suitable for induction.
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(S) Let G be a subset of P such that G = G + Q. Assume
(S.1) Wt(M) N G is finite;
(8.2) (HynMg, H,n Ly, H,n L) is balanced for any A € G;
(83) {ueM,eue Mg foranyiclandn>1} = Mg, + H, forany peG.

Then (Mg, Loy, Ly,,) is balanced for any p € G.
6.3. Lowest highest-weight parts. 'We shall start by proving the following lemma.
LeEMMA 6.3.1.  Under the conditions (S.1) and (S.3), we have

{ue M,; U (8)gi—utt € Mg for any ke Wt(H)nG} = Mgy,  forany peG.

Proof. We shall prove this by induction on $(Wt(M) N (¢ + Q). If up € Wt(H),
then this is obvious. Otherwise, we have U, (8) gi—u—ns,&"1 € Mg for n > 1 and
Ae Wt(H)n G. Hence ePue M ¢ by the hypothesis of the induction, and (S.3)
impliesue Mo + H, = Mg. Q.ED.

Now we shall prove (S) by induction on $(Wt(H) n G). If Wt(H)n G = ¢, then
(S) is obvious because M, = 0 for any u € G. If Wt(H) n G is nonempty, we shall
take 4 € Wt(H) n G such that Wt(H)n G n (4 + Q_) = {4}. Set [;(Mq) = L,(M) n
Mg, etc. Set E = Mg Lo L. Then by (5.2)

(6.3.1) H; = Q(q) % (HynE).
Hence (3.3.4) implies
(6.3.2) IL,(M)=H, Q%) V() =(H;NE) % V(4),

I;(Lo) = (Hn Lo), Q;? L(A) = (H; N E) % L4,
I(Ly) = (HN Ly), % L(}) = (H,nE) % L(d).

Since Vo(d), = {ue V(A); U (8)gr—,4 € Q[q, 7' Ju;} by (4.2.12), Lemma 6.3.1
implies

(6.3.3) I,(Mg), = (H; " E) ® Vo(4), forany eG.
Q
Thus Lemma 4.2.1 implies

(6.3.4) (I:(M ) 1:(Lo)ys 1,(Ly),) is a balanced triple.
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64. End of Proof. Now set N = M/I,(M), No= Mq/I;(Mg), Lo(N)=
Lo/I,(Lo), Lo(N) = L/I,(L,). By the hypothesis of the induction, if N, Ng, Lo(N),
and L (N) satisfy (S.1), (S.2), and (S.3), then (Ng,, Lo(N),, L.(N),) is balanced and
hence (M ,, Lo,, L,) is balanced by Lemma 2.2.2. Since (S.1) and (S.2) for N are
obvious, it remains to prove (S.3) for N, or equivalently

(64.1) foranypueGandue M, if eue Mg+ I;(M)forany iand n > 1,
thenue Mg + H + I,(M).

If (u + (Q:\{0})) " (A + Q_) = ¢, (6.4.1) follows immediately from (S.3). Hence we
may assume

(64.2) ne @+ 0N

from the beginning. We shall divide the proof of (6.4.1) into two cases.

(@) p=A— no; with n > {h;, ). In this case, <h;, u) < —n and efPu € M, for
k> —<h;, uy. Hence Lemma 4.1.2 implies u € M.

() ué Ji {4 —noy;n><hy, A} Set K = {be B(c0),_;; T,;(b) # 0}. Then we
have (see Proposition 4.3.1(v))

(643) U;(Q)Ql—u = < Z Q[‘L qnl](p(Goo(b))) + z elgn)U;'(g)Ql—u—na,» .
pek w> G 4
For any b € K, there exists v, € H, such that ¢(G,(b))u — v, € M. There exists

v € I,(M) such that ¢(G(b))v = v, for any b € K. Hence replacing u with u — v, we
may assume from the beginning

(6.4.4) o(G(b))ue Mgy foranybe K.
Now we shall show ue Mg by applying Lemma 6.3.1. It is obvious that

U, (8) gu—utt € M for any 1’ € Wt(H) n G\ {4}. Hence by (6.4.3) and (6.4.4), it is
enough to show

(64.5) e"PueMqy  foranyiel, n><h, Ay and Pe U/ (8)gi-p-ny-
Since A — pu — no; # 0 by the assumption, we have
(6.4.6) Pue Mg + I,(M).

