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THE CRYSTAL BASE AND LITTELMANN’S REFINED
DEMAZURE CHARACTER FORMULA

MASAKI KASHIWARA

0. Introduction. Demazure’s character formula describes the weight multiplic-
ities of the U(n*)-module generated by an extremal vector of the irreducible highest-
weight U(g)-module (cf. [D], [A], [RR], [J1, [M], [SK]). More precisely, we define
the operator D; by

A __ e/l—(1+ <hiy Ay

1—e™ ’

e

D) =

and for an element w of the Weyl group W with a reduced decomposition s; **s;,
we define D,, = D, - D, . If u,, is the extremal vector of weight w/ of the irreducible
highest-weight module V(1) of weight A over a symmetrizable Kac-Moody Lie
algebra g, then

ch(U(n*))u,; = D,(e*).

Littelmann gave the following conjecture of a generalization of the Demazure
character formula and gave a proof in most cases when g is finite-dimensional ([L]).
Let V(4) be the irreducible U, (g)-module with highest weight 4, and (L(4), B(4)) its
crystal base. His conjecture states that there is a subset B, (1) of B(4) such that

U @i L) _
Uq+ (@)uwi N gL(A)  beBon

(0.1)

and that it satisfies

(02) Z b = .@il"‘@,«lul‘

be B, ()
Here 2, is the additive operator on Z®2® given by

b ik, wed)) =0
Db = < O <k <))

—Z ékb if <h;, wt(b)) < 0.
1 <k< ~<hy, wi(b) )
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Then ewt(2;b) = D,(ewt(b)). Here ewt(b) = ¢™'®, Hence Littelmann’s conjecture
implies the Damazure character formula. In this paper, we shall prove his conjecture
for any symmetrizable case. In fact, we shall prove more precise statements. We
prove first

(0.3) U/ (8)uy, = \ D Q@)G,(b).

€ B, (1)

Here G,(b) is the lower global base. This fact is an easy consequence of the following
statement of U,(sl,)-modules.

(0.4) Let M bea U,(sl,)-module with (lower) global bases, and N a sub-U,’ (sl,)-
module generated by global bases. Then U,(sl,)N is also generated by
global bases.

In fact, (0.3) follows from (0.4) and U, (g)u,,; = U,(9,) U; (9)us,,, for s;w < w. Here
U,(g;) is the copy of U,(sl,) inside U,(g) corresponding to i.
We shall then prove the following three properties of B, (4).
(i) &B,(4) = B,(4)L{0}.
(i) If s;w < w, then we have

B,() = {fb; k > 0, b € B,,(4), &b = 0\ {0}.
(iii) For any i-string S, S ~ B, (4) is either empty or S or {the highest weight vector
of S}.

Here i-string means { f*b; 0 < k < ¢;(b)} for b with &(b) = 0, and b is called the
highest-weight vector of S. In these statements, the first two follow from the
definition, and the last one is nontrivial. These three properties imply (0.2).

In fact, arguing by induction we may assume s;w < w, and the formula (0.2) is
reduced to

be B, (4) beBg,w(d)

Since B(4)is the disjoint union of i-strings, it is enough to show that for any i-string S

(0.5) y b:@,.( ¥ b>.
be B, (1) NS beBs (M) NS

By (i), (ii), and (iii}, only the following three cases are possible.
(a) SN B,(A) =Sn B, (%) =0.
(b) SNnB,(4) =S5SnB,()=S.
(c) SN B,(4) = S and S N B, ,,(4) consists of the highest-weight vector.

In either case, (0.5) can be easily checked. Thus, we have a new proof of Demazure’s
character formula for symmetrizable Kac-Moody algebras.
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1. Crystals.

1.1. Notation. We follow the notation in [K]. In particular, {&;};.; is the set of
simple roots, {h;};.; is the set of simple coroots, P is the weight lattice, U,(g) is the
quantized universal enveloping algebra generated by e;, f;, q"(h e P¥), A is the
subring of Q(g) consisting of rational functions regular at ¢ = 0, etc.

1.2. Definition of crystals. In this section, abstracting the properties of crystal
bases, we will introduce the notion of crystals. They form a tensor category. Let us
endow Z LI {—oo} with the linear order such that —co is the smallest element. We
define the addition on Z LI {—o0} by

(1.2.1) —00 + X = —00, for any x e ZU{—c0}.
Definition 1.2.1. A crystal B is a set with
(1.22) amapwi: B— P, ¢ B—ZlI{—0w},and ¢;: B—>ZI{—00},
(1.2.3) &: B — BU{0}
fi B-BU{0} foriel.

Here 0 is the ideal element that does not belong to B. They are subject to the
following axioms:

(C1)  @i(b) = &(b) + Chy, we(b));

(C2) ifbe Band é;be B, then wt(é,b) = wt(b) + «;, ¢,(é;b) = ¢;(b) — 1 and
pi(eb) = ¢b) + 1;

(C2y ifbeBand f;be B, then wr(f;b) = wt(b) — o, &(f;b) = &(b) + 1 and
:(fib) = @i(b) — 1;

(C3) forb,b’eBandiecl, b’ =¢bifand onlyifb = f;b’;
(C4) for be B,if ;(b) = —o0, then &b = fib = 0.

