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Introduction

The purpose of this paper is to give an explicit method to calculate the b-
functions of the relative invariants of regular prehomogeneous vector spaces by
using the theory of simple holonomic systems of micro-differential equations.

It is proved in [7], [14] and [16] that for a holomorphic function f(x) in x
there exist a non-zero polynomial b(s) in s and a polynomial P(s,x, D) in s with
differential operators as coefficients satisfying

0.1) P(s,x,D) f(x)* ' =b(s) f (x).

Such b(s) with the smallest degree is called the b-function of f(x). The above
equation (0.1) is equivalent to (P(s,x, D) f(x)—b(s)) f(x)*=0. Therefore, in prin-
ciple, we can calculate b(s) if we know the system of differential equations to
which f(x)* is a solution. When f(x) is a relative invariant of a regular
prehomogeneous vector space, f(x)* satisfies the system of the first-order differ-
ential equations derived from the relative invariance of f(x). This is the case that
we treat in this paper.

Now we shall explain how the micro-local analysis is applied to obtain b(s).
Let V be a vector space over € and G a closed subgroup of GL(V). If ¥ has an
open dense orbit, (G, V) is called a prehomogeneous vector space. We assume
that there is a unique relatively invariant irreducible polynomial f(x) on V. We
assume further that the Hessian of f(x) is not identically zero. Let y be the
character of f(x) and dy its infinitesimal character. Then f(x)* satisfies the
following system of differential equations

0.2) ({Ax,D.>—s0y(A)u(x)=0 for Aeg

where g denotes the Lie algebra of G.

A subvariety A4 of V xV* is called a good Lagrangian subvariety if dim V
=dim /A and 4 is a G-orbit contained in the characteristic variety of the system
(0.2). For such A, there exists a polynomial b,(s) in s and an invertible micro-
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differential operator P, such that P,f(x)** ' =b ,(s) f(x)* holds in a neighborhood
of A. This b ,(s) is uniquely determined and called the local b-function of A. We
have by, 0,(s)=1 and by, , ,«(s)=b(s). Hence if we know the relation among the
local b-functions, we can obtain the b-function b(s) of f(x). In fact we can get the
ratio of b, (s) and b, (s) for two good Lagrangian varieties 4, and A, with
dim (A, n A,)=dim V' —1. The idea is as follows. For simplicity, we assume that
b, (s) divides b, (s). Then there exists a micro-differential operator P satisfying
Pf(x)*'=b, (s)f(x)’. Let « be a complex number and let v be a solution to the
system of micro-differential equations satisfied by f(x)*. Then we have Pfv
=b, (¢)v. Hence if v40 and fv=0, we obtain b, (¢)=0. Under some additional
conditions, it is proved that o is a root of b, (s)/b 4 (s). In order to construct such
a solution v, we shall use the theory of holonomic systems of micro-differential
equations.
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In §1, we shall give elementary properties of prehomogeneous vector spaces. In
§2 and § 3, we review the theory of systems of micro-differential equations. In § 4
and §5, we shall study properties of a good Lagrangian variety and define the
local b-function of a good Lagrangian variety A. In §6 and §7, we study the
relation of two local b-functions b, (s) and b, (s) when dim(4,n A;)=dimV
—1. In §8, we give the proof of the theorems which are used in §6 and §7 in
order to construct the solution v to the system of micro-differential equations
satisfied by f(x)*. In §9, we show two examples of the calculation of b-functions.
The appendix is to give the proof of a theorem used in §4.

§1. A-functions, b-functions and c-functions
of Regular Prehomogeneous Vector Spaces

Let G be a connected linear algebraic group and p: G—GL(V) its finite-
dimensional linear rational representation all defined over the complex number
field €. If ¥V has a Zariski-dense G-orbit, the triplet (G,p,V) is called a
prehomogeneous vector space (abbrev. P.V.). In this case, the complement S of
this orbit is Zariski-closed, which we call the singular set of this P.V. We denote
by X (G) the group of all rational characters of G. A rational function f(x) on V
is called a relative invariant if there exists some ye X(G) satisfying f(p(g)x)
=y(g)f(x) for all geG and xeV. Let S, ..., S, be the irreducible components of
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S with codimension one. Then each S, is the zeros of some irreducible poly-
nomial f;(x): S;={xeV; fi(x) =0} (1=i<]). These f,(x),...,f,(x) are algebraically
independent relative invariants and any relative invariant f(x) is of the form f(x)
=cfy (xy" .. fi(x)" (ceC, (my,...,m)eZ") (See [1]). Let G, be the subgroup of G
generated by the commutator subgroup and a generic isotropy subgroup G,
={geG; p(g)x=x} for xeV —S. It is easy to see that G, does not depend on
the choice of a generic point xe ¥V —S. Then yeX(G) corresponds to some
relative invariant if and only if y|; =1 (See [1]). Therefore X,(G) is a free
abelian group of rank ! generated by y,, ...,y where X ,(G) = {y € X(G); A, =1}
A triplet (G, p*, V*) is called the dual of (G,p,V) if p* is the contragredient
representation of p on the dual V* of V. We shall consider the relation of a P.V.
and its dual. Let g(resp. g,) be the Lie algebra of G(resp. G,) and let dy,, ..., 5y,
be the infinitesimal characters of y,,...,%,. Then each Jy; is an element of the
dual vector space g* of g satisfying dylg, =0 (1=<i<Z). Put X, ={weg*; olg,
=0} and let X, be its subspace generated by dy,,...,dy,.
Lemma 1.1. For weg*, the following conditions are equivalent.

(1) weX,

(2) There exists a unique rational map ¢, V—S—V* satisfying ¢, (p(g)x)
=p*(8) ¢,(x) and {@,(x),dp(A) x> =w(A) for all xe V-8, geG, Aeq.

Proof. (1) = (2): Take xe V' —S, and let g, be the isotropy subalgebra of g at x.
Then A—dp(A)x (A4 € g) induces a bijective linear map from g/g, onto V. Since
w(A)=0 whenever dp(4)x=0, there exists uniquely an element ¢_(x) of V*
satisfying <, (x), dp(4) x> =w(A) for all Aeg. Since w(B)=0 for Be[g,q]<g,,
we have w(A4d(g)- A)=w(A4) for ge G, Aeg where Ad denotes the adjoint repre-
sentation, and hence

{pu,(p(g)x), dp(A) p(g) x> =w(A)=w(Ad(g~")- A)
={p*(8) p,(x), dp(A)-p(g) x>

for all geG, Aeg, ie., ¢, (p(g)x)=p*(g) ¢, (x). Since ¢, (x) is clearly a regular
rational map on ¥V —S, we have (2).

(2) = (1): For Aeg,, we have w(4)={g,(x),00=0. On the other hand,
?,(p(8)x)=p*(2 e, (x) implies w(4)=w(A4d(g)A) and hence w(A)=0 for
Ae€lg, g]. Since g, =g,+[g, g], we get our assertion. Q.E.D.

Definition 1.2. A P.V. is called regular (resp. quasi-regular) if there exists we X,
(resp. we X ,) such that ¢, is generically surjective, ie., the image of ¢, is
Zariski-dense in V*. In this case, w is called non-degenerate.

1
Proposition 1.3. 1) For =) s,6y;€ X5, we have
i=1

o, (x)=gradlogf, (x)* ... fi(x)" forall xeV —S§.

2) If G is reductive, the following conditions are equivalent.
1) regular,

i) quasi-regular,

iii) The singular set S is a hypersurface.
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Proof. 1) Since grad logf, (x)** ... f;(x)*" satisfies the conditions of Lemma 1.1 (See
[17), it follows from the uniqueness.

2) The equivalence of i) and iii) is proved in [1] or [6]. The connected
commutative algebraic group G/G is the direct product of its torus (G/G,), and its
unipotent subgroup (G/G,),. Let gmod g, =(g mod g,),+(g mod g,), be the cor-
responding decomposition of the Lie algebra gmodg, of G/G,. Then X,
={weX,; w(gmodg,),=0}. Since G is reductive, we have (gmod g,),=0 and
hence X, =X . This implies i) < ii). Q.E.D.

Proposition 1.4. Let (G, p, V) be a regular (resp. quasi-regular) P.V. Then its dual
triplet (G, p*, V*) is also a regular (resp. quasi-regular) P.V.

Proof. Let we X, (resp. we X ;) be a non-degenerate element. Then ¢ (V' —S) is
a Zariski-dense G-orbit in V* and hence the dual triplet (G, p*, V*)is a P.V., and
@,V —=8)=V*—-S* where S* is its singular set. For xe V—S§, put y=¢,(x) and
Gr={geG; p*(g)y=y}. Then we have G} >G, ={geG; p(g)x=x} and dim G}
=dim G—dim V*=dim G,. Hence the Lie algebra of G¥ (=[G, G] -G¥) is g;.
By Lemma 1.1, there exists a mapy,: V*—S*->1 satistying zpa;(p*(g)y)
=p(Q) V() and (Y, (y), dp*(A) y) = —w(4) for ye V*—S5* geG, Aeg. There-
fore, we have

$x, dp*(A) 9, (%)) = = (dp(A) X, 9, (x)) = =0 (A) =Y, (), dp™(4) y)-

This implies y=¢,(x) if and only if x=y (v), and hence ¢, is a biregular
rational map. Moreover, we have G¥=G, and G}=G,. Q.E.D.

Corollary 1.5. Let (G, p, V) be a quasi-regular P.V. and » a non-degenerate element
of X,. Then ¢, is a biregular rational map from V —S to V* —S*,

Corollary 1.6. Let (G,p,V) be a quasi-regular P.V. Then the number I* of one-
codimensional irreducible components of S* coincides with that of S, ie., I*
=1

Proof. Since I* is the rank of the character group of G/G¥, and G*¥ =G, we have
*=1 Q.ED.

Definition 1.7. Let (G,p,V) be a quasi-regular P.V. Let f*(y),....f;*(») be the
irreducible relative invariant polynomial of the dual P.V., and x¥, ...,y their
characters.

Then X,(G) is a free abelian group generated by y¥,...,xF For any
1€ X ,(G), we have

1

!
X:Hx’;i:nx?‘mi (nl,..,,nl,ml,...,mlel).
i=1 P=1

We shall fix these polynomials f;(x), f*(y) (1 =i<)), and put
! 1
S =T1A0y =0 =T1 0
i=1 i=1

From now on, we shall consider regular P.V.’s. We identify X, with C' by »

1
=3 5,0y 5=(s;,...,s) € C. We denote f,(x)* ... f,(x)" by f(x) for se X,. We
i=1



Micro-Local Analysis of Prehomogeneous Vector Spaces 121

have ¢ (x)=grad logf(x)* for se X,. For y= H riie X,(G), we also denote 5y
=Xndy,€X, by x.

Proposition 1.8. Let (G,p,V) be a regular P.V. Then, for each yeX, (G) there
exists a homogeneous rational function a, (s) on X, satisfying f*(x)f** " (,(x))
=a,(s) for xeV-S. Iff""C "(y)is a polynomlal then a(s) is a polynomial of the
same degree as f**(y).

Proof. Since f*(p(g) X)f** ™ "(@(p(g) X)) =/*(x) f**""(p,(x)) for xe V=S5, this de-
pends only on y and s. Since f**”'(y) is a homogeneous rational function, and
@, is linear in se X, a,(s) is a homogeneous rational function. The remaining
part is obvious. Q.E.D.

Definition 1.9. We call a,(s) an a-function.

Proposition 1.10. Let y be a character such that f** '(y) is a polynomial and
SExE 1(grad .) a differential operator on V with constant coefficients satisfying
¥ (grad ) e =[x ‘(y)e<" Y (xeV, ye V*). Then there exists a polynomial

b,(s) on X, satisfying f**""(grad ,) f (x)***=b,(s) f (x)"

Proof. If y= H %", we have

5 'S 'S n ST, Hyc— S n af(
af +x=§k:(sk+nk)f’+ ! -fk‘+ k I...f,H' '(a—x]l)

Since f**"'(y) is a polynomial, by repeating this procedure, we obtain that

S (grad ) f (0 * =g (s, %) f ()~

for some A and a polynomial g(s, x). Then, since

S (grad ) =11 () f** ' (grad ),

the function f(x)~°-f** '(grad,) f (x)** *=g(s, x)f(x)~* is an absolute invariant
rational function on x. This implies that g(s, x) f(x)~* does not depend on x but
only on s. Therefore, putting b,(s)=g(s,x) f(x)~* we have f** *(grad ) f(x)***
=b (s)f(x). Q.E.D.

Definition 1.11. We call b, (s) a b-function.

Proposition 1.12. An a-function a,(s) is the leading homogeneous part of a b-
Junction b (s).

Proof. Assume that y= n %" Since

0 ! )
é;—if”"(x)z Z (Setm) f1 () o) e L f () (a—i%(x)>

“fs”(x) logfs(x)Jrlower term in s,
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k 0 k
we have (%) FErEx)=f5+*(x)- (alogfs(x)) +lower term in s, and hence

FEE  (grad ) f(x)t*=**"" (grad log f*(x)) - f (x)** *+lower term in s=a,(s) -/ (x)*
+lower term in s. Since f**~!(grad)) f(xy**=b,(s)f(x)’, we obtain our
assertion. Q.E.D.

Proposition 1.13. Let (G, p,V) be a regular P.V. Then we have yie X (G) where
xo(g)=det, p(g) for ge€G, and there exists a homogeneous polynomial C(s) of
degree n (n=dim V) on X, satisfying C(s)=f%3(x)-detdep(x) for xe V—S.

Proof. By taking a basis of V and its dual basis of V*, we identify V and V* with
C". Moreover, we assume that G<= GL(n, €). Then we may regard the differential
mapdo(x) (xeV—S8) of ¢, as a linear transformation of C". Since dg,(gx)
='g7ldo (x)g~* for geG, xeV—S, the determinant J(x)=detdp(x) is a
rational function on V satisfying J (gx)=(detg) 2-J,(x). Since this P.V. is
regular, J,(x) is not identically zero and we have yg € X, (G). The remaining part
is obvious. Q.E.D.

Definition 1.14. We call C(s) a c-function.

Remark 1.15. Since this polynomial C(s) is not identically zero, there exists
s=(ng,...,n)eZ" satisfying C(s)#0. Then f(x)=f(x)"... f}(x)" is a relative
invariant such that grad log f: V—S — V* is dominant, i.e., generically surjective.
Therefore the definition of regularity here coincides with that of [1].

Remark 1.16. Although we have defined a-functions, b-functions and c-functions
over X,, it is possible to define them over X, for a quasi-regular P.V. (See [4].)

Now we shall consider an irreducible regular P.V. (G, g, V). Then there exists
an irreducible relative invariant polynomial f(x) which is unique up to a
constant multiple. If ye X, (G) is its corresponding character, then we have d|2n

2n
and y(g)« =det, p(g)* for ge G where d=degf and n=dimV (See [1]). There
exists an irreducible relative invariant polynomial f*(y) of the dual P.V.
corresponding to y~': f*(p*(g)y)=x""(g)f*(y) for yeV* and geG. Then we
have f*(grad,)f(x)"* ' =b,(s) f(x)".

Definition 1.17. We fix f(x) and f*(y) so that b (s) is a monic polynomial in s. In
this case, we denote b,(s) by b(s) and call b(s) the b-function of an irreducible
regular P.V. (G, p, V).

Our main purpose is to calculate the b-function of each irreducible regular
P.V.

§ 2. Micro-differential Operators

Let X be a complex manifold of dimension n, T*X the cotangent vector bundle
of X. The projection from T*X onto X will be denoted by 7. Let (z,, ..., z,) be
a local coordinate system of X and (z,,...,z, & ...,¢,) the corresponding
coordinate system of T*X so that wy=¢&,dz, +...+¢,dz, is the canonical 1-
form on T*X.
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For AeC, we define the sheaf &% (1) on T*X as follows: for any open set Q
of T*X, a section of £%(4) on Q is a set {P,, ,(z, £)},., of holomorphic functions
P, , i(z, &) defined on Q satisfying the following conditions:

A+

(2.1) Py, ;(z &) is homogeneous of degree 1+ with respect to ¢, ie.,

(z é%) Py (2 =+ )Py, (2 £)

(2.2) for any positive constant ¢ and any compact subset K of , there is a
constant Cy . such that

1 , .
sup [P, , ;(z, &) é}‘,‘ Ck. ¢ for j=z0
K .
(2.3) for any compact subset K of €, there is a constant R such that

siplPﬂj(z,é)lé(—j)!R,;f for j<O.

It is obvious that £5(4) is a C-Module by a {P,, } +b{Q,, }= {aP,, ;+0Q,, ;}
We have £% (1)=& (A+m) for any integer m. A section {P, , ;(z, &)} is usually
written by X P, ;(z, D), and called a micro-differential operator.
We define the product R(z, D)=2XR, . i(z, D)e &5 (A+ ) of two micro-differ-
ential operators P(z,D)=XP, (z,D)eé&5 (1) and Q(z,D)=XQ, . .(z,D)e&F (1)
as follows:

(2.4) Ry )= % ;—! (DEP; (2 O) (D20, ,4(2, 9)).

aeZl
I=j+k—|a|

u+j(

This power series converges uniformly on any compact set. This product
satisfies the associative law and distributive law: (PQ)R=P(QR) for Pe&2(A),
Qeéy (1) and RedF(v). 1€£%(0), ie, 1= {P} where P,=0 for j+0 and
Py=1, is the identity, namely 1-P=P-1=P for any Pe&¥(1) (§1-4 and
§ 1-5 Chap. II in [2]).

Put &7 =¢&%(0). Then &% has a structure of C-Algebra and % (1) is an £%-
bi-Module.

The subsheaf of &% (1) conmsisting of P(z,D)=XP,, (z D) satisfying
P, . i(z,&)=0 for j>0 will be denoted by &y(4). For P(z, D)=XP,_ .z, D), A+j,
is called the order of P and denoted by ord (P)if j, is the largest j satisfying
P, (2 %0,

By the homomorphism P=P,(z, D)+ P, ,(z,D)+...— P,(z, &), the quotient
&x(1)/6 x(A—1) is isomorphic to the sheaf ¢(1) of homogeneous holomorphic
functions of degree 4 in &.

We denote this homomorphism by o, or simply by ¢ if there is no confusion.
Then we have the following relations:

(2.5) 95+ u(PQ)=0,(P)o,(Q)
26) 0, (([P,QD)={0,(P).0,(Q)} for Peéx(}) and Qedy(p)
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where [P,0]=PQ—QP and {f, g} is the Poisson bracket of f and g, ie.,

o (of g of g
{ﬂ@—f(%jgz-agﬁz)

Put &y =1 &x().

jeZ

The direét image 7y (6%) is isomorphic to the sheaf 2% of differential
operators of infinite order because all F, are polynomials with respect to . The
direct image of &y by my is isomorphic to the sheaf & of differential operators
of finite order. Note that £% |y =2% and &y|, =P by the same reason.

Since definitions above depend heavily on the choice of local coordinate
systems, it is necessary to give the transformation law under coordinate transfor-
mations.

Let 2=(,,...,Z,) be another local coordinate system and (2, &)=(%,, ..., %,
&,,...,€) the corresponding local coordinate system of T*X. We have E

_Zﬁzk

Then we identify P(z,D,)=Y P,, (z D,) with P(Z,D;)=Y P, (2¢) by the
following formula:

~ > 1 > >
2.7) P =Y (DI D) L& DP D) DEP, (2 0)

where the indices run over jeZ, veZ ., (o, ...,o)€(Z") and a=o,+...+0,
such that |o|,....|o,|=2 and I=j+v—|o|—...—|o,]. For BeZ", (& DEZ)
means Zé D! z,. For example, for Pe&y(4), the first two terms are

~va—&@@
(2.8) 0*
Z, P, (z8)+3
l 1( é) A= 1( é) l;kéka aéai

By this formula, &% (1) and &y(4) are defined all over T*X. The homomorphism
0, : €x(1)— O(4) does not depend on the choice of local coordinate systems
(Theorem 1.5.5 Chap. II in [2]).