Since the weight 4 — no; of Pu is not a weight of V(4), (6.4.6) implies Pu € M ¢, and
hence we obtain (6.4.5). This completes the proof of Theorem 2.
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Remark. 1In this paper we discussed upper crystal bases. By using duality (see
§3.2), we can derive similar results for lower crystal bases. For example, Theorem 2
can be reformulated as follows.

THEOREM 6.4.1.  Let M be an integrable U,(g)-module in O,,(g) such that I,(M) = 0
except finitelymany A € P... Let M be as in §6.1 and let L, and L, be a lower crystal
lattice at q = 0 and q = oo, respectively. We assume

(64.7) (Mqy/Sn Mg, Lo/SN Ly, L,/S N Ly,) is a balanced triple in M/S,
where § =) fiM.

(6.4.8) MgnS= Y foM,.

n>0,iel
Then (Mg, Ly, L,,) is a balanced triple.

7. The g-analogue of the coordinate ring.

7.1. Right module. A right U,(g)-module M can be considered as a left U,(g)-
module via the antiautomorphism ¢. By this we define the notion of integrable right
U,(g)-module and the category O,,,(g°*®) of right integrable U,(g)-modules M such
that, for any u € M, there are [ > 0 satisfying uf; - f, =0 for any i,, ..., je L
We set for a right U (g)-module M

(7.1.1) M, = {ue M;uq" = q"»u}.

Let V(1) be the irreducible integrable right U,(g)-module with highest weight
A€ Py ie, V)= UyQ)(Lher (4" —a VU @) + Y fiUy(0) + Y i et MU (g)).
By the antiautomorphism ¢ of U(g), V"(4) is isomorphic to V(). Let v, be the
highest-weight vector of ¥"(1). Then there is a unique pairing { , )

(7.1.2) V(A ® V(4 - Qq)
such that
(7.1.3) vpuy =1,

(7.1.4) <vP, u) = {v, Pu) forve V'(4), ue V(4), and P € Uy(g).

We define similarly crystal lattice and crystal base for the integrable right U, (9)-
module. We denote by (L'(4), B'(4)) the canonical upper crystal base of V*(4). Thus,
L(4) and L’(A) are so normalized that L(4), = Au, and L' (1), = Av,.

7.2. The coordinate ring A,(g). Let U,(g)* be Hom ¢,(U,(g), Q(q)). We denote
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by
<s 0 Ue)* ® Uy(g) — Qlg)

the canonical pairing.
We define the comultiplication

(7.2.1) A, Uyg) = Uyg) ® Uyg)
by

(7.2.2)
A @) =9¢"®4q", Ade)=e®@1+6®e, A(f)=fi®L +10f.

Then A, induces the multiplication

(7.2.2) 1: Uy(0)* ® Uy(9)* = (Uy(9) ® Uy(9))* — U,(9)*,

by which U, (g)* has a structure of ring with unit.

Since U,(g) has the structure of a bi-U,(g)-module, U,(g)* has the structure
of a bi-U,(g)-module. Then the multiplication u: Uy (g)* ® U, (g)* — U,(g)* is a
morphism of a bi-U,(g)-module, where U, (g)* ® U,(g)* has the structure of a bi-
U,(g)-module via the comultiplication A..

Definition 7.2.1. We set

A,9) = {u e Uyg)*; U,(g)u belongs to 0,,(g) and ulU,(g) belongs to O, (g°*®)}.

Since the multiplication map of U,(g)* is bi-U,(g)-linear and O,,(g) and O,,,(g°*")
are closed by tensor product, 4,(g) is a subring of U,(g)*.