For two crystals B; and B, a morphism ¥ from B, to B, is a map B, — B, LI {0}
that satisfies the following conditions (1.2.4)—(1.2.6).

(1.2.4) If b € B, and y(b) € B,, then wt(y (b)) = wt(b), &,((b)) = ¢,(b) and
@Y (b)) = ¢i(b).

(1.2.5) For b € B,, we have y(é;b) = &y (b) provided y(é;b) and y(b) € B, .
(1.2.6) For b e By, we have y(f;b) = fiys(b) provided y(f;b) and y(b) € B, .

Here we understand y(0) = 0.
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Then the crystals form a category, that is denoted by %.
A crystal Bis called upper normal (resp. lower normal)if, for any b € B, ¢,(b) € Z and

¢;(b) = max{k > 0; &'b € B}
(resp. @;(b) = max{k > 0; f*b € B}).

If a crystal is upper and lower normal, it is called normal. .
A morphism ¥: B, — B, is called strict if it commutes with all &; and f;.
The following lemma is obvious.

LEMMA 1.2.2. An isomorphism is strict.
Lemma 1.2.3.  If B, and B, are normal, then any morphism from B to B, is strict.

For two crystals B, and B,, we define the direct sum B; @ B, whose underlying
set is B; L B, with the obvious actions. We have

(1.2.7) Hom (B, @ B,, B) = Hom(B;, B) x Hom(B,, B).

A morphism y: B, — B, is called an embedding if ¥ induces the injective map
B, U{0} — B, U{0}. In this case, we call B; a subcrystal of B,. An embedding y is
called full when, if b € B, satisfies &,i/(b) € B,, then &b € B,. In this case B, is called
a full subcrystal of B,. A strict embedding : B, — B, is full, and B, is isomorphic
to the direct sum of B, and B,\y/(B;).

For any morphism : B, — B,, B, is the direct sum of the subcrystals i ~(B,)
and 1 (0).

Example 1.2.4. For A€ P, T, is the crystal consisting of a single element ¢, with
Wt(tl) = },, Sf(tl) = (pl(tl) = —00. Of course, éit). = .f;,t/l = 0.

Example 1.2.5. The crystal C = {c} is defined by wt(c) = 0, &,(c) = @i(c) = 0,
5,~C = f;'c = O.

Example 1.2.6. Forie I, B; is the crystal defined as follows:
B, = {b(n);neZ} and
wt(bi(n)) = no;,
@(bi(n)) = n, ei(by(n)) = —n,
ob(m) = g(bim) = —c0 forj #1,
We define the action of & and f: by
é(b(m) = bi(n + 1),
Jibi(n) = b(n — 1),
&(bim) = fib(m) =0  forj+#i.
We write b; for b;(0).
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Example 1.2.7. For A € P,, B(4) is the normal crystal associated with the crystal
base of the simple module with highest weight 1. The unique element of B(4) of
weight A is denoted by u,. Remark that B(0) is isomorphic to C.

Example 1.2.8. B(o0) is the crystal associated with the crystal base of U, (g) (cf.
[K,]). We set ¢(b) = max{k > 0; &b 5 0} and ¢;(b) = ¢&(b) + {h;, wt(b)>. Then
B(co) is upper normal but not lower normal. The unique element of B(co) of
weight 0 is denoted by u,. By the result in [K,], there exists a full embedding
B(1) = B(c0) ® T, that sends u; to u,, ® t,. This commutes with all &;.

For a crystal B, we define the crystal BY asfollows. Asaset,B” = {b¥;be B} > B
and

wi(bY) = —wi(b)
&(bY) = @,(b), p:;(b”) = &;(b)
&(bY) = (fib)", fib¥) = (€b)".

Here 0" is understood to be 0.
Then B is canonically isomorphic to B.

Example 1.2.9. B(—o) = B(o0)". This may be regarded as a crystal base of
U/ (g)-

Example 1.2.10. B~(A) = B(—A)" for A€ P_ = — P,. This is the crystal base of
the irreducible module V_(4) of lowest weight A.

1.3. Tensor product. For two crystals B, and B,, we define its tensor product
B; ® B, as follows:

B, ® B, = {b; ® b,; b, € By and b, € B, },
&:(by ® by) = max(gi(b,), &;(by) — wri(by)),
@i(by ® by) = max(g;(b,), ¢i(b,) + wi;(b,)),
wt(b; ® b,) = wt(b,) + wt(b,).
Here wt,(b) = <h;, wt(b)). The actions of ; and f; are defined by

&b, ® b, if @y(by) = i(by)

b ® by) = {bl ®eb,  if gilby) < eilba).

x _ fib;®b, if ¢i(by) > &i(b,)
Jilby ®b,) = {bl ®7b i eby) <eb):

Here 0 ® b and b ® 0 are understood to be 0.
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One can check easily that B, ® B, is again a crystal. Note that axiom (C4) is
necessary for B; ® B, to satisfy axiom (C3).
Thus ® is a functor from € x € to €.