Now we shall give several properties on micro-differential operators. We can
find their proofs in Chap. II in [2].

Proposition 2.1 (Boutet de Monvel-Kree [17], Theorem 2.1 Chap. I in [2]). Let
P be a section of &y(1) defined near pe T*X. If o,(P)(p)=*0, then P is invertible
at p, i.e., there exists a unique micro-differential operator Q € & y(— 1) defined near
p satisfying QP =PQ=1.

Proposition 2.2 (Theorem 2.1.2 Chap. II in [2]). Let P and Q be micro-differential
operators defined near p. Assume that (1) o,(P)=0,(Q) and ¢,(P)(p)=0 (2) do,(P)

and wy are not parallel at p. Then there is an invertible micro-differential operator
R of order 0 defined near p such that Q=RPR™'.

Py(z, 9.

The C-Algebras £% and &y have the following algebraic properties.
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Proposition 2.3 (§ 3 Chap. Il in [2]). i) &y and & 4(0) are coherent Rings and their
stalks are noetherian ring Jfrom the both sides.

ii) &y contains ny ' Dy as a subRing and & is flat over nx ' D,.

iil) &% is faithfully flat over &y.

iv) Let M —2 M V> " be a complex of coherent & y-Modules and let
Mo, My and Mg be coherent sub-& y(0)-Modules of ', # and M" respectively,
such that &y My=M', ExMo=M, Ex Ms=M", qo(%’)c/% and (M) M.
Put ' = Mo)E (= 1) My, M= %O/é”x( Voo and A" =38 (= 1) M7. If
M — M — A" is an exact sequence, then My~ Mo— My and M — M — M
are exact.

Definition 2.4. A coherent &y-Module .# is called a system of micro-differential
equations and its support is called its characteristic variety. A characteristic
variety is, therefore, an analytic subset invariant under the action of C*.

Definition 2.5. A variety V of T*X is called involutory if for any two functions f,
g vanishing on V, their Poisson bracket {f, g} vanishes on V. If Vis involutory,
we have codim V' <dim X. The following theorem is one of the most fundamen-
tal theorem.

Theorem 2.6 (Theorem 5.3.2 Chap. II in [2]). A characteristic variety of any
system of micro-differential equations is involutory.

Definition 2.7. Let 4 be a system of micro-differential equations with one
unknown function u, ie., a coherent &y-Module generated by u. Let # be an
annihilator of u. Then . is isomorphic to &/.#. The symbol Ideal  is an Ideal
of 0.y generated by principal symbols ¢ (P) of micro-differential operators P in
#. The characteristic variety of .# is the zeros of # (See Proposition 2.1).

Definition 2.8. A system M =Eyu=6Ey/F of micro-differential operators with
one unknown function u is called simple if the symbol Ideal # is reduced, i.e.,
coincides with the Ideal of all functions vanishing on the characteristic variety of
M.

Definition 2.9. A system {P,, ..., Py} of sections of # is called an involutive base
il ¢(Py), ..., o(Py) generate the symbol Ideal 7.

Proposition 2.10. Let P, be a section of ¢ of order m; for j=1,...,N. Then the
following conditions are equivalent.

(1) {au(P)}; generates the symbol Ideal 7, i.e., {P}; is an involutive base.
(2) {P}; generates ¢ as & - Module and for any set of homogeneous functions

g of degree m—m; such that Zo; (P)=0, there exists a set {G;} of micro-
differential operators of order <m— m such that g;= (G;) and ) G,;P,=0.

mm

Corollary 2.11. Let Py, ..., Py be micro-differential operators of order m,, .. LMy
respectively, which generate F. Assume that do(P,), ...,do(PBy) are linearly mde—
pendent, then {P}, is an involutive base if and only if there are micro-differential
operators G, ; of order s<m;+m;—m,—1 such that

[P, Pj] :2 Gi,j,kPk'
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Definition 2.12. A system of micro-differential equations are called holonomic if
its characteristic variety has codimension n (=dim X).

A subvariety (resp. submanifold) V of T*X is called holonomic subvariety
(resp. holonomic submanifold) or Lagrangian subvariety (resp. Lagrangian sub-
manifold) if it is involutory and dim ¥V =dim X. Therefore the characteristic
variety of a holonomic system is a holonomic variety.

§ 3. Principal Symbols of Simple Holonomic Systems

Let X be an n-dimensional complex manifold and T*X its cotangent bundle.
Let 4 =&,/ ¢ be a simple holonomic system and A its characteristic variety.
Since we consider everything micro-locally around a non-singular point of 4 in
T* X, we shall assume that A is non-singular. Let (z,, ..., z,, &, ..., &,) be a local
coordinate system of T*X such that wy= Y &dz; is the canonical 1-form.
i=1
Definition 3.1. For a function f(z, &) on T*X, we define the Hamilton vector field
“(0f o of 0O

H, by Hf:i=Z1 (52%52——&—255—) Therefore we have {f, g} =H (g) where {,}
denotes the Poisson bracket.

For a micro-differential operator P(z, D)= Y Pj(z,D) in &5 where Pz, ¢) is

j<m

homogeneous of degree j in &, we define L(I';"(z, &) by

m ¢ a:)’Pm(zﬂé)
L(P)(Zaé):HPm(Z,f)Jr(P'""l(z’é)_%i:zi 0z,0¢; )

We denote I(z, &) by Lp(z, &) when there is no confusion.

Lemma 3.2. For P,Q €& with ord (P)=m and ord (Q)=/,
(1) Lpg"=0,(P)LY+0(Q) LY +5 {0,,(P), 0,(Q)}
@) Lo "=[L¥. Lgl.
Proof. (1) Put R=PQ= ) R,(zD,). Then we have R,,, =P, 0, and
JSm+1
Rypioy =P,Q, +F,_ 1Q,+<d€Pm, d,0p»
where

" 5P 00
d.P,.d.0>=Y mH
< ESmo le> igl 55, azi-

Since

"Ry o OB, o 20,
i§1 az,.aé,. =2 i§1 aziﬁﬁi E i§1 aziafi

+<dsz7 déQl> + <d§Pm9 szl>
and H,,=fH,+gH,, we have
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asz+l
=1 a iaéi

z
n Q n 6213
:Pm <HQ1+Q1 1 2 Z oz aé +Ql (H +Pm 1 2 Z Oz. 65)

+%{Pma Ql} Pp;zl‘(l)+Qll‘(m)+ { m> Ql}

(2) Put R=[P,Q]=PQ—QP. Since (PQ),,,=(QP), ,, we have R, .,=0.
Since

M:

— 1
LR_HRm+1+an+l—1 2

(PQ)m+z_.1=PmQ1—1+ m— 1Q1+<d > 4.0,
we have R,,,,_,={F,,Q,}. Since
(PQ)m+l—2:1)le~2+Pm—lQl—1+ 2Ql+<dg m’szl—1>

o*P 0%,
<d m— 12 zQ>+ zaé 66 6ZiaZj,

we have

agag 02,0z, 0%0¢, 0z,0z;)
Since H,, ,=[H,, H(=HH,—H H,), we have

&*pB, 3*Q, &*Q, @B,
m+l 27 {m’Ql 1}+{ m— 1,Q}-{- Z( ) Ql Q )

[m+l-1) = P o l I 2 - y
r _[HPW.’HQI:] Ql~1 2 Za ag m— 1 E:k aZ a€7Ql
k kY 5k

=[HPm+P zza 6”51 HQ;“‘Qz_l_%;a
—[L('") L“)] Q.E.D.

Lemma 3.3. 1/dz~'L,}/dz does not depend on a local coordinate system, i.e., if
Lp is a corresponding one obtained from another coordinate system (Z,, ..., ,), we

0Z\~%. [9Z\%
have ('a—z) LP (E) :LP'
Proof. Let P* (resp. P*) be the adjoint operator of P with respect to z
=(zy, ..., 2,) (resp. Z=(Z,, ..., Z,). Then we have P*(z, D)=) P#(z, D) where

—1y
reo= 3 G omes

(See Th. 1.5.1 Chap. II in [2]), and hence

62
by o (P—(~1yPY).

Fucs 2262 ;0¢; —2¢9
- P*. <g—§>, we have

Put P= Y P(zD,)= Y P(zD,). Since P*—(az)

i=m igm 0z
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B Y B o, (PP =t (P17 () e ()

02,0, oz oz
A 0z 0z

—1 P—(—1)y"pP* _ ml( ) . ( k. )
20, (P (=" P+ (=1)"2 (5 ) Ouoi (5, PP 5

oz\ ! 0z
_1 —(—1mp_L (22} . i
ZGm—l(P ( 1) P) 2(62) {Prm az}

and hence we have

ARSI (A W AN OZ\| 1 m pi
(Za?) LP(5~Z~> =H, z(az> {Pm, (az>}+26ma1(P (—1y"P*)
=H,+%a,_ (P—(—1"P*)=L,. QED.

Lemma 3.4. Let f be a function on T* X such that f|,=0, ie., f vanishes on A.
Then the Hamilton vector field H, can be regarded as a vector field on A.

Proof. Since f|,=0, we have df =0 as an element of T*/ and hence dfeT}f
(T*X) where T}(T*X) is the conormal bundle of T*X with respect to A. On
the other hand, by the correspondence T(T*X)svi—>v*eT*(T*X) where
do@ Av)=v*@) for all veT(T*X), w being the fundamental 1-form,
we shall identify T(T*X) with T*(T*X). By this correspondence, we have
H =dfe T{(T *X)=(TA)". Since A is holonomic, ie., Lagrangian, we have
(TA)*=TA and hence H;eTA. These relations can be shown by the following
diagram.

0— TA — T(T*X)— T,(T*X)
W
Hf

(3.1) do
af
m
0« T* A THT*X) —THT*X)=(TA)"
QE.D.

Definition 3.5. Let Q% be a line bundle F on A such that F®? is isomorphic to
the sheaf Q, of n-forms. In general, F does not exist globally. Therefore, we treat
a section of F only up to a constant multiple, and then everything goes well.

Definition 3.6. Let v (resp. @) be a vector (resp. scalar) field on 4. Then v+ ¢ acts
, 1 , . o
on Q%% as Q§%53H5§Lv(sz)+¢se£)/§f where L, denotes the Lie derivative
1 N
along v and %Lv(sz) denotes an element t € Q®* satisfying t ® s=3L,(s*)€Q,.

Fix a section w of 2, and take se Q$?* satisfying s> =w. Although this is not
unique, fix one of them and denote it by }/w. Then a section of Q5% is of the
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form f ]/Z)— where f is a function. Then by simple calculation we have

— ) L)
(32) g [ o (v(j)~|—5~ p +<pf)1/$.

In general, we denote v+ ¢ by v+¢ when it is considered as an operator on
Q%% Recall that .4/ =&,/ 7 is a simple holonomic system with the characteristic
variety A. Then by Proposition 2.1 and Lemma 3.4, H p, 18 a vector field on A
for P= )’ B(z,D)e #, and hence L, acts on Q* for Pe #. As an operator on

jsm

QF*, we denote L, by L,.

Lemma 3.7. Let a and ¢ be functions, v a vector field. Then we have aP=aP
+3v(@)=%(aP+ Pa) where P=v+¢.

Proof. Take a local coordinate (z,,...,z,) so that w=dz, A...Adz, and v

s 4y n

0
=Y ¢;(z)=. Then we have
0z;

" dac, de, da
L == J e = -——-" O b
(o)) }él 7, dzy n...ndz,=a) azjw—i—g C’@zjw aL,(w)+v(a)w
and hence
~ 1oL loL (w v(a
av(qo]/a)z (a(vcp)+§——~(ﬂ ;(w)) 1/(:)=a(v(q0)+§———-—(p cl:)( ))]/5+——(2)<p]/a_).

(ad+4v(a) @)/ .

This implies that ﬁ=5ﬁ+d?’p:a}3+év(a). Since fa=ad+v(a), we obtain the
second equality. Q.E.D.
Lemma 38. (1) [Ly,Ly]1=L; ,, for P,Qe ¢

) Lyp=0(A)L, for Pe ¢, Ac&,.
Proof. (1)For P, =v, + ¢, and Py=0v,+¢,, we have [P,, P,] =[P, P,]. By Lemma
3.2 and this fact, we obtain our result.

(2) By Lemma 3.2, we have L,,=0(A4)L,+0c(P)L,+3{c(4), ¢(P)}. Since
a(P)|,=0, we have

Il

E‘AP:W+%{W)}
=0(A) Lp+5H (0 (A) +3{0(A). o(P)} = (A) L,
by Lemma 3.7 and H,p(0(4))={a(P),a(4)}. Q.E.D.
The following lemma of Pfaff is well-known.

Lemma 3.9 (Pfaff). Let G;=v;+¢;(j=1,...,n) be a differential operator near x, of
an n-dimensional manifold X where v; (resp. @;) is a vector (resp. scalar) field.
Assume that (1) {v,(x),...,v,(x0)} is a basis of T, X (2) there exist functions aj,
defined near x, satisfying

[G..G =Y a;uG, (k=1,...,n).
2
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Then the solutions of G u=...=G,u=0 near x, form a one-dimensional vector
space.

Using above lemmas, we shall prove the following theorem.

Theorem 3.10. Let .4 =& /. be a simple holonomic system with the characteristic
variety A. Then a solution s€ Q%* of Lps=0 for all Pe ¢ exists locally and it is
unique up to a constant multiple.

Proof. By assumption, there exists an involutory basis {P,,...,F} of #. Since
o(P)4=0, we have H, € T4 by Lemma 3.4. Since {do(P,),...,do(P)} is a basis
of THT*X), {H,p,y---»Hyp,} is a basis of T,. For s= fl/cgeﬂf?a we have

- 1

Lps= (v (f)+LL () +o f>]/“ 0 if and only if (v +—0L, (a))+q)j>f 0
1

where L, =v;+¢; v;=H,p, (j=1,...,n). Put Gj=vj+%ij(a))+(pj for j

=1,...,n. Then L,s=0 (Pe#) for s= fY/weQ®t and G,f=...=G,f=0 are
equlvalent These G (j=1,...,n) satisfy the first assumption of Lemma 3.9.
About the second assumpuon it is enough to show that [LP JLp 1= Zajk,LP,

since [LPj,LPk]f]/_ ([G;,G 1N f Since {P,,...,P} is a basis of # by
Proposition 2.10, there exist A, €&y satisfying [P, B]=) A;,B. Then by
Lemma 3.8, we have !

[ipj’flPk] :i[Pj,Pk] :—ilz Ajia Py :}l: I:Ajksz ZZI‘/G(Ajkl) LP;

and hence we obtain our assertion by Lemma 3.9.

Definition 3.11. For a given simple holonomic system .4 =& yu=6&/ ¢, let s be
a solution of L,s=0 (Pe #) in Q%% Although this depends on a local coor-

dinate system z=(z,,...,z,), s®}/dz " 'eQ¥* ® Q;‘?“%‘ does not depend on a
local coordinate system by Lemma 3.3, and it is unique up to a constant

multiple. We denote s ® }/dz~" by o,(u) or simply o(u) and call it the principal
symbol of 4 =& yu. This is unique up to a constant multiple. Recall that we
always consider a section of Q$* up to a constant multiple.

Lemma 3.12. L, =L,0(A) for all Pe ¢.
Proof. Put l=ord (A) and m=ord (P). Then by (2.6), we have
L0 = it L= 0,y (LR A + L5
={a(P),c(A)} +I"5".

Therefore by Lemma 3.8, we have Lp,=a(4)L,+{c(P),c(4)}. On the other
hand,

Lyots=H oA+ o) (B 43 ) s=ald) Lo+ {o(Ph o)}

for all s 2%* and hence we have L,,=L,0(4). QE.D.
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Proposition 3.13. If o(Q)|,=0, ie, Q is invertible, then we have o,(Qu)
=0(Q) o ,(u). Note that we always consider g 4(u) up to a constant multiple so this
equality has a meaning only up to a constant multiple.

Proof. Since R(Qu)=0 if and only if R=PQ~' with Pe_#, we have Ly(c,(Qu)
®1/dz)=0 and

Li(0(Q) 0,)®1/d2)=L,0(Q) ' 6(Q) 0, () ®V/dz = Lp0,,(4) ® 1/dz =0
by Lemma 3.12. Since a solution s of L,s=0 for all R, is unique by Theorem
3.10, we obtain our result. Q.E.D.

Lemma 3.14. Put v= Z &~ Then we have [v, '] =(m—1) L.

laé
2

Proof. Put ¢,, ,(P)=P,_,—% Z = 6{ Then

Em)_z (g]_?’ii_ai 5) (P)
PELNGE bz, 6z, g Im-r)
We have
[Uapma]_ (apm) LA
"0¢, 0z,) ' \3¢,) bz, 0¢, 9z, 0¢, 0z, '
_D(agn> G _m )513,, G
- \e¢ oz, a¢, 0
and
oF, ¢ oF, ¢
[ 82, ‘a@] =m=17, %,

similarly. Since we have also
[U, O-m— l(P)] =(U(0m— I(P))+0.m I(P) U)_ m I(P)U
:U(G‘mf I(P)) (m 1) 0111 1( )5
we have [v, [P ]=m—1)I[». Q.E.D.
Proposition 3.15. The principal symbol o ,(u) is homogeneous with respect to &.

Proof. 1t is enough to prove that L,(#s)=0 for all Pe # if L,s=0 for all Pe ¢

wherev—z & 65 .Since L,5=0L,+[Lp, 5], wehave L, s=[L,, v]s—[L v]s=
-(m——l)L s-—O by Lemma 3.14. Q.E.D.

Definition 3.16. The homogeneous degree of ¢ (1) with respect to £ is called the
order of u at A and is denoted by ord , (u).

Proposition 3.17. Let P be a section of # satisfying do,,(P)=@wmodJ, for some
Sfunction @ where J, denotes the all functions vanishing on A, and w is the
canonical 1-form. Then we have

m—1

63 (ordsti+™57) o= (B =475

46@) mod J,.



132 M. Sato et al.

Proof. We identified T(T*X) with T*(T*X) by v+ v* where do(v' A v)=v*(v)
for all v e T(T*X) (See the proof of Lemma 3.4), and hence we have do,,(P)

n

=H, p and w=—v where v= }: ¢, = Since do

- laf m
H, p=—¢v on A, and hence I: =(= (pv)-l—om \(P)=—gpi—3v(p)+0,,_(P)

(P)=¢pwmod 4, we have

by Lemma 3.7, where o, (P)=F, Oh Note that v(p)=(m—1)¢
m- 1 m-— a aé

because do,(P) (resp. ) is homogeneous of degree m (resp. 1) and
do, (P)=@wmodJ,. By definition, we have 9o 4(u)=ord ,(u)- 7 ,(u) and hence

- -1
Lyeosw)=(—pord, ="+, 1(P)) 7., =0.

-1
Therefore we have <ord ) +T——2—~—) p=0, (PymodJ,. QE.D.