The following theorem is the g-analogue of the Peter-Weyl theorem, and the proof
follows easily from the semisimplicity of the category O,,(g).

PROPOSITION 7.2.2.  As a bi-U,(g)-module, A,(g) is isomorphic to @,V"(1) ® V(4)
by the homomorphisms ‘

Q,: V(A ® V(4) — A,9)
given by
(P (v @u), Py = (vP,up

Jorve V'(A), ue V(4), and P € Uyg).
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7.3. Crystal base and the Q-form. We define the automorphism — of the Q-ring
A,(9) by

(7.3.1) (i, PY = {u, P)~ for u e A,(g) and P € U,(g).

Here —: Q(g) — Q(q) is the ring automorphism sending q to ¢~
We denote also by — the automorphisms of V(1) and V"(1) by

(7.3.2) ﬁ)' = ul, 5;' = vl

and

(733) Pu=Pu, ovP=%P forueV(l), veV’'(l)andP e Ufg).

Then we have the commutative diagram

V') ® V() —2— A,(g)
Q(q)

(7.3.4) ’®'l l'

V') ® V() —2 A4,(9).
Q@)

We define
L(A,(9) = G? L(4) (? L(A) = A,(9),

L(4,9) = @ L) ® L(A) = A(g), and
B(4,(9) = (AJ B()®B(Y),  Bl4,9) = LA) B'(3) ® B(3).

Then the automorphism — of 4,(g) sends L(4,(g)) and I:(Aq(g)) to each other.
We define the Q-form of A4,(g) as follows:

(7.3.5) AX(g) = {ue A, g) <u, U = Q[g, ¢7'1}.

Then A2(g) is a sub—bi-UqQ(g)-module of A,(g) and also a subring of 4,(g) because
A sends UQ(g) into U2(g) ® U(g).

Lemma 7.3.1. A4,(8) = Q@) ® g1 A2(9).

Proof. For ue A,(g), if we set J, = {P e Uy(g), Pu=0} and J, = {P e Uy(g),
uP = 0}, then u can be considered as an element of Hom g, (U,(a)/(J,U,(g) +
U,(8)J1), Q(9))- Since dim(U,(g)/(J,U,(g) + U,(g)J;)) < o, there exists a nonzero
¢ € Q(g) such that pu belongs to 42(g). Q.E.D.
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74. Main theorem. WNow we shall prove the following theorem.

THEOREM 1. (i) AqQ(g) N L(A,(g) N L(Aq(g)) — L{A,(9))/qL{A(9)) is an isomor-
phism.
(i) Letting G be the inverse of the isomorphism above, we have

A= @ QLo g7 '1G ().

be B(44(9)

Proof. Regarding A4,(g) as a left U,(g @ g)-module belonging to O,,(g ® g), we
shall apply Theorem 2 (in §6.2). Hence setting

(74.1) H = {u e A/g); e;u = uf; = 0 for any i},
it is enough to show
(742) AQ(9) + H = {u e A,(g); euand uf;” belongto A%(g)forn > landie I}
and

H 0 AX8) N L(A,(8)) 0 L(4,(8)) 5 (H 0 L(A,(@))/(H N gL(A,(9))).
By the identification

Aylg) = AE@L V()@ V(4),

we have

(7.4.4) H~ Ae% Qv ® uy).

Also, it is obvious that

(74.5) HnAQ(g) = @ Q4. 7' 1, ® uy),
(7.4.6) Hn L(AX(g)) = (J;) Av, @ u,),
and

(7.4.7) HnL(AR(g) = e? Av, ® uy).

Then (7.4.3) follows by these three. Hence it remains to prove
(7.4.8) if u € A,(g) satisfies e{u, uf,™ € 42(g) for n > 1

and any i € I, then u belongs to A2(g) + H.
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By Proposition 4.1.1, we may assume that u is a weight vector, i.e., that there are
A 4 € P, such that g"u = ¢®*>y and ug" = uqg™*>.