PRrROPOSITION 1.3.1 (associativity). For three crystals B, B,, and B;, (B, ® B,) ®
B; is isomorphic to B; ® (B, ® B3) by (b, ® b,) ® by— b, ® (b, ® b;).

Proof. We shall only prove &,((b; ® b,) ® b;) = &;(b; ® (b, ® b3)). The other
axioms can be checked similarly. We have

&((by ® b;) ® b3)

- {éi(bl ® b,) ® b, if ¢;(b; ® b,) = &;(bs)
(b; ® b,) ® &;by if p;(b; ® by) < &(b3)

(&b, ® by) ® by if @;(b;) = &;(b,) and ¢;(b;) + wt(b,) = &;(bs)
(b; ® &:b,) ® by if ;(b,) < &;(by) and ¢;(b,) = &(b;)
(b; ® by) ® &;by if y(by) + wti(by) < &;(b3) and @y(b,) < &;(bs).

It

On the other hand, we have
&i(b; ® (b, ® by))

- {é.‘b1 ® (b, ® b3) if ¢;(b;) = &;(b, ® bs)
b; ® &(b, ® b;) if ;(b;) < (b, @ b3)

éb; ® (b, ® bs) if ¢;(by) > ei(b,) and ¢;(by) = &;(b;) — wt;b,
= < b, ® (&b, ® bs) if @;(b;) > &;(b3) and ¢;(b;) < &;(b,)
by ® (b, ®&b3)  if ¢,(by) < &(bs) and ¢y(b,) < &(by) — wt;b, .

Thus we have the desired result. Q.E.D.

Note that if B, and B, are normal, then so is B; ® B,.
Note also that for any crystals B, and B,

(1.3.1) (Bi®B,)" =B ®By  by(by®b;)" —b @by
If @;(b,), ¢,(b,) € Z, then the action of a power of f; on b, ® b, is given by
(132) foby ®by) = f7by ® fb,

with y = (a — (¢i(by) — &i(b))+)+ and x = min(a, (¢;(b;) — &(b,))+)-
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Example 1.3.2. Let B be a crystal. Then
wt(b ® t;) = wt(b) + 4,
g(b ®t;) = &(b),

e (b ®t;) = @,(b) + <hy, 4>,

and
wt(t, ® b) = wt(b) + 4,
&t ® b) = &(b) — <hi, 47,
@ity @ b) = @u(b).

Example 1.33. B® T, = T,; ® B; by b(n) ® t; > t,; ® b(n + {h;, 1)). Here
Si)v = l - <hi, /1)06,‘.

Example1.34. BRTa,=2Tay®B=B T, T, =T,

Hence T, is the neutral object with respect to the tensor product.

Example 1.3.5.

B;® B; = @Bi®’1;cai
ke Z

by
bi(n) ® b(m) > bi(X) ® ti,,
with
x = min(n, m + 2n), k = max(m, —n),
n = max(—k, x), m = min(k, x + 2k).

Let us mention the following lemma, which can be proven directly.

LemMa 1.3.6. Let B, (1 < k < n) be a crystal and by € B,. We set

a = g(by) — Z wi(b,).

1 <v<k
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Then we have

(1) &b, ® " ®b)=b; @ ®E&hH® b,
ifa,>a, for1 <v<kand
a, = a, fork <v<n;
(i) (b ® - ®b)=b,® @ fb® - ®b,
ifa,za, for1 <v<kand
a,>a, fork<v<n.

5% fi
2. &f and f*.

2.1. Invariance by x. In this section, we shall use the notations in [K2]. In [K2]
we proved that the crystal lattice L(c0) of U, (g) is stable by the antiautomorphism
* of U; (g) and B(oo) LI (— B(c0))is stable by *. We shall show the following statement
in this section.

THEOREM 2.1.1.  B(00)* = B(0).
We shall define the operators & and f* of U, (g) by

IoH

¥ =x8&x and f,* = *ﬁ*

(2.1.2)
Then L(o) is stable by &* and f;*. By Lemma 5.2.3 in [K2], we have
(2.1.3) xejx = Ad(t,)e! .
Hence for P = ) P, f™ with e/ P, = 0, we have
f¥P =% P

PROPOSITION 2.1.2. Let m>0 and Pe L(o0). Assume that e/P =0 and
P mod gL(o0)belongs to B(co). Then for A € P, suchthat (h;, 1> = 0and Chyy 4> >0
for any j # i and for p e P, such that {h;, u> > 0, we have

Pf™(u; ® u,) = Pu, ® f™u, mod qL(1) ® L().
Proof. We have f"(u, ® u,) = u, ® f™u,. On the other hand, we have

AP=P®1 modulo Y U,(a)® U, (g);.
$70
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This implies
Pf™(u;, ® u,) = Pu, ® f™u, modulo ) V(A)® V(w:.