Corollary 3.18. Let P be a section of ¢ of order 1 satisfying do(P)=wmodJ,.
Then we have

%o (P)

d, =Py, 6)—3 Lo
ord )= (Pox. &) =33 5732 )
Remark 3.19. Note that such P in Corollary 3.18 always exists. By a contact
transformation, we may assume that A= {z, =...=z,=0}. In this case, take P so

n

that o, (P)= ) z¢,.
i=1
Example 3.20. Let (z,,...,z,) be a local coordinate system, and consider the
following equations .#. #: z,u=...=zu=0, D, ,u=...=D,u=0 where D,
0
= 6( . Then the Dirac d-function u=9d(z,,...,z,) is a generator of .# and ./ is a
Z;
simple holonomic system with the characteristic variety A where A={(z,{); z,
=..=z,=(  =..=¢(,=0}. We shall calculate the principal symbol

<;A(u):<p1/d§1 dEdz,, .. dz,/)dz, ... dz,eQ$F Q@ Q9.

d
Since L, =H, = w—a? and L, =H, —%, we have -aZ;JA(u) dz=0 (1=j=r)
B
and TGA(u)w/Zz"z‘_o (r+1<k<n). Using L, (d¢,...dz)=L, (d¢,...dz)=0,
B§J 0z

,\

0
— <i<y
we have 3¢, 0(1gj<r) and 6zk

and hence we have

O-A(é(ZI, ‘“7Zr)):]/dél dérdZH-l dZ]l/Vle ...dz
ord, (6(z,, ...,z’,))z.;;.

=0 (r+1<k=<n). This implies that ¢ =const,,

(3.4)
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Note that the principal symbol o,(u) is always defined modulo constant
multiple.
Example 3.21. Consider the following equations .# micro-locally at &, =0.

M (x, D, —ayu=(x,D,—plu=Dyu=...=D,u=0.
Then 4 is a simple holonomic system with the characteristic variety A
=A,ud, where A, ={(z,&); z,=2z,=¢,=...=,=0} and 4,={(z&); Zl—éfz

=...=¢,=0}. For P(z,D)=z,D,~ae ¢, we have Lp =H_ . —o— 2—21621

0 0
—Zjlﬁ—a—% and hence LP1:~<£1¥+a—{—é) on A, ud,. For P(zD)
1 1

0 0
=z,D,—fe ¢, we have LP2:22$~§26—‘52—~[3—§ and hence Lp,= (62 3z,

2

0
+ﬁ+%) on A, and L, = (Zz—az——ﬁ——é-) on A,. For P(z,D)=D, for j=3,....n,

we have Lp = Put w,=d¢,dé,dz, ... dz, and w,=dE dz,...dz,. We shall

ox;
calculate o, (uW)=f,1/® /ﬁ and o,,(u)=/f,) w,/)/dz where dz=dz,...dz,

USIng (3.2) and L 6 (1) CO (l=1,2)> we have EPlfl‘l/wlz_(él 5];1 +(
8 1

+1)f1>1/w7=0 and L, f,)/w, =~ (élaé (a+1)f2)1/a72 0. Since Lp,=
(fzaéz—f—ﬁ—{- ) on A, we have L, f, 1w, = — ( f‘+(/}+1)fl>]/_ 0.

On the other hand, since L,, 2 ®2=@, and Lpzzzzg” —3on 4,, we have
9z 2

~ 5 . ] of
Lo Sy, = (ZZa—f-%- ﬁfz) )/, =0. Finally we have L, f;/o; :—fi]/a)i =0 for
2

i=1,2;j=3,...,n Therefore |, =f,(£,&,, x5, ..., x,) satisfies the equatlons

oty of of
Bt : _— — e I <\i<
61651 (Oc+l)flv 62652 (ﬁ+1)f17 an 0 (3=J=n)7
and hence we have f,=¢7%"1¢57~1 up to a constant multiple. Therefore we
have

0 W)=E70" 1 ESP1Y/dE dE,dzy .. dz,))/dz, ... dz, and

(3:5) ord, ()= —a—p—1.

On the other hand, f,=f,(¢,, z,, ..., z,) satisfies the equations:

af, af, af,
1 i = 2 =
61651 —(a+1)15, z, oz, Bfs, b, 0 for j=3,....n



134 M. Sato et al.

and hence f,=¢7*""'z5 up to a constant multiple. Therefore we have

(36) 0, W)=E72"1 25 /d¢ dz, ... dz, /Y dz, ... dz

ord, ()= —o—3.

We shall see later that ord, (u)—ord,(«)—3=p—1 is very important.

§4. Simple Holonomic Systems of Irreducible Regular
Prehomogeneous Vector Spaces

Let (G, p, V) be an irreducible regular P.V. with n=dim V. Then there exists a
relative invariant polynomial f(x); f(p{(g)x)=yx(g)f(x) for geG, xeV. It is
unique up to a constant multiple. (See Definition 1.17 in §1.)

For simplicity, we identify ¥ and V* with €" by a dual basis. We also
assume that G GL(n, €) and g=gl(n, C) where g denotes the Lie algebra of G.
By differentiating

JlexptAx)=y(exptA)f(x)=exptsoy(4)-f(x)* (deg)

at t=0, we have Za 4 f( )=s6y(A)f(x)° for A=(a;)eg. Therefore, f(x)°

ij Ja
L j
satisfies the followmg dlffelcntlal equations.

4.1) dp(A)x, D> —séy(A)u=0 for Aeg.

Definition 4.1. We denote & (resp. &y,) by D(resp. &). Let 2[s] (resp. &[s]) be the
sheaf of polynomials on s with coefficients in 2 (resp. €). Denote by # the Ideal
of P[s] generated by all P(s)e @ [s] satisfying P(s)f(x)’=0 for all s and xeV
— 8. In particular, we have {dp(4)x, D> —sdéy(A)e ¢ for Aeg. For aeC, put
Flo]l={P(x); P(s)e 7}, and M, ,=&/E - #[o]. Its generator 1 modulo & #[u]
will be denoted by f(x)*.

Put #,=6/ ), 8(dp(4)x, D, —a5y(A)).

Aeg

We identify the cotangent bundle T*V of V with V x V*.

Definition 4.2. We define two Zariski-closed subsets W and W’ of V' xV* as
follows.

W ={(x,y)eV xV*, {dp(A)x,y>=0 for all 4eg,}
where g, ={A4€g;dy(4)=0}.

W =the Zariski-closure of {(x, gradlogf(x)")eV xV*; seC, xeV—S}. Then
we have Wc W' since {dp(A)x, grad logf(x)*> =sdy(A4) for all Aeg. We define
the function a(x, y) on W’ by {dp(4)x, y>=0(x,y)dy(A4) for Aeg, ie, a(x,y)
=Ldp(Ay)x,yy if dy(A;)=1. Put Wo={(x,y) e W; a(x,y)=0}.

Theorem 4.3. (1) P-f*=0 on V—S if and only if Pe #{u] for a generic aeC, ie.,
aeC~—S where S’ is a discrete subset of C.

(2) SS(A ,)=W, for any € C where SS denotes the singular spectrum, i.e., the
support in V x V*,
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Proof. See proposition 6.2. in [7] and Appendix.

Definition 4.4. Let x, be a point of ¥, p(G)x, the G-orbit of x,. The conormal
vector space V¥ is, by definition,

VE=(dp(g)xo) = {yeV*; {dp(A)xo,y>=0 forall Aeg}.

Since Vji,,,=p*(g) V., the 1sotropy subgroup G, at x, acts on V¥ and hence
we obtain a mplet (G Prys Vi) where p, =p* !G This triplet (G, , p,,, Vir) is
called the colocalization of (G, p, V) at x,. Note that (Grgs P Vi) =(G 5 0y Vi
for x,€p(G)x,. The conormal bundle T(p(G)xo)" (or p(G)xOV) of the orbit
p(G)xO is, by definition, the Zariski-closure of {(x,y)eV xV*;
x€p(G)x,,ye V). Then G acts on T(p(G)xo)" by (x,y)r (p(g)x, p*(g)y) for
geG. Tt is clear that G acts on T(p(G)x,)* prehomogeneously, ie., T(p(G)xo)*"
has a Zariski-dense orbit if and only if the colocalization (G, o, V.5) is a P.V.
Note that the union of cotangent bundles of all G-orbits coincides with
{(x,)eW'; o(x,y)=0}, and by (4.1) and Proposition 2.1 in §2, the supports of
M, and A, are contained in this set.

Definition 4.5. The conormal bundle A= T(p(G)x,)" of an orbit p(G)x, is called
a good holonomic variety (or a good Lagrangian) if (1) G acts on A pre-
homogeneously 2) A< W, ie, AcW,.

Proposition 4.6. Let (G, p, V) be a P.V. without assumption of irreducibility. Then it
is a regular P.V. if and only if the conormal bundle {0} x V* of the origin is a good
holonomic variety.

Proof. Assume that (G, p,V) is regular and take gradlogf*: V—-S—V™* to be
generically surjective. Since (ex, grad logf*(x))=(ex, grad logf*(ex))e W for any
¢=%0, we have (0, grad logfs(x))—hm (ex, gradlogf*(x))e W for all xe V—S§, and

hence {0} x V* < W. Since the dual of (G,p,V)is also a P.V. (See Proposmon 4 in
§1), A={0} x V* is a good holonomic variety. Conversely, if {0} x V* is a good
holonomic variety, then the dual (G, p*,V*) is clearly a P.V. Let S* be its
singular set. Assume that (G, p, V) is not regular. Then we have gradlogf*(V
—S)=S* for all seC' and hence {0} xV*cWcVxS* This is a
contradiction. Q.E.D.

Now we shall prove that two systems .#,=&* and #4.=&/ ) &(dp(A)x,

Aeg
D >—s6yx(A)) coincide on a good holonomic variety for seC, and they are
simple holonomic systems.

Proposition 4.7. Let A be a good holonomic variety, and p=(x,,y,) a generic point
of A, i.e., a point of the Zariski-dense orbit. Then the following properties hold in a
neighborhood of p.

(1) W=W’ and W is a non-singular manifold of dimension (n+1). Moreover
the ideal Jy, of all functions vanishing on W is generated by{{dp(4)x,y); A€g,}.

(2) The ideal J, of all functions vanishing on A is generated by {{dp(A)x,y;
Aeg}.

(3) do is a non-zero 1-form on W, and A={(x,y)e W; a(x,y)=0}.
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Proof. Let A (resp. ) ={d<{dp(A)X, Y ,_ (v, vors A€ G(resp. go)}. Then A (resp.
Ay) 1s isomorphic to {(dp(A)x,, dp*(A)yo)eV x V*; Aeg(resp. go)}- Since A is
G-prehomogeneous of dimension n and 4 =T,4, we have dim =n. This
implies immediately (2). By dim(g/g,)=1, we have dim #,=n—1. Therefore
there exist 4,,...,4,_;€g, such that d{dp(4,)x,y),...,d<{dp(A,_,)x,y)> are
linearly independent at p. Then W"'={(x,y)eVxV*, {dp(Ad)x,y>=...
={dp(A,_,)x,yy=0} is a non-singular submanifold of dimension (n+1) in a
neighborhood of p. On the other hand we have pe Ac W W cW” and W is an
irreducible algebraic set of dimension (n+1). Therefore W”=W in a neigh-
borhood of p and hence W=W'=W". This implies (1). Since W’ is a non-
singular submanifold of codimension (n—1), we have dim#,=n~—1. On the
other hand, 2 /#,=Cdos and hence do is non-zero on W. This implies that
{(x,y)eW; o(x,y)=0} is an n-dimensional manifold containing A, and hence
they coincide. Q.E.D.

Now we shall prove that /4, = ./,.

Proposition 4.8. Let A be a good holonomic variety, and p a generic point of A.
Then M, is a simple holonomic system and isomorphic to M, for any aeC in a
neighborhood of p (See Definition 4.1 ).

Proof. Put #'= 3% &(Kdp(4)x,D.>—ady(A)). Then #' is contained in &, [«].

Aeg

The symbol Ideal #' of #' is therefore contained in the symbol ideal & #[«] of
&g 1a]. Let J, be the Ideal of functions vanishing on A. Then by Proposition

47, J, is generated by {{dp(A4)x,y)>; Aeg} and hence we have J,= #' =& #[o].
Since #,=&/& - o] has support A by Theorem 4.3, we have & #{a] =J,. It

follows that J,= ¢'=¢& #[o], and hence we have #'=¢& - #[«]. Therefore ./, is
a simple holonomic system and isomorphic to .#,. Q.E.D.

Proposition 4.9. The function o(x,y) on W’ is G-invariant (See Definition 4.2).

Proof. Let A, €g be an element such that o(x, y)={dp(A4,)x, y>. Then we have

a(p(g)x, p*(g) ) —alx,y)=<dp(4,) p(g) x, p*(g) y> —{dp(A,) X, y>
=<{[p(g)” "dp(A) p(g)—dp(A4,)] x,y> =0
for (x,y)e W' since p(g)~'dp (A)p(g)—dp(4,)eg,. QE.D.

Proposition 4.10. Let A be a good holonomic variety. Then there exists a non-
negative integer m, such that @(x,y)=f(x)/o(x,y)™ is a non-zero regular G-
relative invariant function on A.

Proof. Since W is smooth near a generic point p of A, and A is defined by o (x, y)
=0 on W, we may choose a local coordinate system (o,¢,,...,t,) of W near p
such that p is the origin (o,1)=(0, ...,0) where t=(¢,, ..., t,). By the projection 7:
W—V, we regard the relative invariant f(x) on V as a function f(o,t) on W,
Since the G-orbit of p is of n-dimension, the dimension of a G-orbit of (o, )
which is sufficiently near p is at least n. On the other hand, since o(x,y) is G-
invariant and W is G-admissible, ie., (p(g)x, p*(g)y)e W for all (x,y)e W, the
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dimension of the G-orbit of (o,t) does not exceed n and hence it is equal to n.
This implies that there exists an element g of G satisfying (o,t)=g-(0,0) for a
point (o, £) sufficiently near p. Hence we have f(g,t)=f(g(c,0))= x(g)f (0, 0). Since
J(0,0)=f(p) + oo, there exists a non-negative integer m, such that f(c,0)

=¢™"4.f(6) where f(0)+0, co. Then o(x, y)—f(
invariant function on 4. Q.E.D.

=y(2)f(0) is a G-relative

Definition 4.11. We denote ¢(x,y) in Proposition 4.10 by f,(x, y). This function
f4(x,y) on A is a relative invariant with the character xy by Proposition 4.9. Note
that f, might have a singularity outside of the open G-orbit in /.

Now let (G, p, V) be an irreducible regular P.V. and let f(x) and f*(y) be as
in the end of §1.

Proposition 4.12. There exists a constant ¢ such that f,(x, y)=—— for A={0}
V¥ 7*o ( )
Proof. Since f,(x,y) is a relative invariant on V* with the character y, it must
coincide with f*(y)~! up to a constant multiple. Q.E.D.

Let x=(x,,...,x,) be a coordinate system of V and dx=dx, ... dx, an n-form
on V. Let n: W—V be the projection. Then n*(dx) A do is an (n+1)-form on W.

Proposition 4.13. Let A be a good holonomic variety. Then there exists a non-

. 1 . .
negative integer u, such that —ﬂn*(dx)/\da is non-zero regular near a generic
o

. 1 . L .
point of A. Moreover, w , ={W ¥ (dx) /\da}/da is a relative invariant n-form on
a

A corresponding to the character y,(g)=det, p(g). This w, is unique up to a
constant multiple.

Proof. The proof goes just same way as that of Proposition 4.10. Q.E.D.

Proposition 4.14. Let A be a good holonomic variety. Note that M ,=&f° is a

simple holonomic system on A in this case. Then we have ¢ ,(f°)=f, A]/a)_A/]/E and
ord, [ = —m s~ ,/2=56y(Ao)—tryy dpxo( o) +3dim V¥ where A, is any ele-
ment of g satisfying dp(A4y)x,="0 and dp*(A4o)yo=Yo for a generic point p
=(xg,Y0) of A. In particular, we have ordy , o, f*=0.

Proof. Put P,(s)={dp(A)x,D,y—sdy(4) for Aeg. Since the Hamilton vector
field H 4,y =<dp(A)x, D> +<{dp*(4)y, D> is the infinitesimal transfor-

mation of (x, y)—(p(g)x, p*(g) y)(geG), we have H ,ayx,yy fa=50%(A) - [ and

Lt apityeyy @ a=trydp(4)-w, where L, denotes the Lie derivative along v,

and hence

LNIH(dp(A)x,y)‘fjl/ wA:(Séx(A)—‘I-%trVdp(A))f;[/ wA'

0*{dp(A
On the other hand, since ZL%(;})—X’XZ:WV dp(A), we have

L — 56 7(4)—}try dp(A)

Pa)= Lty v
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and hence I:,,A wfiV w,=0 for all Aeg. Since 4 is a good holonomic variety,
P,(s) (A €g) is an involutive basis of & #[s] and hence we have L,f5)/w =0 for

all Pe& #[s]. Therefore we have o,(f*)=f;)/ w,/)/dx. Note that o ,(f*) is
uniquely determined up to a constant multiple. The order ord,f* is, by the

definition, deg, o ,(f*)=deg,f;+3deg,w,. On the other hand, f(x) and o(x,y)
are homogeneous of degree 0 and 1 in y respectively, and hence f, and w, are

homogeneous of degree —m, and —pu, respectively, ie., ord, f*=—m AS—EA—

(See Propositions 4.10 and 4.13). Since 2
(Kdp(A)x,D, > +<dp*(A) y, D)) fi=sx(A)-f}

and {y,D,>fi=(deg,f})fi, we have deg, [;=s50y(4,) with dp(4,)x,=0 and
dp*(Ag)yo=yo. Let n: VxV*—V be the projection, (¢,,...,t,) a local coor-
dinate system of V near x, satisfying n(4)={(t,,...,t,); t;=...=t,=0} and 4
={1); t;,=...=t,=0, 7, ,=...=1,=0} where r=dim V;*. Then we have w,
=@(t,t)dr, ...dt,dt, ... dt, near (xq,y,). Since dt, ...dz, (resp. dt, ... dt,)is a
volume element of V* (resp. g, ) and hence dt, ...dr,dt,, ... dt, is a relative
invariant n-form correspondmg to the character try, dpr(A)-l—tr dp(A)—
2tryy dp.,(A)+trydp(A)for A€g,,. Note that ti,,dp(A)—tr dp(A)»trV/g dp(A)
= ——trV* dpxo(A) Since w, is a relative invariant n-form correspondmg to the
character tridp(A), @(t, ) is a relative invariant corresponding to the character
—2trw dp,,(A). Therefore, deg, o(t,7)= —2try, dpxo(Ao) where dp(Ay)x,=0,
dp* (Ao)y0 Yo, and hence we have deg, a)A—degtqo(t T)+r= ——2trV* dp. (Ao)
+dim V%. Since ord, f*=deg, f; +3deg, w,, we obtain our assertion. ‘Q.E.D.

Remark 4.15. For a good holonomic variety A, we can define the local a-function
a%(s) and the local c-function c,(s). In the irreducible case, we have a%(s)=s"4
and c,(s)=s"1 (See Proposition 4.10 and 4.13).

§5. Local b-functions

First, we shall define the local b-functions without assumption of irreducibility.

Definition 5.1. Let A be a good holonomic variety. Assume that f* is a
polynomial (See Definition 1.7). A polynomial b%4(s) in s=(s,,...,s)eX, is
called a local b-function of A if there exists an invertible micro-differential
operator P, (ie, o(P)|,+0) defined near a generic point of A which is inde-
pendent of s and satisfies P, f***=b%(s)f*. Namely P, f*u =b%(s)u, where u, is a
generator of M,=&/ ) & ({dp (A),D.>—) s;0x:(A)).
Aeg

Remark 5.2. Let (G, p, V) be a regular P.V. Then, by Proposition 4.6, A= {0} x V'*
is a good holonomic variety, and a b function b (s) of (G, 0, V) is a local b-
function of A= {0} x V*, In fact, f** ' (grad,) is an invertible operator near a
generic point of A since f**™'(y)=0.