If (h;, 4;) < O for some i, then u belongs to A,?(g) by Proposition 4.1.2. Therefore,
we may assume 4, € P, without loss of generality. Now if 4, 5 4,, then {u, 1> = 0.
If A, = 4,, then setting ¢ = <y, 1), ' = u — c®, (v; ® ul!) satisfies (u’, 1> = 0 and
e, u'f;™ belong to A2(g). Hence replacing u with u’ we may assume <y, 1) = 0.
Thus in both cases, we may assume {u, 1> =0. Let ¥ be the commutative

h .
Q[gq, g *]-subalgebra of U,(g) generated by {qn} and g" Then {u, ¥) = 0. Fi-
nally, (u, U(g)> = Q[4q, g*] follows from

UqQ(g) = Uq_(Q)Q ® (g ® U;(Q)Q

= ), ("0 + UR(g)ef) + %.
2
This completes the proof of Theorem 1. Q.E.D.

Remark. (1) The isomorphism L(Aq(g))/qL(Aq(g))AL(Aq(g))/q'lL(Aq(g)) ob-
tained through AQ(g)mL(Aq(g))nL(Aq(g)) coincides with —. Hence it sends
B(A,(g)) onto B(Aq(g)) and commutes with &; and f,.

(2) Set AZ(g) = {u € A,(g); <u, UX(9)> = Z[g, ¢"*]}. Then, more precise argu-
ments show

A9 = @ Z[q,q7'1GO).

be B(44(9))

7.5. Conjugate of the product. We shall investigate the relation between i and
v for u,v € A,(g). In order to do this, let i be the automorphism of the Q(g)-algebra
U,(g) defined by

(7.5.1) ¥(@" = 4",
Yle) = q; 'tie; = qieit;,
V() =gt o= qufit
We have
(1.5.2) ¥(P) =y '(P).
LEMMA 7.5.1.  For any P € U,(g),, we have
Y(P) = q©972g%p.

Here, for & =) no, € Q, we set ¢* = [ [ t}". (Hence q*u = q%Pu for a weight vector
u of weight A).
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The proof is straightforward.
Let us define the automorphism y* of 4,(g) by <y*(u), P> = {u, Y(P)).

Lemma 7.5.2. If ue A(g) has weight (A, 4,) (i.e., g"u = g *u, ugh = g®*y),
then

Y (u) = gUn =Gz
Proof. We have
(7.5.3) (, Ufg)ey =0 for & 4, — Ay.
If P € Uy(g), -1, then
<, Y(P)y = Cu, g~ hn i ii2g iy

= g A=+ G And(y Py

= gUn W22y Py QED.
_ Let us denote also by — the automorphism of U,(g) ® U,(g) given by P ® 0+
P®Q.

Let o be the automorphism of U,(g) ® U,(g) given by P ® O+ Q ® P. We have
the following lemma.

LemMma 7.53. A(P) = 0o o (f ® ) o AWP) for any P e U (9).

Proof. 1t is enough to show that, if it holds for P, then it does for q"P, e; P, and
JiP. This can be checked easily. Q.E.D.

PRrOPOSITION 7.54. Let u and v be elements of weight (A,, ;) and (i,, W), respec-
tively (i.e., ¢"u = q"*’u, ug" = g *u, etc.). Then we have i = g+~ Gerg g,

Proof. For P e Uyg)
mw, Py = {uv, P~ = {u@v, APY~
=u®uv, 00 @ YAYP)"
= <Y*(v) ® Y*(u), AYP)”

— q((lz,lz)—(lnlr)+(uz,ﬂ;)—(#r,ur))/2<v ®u, At//P)‘ .

The last term is
(w®u, AYP)~ = (5@, A(YP))
={0u, YP) = Y*(u), P)

— q((ir‘*‘ﬂwlr"'ﬂr)—(lx*‘#b11"‘#1))/2(5 i, P> .
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Hence we obtain
<171-)’ P} —_ q(lmur)—(lz,uz)<5 i, P>.
Thus we obtain the desired result. QE.D.