& #umma

By [K2], Pf;™ mod gL(o0) belongs to B(co) or — B(co). Accordingly, Pf"(u, ® u,,)
belongs to B(4) ® B(u) or — B(4) ® B(u). Since Pu; @ f;™u, belongs to B(4) ® B(y),
we obtain the desired result. Q.ED.

Now let us show Theorem 2.1.1. By the induction of weight, it is enough to show
that b € B(co), &b = 0 implies f*mb e B(w0). Take a representative P € L(c0) of b
with e/P = 0. Then f*"b = Pf{™ mod gL(0). Since Pf;"(u,® u,) belongs to
B(4) ® B(u), Pf;™ belongs to B(co).

2.2. Description of B(o0). Proposition 2.1.2 implies the following theorem.

TuEOREM 2.2.1. (i) For any i there exists a unique strict embedding of crystals
¥;: B(00o) < B(o0) ® B;

that sends uy, to u, ® b;. 5
@) If W,(b) = bO ®ﬁ"‘b then W,(f*b) = by ® fi"*'b; and &,(b*) =
(iii) Im ¥, = {b ® fimby; €,(b*) = 0, m = 0}.

Proof. Any element b of B(c0) can be uniquely written in the form b = fi¥mb,
with &b, = 0. Let us define ¥; by ¥;(b) = b, ® fib,. Tt is enough to show that ',
is a strict embedding. In order to see this, we shall first check W;(é;b) = &;'¥(b). Note
that this implies ¥;( ];b) j;‘l’ i(b).

Take P € L(c0) n Ker e/ such that b, = P. Then b = Pf;™. Here and in the sequel,
= means modulo gL(c) or gL(4), etc. Now we write &b = Qf® with Q € L(0) n
Ker e/ Then we have &(Pf;"™) = Qf;¥. Hence taking and pasin Proposition 2.1.2,
we have

(2.2.1) Qu, ® fPu, = 0P u, ®u,)
= (&{(Pf™)N(u, ® u,)
= §((PA™) (w, @ u,))
= &(Pu; ® f{™u,).
On the other hand, we have
(22.2) ¥i(gb) = 0 ® fib,
and

5,'\1';'(17) = éj(bo ®f;mbi)'
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Assume first j # i. Then (2.2.1) and &(f;"u,) = 0 < ¢;(Pu,) implies
0u; ® fPu, = &Pu, ® f™u,.

Hence Q =¢P =¢b, and m =k Thus we obtain &W¥,(b)= &b, ® fmb,) =
&by ® fi"b; = Wi(&;b).

Now consider the case j = i. In this case, ¢;(Pu;,) = ¢;(by) + <h;, A> = @,(by) = 0
and &( fu,) = m. Hence we have

é;Pu, ®fi(m)uu @;(bg) = m

&(Pu, ® f™u,) = {Pug ® i Pu, @i(bo) < m.

Therefore (2.2.1) implies
Q=¢éPm=k if oi(by) = m,
O=Pk=m-—1 if @;(by) < m.
Note that ¢;(b,) < m = 0 cannot occur because ¢;(b,) = 0. Accordingly, we have
W,(&:b) = &by ® fb; or b, ® fi"'b,.

This equals &(b, ® f;"b,).
Now let us prove g;(b) = ¢,(¥,(b)). Take by, m, and P as above, and take 4 and u
as in Proposition 2.1.1. Then

&i(b) = e{Pf™(u; ® u,)) = &(Pu, ® f™u,)
= max(g;(Pu,), &(f"u,) — <h;, wt(Pu,)>)
= max(g;(by), &( i) — Chyy Ay — <hy, wibg ).

If j # i, then <{hy, 4) > 0 implies &(b) = &;(by) = &;(b, ® fi"b) = g(\W;(b). If j =i,
then &,(b) = max(e;(bo), m — <{hy, wtbo ) = &(bo ® fi"b;) = &:(¥,(b)).
This completes the proof. Q.ED.
This theorem immediately implies the following result.

COROLLARY 2.2.2. If j 5 i, then f and é¥ (resp. jj and f¥, ¢ and &f, & and #
commute. Moreover, ,(&¥b) = ¢;(b) if &}b # 0, etc.

Proof. Let us show f*f;b = f,f*b for i # j. Write W,(b) = b, ® f{*b;. Then we
have ¥,(£;b) = f;¥(b) = f;bo ® f*b; and hence W,(f*f;b) = fibo ® f*"'b; = Silbo ®
f¥b) = fW,(f*b) = Wi(f; fi*b). This implies f*f;b = £, /#*b. The proof of the other
statements is similar. Q.E.D.
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This gives a procedure to determine the crystal B(co). For iy, ..., i € I, we define
¥, ... B(0) = B(0)® B, ® - ® B, by ¥ o+ o ¥;. Then for any b € B(w0),
we can choose iy, ..., i, so that

q’il il(b)Euoo®Bil®"'®Bil.