From now on, we shall assume that (G, p, V) is an irreducible regular P.V.
Hence this has a unique relative invariant irreducible polynomial f(x). We write
b ,(s) for b%(s) with the character y corresponding to f(x).
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Lemma 5.3. Let P be an invertible operator satisfying Pfu,=b ,(syu,. Then we
have ord (P)=m, and o, (P)l,=c-fi' for some ceC*. Here m, is defined in
Proposition 4.10.

Proof. By Proposition 4.14, we have o ,(u,)=f})/ @w,. In the same way, we have

o (fu)=13""1V w, if fu,#0 because fu, satisfies the same system of equations
as ug,; does. On the other hand, fu, does not vanish for s such that b ,(s) =0,
because this equals to b,(s) Py 'u,. Note that o,(x,) and o,(fu,) are defined
modulo constant. Therefore we have

0 4(Pfu)=0(P)a,(fu)=c(P)fi* Y w,=04b,s)u)=15) w,

modulo constant, and hence o, ,(P)=c-f; ' for some ceC*. Q.E.D.

Theorem 5.4 (Uniqueness of a local b-function) A local b-function b,(s) of A is
unique up to a constant multiple.

Proof. Assume that P.fu =b,(s)u, (i=1,2) where P, and P, are invertible. Since
fu,=b(s) P 'u, we have b,(s)u,=b,(s) P, P 'ug, i.e, (b,(s)—b,(s) PP~ ) u,=0.
Since the principal symbol of P,P,~' is constant by Lemma 5.3, we have
co(by(s)—b,(s) PP )=b,(s)—cb,(s) for some ceC*. Therefore we have b,(s)
=cbh, (s) since otherwise b,(s)—b,(s) P, P 'is invertible and hence u,=0, which is
a contradiction. Q.E.D.

Theorem 5.5 (Existence of a local b-function). There exist an invertible operator
P, of order (—m,) defined on a neighborhood of a generic point of A satisfying
O'_mA(Bl)iA =f, and a monic polynomial b,(s) of degree m, satisfying fug

=b,(s) P, u,.
The rest of this section will be devoted to prove this existence theorem.

Definition 5.6. For a micro-differential operator T(s)= ) s*T,, which is a poly-
acl
nomial in s, we define ord T(s) and ord T(s) by ord T(s)=max ord T, and

ord T(s)=max («+ord T,) respectively.

Lemma 5.7. Let G(s)=) s*G, be a micro-differential operator satisfying
ord G(s)=m, ord G(s)<k and 7,,(G(s))|,=0. Then there exists a micro-differential
operator T(s) such that T(s)u,=G(s)u, and ord T(s)<m, ord T(s)< k.

Proof. First we shall consider the case when G(s) does not contain s, i.e., G(s)=G.
Then we have ord G=o0rd G <min (m, k). If m>k, then we may take T(s)=G. If
m<k, we may assume that m=k since ord G=ord G. Since 0,,(G)|,=0 and
{{dp(A)x, D> —sdy(A); Aeg} generates the defining ideal of A, we have ¢,(G)

=3 @ x0<dp(A)x,y> and G=Y @ (x,D)<dp(A)x, D>+K where

Aeg Aeg
ord ¢ (x, D)=m—1 and ord K<m—1. Hence Gu,=) ¢,(x, D,)sdy(A)u,
Aeg .
+Ku,. Now put T(s)= ) ¢,(x, D,)séx(4)+K. Then we have T(s)u,=Gu,,
Aeg

ord T(s)=m~—1, and ord T'(s) =m. Next we shall consider the general case. Since
ord G,<m, ord G,=ord G,£k—o and ¢,(G,),=0, there exists 7,(s) such that
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T(s)u;=G,u,, ord T,(s)<m and ord T (s)<k—o. Now put T(s)=) s*T,(s). Then

we have T(s)u;=G(s)u, ordT(s)<m and ord T(s)=max («+ord T (s)<k.
~ Q.E.D.

Lemma 5.8. For e C and an operator.G such that Gu,+0, there exists a number
r such that ord T Zr for any operator T satisfying Tu,=Gu,.

Proof. Since A is a good holonomic variety, .# =&u, is a simple holonomic
system. Hence it is simple as a module (See [2]) so that &Gu,=&u,. This
implies that there exists an invertible operator K satisfying Gu,=Ku,. Put
=ord K. If there exists T such that Gu,=Tu, and ord T<r, then we have (K
=T)u,=0 and o(K—T)=0(K)+0. This implies u,=0, which is a
contradiction. Q.E.D.

Lemma 5.9. If G(s)u,+0, then there exists an operator T(s) which is invertible at
a generic point of A for a generic s such that T(s)u,=G(s)u, and
ord T'(s)<ord G(s).

Proof. 1t is obvious from Lemma 5.7 and Lemma 5.8. Q.E.D.

Let P be a micro-differential operator of order (—m,) such that o_,, (P)l
=f(x)/o(x, y)", ie, f=0_, (P)-¢™ on W. Note that a(x,y)={dp(4,)x,y>
with §x(4,)=1 (See Definition 4.2). Let B,, ..., B, be a basis of g,. Then since
functions vanishing on W are linear combinations of {(dp(B)x, y> (i=1, ...,7),
we have

JX)=P(x,D,)-{dp(A)x,Dy"*= 3 T(x,D,){dp(B)x,D>+K
j=1

with ord K £ —1, and hence fu,=s"4- Pu,+Ku, (ord K< —1).

If Ku,=0, we obtain our assertion of Theorem 5.5. We shall assume that
Ku 0.

Then, by Lemma 5.9, there exists an operator G(s) of ord G(s)< —1 such that
Sug=s"1Pu,+G(syu, and that G(s) is invertible at a generic point of A for a
generic s.

Lemma 5.10. We have ord G(s)< —m,,.
Proof. Assume that ord G(s)> —m,. Then we have
ord (s"4 Pu,+ G(s)u,)=ord G(s)+ord u;
=ord fu;=deg, f;*' ]/aTAzdegyfAnLdegyfj]/aTA: —m, +ord u,,
and hence ord G(s)= —m,, which is a contradiction. Q.E.D.

Lemma 5.11.0_,, (G(s)= ) s%0_, (G, where G(s)=) s*G,.

a§_mA
Proof. Since ord G(s)< —1 and ord G(s)< —m,, we have ord G,< —~m, and «
+ord G, < —1. Since o_,, ,(G(s))=) s*o_,, (G, where the sum is taken over
satisfying ord G,= —m,, we have |¢|< —1—ord G,=m,—1. Q.E.D.
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Lemma 5.12. There exists a micro-differential operator P(s) and a monic poly-
nomial b (s) of degree m, in s satisfying (1) fu,=P(s)u, (2) ord P(s)= —m, (3)
ord P(5)=0 (4) a_,, (P, =D 4(5) fs-

Proof. Put P(s)=s"4-P+G(s). By Lemma 5.10 and Lemma 5.11, we have (1), (2)
and (3). Note that fu,#+=0 for s such that o_, (P(s))|,#0. By taking the
principal symbol, we have, for such s,

j+1]/a)_AzUA(qu)—“—O’A(P(S)“s)xG—"m(P(S))ﬁ]/E);

modulo constants, and hence we have ¢
b (s). On the other hand,

o, (PE)=5"0_, (P)+o_,, GE)=s"f+ } s*0_,,(G,)

[3 ém,‘

—my

(P(s))=b,(s) f, for some constant

—my

and hence, we have b (s)=s"++lower term. Q.E.D.

Lemma 5.13. Suppose that Q(s) is of order —m, and Q(s)u, satisfies the same
equation as ug . 1f o_, (Q(x))|,=0 for aeC, then Q(c)u,=0.

Proof. Let {A4;}; be a basis of g. Since o_,,,(Q(®),=0, we have o_,, (Q(x))
=Zgoj<dp(Aj)x,y> and hence Q(oc)zZ(Djde(Aj)x,Dx>—océx(Aj))+K with

orcf K< —-m,—1. Therefore we Jhave O(w)u,=Ku,, ~ and  hence
ord Q()u,<ord K+ordu,Sordu,—m,—1. Assume that Q(x)u,+0. Then
&Q(u,~&u,,  and hence ord Q(«)u,=ord u, , =ord u,—m,, which is a con-
tradiction. Q.E.D.

Lemma 5.14. Let T(s) be a micro-differential operator satisfying T(c)u,=0. Then
there exists a micro-differential operator R(s) satisfying (1) T(s)u,=(s
— o) R(s) ug (2) ord R(s) < ord T(s)—1 (3) ord R(s) = ord T'(s).

Proof. Let B, ..., B, be a basis of g,, and let A, be as dy(4,)=1. Since A is a
good holonomic variety, we have

T6)= . @x. D)Cp(B)x. D>+ M(<dp(4,)x. D>~

with ord M Zord T(o)—1. In general, we have T(s)=T(x)+(s—a)R,(s) with
ord R (s)<ord T(s) and ord R,(s)<ord T(s)—1. Applying this to u,, we obtain
that T(Su;=(—o) R (S)u,+M{s—a)u,=(s—a)(R,(s)+M)u,. Put R(s)=R,(s)
+ M. This satisfies our assertion. Q.E.D.

Lemma 5.15. Suppose that Q(s) is of order —m, and Q(s)u, satisfies the same
equation as ug, . If a monic polynomial c(s) divides o _,, ,(Q(s)), then there exists
Q(s) satisfying (1) Q(s)u,=c(s) 0(s)u, (2) ord G(s)=—nr, (3) ord O(s)<ord Q(s)
—deg c(s).

Proof. Put c(s)=(s—a,)...(s—o,). We shall prove this by induction on k. If k
=1, it is obvious from Lemma 5.13 and Lemma 5.14. Assume that Q(s)u,= (s

—dy) ... (5—04_ ;) Q)(s)u,. Then Q,(s)u, satisfies the same equation as u,, , for a
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generic s and hence for any s by Lemma5.9. Since o(Q(e)),=0, Lemma
5.13 and Lemma 5.14 guarantee the existence of Q(s) such that Q,(s)u,=(s

—)0(s)u,. Q.E.D.

We shall apply this Lemma 5.15 to P(s) in Lemma 5.12. Since ¢_,, (P(s))l,
=b,(s) f,, there exists P,(s) satislying fu,=P(s)u,=b,(s) P,(s)u, Where ord P (s)
=-—my, o_, (P(s)= fA and ord P(s)<ord P(s)—m, < —m,. Therefore we
have P(s)= ) s/Q; with ord Q;< —m,—j, and hence

iz0

P(s)uy= 3, Q;(x,D,){dp(A})x, D> u,

jz0

where &y(4,)=1. Put Py(x,D,)=3 0Q,(x,D)<{dp(4,)x,D,. Then ordP,
jz0

Sord B(s)s-m, and o_, (P)l,=0_, (Qo)=0_,, (B(s)=f,. Note that

<dp(A )x, y>=0(x, y)=0 on A. Hence we have fu,=b ,(s) P,u, with ord B,=

=my and o_, (Pl =/, This completes the proof of Theorem 5.5.

Remark 5.16. (1) The conormal bundle A=V x {0} is a good holonomic variety
and b,(s)=1. In fact, 1/f is an invertible operator near a generic point of 4.

(2) By Remark 5.2 and Theorem 5.4, we have b(s)=b ,(s) with 4= {0} x V*
In the following, we are concerned to investigate the relation between b ,(s)
and b ,.(s) when A and A’ intersect with codimension one.

§ 6. Holonomy Diagrams

Let (G, p, V) be a regular irreducible P.V,, and let 4,, ..., A, be the irreducible
components of W, (See Definition 4.2).

Definition 6.1. To each A,, associate a circle A; and connect the two circles
associated to A4; and A; if and only if dimA;nA;=n—1. Thus we obtain a
diagram which is called the holonomy diagram of (G,p,V). If A is G-pre-
homogeneous, ie., a good holonomic variety, then A is the conormal bundle of
some G-orbit on V, and .# =& f* is a simple holonomic system on 4. Moreover
we have A4 =.#" on A where 4" ({dp(A)x,D.>—s5x(A)u=0 (4eg) (See §4).
Note that ¥V x {0} and {0} x V* are good holonomic varieties. We sometimes
write the order ord , f* beside the circle associated to a good holonomic variety.

Remark 6.2 (a typical method to obtain the holonomy diagram).

Let x, be a point of V, (G, p,,.» V;¥) the colocalization of (G, p, V) at x, (See
Definition 4.4). Assume that it is a P.V., and let y, be its generic point. Then the
conormal bundle A, of the orbit p(G)x, of x, is given by Ay,=T(p(G)x,)"
=G(x,yo) Where G(xg,y0)={(p(g)Xo. p*(8)yo); g€G} and — denotes the
Zariski-closure. Let y, be a pomt of Vx such that codimy, pr(Gxo) y;=1. Then
the orbit G(x,, y,) of (x4, y,) is of (n— 1) -dimension (n= dim V) and contained in
Ay Let (Gyl,pyl, V,) be the colocalization of the dual P.V. (G, p* V*¥) at y,.
Assume that it is a P.V,, and let x, be its generic point. Then we have x, eV, and
the conormal bundle /11 of the orbit p(G)x, is given by A, = T(p (G)x )t
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=G(x;,y,). Note that A, (resp. A,) coincides with the conormal bundle of
p*(Gyy, (resp. p*(G)y,). We also assume that p(G)x,=*p(G)x,. Since
G(xg,y1)cdon A, and dim G(x,,y;)=n—1, we have dim A,nA,=n—1. We
can obtain the holonomy diagram by this method in many cases (See §9 and
[15]).

We shall prove the following theorem later in § 8.

Theorem 6.3. Let A, and A, be holonomic varieties in the cotangent bundle of a
complex manifold of dimension n, and let p be a point of AynA,. Assume that (1)
A, is non-singular near p, 2) dim AgnA;=n—-1,(3) Agu A, cU for some (n+1)-
dimensional non-singular variety U invariant under the action of C*, (4) A, is
irreducible near p.

Then there exist integers u and v with u=1 and v=0 such that any simple
holonomic system M =&Eu (=&/¢) defined near p with support AyuAd; can be
transformed to the following form by a quantized contact transformation.

M (L xlDl—I-l xzDz—l) u=0
U

v+ [
[, (D% =} D)+ D4~ " Ju=0
Dyu=..=D,u=0

Ao:{(x’é);x1 ={;= Ey= —'fn:()}

{(X 5) xz H g: O (gz) :XL 53:'“:6'::0}

If u=1, for any v, M is isomorphic to the case of v=0, and hence we shall make a
convention that v=0 whenever p=1. If p=2 and vz1 we may assume that

(1, v)=
Definition 6.4. We shall call (u:v) the intersection exponent of A, to A,.

Note that these u and v depend only on A, and A,. Let A,=G(x,, yo), 4,
=G(x;,y,) and p=(xy,y;) be as in Remark 6.2. We shall consider how to
calculate these p and v in this case.

Proposition 6.5. Let A be an element of g satisfying dp(A)xO—O and dp*(A)y,
=y,. Then A acts on the one-dimensional vector space V = V2 modulo dpxo(ng) Y-

Let B be its eigen value, i.c., f=try A. Then u and v are given by ﬁ=m, (w,v)

=1. If B is not determined uniquely, i.e., p depends on A, then we have =1, v=0,
and Ag, A, intersect regularly.
¥

A —
ng

Fig. 6.1
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Proof. Let ¢ be the symbol ideal of . Then by Theorem 6.3, .Z is spanned by

1 1 .
v+uxlél+ﬁ X8, x (E—=x184), &5, &y, ..., &, Let Y be an element of 7, i.e.,
1 1
“»01(;‘;‘;)616 +‘L xzéz)“{‘q’z (E=x1E) + o385+ + 9,8,

Since ¥|,,=0 and 4, is holonomic, H,, can be regarded as a vector field on
Ay (See Lemma 3.4). We have

(- P ) O Py O 0 0
H, ( v+ﬂéi+@2€1 3¢, &5 aéz'*'q)sa +.. +(pna
on A,. Put S=A,nA,. Then for any geS ngar p, we have
g 4 0 0
T, = = . —
A0= TS <6(§2’5x3’8x4’ ’3x">
since S={(x,¢); x;=x,=¢;=¢;=...=¢,=0}. Hence we have (H,),eT;S. On
0
the other hand, we have (Z &, %) eT,S. Assume that @;(p)=¢.(p)=...
i i’4
0
=¢,(p)=0 and put v,=H,—a Zéi%where az—(plu(p). Then

v,,,(q)e T,S=T, A, and v,(p)=0. In general, let X be a manifold and v
0

=y a;(x) =— a vector field defined near pe X satisfying v(p)=0. Then v acts on

T,X,ie, E

AT XSTX, A,0=Dn010) (4, (jx) 3, 2 X ).

0x,

In our case, v, acts on the one-dimensional vector space T,4,/T,S:

A, T,A0/T, S~ T,4,/T,S,

Dy aé (pl p +y /1 lu (pZ 14 85
Then oc:( o,(p) <—_l) + lsz(p)> is the eigen-value of 4, . If p>1,
ptvou

1N . ata .
), , = . Since o and a can be calculated, we

( 1
we have o= pua {————
u+v a L+

can determine u and v under the condition of (i, v)=1. If u=1, then o depends
on not only a but . Consider the case when A,=G(x,, yo), 4, =G(x;,y,), S

=G (x0, 1) and p=(xo, yy).
Then ¢ is generated by {(dp(A4)x, y>; Aeg} and ¢ = J4yua4, (€., the defin-

ing ideal of A,u 4,). Since

H(dp(A)x,y) =<{dp(A)x, D> +{dp*(4)y, Dy>5
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we have H ., ,, =<y, D>, for Aeg satisfying dp(A4)x,=0 and dp(A) y,=y,.
This implies that a=1 for np {dp(A)x, y).
Since Ay, ¢y p,y= A ap )z, Dy + <dp*(Ayy—y yy ACtS ON V X V¥ as

(x, Yy (dp(A) x, dp*(A) y ),

the action of 4, —{y,D,> on T,40/T,S= /dpxo(gxo)y1 is the induced one
from dp*(4)—1. Let b be the elgenvalue of d p*(A) on Vi#/dp, (g.)y,. Then we

a+a U

1 =p—-1,a=1, =———and he =————.If depends on A, then
have o= f§ a R n nce f e p depends on U

=1 and hence, by convention, v=1. In this case, Ay and A, intersect
regularly. Q.E.D.

Let A=T(p(G)x)" be a conormal bundle of a G-orbit. We shall consider
some sufficient conditions to be A=W, ie., A< W,. If x is a generic point, then
A=V x{0} is clearly contained in W. If x=0, then A= {0} x V'* is contained in
W when and only when (G, p, V) is a regular P.V. (See Proposition 4.6).

Proposition 6.6. Let A, and A, be two conormal bundles of some G-orbits. Assume
that dim gop=n—1 for some p=(xg, yo)e Agn A, where g,={Aeg; dy(4)=0}.
Assume that Ay(or A)=W. Then we have Agu A, <W. Moreover W is non-
singular and W=W' near p, where W' ={(x, y)eV x V*; {dp(A)x, y>=0 for all
Aeg,}.

Proof. Since pe W< W’ and dim W =n+1, we have dim W'=n+1 near p. On
the other hand, by assumption, there exists B, ..., B,_, €g, such that

<dP(Bj)X09dP*(Bj)yO> (I=j=n-1)

are independent, ie.,

d{dp(B))x, y)|,=<dp(B)) xo,dy) —{dp*(B)) yo,dxy (1<j<n—1)

are independent. This shows that W’ is non-singular, dim W'=n+1, and W’
=W near p by the same argument as the proof of Proposition 4.7. Since
Agu A =W, we get Ayu A, =W near p. Therefore A,u A, = W because Ay and
A, are irreducible. Q.E.D.