8. Comments.

8.1. The ring (74(9). Let Mod (g, P) be the category of U,(g)-modules M with
the weight decomposition @, p M.

For A € P, we set N(4) = U,(a)/>. U,(8)(¢" — ¢"*’) and let w, denote the image
1 in N(4). Let 1 be the identity functor of Mod(g, P) and R = End(1). Hence, an
element ¢ of R associates an endomorphism ¢ (M) of M with any M in Mod(g, P),
such that

M (M)

] T

N @(N)

is commutative for any morphism f: M — N in Mod(g, P).
For 4 € P, the projector a,: M — M, gives an element of R.

LemMa 8.1.1. (i) R contains Uy (g) as a subring.
(i) R - []1cp N(A) given by @ (o(N(A))w,), is an isomorphism.

Proof. (i) is obvious. For ¢ € R, set ¢(N(1))(w;) = P,w, with P, € U,(g). Then
for M in Mod(g, P) and any element u € M, let f: N(u) - M be a morphism given
by f(w,) = u. Then p(M)u) = o(M)f(w,) = fo(N(A)(w;) = f(P,w,) = P,u. Con-
versely if P, € Uy(g), then o(M)(u) = Y P,a,u is well defined and gives an element
@ in R. Q.E.D.

Definition 8.1.2. Let ffq(g) denote the direct sum of U,(g)a; (4 € P).
Note that

(8.1.1) alau - 5;.’”(11,
(8.1.2) a,P = Pa, for P e Uy(g)s—,-

Hence Uq(g) is a ring (without unit in general). We denote by ﬁqQ(g) the subring of
U,(g) generated by U2(g)a;. We have

(8.1.3) U00) = U/ (9 ® (6? Q(Q)au> ® Uy (9).
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Formally, we have

(8.1.4) q" = Z g™,

A

8.2. Conjectural base of ﬁq(g). We can also define the coupling

{5 24,8 ®R~Qlg)
by {@,(v ® u), @) = (v, e(V())u) forue V(A),ve V'(A)and ¢ € R.

Conjecture 2. Assume g is finite dimensional. For any b € B(4,(g)), there exists
a unique P(b)e U%(g) such that (G(b'), P(h)) = J,,, and we have UQ(g) =
®,QLg, g7 1P(b).

It is expected that, when g = sl(n), this base coincides with the base constructed
by Beilinson-Lusztig-MacPherson [BLM] (via intersection cohomologies). After
writing up this paper, I learned that G. Lusztig has constructed bases of ﬁqQ(g) ([LD.
It turns out that this gives an affirmative answer to Conjecture 2.

9. Example (s/, case).

9.1. We shall give an explicit form of global crystal base of 4,(sl,) and examine
the conjecture of A. D. Berenstein and A. Zelevinsky. We leave the proof to the
reader.

LetI = {1}, (ay, ay) =1,p = a,/2, P = Zp. We write e, f, t for ey, f;, t;, etc. Set
x=®,0v,®u,),u= fx,v=xeand y = fxe = fo = ue. Then it is well known that
A ,(g) is the Q(g)-algebra generated by x, y, u, and v with the defining relations

(9.1.1) Xu = qux, Xv = qux,

uy = qyu, vy = qyv, and
w=vu and xy—quv=yx—q luwv=1.

PROPOSITION 9.1.1. (i) L(4,(9)) =Y, Au"x™' + Y Au"y™'. Here n, m, and |
range over Z .
(i) G(B(4,(a))) = {u"x™v";n,m, 1> 0} L {u"y™v"; n, 1> 0, m > 0}.

Hence in this case, the global crystal bases are monomes of x, y, », and v, and the
conjecture of A. D. Berenstein and A. Zelevinsky is true.

ProrosiTiON9.1.2.  Conjecture 2is true for g = sl,, and the P(b)’s are of the form

fme®a,  where (h,A> =m—n



Ed

GLOBAL CRYSTAL BASES OF QUANTUM GROUPS 485
and
e®f™q,  where (h, A) < m — n.
Notice that f™e®a, = ¢™f™q, when <h, A> =m — n.
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