.....

Hence B(co) may be considered as a subcrystal of the limit of B; ® - ® B,,.
We shall investigate them in the rank-2 case. Set I = {1,2} and write ¢, =
—<(hy, 050, ¢ = —<hy, 0y ). Set ¢ = ¢y ¢, and define {z,}, >, by

1

z;=1 and z,=1-— .
1 n lZ,.—l

We understand that, if z, = 0, then z,, = 0 for m > n. This happens when ¢t = 1, 2,
3.Ift =0, thensetz,=0forn> 1. Wehave l > z,>z,,;, = 0.

PROPOSITION 2.2.3. u, ® ~* @ f22b, ® f'b, ® f3'b, ® fiob, belongs to
Y...,,(B(0)) if and only if x, and y, satisfies

(2.2.3) 0<xp,0< x, <291 Vs for 1 < vand
0<y, <cpz-2%0 Jor2 <.

Proof. LetSbethesetofu, @ - ® f21b, ® fiob, with (2.2.1). It is enough to
show the following properties on S.

(2.2.4)  If b e S satisfies &b = 0 for i = 1, 2 then all x, and y, are zero.
(2.2.5)  Sis stable by f;.
(22.6)  SU{0} is stable by &;.

The case ¢ = 0 is easily proved; we shall assume ¢ > 0. Let us first prove (2.2.4).
Set b = u, ® b’ with b’ = - ® f;b, and assume &b = 0. Since &b’ # 0, we have
& (u, ®b') = &u, @b". Thus 0 = @;(u,) > &(b’). Hence if b’ = f;*h; @ b”", then
0=>¢(b')=2x=20Thusx=0.

Let us prove (2.2.5). Since the proof of the case i = 2 is similar, we shall only prove
the case i = 1. Set

b=u,® " ® fi°b

and f1b=uw®-~®fl”"kb1®-“. It is enough to show that, when k >0,
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I 4+ x, < ¢12y5-1 Vx- By Lemma 1.3.6,

X +2Y x,—¢; Zk W>Xog +2Y x,— ¢y ;{ Yy, OT equivalently
v v vz

v>k >k
(2.2.7) C1Ve 2 Xy + 1 4+ x,.
Henceif k = 1, then 1 + x, < ¢,254-; . Assume k > 1. Then we have
(2.2.8) Vi K CaZop 5 Xy -

If ¢;25,-, = 0, then y;, = 0 and (2.2.7) cannot happen. Hence z,,_, > 0 and ¢, > 0.
Then (2.2.7) and (2.2.8) imply

C1Zap—1 Yk = C1<1 - >yk ZC Ve — X = 1+ x4

1Zok-2

The proof of (2.2.4) is similar. Q.ED.
By taking *, we obtain the following result.

PROPOSITION 2.2.4.  Set b = fofyifx f32++u,,. Then the Sollowing conditions are
equivalent.

(2.2.9) & (i ug) =0,
62(.};’1):l ;\u e uoo) = O’

51(fzyz...uw) =0,

(2.2.10 {x,} and {y,} satisfy (2.2.3).

Example2.2.5. g = Ay, 1 ={1,2},{hy, a,) = <{hy, a;» = — 1.In this case B(0)
is fully embedded into B; ® B, ® B, by u,, b, ® b, ® b,. The image is

{fib, ® f3'b, ® fib;0 < n<m 0 <1}
Example 2.2.6. g = B,,1={1,2},{hy,0,)> = —2,<{h,, ;> = —1.In this case,
B(oo) is fully embedded into B; ® B, ® B; ® B, and also into B, ® B; ® B, ® B,.

The images are

{fib ® /75, ® fib, ® fib2;0<d,0<a<b<c}



LITTELMANN’S REFINED DEMAZURE CHARACTER FORMULA 851

and
{(feb, ® fPb, ® f5b, ® fiby;d > 0,0< b <2c,0<2a<b}.

Example 2.2.7. g = G,, I = {1,2}, (hy, 0,0 = —3,{hy, 0y ) = — 1. In this case,
B(c0) is fully embedded into B; ® B, ® B, ® B, ® B, ® B, and into B, ® B; ®
B, ® B; ® B, ® B,. The images are

(fob, ® f52b, ® f3by ® fib, ® fsb, ® fisb, ;
0<a6,0<a,<as,0<a;<2a,,0<0a,<3a;,0<a; <a,}
and
(f31b, ® fi2b, ® f33b, ® fiby ® fisb, ® ffeby;

0<as0<a,<3a5,0<a;<%a,,0<4a,<3a;5,0<a, <

[IRIE

a}.