Definition 6.7. Let f(x) be the relative invariant of an irreducible regular P.V.
(G, p, V). We define the localization Ji, of fat xoeV by

flot+ex)=ef (x)+&+t Y e'fi(x)

where ee €, x'eV, and f, (x) is not identically zero.

Lemma 638. (1) £, (0(8)x)=1(8) f,,,(x) for ge G,
(2) If x=x"mod dp(g) x,, then f, (x)=f, (x).
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Proof. (1) Since p(g) x=x,+ep(g)x’ for ge G, and x=x,+ex €V, we have
flo(g)x)=¢1, (p(g)x)+&"" _ZO &/f;(p(g)x)
= 0)S ()= L)+ 2(6) T ()

and hence f,,(p(g)x)=x(8) [, (x).

(2) Since  p(exp eA)x=exp edp(A)(xo+ex)=xq+¢&(x'+dp(4)x,)+ (higher
term of ¢) for Aeg, we have f, (x'+dp(4)x,)=f,(x) by comparison of the
coefficients of ¢° of the equality: f(p(exp ed)x)=expedy(A) f(xo,+ex). Q.E.D.

By this lemma, f, (x') can be regarded as a relative invariant function of the
normal vector space V, = V/dp(g)x, on which G, acts. Assume that (G, p, V,,)
is a P.V. where p is mduced from p. Note that this is the dual P.V. of the
colocalization (G, p,,. Vi¥) of (G, p, V) at x, (See Definition 4.4). Let S, , be the
singular set of (G, p, V,,)-

Proposition 6.9. If grad, logf, : V, —S, — V¥ is generically surjective, then A,

=T(p(G)xo,) =W, ie., A, is a good holonomic variety.

Proof. Take x' €V such that x=x,+ex'e V—S and x'moddp(g)x,eV, —S
Since

Xg*

1
grad, log f(x)= " grad, log f(x, +ex’)

1
=ggrad Jog et £, (x {1-!— Y &h (x)}

jz1

_%grad logfxO(x)+ grad . 10g{1+z &'h;(x }

Jjz1
and hence

(xo+ex', grad, log f, (x')+grad, log {1+ &'h})
=(x, ¢ grad log f(x))e W.

Since W is closed, we have (x,,grad,logf, (x))eW by &—0. Since
grad,log f, is generically surjective, we have (x,, V5)eW. Since W is G-
admissible and p*(g) V: we have A,=T(p(G)xo)' <W. Q.E.D.

Corollary 6.10. Assume that the colocalization (G, p.,, V%) of (G, p, V) at xo(€V)
is a regular P.V. If 6x|g,, is a non-degenerate element (See Definition 1.2), then
the conormal bundle of the orbit p(G)x, is a good holonomic variety.

p(g)xo’

Proof. By Proposition 1.4, we have grad, logf, is generically surjective, and
hence we obtain our assertion. Q.E.D.

Corollary 6.11. Assume that the colocalization (G, p., Vi, *) of (G, p, V) at x4 is
an irreducible regular P.V. Then A,=T(p(G)x,)" is a good holonomic variety.
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§7. Calculation of Local b-functions

In this section, we shall calculate the ratio b, (s)/b, (s) of local b-functions b, )
and b, (s) when 4, and A, have an intersection of codimension one under some
assumption. Then since we have by, o,(s)=1 and by, , y.(s)=b(s), we can expect
to obtain b(s) by using a holonomy diagram. Note that b ,(s) is uniquely de-
termined up to a constant multiple. Therefore if we assume that b ,(s) is monic,
then it is unique.

Let A, and A, be holonomic varieties such that codim A,nA; =1, (u: v) its
intersection exponent (See Definition 6.4). Let .# =&u be a simple holonomic
system with support A,uA,. The following theorem will be proved in §8 by
using Theorem 6.3. The assumptions are same as those of Theorem 6.3.

Theorem 7.1. (1) The principal symbol o 4 (u) has zeros of order

(i—:‘;——'llf(ordAou—ordAl u)—%) at S=A,nA;.

(2) There exists a quotient of M with support A, i.e., there exists a submodule of
M with support A, if and only if

:i?(ord/lou—ordmu)_g—zlrez+ ={0,1,2,...}

and 1'=0,1,....,vmod(u+v).

(7.1)

(3) There exists a submodule of . with support A, i.e., there exists a quotient of
A with support A, if and only if

v+u
v+1
—I'—p=0,1,...,vmod(u+v).

(ordAxu—ordAou)—%= —l'—peZ ={0,1,2,...} and
(7.2)

Assume that .#=&f* is a simple holonomic system with support 4,04,
ie., the symbol ideal of #(.# =&/ ¢) is a reduced ideal on A,uA,. We have

ord, f*= —mAs—%1 (See Proposition 4.14).

Proposition 7.2. Assume that m, <m, . Then we have b, (s)|b,_(s),

(1) —mAls"'ué“ ie, b, (5)/by,(s) is a polynomial.

(mA‘ <m/10)

@ —mAOS—/l;O

Fig. 7.1
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Proof. To prove this proposition, it is sufficient to show that d(s)(s— )b, (s)
whenever d(s)|b 4 (s) and d(s)(s—o)|b,,(s). By Lemma 5.12 and 5.15, there exists a
micro-differential operator G defined on AyuA, satisfying fu,=d(s) Gu,. Since
fuy=b, (5)P, u, on A;, we have Gu = (b, (s)/d(s)) P, u, on A,(i=0,1). Assume that
d(s)(s—a) kb, (s). Then we have Gu,l,,+0 and Gu,l,,=0. Then &Gu, is a
submodule of .#, = &u, with support A,, and hence by (7.2), we have

VU
v+1

1
{(m/xo_mm) O‘+§(NAO_HA1)} ”%€Z+ =1{0,1,2,...}.

On the other hand, since Gu, satisfies the equations of u,, ; with support 4,, by
(7.1), we have

v U
v+1

1 L
{(mAO—mm)(chr1)+§(/1AO—MA1)}—%EZ+ ={0,1,2,...}

and hence

v

x| (my,—m, )—peZ,={0,1,2,...}.
Since m, —m, >0, pz1, v=0, this is a contradiction. Q.E.D.

Proposition 7.3. Assume that m, <m, and yeC satisfies the following two
conditions:

, v+ 1 H
(1) I=—E sy —p)) —oeZ, =0, 1,2, ...}
v+1 2 2

and I'=0,1,...,vmod(p +v)

+
:+'L1t(on—mAl)¢Z+, or l’—m(m/lo—-mm)$0, 1, ..., vmod(p—+v).

Then {(m,,—m,)s—7y} is a factor of the polynomial b, (s)/b, (s). Note that

V4
— (my,—my,)eZ (See (1) of Theorem 7.1).

Proof. Take a=y/(m,, — m, ). By the first condition, there exists a quotient A" of
M, =& u, with support A,: M, N/ —0 (exact) (See (2) of Theorem 7.1). Let v

be the image of u,, i.e., v=0,(u,). Since b, (s)|b 4 (5), by Lemma 5.12 and 5.15, we
have fu,=b, (s)Gu, where G is defined on A,uA,. Define a map ¢, :

My, — M,y @, (U, )=Gu,and a map ¢, (A, )=EGu,— EGv which is
induced from ¢,. By composing these maps, we have .4, , —&Gv—0 (exact)
and supp(6Gv)cA,. By the second condition, .#,,, has no quotient with
support Ay, and hence Gv=0. Since .#,= ./ on A,, we have Gu,|,, =0. Since
fu,=b, (s)Gu,=b, (s)P, u, on Ay, we have Gu =(b, (s)/b,,(s) Py u; on Aq.
Note that G is defined also on A4,. Since P, is invertible and u, is a generator of
M,=Eu,, we have h(a)=0 where h(s)=b, (s)/b,, (s) is a polynomial by Pro-
position 7.2, and hence {(m,,—m, )s—7y}h(s). Q.E.D.
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Proposition 7.4. Assume that m, <m .

(1 :If(m,lo m, )=0mod(v+p), i.e., (m,,—m,)=0mod(v+1).
@ l/=k+j(/l+")(kzo:-'-,v;]=0>1,~~-,mA°;TA’~—1) satisfies the con-

ditions in Proposition 7.3.

Proof. (1) Assume that i (m,,—m,4 )=c mod(u+v) where 0<c¢ <p-+v. Then

there exist [, and [, such that ¢'=I,+I[,, 0=ZI,<v and 0=[,<u—1. Since
[,=0,1,...,ymod(u+v) and

vt

+1(mA° my)=—1L%0,1,...,vmod(u+v),

17
Iy +t(u+v) satisfies the conditions in Proposition 7.3 for any t>0. Since
degb 4, (s)/b,,(s)< + oo, this is a contradiction by Proposition 7.3.

1
(2) 'eZ, and I'=0, .,vmod (u+v) are obvious. Since 0=j <?(m,10

—m,)— 1wehavez'___—_(on my )=k—t(u+v)¢Z (t=21,0=k=<v). QE.D.

Theorem 7.5. Let A, and A, be good holonomic varieties whose intersection is of
codimension one with the intersection exponent (u:v). Assume that M =Ef° is a
simple holonomic system with support AqUA,. Assume that m, >m, where

ord , f*= _mAs—-’L;—A. Then we have, up to a constant multiple,
MAg M4y
v 1 ] lu + zk v 1
7'3 b b = [ d S— d § :l
(7.3) 10(8)/D 4, (5) k];IO V1 (ord, f*—ord, f )+2(V+/J)

where [o]*=o(a+1)...(a+k—1).
Proof. By Proposition 7.3 and 7.4, b, (s)/b, (s) has a factor {my,—my )s—v}

v+ u 1 uo.
where k+j(u+v)= > (y+§(u,10—#,11)> —5 i€,
v+1 ) ul 1
=_—_""Jk Lol Gt _
Y v+ﬂ{ +ﬂu+w+2} 5 Mo —Ha)
. , My, — My
with k=0,1,...,v; j=0,1, ...,7‘3—4_—1-‘—1. Namely b, (s)/b 4, (s) has a factor
1 s 5 u—l—Zk
)5 =7 = Ord g frord )T

with
m
k=0,1,. 0,1,. —i——ﬂ—L
V= yv+1
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Therefore
MmAo—MA,

u+2k ] vl
2(v+ )

M 1
kno [m(ordmfs—ord,mf%L

divides a polynomial b, (s)/b,,(s). Since both are of degree (m, —m, ), they
coincide up to a constant multiple. Q.E.D.

Corollary 7.6. If A, and A, intersect regularly (i.e., u=1 and v=0) with codimension
one, we have

b1o(5)/b4,(5)=[0rd,;, f*—ord,, f*+5]" 4", e,

mA—MA, . _q
bas=ba ) T1 (g =maps+2 =Ly,
k=1

Here ord, f*= —«mAs-—%A— and my >m, .

Proof. This follows from (7.3) by putting u=1 and v=0. Q.E.D.

Remark 7.7. Theorem 7.5 shows that if we calculate ord,, f*(i=0,1) and the
intersection exponent (u:v), which are given by Proposition 4.14 and 6.5
respectively, then we get the ratio b, (s)/b, (s) under some conditions. Next we
shall show another way to obtain b, (s)/b,, (s) by investigating the colocalization
(G Prps Vi) of (G, p, V) at x,,. These different methods are useful to check the
calculation of each other.

Assume that the colocalization (G, p,,, V.¥) of an irreducible regular P.V.
(G,p, V) at x4(x,€V) is a PV, ie, the conormal bundle of p(G)x, is G-
prehomogeneous. Let g,,...,g, be algebraically independent relative invariant
irreducible polynomials of (G,,,p,,,V.*) corresponding to the characters

»--->p, Tespectively (See §1). Assume that {yeV';g,(»)=0} is G,-
prehomogeneous e, {yeVi g,(y)= O} Py(G,,) v, for some y,eVE(=V*). As-
sume also that the localization (G, , p},V,,) of the dual (G, p*, V*) is a P.V,, and
let x, be its generic point: x, €V, <V. By Remark 6.2, we have 4,= (xo,yo) A,
=G(x,,y,), codim A,nA;=1 and p=(x,,y,)ed;nA,. We assume that
Ay, A, =W, e, Ay and A, are good holonomic varieties. Let (u: v) be their
intersection exponent (Definition 6.4). Now f, (x,,y) (See Definition 4. 11) is a
non-zero relative invariant of (GxO, Pror Vi) correspondmg to xle,, where y is the
character of the relative invariant f (x) of (G,p,V), and hence we have x|G
=p9 ... p¢ for some (c,,...,c)eZ’, ie., —0y=c,0p,+...+¢,6p,. On the other
hand, (p(t 1) is a relative invariant correspondlng to the infinitesimal character
—2try, dp.(A) where ,=o(t, t)dt, ...dt,dt dt, (See the proof of Pro-
p0s1t10n 4.14). Therefore we have

ple

(7.4) {‘595:015p1+c25p2+.,.+c,5p,

[Py =0, 0p +a,6p,+...+a,6p,
where c¢,€Z,2a,cZ (i=1,...,1).
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This shows that f3 (x,y)=g,(y)"... g(y)** for yeV%, and w,,=g,(y) "

x {non-zero regular part at y,}. Thus the order of zeros of o AO( =11,V w,, at
p=(xq,,) is given by —c,;s—a,, and hence by (1) of Theorem 7.1, we have

v+ S N I'L
(7.5) ;}—_I_—'Llf(ord,lof —ordAlf)—~5:~cls—a1.

. v+
In particular, we have ¢, =ﬁ%(m A~ M4 )-

By (7.3), we have

6 b= 11 [

k=0

k (4
4t ] with ¢=—SL_
+u v+u
Since ord, f*(i=0,1) and ¢, a, can be calculated independently, the relation
(7.5) is useful to check the actual calculation.

§8. Structure of Simple Holonomic Systems

The main purpose of this section is to give a proof of Theorem 6.3 and Theorem
7.1. But here we shall prove them in a generalized form.

Let X be a complex manifold of dimension n, T*X the cotangent vector
bundle of X. Let (z,,...,z,) be a local coordinate system of X and (z,, ..., 7,
& ) the correspondmg local coordinate system of T*X so that

Wy= Z ¢;dz; is the canonical 1-form on T*X. A map ¢ of an open subset of
i=1
T*X to T*X is said to be a homogeneous canonical transformation or a contact

transformation if 9*wy=wy. This equals to say wy= Y &;dz; by denoting
i=1

(2,17 i n’éla'”aé;n):(p((zl" ° n’élo‘“’én))‘

In this case ¢ is a local isomorphism and z; (resp. &) are homogeneous functions
of degree O (resp. 1) with respect to (¢, ...,¢&,), that is, ¢ is compatible with the
C*-action on T*X. Moreover for a function f on T*X, we have

Z":(af o of 6) Z(af o of 6)

0¢&; 0z, 0z; 0¢,

1

o0&, 0z, 0z 0&

i=1

This vector field is called the Hamilton vector field of f and denoted by H,. A
subset V of T*X is called homogeneous if peV implies c peV for ceC*. Hence a
contact transformation transforms homogeneous involutory (resp. homogeneous
holonomic) varieties into varieties in the same kind.

Any local coordinate system (zy,...,z,,¢,,...,&,) of T*X so that Wy

=Y & dz; is in general called a homogeneous canonical coordinate system of
i=1
T*X. A non-singular homogeneous involutory submanifold ¥V of T*X is said to
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be regular if wy|, nowhere vanishes on V. The classical theory of analytical
dynamics says the following fundamental theorem.

Theorem 8.1 (¢f. Carathéodory [11]). Let V be a regular homogeneous involutory
submanifold of codimension d (resp. a homogeneous holonomic submanifold) and
let p be a point of V which does not belong to the zero sections of T*X. Then we
can choose a suitable homogeneous canonical coordinate system (z, ) around p so
that

V= {(Zv é)ET*X, én—d—kl =€n—d+2:"' :fn:()}
(resp.{(z, &)eT*X; x, =¢&,=&,=...=&,=0)).

Let &y be the sheaf of micro-differential operators on T*X. Then we can find
a quantized contact transformation @ of &, associated with a local contact
transformation ¢ of T*X (§4-3 Chap.II in [2]). This means that ¢ is a ring
isomorphism from ¢~ (&) onto &y which satisfies the following conditions:

(8.1) (e~ '(&x(m)) equals &y (m) for any integer m.
(8.2) The diagram

0~ (Ex(m) ——— Ex(m)

Om O om

@~ (O(m)—— O(m)
is commutative.

(8.3) We also denote by @ the isomorphism between the systems of micro-differ-
ential equations on T*X which is induced by the quantized contact transfor-
mation @. Then if .# =&yu is a simple holonomic system with one unknown
function u, the system ®(4)= &y P(u) is also a simple holonomic system satisfy-
ing ord u = ord ®(u).

Here for a system of micro-differential equations

1
A2 Y BizD)o,=0 (i=1,....,k)
Jj=1

on T* X, we define the system &(A") by

B(AN): i ®(P,(z, D) B(v)=0 (i=1,...,k).

j=1

Such a & is called a quantized contact transformation associated with ¢. Then
we can “quantize” Theorem 8.1:

Theorem 8.2 (§4.2 and §5.1 Chap. Il in [2]). Let # =&yu be a system of micro-
differential equations with one unknown function u.

(1) If the characteristic variety of M is a regular involutory submanifold of
codimension d and the symbol Ideal of M is reduced, then M is micro-locally
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isomorphic to the system
Dn—d+Iv:Dn_d+2U:...:D,IU=O

under a suitable quantized contact transformation.
(2) If A is a simple holonomic system whose characteristic variety is non-
singular, then M is micro-locally isomorphic to the system

(x;D,—a)v=D,yv=...=D,v=0
under a suitable quantized contact transformation. Here o= —%—ord u.

Now we shall investigate the structure of simple holonomic systems whose
characteristic variety consists of several irreducible components. First we give a
structure theorem of homogeneous holonomic varieties.

Theorem 8.3. Let p be a point of the cotangent bundle T*X of a complex manifold
X of dimension n and assume p does not belong to the zero section of T*X. Let A
be the germ of a homogeneous holonomic variety at p and let A, ..., A, be its
irreducible components. Assume that there exists an (n+1)-dimensional non-
singular homogeneous variety which contains A. Then there exist a homogeneous

canonical coordinate system (z, ...,z,, &, ..., &,) and positive integers p and v with
(u, vy=1 such that p corresponds to the point

(219 ey n7€17627€37 "'95,1):(07 "'10103 1,0) "':O)
and that

{(zf) 2+ “ 2 A(Ez) +Bz,-£3-...=éjn=0}

for i=0,...,1 with pairs (A;, B;) in C*—{(0,0)}.
Remark 8.4. (1) The homogeneous canonical transformation

(21,253,255 32,615 85,855 -, )
91 &y
H( 62 ZZ+ZI£2’Z3 b n’Z 52762763?"' 6)

transforms (i, v, 4;, B)) to (v, i1, B;,(—1)*4,) in Theorem 8.3.
(2) If A, is non-singular, the local coordinate system (z,¢) in Theorem 8.3
can be taken so that 4,=0, that is,

Ag=A{(z,8);z,=z,=¢y=...=¢(,=0}.

Moreover if 4, and A, are non-singular and T,4,# T,4, we can choose 4,=0
and B, =0 in Theorem 8.3, namely

/112{(2,5); 61222263:"‘:€n:0}-

These are easily proved by Theorem 8.3 as follows. The first remark shows
that if A, is non-singular, we may assume either v=1 and B,=0 or 4,=0. We
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have A,=0 also in the case v=1 and B,+0 by the homogeneous canonical
transformation

(21522, 235 s Zpy Eqs vens €)
Ay (‘f1)‘u Aop (@)’Hl )
—lz +=2{2), oz, ——2" (2L s ZaseeesZy Epyens Cp )
(‘ B, \E, > Bo(ut+1) \&, ? ‘

Hence in the latter claim, we may assume A,=0 and that either u=1 and 4, +0
or B, =0. When u=1 and 4, +0, we apply the homogeneous canonical transfor-
mation

(217227237 “'aZn?é],éZ’ "'sgn)

B B
1 Zv+1,z3,...,zn,fl+1—412§52,52,..‘,6,,)
1

— (Z“ZZ———Al(H-l) 1

to the above situation in order to have A,=B; =0.