PROPOSITION 22.8. B(c0) ® B; = (P50 B(00) ® Tp,, Where uy, ® &fb; > u,, ®

Proof. By Example 1.3.4, we have B;® B, = (P 2B ® Ty,-
Hence we have for k > 0

éi: B(OO) ® Y;cai - B(OO) ® Bi ® Y;cai
—’B(Oo)®Bx ® BU

where u,, ® t;, issenttou, ® b; ® &*b,. By Theorem 2.2. 1(111), its 1mage is contained
in Im ‘// ® B,. Therefore &; splits B(c0) ® Ty, — B(0) ® B,— Vo8 ~="B(0) ® B;® B;.
Thus, we obtain

}%MM®n@imw®&.

We shall show that it is an isomorphism. Since j; is injective on B(0)® B,
Y (B(0) ® T,,,) $ 0. Hence y commutes with f Since B(c0) ® Ty, and B(c0) ® B;
are upper normal ¥ commutes with &. Note that for any object b in B(o0) ® B;,
there exists iy, ..., i, such that b = fll f,,(u ® b;(k)). If k < 0, then u, ® b(k) =

fi Mu, @ by), and we may assume k > 0. Hence ¥ is surjective. Inject1v1ty follows
from the fact that y sends bijectively the set of highest-weight vectors of
UB(0) ® Ty, to the one of B(0) ® B;. Q.E.D.

3. Global bases of U, (g)-modules.

3.1. A general thoerem. In this section, we assume I = {i}. Let M be a finite-
dimensional integrable U,(g)-module and assume that M has a lower global crystal
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base (Mg, Lo, L, B) (see [K3]). Here L, and L, is a lower crystal lattice at g = 0
and g = oo respectively, (Lo, B) is a lower crystal base at ¢ =0, and Mg is a
submodule of M over the Q[q, ¢~ J-algebra U, (g) ¢ generated by f,*). We assume
therefore

LonLynMg=Ly/qL,.

Let us denote by G the inverse map. Then we have Mg = P, .5 Q[q, ¢7*1G(b),
Lo = P4 AG(b), etc. We set I/(B) = {be B; e,b) + ¢;(b) = ¢} and W’(B) =
{b € B; &,(b) + ¢;(b) = ¢}. Then B s the direct sum of I(B). Let us denote by I(M)
the sum ofall (¢ + 1)-dimensional irreducible U,(g)-submodules of M and W*(M) =
P /<17 (M). Then by [K3],

(3.1.1) W M)= P Q(gG(b).

be W/(B)

Moreover, if b € I'(B), then

g(b) + k

. ] G(f*b) mod W**(M)

(3.1.2) fOG(b) = [
and

MG(b) = [“’f”’;f "’] G(ekb) mod W'+ (M).

Here [ ]; is the g-analogue of the binomial coefficients (see [K2]). Note that [Z]

does not vanish for 0 < k < n. Now let N be a sub- Uq‘;(g)-module. We assume that
there is a subset By of B such that

(3.1.3) N = b@ Q(g)G(b).
Set N = U(g)N = Y50 fi*N.
THEOREM 3.1.1.  Set By = | )i 50 f*By\{0}. Then we have
N= @ Q@)Gk) and NnMq=Ug(NMy).
beBy
Before proving this, we shall study the properties of By.

Lemma 3.1.2. By < ByLI{0}.

Proof. Assume b € By and &b € By. Then ¢;G(b) has a nonzero coefficient of
G(é;b) if we write it as a linear combination of G(B). Hence G(&;b) € N. Q.E.D.
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Lemma 3.1.3. WYN) = Ppewisy Q@)G(b). Here W' (By) = By n W'(B) and
W!(N) = W/ (M)A N.

This is obvious by (3.1.1).
LemMma 3.1.4. W/(N) = U(g) W/(N).

Proof. 1tis obvious that W’ (N) o U (g)W’ (N). In order to prove the converse,
it is enough to show that if ue W’ (N) satisfies e;u = 0, then ue U, (g)W/ (N).
Write u =Y f*u, with we(u,) = wt(u) + ke; and u, € N. Then <h;, wt(uk)> =7
implies u, € W(M). Hence u € W*(N). Q.ED.

Proof of Theorem 3.1.1. We shall prove

(3.1.4), wiN)= @ Q@G

be W/(BR)

by the descending induction on /. It is obvious for # > 0 since both sides of (3.1.4),
are equal to 0. Assuming that (3.1.4),,,, we shall prove (3.1.4),. Since both sides
of (3.1.4), contain W***(N), we may assume W‘*'(N)= 0 by replacing M with
M /W/*1(N). Replacing N with W/(N), we may assume N = W*(N). Thus we have

< I/(B). For b € By with &b = 0, (h;, wt(b)) = ¢ implies ¢;G(b) € W”l(N) and
hence ¢;G(b) = 0. Hence f}* G(b) f¥Gb)e Ly L, N Mg. This implies G(f; fkp) =
f®OG(b). Since By = { fi*b; b € By, &b = 0}, we obtain

D Qe = @ UG(f¥)=N

beBy beBy,&b=0
and
b@~ Qlg, q7'1G(b) = . B@b=o QL4 4711/ PG(b) = N n Mg = UR(@)(N n Mg).
" QED.