Proof of Theorem 8.3. Assuming Theorem 8.3 in the case n=2, we shall prove
Theorem 8.3 by the induction on n. Hence we suppose n=3. Let I(A) be the
ideal of O, generated by the functions which vanish on A. The assumption of
Theorem 8.3 implies the existence of the function f in I(A) such that df and ®
are linearly independent at p and that f is homogeneous with respect to the C*-
action on T*X. Then under a suitable homogeneous canonical coordinate
system (z, &) we have z,(p)=0 and f=c&, with a non-vanishing function ¢ (cf.
Theorem 8.1). We put (z,&)=(z,,..-,2,_1,¢15---»¢,_1)- Then we can choose
functions g,(z,&),...,g,_(z &) so that g,,...,g,_; and &, generate I(A). Since A
is involutory, {£,,g}€l(A) for j=1,...,n—1, which equals to say

a r
a—*(gb""gn—l):(gh""gn—l)A(Z’é)
Zy

with a suitable matrix-valued function 4 of (z, &'). Using the solution U(z, &) of
the equation

ou
5}*+A(Z,5)U=0,

n

Ulzn——-O:I

n—1»
we put (hy, ... h,_)=(gy, ..., 8, ) Uz ¢). Then

0 0 ou
a—Z"(hl’""hn—l):{a_zn(gl’"'Vgnwl)} U+(g1>-~,gnf1)5;;=0~

Hence h,(1<i<n—1) are functions of (', ¢') and {h,(z’,&),....,h,_,(z, &), &} isa

system of generators of I(A). Considering the space of the (2n—2)-variables
n—1

(z', &) with the canonical 1-form ) ¢&;dz; and its subvariety A’ defined by h, =...
i=1

=h, ,=0, we have Theorem 8.3 by the hypothesis of induction.

n
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Thus we may assume n=2. We denote by (z,,z,,¢,,&,) a suitable homo-
geneous coordinate system of T*X such that p corresponds to (0,0,0,1). Let f;
and g be functions that generate the ideal I(4,) of ¢, and satisfy (dg),=*0 (i
=0,...,0). If

(8.4) =0 and 4, is non-singular,

we may suppose dg and wy are linearly independent at p and therefore that g
=¢, by the same argument in the induction. Then A={(z,¢); &, =z,=0}
because (¢, dz, +¢&, dz,)|A=0 (cf. Theorem 8.1). In general if w and dg are
linearly independent at p, we may suppose g=¢, and therefore A, must be
{(z,&); £, =z, =0} by the same arguments as above. Hence if (8.4) does not hold,
(dg),=cw,(=c(dz,),) with a complex number ¢ and therefore we may assume

(8.5) g=z,—hz,¢,/¢,) and  fi=[i(z,,¢,/E5)

where h is a function of (z,,&,/¢,) satisfying (dh),=0.
Next consider the case

(8.6) I=1,4, and A, are non-singular and T, Ao+ T,4,.

Since {fo,f;}(p)+0, we may assume f,=¢&,/&, and fy=z,+k(&,/€,) with a
function k of &,/&,. Then by the homogeneous canonical transformation

Sus2 JJ.
(Z1>Zza51,52)H(21+]‘(é1/52)722_ j t‘;i_t)‘dtaélaéz)

0

we may moreover assume k=0. Hence g|4=z,| 4 because wy|d,=wy|A;=0,
which implies Ay={(z, £); ¢, =2z,=0} and 4, ={(z,¢); z, =z,=0}.

We have proved Theorem 8.3 in the cases (8.4) and (8.6). Thus we consider
the other cases. Noting that v=H, , can be regarded as a vector field on the

space Y of the two variables (z,, £,/¢,) and satisfies vfj|;,_ =0, we prepare the
following lemma.

Lemma 8.5. Let v=a(x, y)0/0x+b(x,y)0/0y be the germ of a vector field at the
origin of €2, where (x,y) is its local coordinate system. Assume there exist (I+1)
germs V,(i=0, ..., 1) of irreducible analytic curves through the origin such that V,
are integral curves of v (i.e. V, is the zeros of an irreducible analytic function f;
satisfying (vf)l,;,=0). Moreover assume one of the following conditions:

(8.7)

V, is singular at the origin,
(8.8)

[=1, V, and V, are non-singular and tangent at the origin,
(89)

=2
da/0x 0a/dy
0b/0x Ob/0y
coordinate system (x,y) so that v=c(xd/0x+ryd/dy) with a suitable complex
number ¢ and a suitable rational number r satisfying r = 1.

Then if the matrix M = ( ) (0) is not nilpotent, we can choose a local
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We shall continue the proof of Theorem 8.3 and the proof of this lemma is
given after that. In our situation we have

(8.10) ch 0 ( 6h)6

UZ-a"; 5;"*" y--a-; é;

by denoting (x, y)=(z,, —&,/&,). Hence the trace of M in Lemma 8.5 equals 1.
Therefore Lemma 8.5 implies the existence of coordinate functions x'(x, y) and
y'(x, y)so that v=c(x'0/0x’ +ry 0/0y’) under the local coordinate system (x’, y') of
Y(ceC, 0<reQ). Since the coordinate transformation does not change the trace
of M, we have

u 0 v 0

7

8.11 = — —
(8.11) 0 u+vxax’+u+v?}ay’

with suitable positive integers u and v satisfying (i, v)=1. Since {x, y} =1/&,, we

ox' 0y’ 0x 0y
T ox E Jdy 0x
by x'/{x', &, ¥’} (p), we may moreover assume {x’,&,y'} (p)=1. By the Jacobi’s
identity

have {x', &, v’} . Hence, we have {x', ¢, y'} (p)+0. Replacing x/,

{52 g7 {X’, 62 y,}} + {X,,, {52 yr’ 52 g}} +{€2 y/’ {éz g> xl}} =0

we have

v({x, Sy ={x, L v() = &y +H{v(X), &, ')

e (Y el R ey
_{x7£2<'u+v 1>y}+{“+vx7€2y}
=0.

This equation (cf. (8.11)) and the Taylor expansion of the function {x', £, y'} with
respect to the variables x’ and y' easily prove that the function is constant.
Hence {x', &, y'} =1, which is equal to

ox' 0y 0x' 0y _1

dx 0y dy O0x
and therefore to dy' Adx'=dydx. This assures the existence. of a function
w(x, y) such that dw=y dx' —ydx and w(0)=0. Then we have &,dz, +¢&,dz,=

—&,ydx' +&,d(z,+w). Considering the homogeneous canonical coordinate
transformation (z,,z,, &, &)= (X, z,+w, =&, ). &,), we can assume (x,))

oh
=(z,x, —&,/&,)=(x,y). Hence comparing (8.10) and (8.11) we have Ez%x
Oh .
and azﬁy, which shows hzﬁxy and g=zz+~#—’i—;zl (%) Moreover

any integral curve of v in Y through the origin is defined by Ax"+By*=0 for a
suitable pair (4, B) in € x €C—{(0, 0)}. This proves Theorem 8&.3.
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Proof of Lemma 8.5. The assumption implies that v vanishes at the origin. Hence
the eigenvalues of M do not depend on the choice of local coordinate systems
and at least one of them is not zero. We shall show that the ratio  of the two
eigenvalues is a positive rational number.

First consider the case (8.7). We may assume f, satisfies (D). D/, " fo)=0 for
i+j<k and (D} f,)(0)=0 for a suitable positive 1nteger k. Then by Welerstrass
preparation theorem we may moreover assume f,=y"+g, (x)y* "' +g,(x)y*2
+...+g,(x) with analytic functions g;(x) at the origin satisfying (D! g,)(0)=0 for
Jj<i (i=1,...,k). Therefore we can define V, by the Puiseux series y

] w L
14+ . . .. . LS P .
=Y C;x “w, where m is a suitable positive integer and ) C;(xm)"* is a
. i=0
convergent power series of xm. Since Vj is singular, there exists a positive integer

n such that n/mqéZ C,=*0 and that C;=0 if i/m¢Z and 0<i<n. Replacing
y by y— Z C;x bt we have

i=0

(8.12) y=Y Cx'*um,

where C,+0 and n/m¢Z. Since v(y— ), C,x'"w) is an analytic function of

1 © i
(m, y) and vanishes if we put y= Y C,x'"m, we have

i=n

© i 1 0 i
v (y— > Cix“'ﬁ) =h(xm,y) (y—— Y Cixl+§{)
1

with a suitable analytic function h of (xm, y). Hence
o i i 1 © i
813)  —a(e)) Y (1) Comr bl ) =htm, ) y- 3 Cox' ).
Comparing the coefficients of x, y and x”»% in the expansions of the both sides
1
of (8.13) into power series of (xm, y), we have (9b/0x)(0)=0, (9b/dy)(0)=h(0) and
- (1 +%) C,(a/dx)(0)= — C, h(0). Hence the ratio r equals 1+ %

Next consider the case (8.8). We may assume f,=y and f, =y—x"*! with a
suitable positive integer m. Since v(fy)l,,=0, v has the form a(x,y)d/dx
+Db'(x, y)y9/0y. Then the equation v(f,)l;,, =0 shows

O0=(=a(x,y)(m+1)x"+b"(x, y) Yy,
=(—(m-+1)a(x,x" 1) +b'(x, x™* 1) x) x™.
Hence we have —(m+1)(0a/dx)(0)+b'(0)=0 and thus r=m+1.

By the above results in the cases (8.7) and (8.8), we may assume f,=y,f, =x
and f,=y~—x in the remaining case (8.9). Then v has the form a'(x, y)x0d/dx
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+b'(x, y) y0/0y because v(f)|,, =0 for i=0 and 1. Since v(f3)ly,=0, we have 0=
—d (x, x)x+b'(x, x) x, which shows a'(0)=5'(0) and r=1.

Thus we have proved that the eigenvalues of M are ¢ and cr under the
notation in Lemma 8.5 for some complex number ¢ and some rational number
r=1. Then we can choose a local coordinate system (x, ) so that

(8.14) p=c (xi+(zx*+ry)i),
0x Jy

where AeC (resp. A=0) if r is an integer (resp. not an integer). This follows from
Remark 1.9 in [12], but we can easily construct the coordinate functions x and y
by solving the equation (v—c)(x)=(v—cr)(y)—Ax"=0. If 1%0, there is no
analytic integral curve of v through the origin except the curve {x=0}. Hence 4
must be zero. Q.E.D.

Now we shall “quantize” Theorem 8.3:

Theorem 8.6. Let .# =&xu be a simple holonomic system defined near a point p
of the cotangent vector bundle T*X of an n-dimensional complex manifold X.
Assume the characteristic variety A of M is contained in an (n+1)-dimensional
non-singular variety. Then by a quantized contact transformation, J can be
transformed to one of the following systems A, (m=1,2,3) defined near the point
(Zyseer 2 E1n Esy Egy e, €)=(0,...,0,0,1,0,...,0):

1 1
(v—l—,uzl D, +;zzD2+lO) v=0,

1
Nyt [H(D’;%—Ciz{D‘;)ﬁ—

i=0 Ww+vk—pl+DEjsvk—1

,)ijzji Djl—(u+v)k+u(l+ I)Dék:l v:0,

Dyv=...=D,v=0.
1 1 ,
mZID1+ﬁ‘22D2+AO) 1):0,
l
Ny [zI [] (D" +C,z; D)+ 5
i=1 R+ k—pl+15jsSvk

'}"ijJ; D{—(u+v)k+ul—1 ng} v=0,

D,v=...=D,v=0.
1 1
V+MZID1+;ZZD2+/10)U=0,
!
Ny [ZID1 [T+ C. 2z D)+ >
i=2 (w+vk—pl-1)sjsvk

‘)“jkzjl D1i~(u+v)k+u(l—1)D;ék} 0:0’

Dyv=..=D,v=0.
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Here j and k are non-negative integers and w and v (resp. C;, A, and ;) are
suitable positive integers (resp. complex numbers) satisfying (u, v)=1, C,%0 and
C,xC, ifi=i.

Remark 8.7. Let I’ be the number of the parameters 4, 4, in Theorem 8.6. These
parameters are not determined by the characteristic variety A4 of .4 On the
other hand the order of a simple holonomic system is invariant under quantized
contact transformations. Hence if A has [ irreducible components, .# has [
invariants, that is, the orders of .# at the irreducible components. Therefore I'—[
is the number of the parameters of simple holonomic systems with support A
that cannot be determined by the structure of the systems at the non-singular
points of A.

By Theorem 8.6 we can give the following necessary and sufficient condition
for I'=1I: The number of singular irreducible components of A is one or zero
and [<3 and if [=3, there are two non-singular irreducible components A, and
A, of A such that T, 4,4+ T,4,.

Proof of Theorem 8.6. By a quantized contact transformation, .# can be
transformed to a system A =&, v=§&y/# whose characteristic variety has the
form given in Theorem 8.3. Using the notation in Theorem 8.3, Remark 8.4 (1)
assures that we may assume (1) A;+0 and B;==0 for i=0, ...,/ or (2) 4,=0 and
B;#0 for i=0,...,1 or (3) A,=0 and B, =0. Therefore by putting C,=B,/4, for
the i satisfying 4,+ 0, the symbol ideal # of /" equals that of 4] or 4} or A5 in
Theorem 8.6, respectively. Since the proof of the theorem in the cases (1) and (2)
are the same as that in the case (3), we shall prove only in the case (3).
Now we quote the following results:

Lemma 8.7. (a special case of Lemma 3.6 in [13]). Let ¢ be a coherent ideal of &
containing D;(r<i<n). Then there are micro-differential operators Q,(1=<j=N)
such that # =&y Q +...+8xQy+6Ex D, +... + &5 D, and Q; commutes with x; and
D;(r=i=n, 1<j<N).

Lemma 88 (a special case of Theorem 3.1 in [12]). Let P(z,,z,,D,,D,) be a
micro-differential operator defined near (0;dz,). If o(P)=cz, & +2z,&, with a
number ¢ in C—{telR; t<0 or t=1}, there exists an invertible micro-differen-
tial operator U(z,,z,,D;,D,) of order O defined near (0;dz,) such that
UPU~'=cz,D,+z,D,+/ with a suitable complex number 1.

Applying Proposition 2.2, Lemma 8.7 and Lemma 8.8 to the system ./ in
the case (3), we may assume

1 1
(v—l—,uZIDl +;—¢ZZ D,+ ) v=0,

1
Y% [leln(D‘H—Cizﬁ D’;)+R(21,22,D1,D2)]v:0,
i=2
Dyv=...=D,v=0,

where R is a micro-differential operator of order <pu(l/—1) and commutes with
Z35 .5 2y D3, ..., D,. By the Spidth-type theorem and the Weierstrass prepara-



160 M. Sato et al.
tion-type theorem for micro-differential operators (cf. §2.2 Chap. II in [2]), we
may moreover assume R is of the form

ul—1)

R=R,(D;,D;)+z, Z R, (z,,D,) D}
a=0

(8.15) = ) oyDiDi+ > Ajup 71 D Dy
at+p=pi-1) a+p=ul-1)
O0za 12),0=saspl-1)

where 1,,,€C and j, «, feZ. We put

1
0=zD\ [ 04+ €. DY+ R. iz, D,
i=2

i=

1
+(v+u)zzD2+/10u(v+u)] —p*(l=1) (le1 [T @Di+C;2) D’2‘)+R).
i=2
Since

14
[0, T] D%+ €2 D2z, D+ 2, D,

i=2

1
=,u2(l~1)le1 H (Di+C,z DY),
i=2

we have
Q=[R uz, D, +(v+)z, D] >~ 1R
(u(e—j)+(p+v) B— > (I—=1)) A, 2] D3 DS

I
agl

Hence if Qe&y(m), 6,,(Q) is of the form

E3ro (& /E )z (2)+(E/ES) 2 Tz )+
+ (& /e Ve, ua— 1+ 1(Z1)

with analytic functions r; of one variable defined near the origin. Therefore

0,,(0)=0 because a,,(Q)e 7, which implies Q =0. This entails that if 1;,,+0, the
triplet (j, o, B) satisfies (o —j)+(u+v) f=p>(I—1).
Suppose A;,;#+0. Then a=j+pu(l—1)— B(p+v)/p, which shows

(8.16) a=j—(u+v)k+p(l—1) and f=pk with k in Z
because (i, v)=1. The relations j=0, 0=0 and a+f=<pu(l—1) equal
(8.17) (u+vyk—pu(l—1<jskv and j=0.

On the other hand (8.17) implies k=0 and ja <ju(l—1). Thus A" equals 43 with
A=A Q.E.D.

Now we shall consider the simple holonomic systems treated in §6 and §7.
Let A, and A, be irreducible holonomic varieties defined near a point p in the

Jo J = (et )k pl = 1), pk*



Micro-Local Analysis of Prehomogeneous Vector Spaces 161

cotangent bundle of a complex manifold of dimension n. Assume that
Agn A, 3p, A, is non-singular and 4,04, is contained in an (n+ 1)-dimensional
non-singular variety. Then Theorem 8.6 says that any simple holonomic system
M = &u defined near p with support A,uA, can be transformed to the following
form by a quantized contact transformation, which is the claim of Theorem 6.3:

(—u—z D +22D2+ac>u 0

v+ u
My, 57 L2, (DY — 2 D) +(B+p) DY~ " Ju=0
Dyu=...=D,u=0

AOZ{(ZWf);Zl:ZZ:é:«X:éAl: ":énzo}a

{(Z 6) Zy+ ,u % (g:)#_zl 53 énzo}'

In fact, Remark 8.4 says that .# can be transformed to the system 4, in
Theorem 8.6 with [=1 and that if u=1, v can be taken arbitrarily. Moreover we
can choose C, = —1 by a coordinate transformation z,— Cz, with C in C. The
complex numbers o and f are determined by the orders of u at A, and A, (cf.
Remark 8.7) as is given in the following proof.

Proof of Theorem 7.1. Since . is isomorphic to .#,,;, we may assume A = M.
First we shall calculate the principal symbol of u. We put

G0 W)=0iE, &y 25,0 2,))/dE A8y dzy.. dz, ) dz, ...

Since
L_» zyDy+z2Dz+40a
vp

IR o, 8 1
-v+,uzlaz1+zzazz v+;uz5161§1 62@ 2(v+,u+l>+a’
L

zy(DY — 2} DY)+ B+ DY ™ *

a 0
— u—1_— v+ lpgp-1
=pz; &Y PR & 7,

~(E 0D ) ST B B

2 ‘a—{l
0 .
LD"_gx_j for j=3,...,n,
@, and ¢, satisfy
¢ +1 o) @, for i=0,1,
et oo 0=

et oo B8 po= (vt (45 E) 1) gm0,
61 él

5,
-a—;c—(pi=0 for i=0,1 and j=3,...,n

j
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Hence we have

(818) 0, W)= & v "V /AE dE, dz, .. dz pdz, ..dz

ordAouonrvﬁ_ﬂ,
v+u
_2B+vutn M(213+vu—2v+u)u*1
(8.19) o, =& 2 & 26w VdE dé,dz, ... dz, /Y dz, ... dz
2
ord, u=o—2PTAT3H
1 2(v+p)
and
1 (v+2)u
(8.20) a:m(ord,‘ou—#vord,hu)+2(v+u),
vt+p H
f= +1(01d,10u ord, u)—z

The above calculation proves the statement (1) in Theorem 7.1.

To prove (2) we assume that ./#,;=&u=&/ # has a quotient M'=Eu' =&/ 7'
(ie. #'> ¢) with support A,. Let # and #' be their symbol ideals, respectively.
Since #'> ¢ is reduced, (#),=(F), for any point q in A,—A,, which
implies (#,,),=(M"), by the correspondence u=u'. Consider the simple holo-

vB—p
nomic system A'=&D5" v+u 5(21, z,) with support 4, that is,
(22D2+a+vﬁ~u>v=0,
v+ U

lzyv=Dyv=...=D,v=0,

vB-u
by denoting v=D°;+ vei §(zy,z,). We note that owing to the Spéth-type
theorem for micro-differential operators, any section of 4 has a unique ex-
pression Q(z;, ..., z,, D, D,)v with a micro-differential operator Q satisfying

(8.21) (D, Q]1=[D,,Q]=[z5,0]=...=[2,, @] =0.

Since ord, u'=ord, u=ord, v (cf. Example 3.21), for any geA,—A, there
exists an isomorphism 1 of (%), to .4, defined by ' =P(z3, ..., z,, D;, D,)v with
an invertible micro-differential operator P of order 0 defined near q. (Theorem
4.2.5 Chap Il in [2] says that the isomorphism is uniquely determined up to a
constant multiple.) In view of 0=D,u’'=D,Pv=[D,, P]v for i=3,...,n, we have
[D;, P]1=0 for i=3,...,n because [D,, P] also satisfies the condition (8.21).
Hence P is of the form P(D,, D,). In the same way by the relation

vB—p
v4pu

p Il
0: (ZZDZ*’FleDl'f‘OC)PD“‘P(ZzD + o+ ——+—M—(21D1+1)>U

vB
=(z21)2+vj‘_u )Pv PDV—Ht(ZZD + i 2,D,)D;v+u v

7 7. B
= I:ZZD2+m z4 Dl,PDZHu] Dyv+uv
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u

vp
we have [22D2+T21D1,P(D1,D2)D23:Z]=0. Therefore by denoting ¢
U

=D v Dv P is of the form
S .
P= Z ajt v+u+JD2 Vi

jz0

with a;eC. We put F(t)= ) a;t/ and we shall examine the equation that the
jzo
formal power series F(t) sausﬁes Using the relation

+u

[D,z,, t"]=— At* ~—v—~t—t’1,

we have

0={z,(D4 =2, DY)+ (B+4) D4~ '} P
=(Dtz, =Dy DT DY AT 4 DA f) P

v B B
=D‘{‘1(Dlzl—t“H(Dlzl—t—i)-{—ﬁ)F(t)t viu DY v 8(zy, 2,)

"'D" 11) v+,u 1[ Vu [{V‘F,U,(td Vﬁ)

v dt v+p
Yofvtu( d vﬁ) ) ]
-t —— F(t)| o .
N e ) A Rt 0] KICHEN
. . dF ! d L .
This equation shows Y t?ﬁ=t“ 11 (VJ;H tgzw ﬂ+i) E which is equivalent to
i=0
Vi

ja;= H (———(]—v) ﬁ+i)aj_v

i=0

for any jeZ,={0,1,2,...} with the convention a;=0 for any j<0. Hence by
induction we get a;=0 whenever j£0 mod v and

v

(vtmkay=T1 O+ k-1 —=F+i)a_

i=0

for keZ. Therefore we have

TT v+ — BT+

— j=0 vk
(8.22) F(@) aok‘_/_jo AT t

>

where [r]'* 1= H (r+1i) for any reC and leZ ,
i=0

Moreover since the characteristic variety of /4’ equals A, there exists Re ¢’
defined near (0;dz,) such that ¢(R)=2z7 with a sufficiently large positive integer



164 M. Sato et al.

m. By Lemma 8.7 and the Spith-type and Weierstrass preparation-type theo-
rems for micro-differential operators, we may assume R has the form

— 1 i j —1
R=z7~— Z C;; Dy D%z
i20,i+j<0
1=slsm
with C¥,eC. In the same way as above, we have

0=D"RPv

— (M I pi+lnpj pm—-1,m-1
=(D7 z} Z Cile DLDY = 21T Po
iz0,i+j<0
1<1Em

bty B v+u d " ~—Y 4D
— v v — — — 1 v
_D2 +u t +u{([ " tdt ] E Cijt +u

i20,i+j<0
1Zlsm

E_anej[vip d m=t
-Dy+e 1[ - tﬁf— ] )F(t)}é(zi,zz),

which is equivalent to

v d m _ Vv il

([ a ] - ) Gyt EO
voodt i20,i+j<0
18lsm

V—#—(i+l)+j v+u d m—1 _
o[ ] ) ro=o

Here we remark that if we put i+I/=(v+pu)r and j= —pur, the conditions i=0
l l - .
and i+j<0 are equal to T§r<~. Hence by the coefficient of t'* in the
v+ u v

expansion of the above equation into the power series of (t,D,) we have

823)  [Ov+wk—p1"a,=

=
!

lzm ClLv+wWk—=p1""a,g
!

=r<-
v+u v

P » P
where C,=C,_ ,y,_1, _,, and 1 Is a positive integer.

Suppose a,, *0 for any keZ . Then if 0<rv<l, (8.22) implies

TT [+ (ki — 1) = T

i=1

lim [(v+wk—p]" Dyesry
k— o0 [0”+ﬂ)k‘"5]maw

e [V k= B+ m =11 (v+p)Tk+1]
. 1
e [Ty Sy —s
=0.

This contradicts to the equation (8.23). Hence there exists a positive integer N
such that a,, =0, which equals the condition

(8.24) p=z0 and p=0,1,...,vmod(v+p).
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Conversely we assume (8.24). Then the non-zero section

k-1
w L] [v+wj—pr+? Ve Vg
j=0 vk .~ -
= ke v D, v

,EO (v+wrk! 2

k-1

[T Lo+mj—pr+t

j=0 D/I-(v+u)kDuk—I3v
0K+ (v+ k! ' ’

of A" is defined near 4,n4, and it is a solution of .Z, ; because we have proved

(mziDitzaDo ) Po= 2,08 =21 D) 50 D1 | P

=D,Pv=...=D,Pv=0

in the above argument. Therefore the correspondence u= Pv defines a surjective
homomorphism of .#Z,; to .4 and the system defined by its kernel has the
support A, which is clear by the exact sequence of symbol ideals corresponding
to the exact sequence of the holonomic systems.

In the same way if .#,, has a submodule with support A;, the quotient
module by the submodule has the support A,. Hence .# has a quotient module
(resp. a submodule) with the support A, (resp. A,) if and only if the condition
(8.24) holds.

Thus we have proved the statement (2). The statement (3) is easily proved by
(2) considering the adjoint system of .#,, as follows. Since ./, s 15 holonomic,
Extg(/%aﬁ,é") 0 for in(=dim X) and the adjoint system .4}, =& u* is defined
by My =(Exty (M 5, &)). Here ' is the map between right &- Modules and left &-

Modules defined by the correspondences z;+ z; and D;+ —D, (i=1,...,n). Then
we have
u
—D)z,+(—D,)z +oc’)u*:0,
(D02 +(=Dy)z,
My \ (=D —=(=D) )z +(B+p) (=D~ "Ju*=0,

(=Dyju*=...=(—D,)u*=0
for some o and therefore Mjy=M, >, . If there exists an exact
sequence of holonomic systems i TR

Oty — My— M,—0,
we have an adjoint exact sequence
0->ﬂ§‘—>ﬂv+2y , ﬁ—>ﬂf—>0
=i

v+u

by applying the functor (R Homg(-,&)), where 4 =(Ext}(4,, &)) for i=1,2.
This reduces the statement (3) to the statement (2). Q.E.D.
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§9. Examples

We shall use the same notations as in [1].
Example 9.1. (GL(2), 34,,V(4))

Although this space was intensively investigated by T. Shintani (See [5]), we
shall investigate in view of micro-local structure. The representation space can

4
be identified with all binary cubic forms F,(u,v)= ) x;u* *v'~'. Then the

i=1
action p=34, is given by p(g)- F.(u,v)=F.((u,v)g) for geGL(2). By an isomor-
phism F(u, v)>x="(x,,X,, X3, %,)eC*, we identify V with C* In this case, we
have

3a b 0 0 X,

b
©.4) dp(dyx=|3c 2a+d 26 0 \[ x, forA=(a d)eguz)
0 2¢ a+2d 3b X, ¢
0 0 C 3d Xq4

and the relative invariant f(x) is given by
Fx)=x3x3+18x, x5 x3x, —4x, x3—4x3 x,—27x} x3.

First we shall do the orbital decomposition. Put

t12(1)=p(é /11) tzl(/1)=/0<f1 (1)) tl(u)=p(ﬂ 1)

ai=p () e+o.

and

If x=0, we may assume x, =1 by t,,(4) and ¢,(n). Moreover, by t,,(4), we may
assume x,=0. If x,=x,=0, we have x='(1,0,0,0)=u>. If x,+0 or x;+0, we
have x=%0,x,,x5,0) by t,,(4). Using t,(u) and t,(x), we have 0,1,1,0),

0,1,0,0) and *0,0,1,0). Since p(l 1>u2v=uv2, 0,1,0,0) and 0,0, 1,0) are

GL(2)-equivalent. Hence there are four orbits p(G) X, (1 £i<4) where X, =uv(u
+1)=40,1,1,0), X,=u*v=%0,1,0,0), X,=u>=(1,0,0,0) and X,=0,0,0,0)
4

=0. If we identify the dual V* of V with C* by {x,y>= )  x;y;, then we have
i=1

13

—3a -3¢ 0 0 Vi

—-b —2a-d —2c 0 y

dp*(A)y= 2

9.2) p*(A4)y 0 b —a—2d  —ec v,
0 0 —3b —3d Va

a b
for A-<c d)eg1(2).
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Similarly there exist four orbits p*(G) Y,(1 £i<4) where Y; =0,0,0,0)=0, ¥,
='(0,0,0,1), ¥;=0,0,1,0) and ¥, =(0,1,1,0). Let 4, be the conormal bundle of
p(G)X;(1£i<4). We shall show that 4;,= G(Xl, Y). Since (G,p,V) is a regular

-1 9
P.V,4,={0} x V*isa good holonomic variety. Put 4, = ( (3) 1 ) Then wehave
dp(A)X,=0 and dp*(4,)Y,=Y,. Since 3

Ox(Ay)=06(a+d)=—4, t"v§{ddpx4(A4):_6(a+d)=4
and dim V,;': =4, we have
ordAdfs:s5x(A4)—tr'V§4de4(A4)+%dimV)ﬁ= —d4s—*%.
Since dp(4) X ;="34a,3¢,0,0), we have V& ={'(0,0,y5,y,)} and g, acts on V3

as
0= 5 50 6
Va —3b —3d/ \y,
Since Yj; is its generic point, we have 4;=G(X 3, Y3). Since the orbit of Y; in V¢
=V* is of codimension one, we have codimA,nA,=1. Moreover, since A;NA,
is SL(2)-prehomogeneous, A, is a good holonomic variety by Proposition 6.6.
0 0 .
Put A,— (o _;)- Then dp(4;)X,=0 and dp*(4,) Y, =Y,. Since x(Ay)= —3,
2
trys dpy,(A3)=—5d=% and dim V=2, we have ord,, f*=—3s—3. Since
dp(A4) X,="'(b,2a+d, 2¢,0), we have V ={0,0,0, y,)} and gx, acts on Vg

0
as dpy,(A)y,=6ay, for A’=<O 2a)egX2. Since Y, is its generic point,
we have 4,=G(X,,Y,). Since codim p(GL(2))X,=codimp(SL(2))X,=1, we
1

have codim4,n4,=1 and 4, is a good holonomic variety. Put 4, = (8 (_3_)
3

Then dp(A4,)X,=0 and dp*(4,)Y,=0. Since 5x(A,)=—1, try, dez(A ) 1

and dimV{ =1, we have ord, f*= —s—3. Since the orbit of Y in V¢ is of

codimension one, we have codim/lzm/l3—1 Finally, we shall calculate the
—-1-2d 0 Th

7240 ey

dp(A4) X, =0 and dp*(4,)Y;=Y;. Since the trace of A), on V¥ moddp*(g)Y; is

equal to 3+6d, we have u=1 and v=0 by Proposition 6.5, ie, A, and A,

intersect regularly. Since (GL(2), p,V)=(GL(2), p*,V*), A, and A, intersect

regularly. If dp(45) X ;=0 and dp*(45)Y,=Y,, we have 4, = (g l:) and hence

3

the trace of A5 in V§¥ modulo dpy,(ay,)Y, is equal to %, and hence the

intersection exponent (w:v) is (2:1). By Theorem 7.5, we have b, (s)/b (9

=(s+2)(s+I), b/,z(élgbm(s) bA4(S/bA3(S) (s+1), and hence b(s)= (S+1) (s+6)

-(s+2). We denote 1f A is the conormal bundle of an y-codimensional

orbit. We have @ @, @ @, @ —@ and -—@. The holonomy dia-

gram is given in Fig. 9.1.

intersection exponent of A; and A4,, ;(1=i=<3). Put A’4=(
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In general, when conormal bundles intersect regularly, we omit the in-
tersection exponent in the holonomy diagram.

(0)0
(s+1)
D-s-4
+6+3 | 21
@-3s-3
(s+1)

(4) —4s-2

Fig. 9.1. Holonomy diagram of (GL(2),3A1, V(4)

Example 9.2. (SO(n)x GL(m), A,®A,, V(n)®V(m)) with n=3, ggmgl. The

representation space can be identified with all n xm matrices V= M(n,m). Then
the action p=4,®4, is given by p(g) X =g, X" g, for g=(g,,2,)eS0n) x GL(m),
XeM((n, m). First of all, we do the orbital decomposition. For XeV, clearly rank X
and rank ‘X X is invariant under the action p of G. Now assume that rank X =v
and rank ‘XX =y with 0Zu<v<m. Then by the action of GL(m), we may
assume that X =[#&,,...,&,,0,...,0] where & eC" for 1<i<v, and 0="(0,...,0).

Since p induces ‘X X +—g,(( XX ) g, and rank ‘X X = u, we may assume that ‘XX

=(I" 0), ie, (&,8)=0; for 1=i, j=u and (;,&)=0 otherwise. Now put ¢,
010l ’ ] 4y ‘

=1(0,...,0,1,0,...,0) for 1izp and ¢;=(0,.. .,0,1,0,. 01/—0 ,0) for p
+1=£ ]<v Note that it is possible smce n>2m Then we have (e;, J) 0;; for
1=i,jsp and (e;,e;)=0 otherwise, ie, (el, e;)=(é;,¢; for Vi,j, and hence there
exists g, €0(n) satisfying g, X =[e,, .. .,0]. By the action of GL(m), we
may assume that g,eSO(n). This implies that S, ,={XeM(n,m); rank X=v,
rank ‘XX =pu} (0ZSu=<v<m) consists of a single G-orbit, and we obtain the

orbital decomposition. Put X, ,=[e,...,e,,0,...,0], ie,
I, 0 0
0 I,_, 0
(9.3) Xou= ,
0l y—-11,_,10
0 0 0/} n—2v+p
m—v
and

A=A®B= ; ; @ | B.i| B, B,; |eq,
Ay, Az | A; Az,
- = By, | Bs, | B;
Ay | A Asy Ay —_— =
[N 2 SR NS S [——; M v—u m-—y
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where ‘A,= — 4;,(1<i=4). Then we have

©4) dp(A)X,,=AX, ,+X,,

. AtV —144; .
A, +'B, . B,
+'B,,
A+ —14
tAlz 2+ 23 1B32

—'4,,+)Y —14
thz 13 _:13/_—1”32 : l/‘ltBsz
“"IA24”I/ ‘1tA34 0

and hence the isotropy subalgebra gy at X, , is given by

A, V=14, 0\
95 o - = =
- FtAM _’zAzs Az "H/jl—(Azs _tAzs) I/IAM
0 Ty, —/ =14, A,
A, AL, B,,
@ 0 | -4, FAN B,,
0 B,

If we identify the dual V* of V with V=M (n,m) by (X, Y)>=trX'Y, we get the
conormal vector space Vg . by (9.4) as follows.

0 0 0
0|-y=1x |-y/=1Y
06 VE =
’ 0 X Y
0 0 z

X=X, XeMWv—up), YeM(v—pu,m—v)
ZeMmn—2v+pu,m—v)

g{(X ;);’X::X}.

In particular, we have codimS, ,=dimVg =(m—v)(n—v)+ Ly—pwy—p+1).
Since dp*(A@B) Y= —"4AY— YB for A@Beo(n)@gl(m) YeV'*, the action py,
of gy,  on V¥ s given by
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on (e T e
ey |

Note that the action on X-space (resp. Z-space) induced by Px,. , 1s isomorphic
to (GL(v—p), 24,, VEOG—w(—u+1) (resp. (SO(n— 2v+,u) x GL(m—v),
A, @V, V(n—2v+w)Q@V(m—v)). Since n=2m, we have n—2v+ pu=m—v. Since
SO(n) x GL(m) is reductive, the dual (G, p*,V*) has the same orbital decom-
position ¥, ={YeV*; rank Y =v, rank'YY=yu} (0Spu<v=<m). Put

9.8)

o I =t

0 I

and denote by Y, . (resp. Y, _ _, .Y, _ tom- y—1) the point of V¥ = cor-
responding to X% * J(resp. XF(D X*(uz’) Clearly Y, is a generic point of
Vg cand Y, veS:‘,‘, wm—vs 1€, A, =G(X, .Y, . ) where 4, , denotes
the ‘conormal bundle of S, Clearly we have Y, . ,eS¢ ., and
and hence their conormal bundle coincide with A, 1
respectlvely Since they are points of one-codimensional orbits in
V¥, wehave codim4, ,n4, ,,,=codim4, ,n4,,, ,=1Smnce 4, ,n4, ,,, and
A, ,0A4, ., are SO(n) x SL(m)-prehomogeneous, these conormal bundles 4, ,
are good holonomic varieties by Proposition 6.6 since Ay~ =Vx{0}cW. We
shall calculate the order ord,,  f*at A, , where f(X)=det'XX(XeV=M(n,m))
is the relative invariant of thlS P.v. (G, p, V). Let A, be the matrix in (9.5) with

1
Apy=——r—I,  By=—I

2/ -1
PHAN Yy =Y ym—y and  Ox(Ao)=2trB=2-{—3(v—p)—(m—v)}=
— 1
—(@2m—v—p). By (9.7), we have trdpy (AO)=M)2——+—Z+ —(m—v)(v—p)
+(m—v)(n—2v+p) and hence ord, LS i=soy(do)—trdpy, (A )+3dim Vi
—(2m—v—u)s——(v—u) (v—-,u—l—l)——( —v) (n—p). Next we shall show that
pwaand A, o (or 4 ) intersect regularly, i.e., =1, ¥=0 in Proposition 6.5.