3.2. Global base of U, (g)u,,;. Let Ae P, and let V(1) be the irreducible U,(g)-
module generated by the highest-weight vector u, of highest weight 1. Let — be the
involution of V(1) defined by Pu, = Pu,. Let (L(4), B(1)) be the lower crystal base
of V(4). Set Vo(d) = Uy (). Then L(A) N L(A)” " Mo L(4)/qL(A). If we denote
by G, the inverse of thls ismorphism, then V(1) = @be sy Q(q)G;(b). For we W,
let us denote by u,,; the lower global crystal base of weight wi. Then we have

(32.1) u,=u, ifw=1,
us,-Wl = f;‘('")uw,l ifm= <hi9 W'1> = 0
Set

(3.2.2) V(3 = U] (9)u,,; .
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Let us remark that
(3.2.3) U/ (9)Uy(8) = Uy(8) Uy (9).
Lemma 3.2.1. (1) If s;w < w, then
[iV,() = V(4.
@ii) If s;w < w, then

V(A) = Uyg) V().
Proof. (i) follows from (ii), and (i) follows from (3.2.3) and U, (g;)u,, =
Uq(gi)usiwl'

COROLLARY 3.2.2. If w =y, **s; is a reduced expression, then

Vo(d) = Zk o Qa)fis -+ fisruy.

ky,

PROPOSITION 3.2.3. (i) There exists a subset B, (A) of B(A) such that

V)= D Q@Gi(b).

be B,(4)

(i) &;B,(4) = B, (AU {0}.
(iil) If s;w < w, then

B,(}) = ka FEB, ., (A\{0}.

This follows immediately from Lemma 3.2.1 and the results in §3.1 by induction
on £(w).

ProposITION 3.24. If w = w’ by the Bruhat order, then
Bw(’l) = Bw’(i)

This follows immediately from ¥V, (1) = ¥,,{4), which is a consequence of Corol-
lary 3.2.2.
Tending 4 to the infinity, the results of ¥(4) imply the following results on U, (g).

ProrosiTion 3.2.5.  For any w e W there exists a unique subset B, (c0) of B(o0)
satisfying the following properties:

(i) B,(0) = {u,}if w=1;
(i) if s;w < w, then

B,(0) = |J fi*B,.(0);

k>0
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Moreover, they satisfy
(iii) &3B,,(o0) = B,,(o0) U {0};
@iv) if w = w', then

B, () = B,,(0);

(V) if w=s; s, is a minimal expression, then P e ) Q@GD) =

Y Q@fb -
(vi) for A€ Py, B,(4) = 7, B,(c0)\{O}.

Remark 3.2.6. A slightly more precise argument shows that

UE(g)u,,; = beg—Dm Z[q, q7*1G,(b),

@ Zlg,q7'160b) =Y Zlq, ¢ ' 1fFV - £

be B,,(c0)

for a reduced expression w = s; ***5; .

3.3. Further properties of B,,(c0). We have the following result by (v) of Proposi-
tion 3.2.5.

ProrosiTioN 3.3.1. B, (c0)* = B,,-1(0).
The following proposition is a crucial property of B, (c0).

THEOREM 3.3.2. If b € B(co) and w € W satisfy f;b € B,,(c0), then f*b € B, (c0) for
any k = 0.

In order to prove this let us remark the following lemma that follows immediately
from Proposition 3.2.3(ii) and (iii).

LEMMA 3.33. Let we W and i € I satisfy s;w < w. If b € B(oo) satisfies &b =0
and f/'b € B,(c0) for some t = 0, then b € B, ,,(0).

Now let us prove Theorem 3.3.2. Replacing b with é;b if necessary, we may assume
g,(b) = 0. Hence replacing b with b*, it is enough to show the following.

(3.3.1)  If e(b*) = 0 and fi*b € B,,(c0), then f;**b € B, (c0) for any k = 0.

We shall prove this by induction on the length of w.
We have

(3.3.2) Yb)=b®b, and W(f*b)=b® fib.

If Z/(w) = 0, then (3.3.1) is obvious. Hence we may assume #(w) > 0. Let us takej e I
such that s;w < w.
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(a) Casej # i. erteb f'b' with &b’ = 0. Then f*b' e B, ,,(c0) by Lemma 3.3.3.
Since (b'*) =0, [**b’' e B, ,,(0) by the hypothesis of induction. Hence f¥*b =
FH(f*p") be]ongs to B, ().

(b) Case j=i. If qol(b)<a(flb)—-1 then W,(f*71/*b) = fF* (b ® fib) = b ®
fikb, = Wy ff“"b) and hence f**b belongs to B, (c0). Hence we may assume @ib) > 1
Write b = f’b’wnths b’ = 0.Then ¢;(b') = ¢;(b) + t > 1,and hence (b’ ® fib) =
and b ® f;b; = fi(b' ® fib;) (see (1.3.2)). Hence b’ ® f;b; belongs to B s w(©0). There—
fore, by the hypothesis of induction b’ ® f;*b; belongs to B ,.w(00) for any k > 0. On
the other hand, we have

f*b =b® fib; = fib' & fikb, = fir(b' ® fiby)

withs =k, p = tif g;(b) > kand s = ¢;(b), p = t + k — ¢,(b) if ¢;(b) < k (see (1.3.2)).
Hence f;**b belongs to B, (o). Q.ED.