S J

mumv

v+ 1,u

all remaining parts zero. Then dp(4,)X, ,=0,

m-—yv>

v+ 1,1

Let A, be an element in (9.5) such that By= —1 Ayy=—

m--v>

2

all remaining parts zero, where peC. Then by (9.7) we have dp(Aﬁ)X
dp*(Aﬁ) cptimv=Yp 4y i m_y and trA =f where tr denotes the trace in
[ 254 modde Y, ptm— - Note that ¥, _, _; ,,_, denotes the point of V¥ cor-
respondlng to X ¥'in (9.8). This 1mphes that 4, , and 4, ., intersect regularly
by Proposmon65 If AegX satisfies that dp (DY ymeve1= Yo pomevets
then dpy, (A) induces the 1dent1ty on V* moddp*(gx, )Y, pm-v-1 by O.7)



Micro-Local Analysis of Prehomogeneous Vector Spaces

Fig. 9.2

Fig. 9.3. Holonomy diagram of (SO(n) x GL(m), A, ® A, V(n) ® V(m)) with n=2m.
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where Y, .., ; is the point corresponding to X#® in (9.8). Therefore we
have fi=1 and =0 by Proposition6.5 where (fi:#) denotes the intersection
exponent. Since

sy 1 m—u-{—l

ord, .. f°— AR 3= —2——
9.9) 1 n—v
ordAwas dy, “fs 52 7

we have Fig. 9.2 by Corollary 7.6. Thus we obtain the holonomy diagram (Fig.
9.3), and the b-function

bs)= T[] (s+k%1) f[ (s+”_;+1>.

k=1

Appendix

In this Appendix, we shall give the proof of (2) in Theorem 4.3 in a generalized
form.
A.l. Let X be a complex manifold and f(x) a holomorphic function on X which

is not identically zero. Let ¢ be the Ideal of @[s]=9 ® C[s] consisting of
P(s)e P[s] such that

(A1) fNsP(s)(f5)=0 for a sufficiently large integer N.

Note that, for N>0, Q(s)=/""*P(s)f* belongs to 2[s] and (A.1.1) means
that Q(s)(1)=0 as a section of O[s]=0 ® C[s]. The condition (A.1.1) is equiva-
C

lent to the following condition;
(A12) P(s)f*(x)=0 for any se € and any x with f(x)=+0.

Let W be the closure of the set {(s; dlogf(x)')e Cx T*X; seC, f(x)+0} and
we shall denote by W, the intersection Wn {s=0} identified with the subset of
T*X. For any ae €, we define £,=2 n(F+(s—a) D[s])={P(a); P(s)e #}. We
shall denote A" by @[s]/ ¢ and N,=9D/ ¢, and u the generator (1 mod #) of A
and u, the generator (I mod #) of 4,. We have A /(s—a) &/ =4, We shall
prove the following theorem which is a generalization of (2) in Theorem 4.3.

Theorem A.1. The characteristic variety of A, is W, for any aeC.

In [7], it is proved that the characteristic variety of .4~ coincides with W and
that of .4, is contained in W,,. In order to prove the converse inclusion relation,
we shall use the theory of matrices of micro-differential operators developped in

[10].
A.2. Let us recall the notion of determinants of matrices of micro-differential
operators introduced in [10]. For an N x N matrix P=(P,;) of micro-differential

operators, we can define the homogeneous holomorphic function det P satisfying
the following properties;
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(A.2.1) If Pand Q are N x N matrices of micro-differential operators, then we
have det(PQ)=(det P)-(det Q).

(A2.2) Let P=(B)) be an N x N matrix of micro-differential operators and m;
(1Si<N) the sequence of integers. Suppose that F; is of order =m,
—m; and that the determinant ¢ of the N x N matrix (o, (F;)) is not
identically zero. Then we have det P =¢.

(A23) det (g g) —(det P)- (det R).

(A.2.4) A matrix P is invertible if and only if det P is nowhere vanishing.

(A.2.5) “det” is invariant under quantized contact transformations, i.e., if @ is a
homogeneous symplectic transformation from an open set Q, to an
open set Q, and if ¥: &~ '&y—> & is a C-Algebra isomorphism, then
we have (det P)o @=det ¥ (P).

A3. Let & be a locally free &y-Module of finite rank and ¢ an &y-en-
domorphism of #. Let u,,...,uy be a basis of &. Then ¢(;)=) P,u; for some

[A2ad}
J
B;eéy (i,j=1,...,N). We define det(p; ¥) by det(P;). This definition does not
depend on the choice of bases. In fact, if v,,...,vy is another basis, then there
exists an invertible matrix Q =(Q,;) such that vi:ZQijuj (i=1,...,N) and hence
j
u;=> (Q~");;v,;. Therefore we have
J

(P(Ui)zfp(zQijvj)zzQijﬁo(vj):ZinjE’k”k
= Z Qij]:;‘k(Q_1)klvl:Z(QPQn1)ilvl‘

gkl 1
By (A21), we obtain det(QPQ ')=detQ-detP -detQ '=detP. Thus,
det(p; ¥) is a well-defined holomorphic function. If Z; is a locally free &y-
Module and ¢; is an &x-linear endomorphism (j=1,2), one can see easily

(A31) det(p, @ ¢,; & @ Ly)=det(p; £) det(gy; L)

A4. Any coherent &yx-Module is locally free at a generic point of T*X. More
precisely, we have the following lemma.

Lemma A.2. Let A be a coherent & y-Module defined on a neighborhood of a point
p of T*X. Then, there exist an integer N and an injective homomorphism ¢:
E%— M on a neighborhood of p such that the cokernel of ¢ has the support of
codimension at least one.

Proof. Let L be a maximal free submodule of .#,, and # a coherent &y-sub-
Module of # defined on a neighborhood of p such that & =L. Then % is free
on a neighborhood of p. Set /" =.#/%. If the support of 4" has codimension at
least one, then there is nothing to prove. Suppose that the support of 4" is T*X.
Then there is a section s of A4 whose support is T*X. Then the Ideal of
annihilators of s is {0}. Let s” be a section of . such that s’ mod & is equal to s.
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Then & @ &y— A defined by (u, P)— u+ Ps’ is injective, which contradicts the
choice of &#. Q.E.D.

Let .4 be a locally projective coherent & y-Module (i.e., for any pe T* X, ./,
is a projective & ,-module) and ¢ an &y-endomorphism of .#. Then there exists
locally a coherent &y-sub-Module 4" such that .# @ .4 is a locally free & -
Module of finite rank. We shall define det (¢; .#) by det(p ® 1 ,; 4 @ A"). This
definition does not depend on the choice of A". In fact, let A" be another & -
Module such that .# @ A" is locally free. Then, by Lemma A.2, there exists
locally an analytic set Z of codimension=1 such that &, 4" and A" are locally
free outside Z, and hence (A.3.1) implies that

det(p D15 M DN )pix_g
=det(@; M)|rsx_z=det(Q @15 M D N)psx_5-

Since det(p ® 1 ,; # @ A) and det(p @ 1,.; M4 @ A") are holomorphic func-
tions, the equality det (¢ @1, ; 4/ DN )=det(p® 1, ; 4 DA") holds every-
where. Therefore, det (@;.#) is well-defined when # is a locally projective
coherent & y-Module.

A.5. Let .4 be a coherent &y-Module defined on an open subset Q of T*X and
@ an &y-endomorphism of .#. Since 4 is projective outside Y

= | ) Supp &=t/ (M, &), det(q; 4) is defined outside Y ([7]). We know that Y is
=1

an analytic set of codimension=1 (e.g. Lemma A.2).

Proposition A.3. det(¢; .#) is prolonged to a holomorphic function defined on Q.

Proof. Set M'={se .4 ; codimsupp s=1}. Then by [7], .#’ is a coherent & y-sub-
Module of .#. We have det(p; .#)=det(p; M /M) outside Y because .4 =0
outside Y. Any section of .#/.#' whose support is codim=1, is zero. Hence by
replacing # by /4 /.4, we may assume from the beginning that any section of .#
whose support is codimension=1 is zero. Then, by using the notion in [7], we
have Ty ,(#)=0. In order to prove the proposition A.3, it is enough to show
that codim Y =2. Since codim Supp &z¢/(.#,&)=2 for j=2 and since the sup-
port of Ty | (M)=Ext (Ext' (M, &), §) has the same irreducible components of
codimension one as those of &z/'(4,&), it is enough to show that
codim Supp Ty , (#)=2. We shall prove that codim Supp Ty ; (#)=2 for i=1
by the descending induction on i. If i=n, then this is true because Ty ,(.#)=0.
Suppose that 1<i<n and codim Supp Too’i +1(A)=2. We have the exact se-
quence (see Proposition 2.8 (0) in [7]) Ty, (M)~ Ty (M)~ T, (). By
Proposition 2.9 in [7], we have codim Supp T, ,(#)=i>1, which implies
codim Supp Ty (#)z2. QE.D.

By the preceding discussion, we can define det(p;.#) as a homogeneous
holomorphic function for any coherent &x-Module .# and any &y-endomor-
phism ¢ of .#. The following properties are obvious by definition.

(AS.1) det(l,; #)=1.
(A.5.2) If @ and ¥ are endomorphisms of .#, then we have
det(poyy; A)=det(@; H)-det(y; H).
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(A53) Let 0— ./~ . > 4" —0 be an exact sequence of &y-Modules
and let ¢, ¢’ and ¢"” be &y-endomorphisms of 4, #' and M re-
spectively such that @eoy/'=y'o@" and ¢"oy=yo¢. Then we have
det(p; A)=det(¢’; M")-det(p"; M").

(A.5.4) dete is invariant under quantized contact transformations.

A.6. Let 4 be a coherent y-Module and let V be the support of .#. Assume
that .# has multiplicity 1 along each irreducible component of V. Suppose that
M is generated by a section u.

Proposition Ad4. Let ¢ be an & y-endomorphism of 4 and P a micro-differential
operator such that @(u)=Pu. Suppose that o(P) is not identically zero on each
irreducible component of V. Then the support of M |op(M) coincides with
a(P)"H0)n V.

Proof. Outside o(P)~'(0), ¢ is surjective, and hence the support of the cokernel
of ¢ is contained in Vno(P)~'(0). We shall prove the converse inclusion
relation. Let # be the Ideal of annihilators of u and # the symbol Ideal of #.
By the condition, # coincides with the defining ideal J,, of V outside an analytic
subset Z of V such that codim, Z>1. We may assume that Z contains the
singular locus of V. For any homogeneous function g in Jy,, there exists locally
on V—Z7, a section G of # such that ¢(G)=g. Since 0=¢(Gu)=Go(u)=GPu
=[G, P]u, we have o([G, P])l,,_,=0. Therefore we have {g,o(P)}},, =0 outside
Z, and hence {J,,c(P)}|,,=0. By Proposition 12 in [8], W=¢(P)"*(0)n V is an
involutory subset.

Since it is enough to show that Supp Coker ¢ > W at a generic point of W,
we may assume that W is non-singular. We shall prove Proposition A.4 by
reduction to absurdity. If Supp Coker ¢ W, then Supp Coker ¢ n W is an
analytic subset of W of codimension>1. Since codim, W=1 and codim, Z =1,
Z—W n W is also an analytic subset of W of codimension >1.

~ Let us take a point p of W—Supp Coker 9 —Z—W. Then, V—W is non-
singular and ¢ is surjective on a neighborhood of p. This implies that ¢ is an
isomorphism at p since any surjective endomorphism of a coherent &y-Module
is an isomorphism. In fact, if Ker¢=={0}, then{Kero'},_ 1,2, is a really
increasing series of finitely generated & y-submodules of .#. This contradicts that
&y is noetherian (See [2] Chap. II, Theorem 3.4.1). Let [+1 be the codimension
of Win T*X, then V—W is of codimension l. Since W is involutory, we have
0i<n.

Let C,(V) be the tangent cone of V at p.

Lemma A.S. Let (4, E) be a symplectic vector space of dimension 2n, i.e., A is a
vector space of dimension 2n and E is a non-degenerate skew-symmetric form on A.
Let | be an integer such that 0<1=<n and, V a homogeneous analytic subset of A of
codimension =1. Then, there is an isotropic vector subspace u of dimension | such
that Vnuc= {0}

We shall prove this lemma by the induction on I. If [=0, the lemma is trivial.
Suppose 1>0. Let {V;},_, . y be the set of irreducible components of V. If
V< {0}, then there is nothing to prove. Hence, we may assume that dim V=1
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for any i. Let W, be the linear subspace generated by V,. Then W= {0}, and
N N

hence W;*+ A. Therefore | ] W, U V= A. Let x be a point of 4— (U |{A] V>,
i=1 iZ1

and set p,=Cx. Then, by the condition, the function f(y)=E(x,y) is not
identically zero on any ¥, and hence ug n V=V~ f ~*(0) has codimension=1
+1. Since o N V= {0}, the map ¥: V n ug— pg/iko is a finite map. Let V' be the
image of Y. Then, codim,y, V'=[—1, and hence, there is an isotropic subspace
W oof pg/p, of dimension [—1 such that V' n /' <{0} by the hypothesis of
induction. Let u be the subspace of ug such that w'=p/u,. Then, u is an
isotropic subspace of dimension . By the choice of ¢/, we have Vn u< pu,. Since
Vo< {0}, we obtain Vnuc {0}. Q.E.D.

We shall resume the proof of Proposition A.4. By the preceding lemma, there
is an l-dimensional vector space u such that un C,(V)={0}. By a quantized
contact transformation, we may assume that u is spanned by H, ,...,H  and p
=(0,dx,). The choice of p implies that p is an isolated point of Vn{(x,&); x=0,
==&, ,=0,¢ =1} We have

(A.6.1) the map V— €*"~! defined by (x,&)—(x, &, 4,...,&,) Is a finite map.
Moreover, we have un T,W=0, and hence wn (T, W)t =0. Therefore,
dxly,-...,dx]y are linearly independent.

Thus we obtain
(A.6.2) the map W— C' defined by x,,...,x, is a smooth map.

Let Y be the submanifold of X defined by x;=0 (1 <j</) and p the canonical
projection from Y x T*X onto T*Y. Then by (A.6.1), Y x V-2 T*Y is a finite

map, and hence Y is non-characteristic with respect to .#; moreover by (A.6.2),
W is transversal to Y x T*X and Y % W—2-T*Y is an embedding.

We shall show that V—W is also transversal to Y % T*X on a neighborhood
of p. Otherwise, there exists a sequence {p,} of ¥ 3{<(V— W) such that V—W is
not transversal to ¥ x T*X. Hence dx,|y, y, ..., dx|;, y are linearly dependent.
We may assume that 7, V' converges to a linear subs'i)ace © of T,(T*X). Then
dx,|t,...,dx)|t are linearly dependent. Since t=T,W and dX (| s dXilp,
are linearly independent, we have the contradiction. Thus, V — W is transversal
to ¥ T*X on a neighborhood of p.

Note that dim Y x V=2n—2l=dim T*Y. Hence, there are an open neigh-
borhood @ of p, an open neighborhood Q' of g=p(p) and a closed analytic
subset G of Q' of dimension less than 2(n—1) such that p~"}(Q' -GNV Q— Q'
—G is a finite covering space. Let ¢’ be a point of &' —G, and let Q"(= Q' —G)
be a sufficiently small connected open neighborhood of 4. Then,

p~ Q)N VN Q is a finite union of its connected components V,(v=1,...,N)
and V,——>Q". Set

/V://‘{lyzp*(éay—»xé@/[anan—1(.@’))
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(See [2]). Then A" is a coherent &y-Module. We have A" = @ A, on Q" where
N=p €y X®,/%}VU) and ¢ induces the endomorphism cp (resp @,) on N
(resp. A). We have

(A6.3) det(¢; Mg =[] det(@,; 4,).

We shall prove the following (A.6.4) later.
(A64) det(@,; H)=a(P)),.

By admitting (A.6.4), we shall prove Proposition A.4. By (A.6.3) and (A.6.4),
we obtain det(®; A4)=]]o(P)l,, or equivalently det(®; #")(q)=[]a(P)(p) for

qeQ —Gand p' ep~(q)n Vn Q. Since o(P)|,, =0, this implies that
(A.6.5) det(@; A ) ,ow,=0

Since ¢ is an isomorphism on a neighborhood of p, ¢ has an inverse . Hence
Y induces an &y-linear endomorphism ¥ on .4~ which is an inverse of ¢. Hence
L=det(poy; A)=det(p;.#") det(f; #), which contradicts (A.6.5).

Now, it only remains to prove (A.6.4). This is an easy consequence of the
following lemma.

Lemma A.6. Let Y be an l-codimensional submanifold of X, V an involutory
submanifold of codimension I, # a coherent &y-Module generated by a section u,
F the Ideal of annihilators of u and @ an &y-endomorphism of M. Suppose the
Sfollowing conditions;

(A.6.6) The symbol Ideal ¢ of ¢ coincides with the Ideal of functions vanishing
on V.

(A.6.7) Vs transversal to Y % T*X.

(A.6.8) There is a micro-differential operator P such that ¢@(u)=Pu and
G(P)]Y§V$O

Then, the determinant of the &y-linear endomorphism & of N =y coin-
cides with o(P)ly, -
X

Proof. The condition (A.6.7) assures that by a contact transformation, Y x Vand
V are transformed to {(x,&); x;=...=x,=0} and {(x,¢&); ¢, =...=&,=0} re-
spectively. Hence we may assume from the beginning that Y={x; x,=...=x,
=0} and V={(x,{)e T*X; ¢, = —é, 0}. By (A.6.6), there are micro- dlfferen-
tial operators P,(x,D")=P,(x, D,H, ...,D,) of order <0 such that D u=P,(x,D")u

1

(v=1,....,]). Then, we can express P=RF(x,D")+ ) Q,x,D)(D,—P) where
v=1

Fy(x,D") is a differential operator which does not contain D,, ,...,D, and

ord Pz ord Fy, ord Q. Therefore, we have Pu=F,u and o(P)|, = O'(PO)IV The Ey-

Module A =p (€y_x&X).#) is a free &y-Module generated by ii=1,_ y ® u. On
Ex
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the other hand we have
p)= l)ux®§0(u)= ly_.x® Pu

=1y x ® R(x,D")u

=F,(0,x", D") 1L
Hence we obtain o
det(p; A7) =0(F,(0,x",D"))

ZG(PO)[Y;V=O-(P)IY§V'
This completes the proof of Lemma A.6.
A.7. Now let us prove Theorem A.1. Suppose first that

(A.7.1) there is a vector field v such that v(f)=f. Set

W={sdlogf(x)e T*X; seC; f(x)+£0} = T*X.

Then we have W,=W na(v)~'(0), because we have s=a(v)(x, &) for (s,x,&)e W.
We know that the characteristic variety of & =9[s]lu=%u is W. A has
multiplicity 1 at a generic point of W. Set p=s—a: & — A". We have pu=(v
—a)u and we can apply Proposition A.4, and we obtain

Supp Cok Kerp=Wna(v—o)~ " (0)=W,.

Thus we obtain Theorem A.1 under the condition (A.7.1).
Now, we shall prove Theorem A.1 in a general case. Set X'=C x X and let f”

0
be the holomorphic function yf(x) on X'. Then we have vf'=f" for v=y@.

Define A= ,.[s]f'*, W =the closure of {sdlogf € T*X; f'(y,X)=*0, seC}
and W, =W n{s=0}=T*X'. Then by the preceding argument, we have
SS(AN"f(s—oy N )=W; for any o€ C. If we identify T*X' with T*CxT*X =C

xCxT*X, we have W' n {y+0} =the closure of {(y,%,dlogf(x)s)e(l?x@
xT*X; y=*0, f(x)=+0, se(]j}:{(y,%p>e(txx(lij*X; (s,p)eW}. Since

o(v) (y, %, p) =5, we have W) n {y=+0}=C* x {0} x W,. We shall prove SS(A"/(s

—o) N> W,. If p¢SS(AN/(s—a).A), then there is a differential operator
P(x,D)e ¢, such that o(P) (p)=+0. Let Q(s) be a section of ,# such that P(x,D)
=Q(«). Let P be the differential operator P considered as a differential operator
on X', and Q(s) the section Q(s) considered as a section of Py [s]. Then, we
have Q(s)f"*=0 and hence P = («) annihilates f"*mod (s— o) A"". Hence o (P)|y,,
=0. In particular a(P)(y,0,p)=0. Since o(P)(y,0,p)=0(P)(p), we obtain a(P)(p)
=0, which is a contradiction. This shows the desired result; SS(A"/(s—o).A")
> W,.
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