For a crystal B and i € I, let us call i-string a subset of the form
= {efb; k > 0} U {/*b; k > 0}\{0}

for some b € B.

Then B decomposes into the disjoint union of i-strings. For an i-string S, an
element b e S with &b = 0 is called the highest-weight vector of S. If S has a
highest-weight vector b (e.g., when B is upper normal), S = { f*b; k > 0}\{0}, Theo-
rem 3.3.2 implies the following result.

ProrosiTioN 3.3.4. For any i-string S of B(oo) with highest-weight vector b,
B, (o0) N S is either empty, S, or {b}.

For A€ P,, B,(4) is the inverse image of B, () ® T, by the embedding B(1) —
B(0) ® T,. Thus we obtain the following result.

ProrosiTionN 3.3.5. For any i-string S of B(A) with a highest-weight vector b,
B, () N S is either empty, S, or {b}.

As shown in the introduction, this proposition implies Littelmann’s refined
Demazure character formula and therefore Demazure’s character formula.

Notice that {2} do not satisfy the braid relation in general (e.g., when g = 4,
and 4 = 2A; + Ay, 2,2,9,(f1u;) # 2,9, D, (f113)).

4. Global bases of U, (g) and V' (4). We shall prove in this section that U; (g)u,,,
is also generated by global bases for arbitrary symmetrizable g. When g is finite-
dimensional, this follows from the fact that U,f(g)u,,, is generated by global bases.
We shall prove here a more precise statement.

PrOPOSITION 4.1. Let Ae P, and we W.

(i) For any b € B(0), G(b)u,,, belongs to G,(B())L1{0}.
(i) If b, b’ € B(0) satisfy G(b)u,,; = G(b")u,,; # 0, then b = b’
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Proof. We shall prove them by induction on £(w). The case £(w) = 0 is already
known ([K2]). Assuming £(w) > 0, let us take i such that s;w < w. Then fu,,; = 0.
If ¢(b*) > 0, then G(b) € U, (g)f;, and hence G(b)u,,; = 0. Thus we may assume
g(b*) = 0.Set w' = s;wand m = (h;, w'A). Thenu,,, = f™u,,,. On the other hand,
we have f;™G(b*) = G(f;"b*) mod f"*1 U, (g) by [K2], and hence G(b)f;™ =
G(f*"b) mod U, (g)f;"**. Since fi"**u,,, = 0, we obtain

G(bYuy; = GOty = Gty

Thus the induction proceeds. Q.E.D.
Let B*(4) be the set of b € B(4) such that G,(b) € U, (g)u,,;. Then we have

(4.1) Uy @uu= @D Q@GD).

be BW(4)

The results in §3.1 give the following results on B"(4).

PROPOSITION 4.2. (i) fiB¥(1) = B*(A)L{0}.
(i) If s;w > w, then B*(3) = {&Fb; 0 < k, b e BS*(A)}\{0}.

The following results are consequences of the results in §3.1

PRQPOSITION 4.3.
(i) f;B*(%) = B*(4) L {0}.
(ii) If s;w < w, then B5*(1) = {&kb; b € B*(4), k = 0}\{0}.

Although B”(/) shares other properties of B,,(4), we shall not state them here.
PROPOSITION 4.4.  For wy, w, € W, the following conditions are equivalent:

(i) B"(4) n B, (4) # ¢;
(i) B (1) 5
(i) B,,(2) 3 u,,;
@ivy w; < w,.

Proof. By Corollary 3.2.2, (iv) implies U, (g)u,,,; 3 u,,, 4, and hence (iv) implies
(iii). Let ( , ) be a nondegenerate symmetric form on V(1) such that 'g" = g", e, =
f;" Then (Il)¢> Uq_(g)uwll El uwzla(Uq—(g)uw,b “wzx) 7& Oé(uw,b Uq+(g)uwzl) ?é OQ
U (@)u,,, s 2 u,, ;<> (iii).

Thus it remains to prove (i) = (iv). Let us prove this by the induction on £(w,). If
w, = id, then it is obvious. Otherwise, take i such that s;w, < w,. For b e B"(A)n
B, (%), write b = f*b’ with &b’ = 0. Then b’ € B, ,,,(4).

(a) Cases;w; < w;. Then b’ € B**1(4) n B, ,,,(4), and the hypothesis of induction
implies s;w; < s;w,. Therefore w; < w,.

(b) Case s;w; > wy. Then b’ € B*1(4) n B ,,,(4), and the hypothesis of the induc-
tion implies wy; < 5;w,. Q.ED.
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