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INTRODUCTION TO MICROLOCAL ANALYSIS Y

by Masaki KASHIWARA

§0. INTRODUCTION

0.1. In this lecture, we explain the micro-local point of view (ie. the
consideration on the cotangent bundle) for the study of systems of linear
differential equations.

0.2. The importance of the cotangent bundle in analysis has been recognized
for a long time, alithough implicitly, for example by the following con-
sideration.
We consider a linear differential operator
P(x,0) = Y afx)0* with & = (8/0x,)" ... (8/0x,)™
aeN”"

for o = (oy,..,a,), and try to find a solution to P(x, du(x) = 0. If we
suppose that u(x) has a singularity along a hypersurface f(x) = 0, then the
simplest possible form of u(x) is

u(x) = co(x)S(x)' + c;()f (X + .
Then setting P,(x, &) = Y a,(x)&* we have

|af=m
011 Plx, Oulx) = s(s—1) ... (s—=m+ Deo()Pulx, df) (X" + ..
+ (5+]) o (sHj-m+ De(x)P,(x, df)
+ (terms in ¢q, ..., ¢; ) f(x) 7 + ..
Therefore P,(x,df) must be a multiple of f(x) (ie. P, {x,df) = 0 on
/7 H0)). In this case, f~Y(0) is called characteristic.

Thus the hypersurface f~'(0) is not arbitrary and the singularity of the
solution to Pu(x) = 0 has a very special form.

Yy Survey lectures given at the University of Bern in June 1984 under the
sponsorship of the International Mathematical Union.



— 6 —

0.3. If P,(x, &) # 0 for any non-zero real vector &, then P is called an
elliptic operator. In this case, one can easily solve P(x, du(x) = f(x) for any
f(x), at least locally. We start from the plane wave decomposition of the
S-function.

(&)

<x, E>"

(0.3.1) 8(x) == const. J‘
gn- 1
where o(£) is the invariant volume element of the sphere §"~ .
By formula (0.1.1), we can solve
1

PO OK( ) = g oy E g

by setting K(x, y) = Y. ¢;(<x,E> — <y, £>)""""/ and determining c; recur-

sively. Then K(x, y) = const JK(x, v, E)o(E) satisfies

by (0.3.1).
If we set u(x) = jK(x, WS (dy then u(x) satisfies P(x, Qu(x) = f(x).

In fact

P(x, du(x) = JP(x, OK(x, y)f(y)dy = f dx—yfdy = f(x).

0.4. By these considerations, M. Sato recognized explicitly the importance
of the cotangent bundle by introducing the singular spectrum of functions
and microfunctions [Sato]. For a real analytic manifold M, let o/, be the
sheaf of real analytic functions and £, the sheaf of hyperfunctions. Let
n: T*M — M be the cotangent bundle of M. Then he constructed the sheaf
%, of microfunctions and an exact sequence

0= oy = Brg > 1,64 — 0.

The action of a differential operator P(x, 0) on 4%, extends to the action
on €.
Moreover P: %, — %, is an isomorphism outside

{x, &) e T*M; P,(x,£) = 0}
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0.5. In the situation of §0.2, u(x) = co(x)f(x)° + ... satisfies supp sp(u(x))
= {+df(x)}. Therefore P,(x,df) must be zero if P(x, du(x) = 0. In fact
otherwise the bijectivity of P: 4, — €,, implies sp(u) = 0.

0.6. Such a method of studying functions or differential equations locally
on the cotangent bundle is called microlocal analysis. After Sato’s discovery
of microfunctions, microlocal analysis was studied intensively in Sato-Kawai-
Kashiwara [SKK].

Also L. Hormander [H] worked in the C®-case. Since then, microlocal
analysis has been one of the most fundamental tools in the theory of
linear partial differential equations.

§ 1. Systems oF DiFrerenTIAL EQuaTIONS (See [O], [Bj])

1.1 Let X be a complex manifold. A system of linear differential equations
can be written in the form

No
(L.1.1) S Py, du; =0, i=1,2_.,N,.
i=1

Here u,, .., uy, denote unknown functions and the P;i(x, 0) are differential
operators on X. The holomorphic function solutions of (1.1.1) are simply
the kernel of the homomorphism

(1.1.2) P:0% - o
which assigns (v, , ..., vy,) to (uy, .., uy,), where v; = Y Pijx, Ou;.

J
Let us denote by &y the ring of differential operators with holo-
morphic coefficients. Then

(1.1.3) P: g o @Yo

given by (Q;,..,Qn,) to (ZQ;P;y, .., ZQ;P:y,) is a left Py-linear homo-
morphism. If we denote by .# the cokernel of (1.1.3), then .# becomes a
left Zy-module and omyg, (4, O) is the kernel of (1.1.2). This means
that the set of holomorphic solutions to Pu = 0 depends only on ..

For this reason we mean by a system of linear differential equations
a left Zy-module.
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1.2. Let us take a local coordinate system (xi,.., x,) of X. Then any
differential operator P can be written in the form

(1.2.1) Plx,0) = Y ax)d
aesN"
where 0* = of/ax% . ox%, |a| = o, + .. + o, and the g,(x) are holo-

morphic functions. For j e N, we set
PvE = ¥ ag
af = j
where £* = £% &%, and we call {P;(x,£)} the total symbol of P. The
largest m such that P, # 0 is called the order of P and P, is called the
principal symbol of P and denoted by o(P).
Let us denote by T*X the cotangent bundle of X, and let

(xl >t xn’ &1 EERA E_)YI)

be the associated coordinates of T*X. It is a classical result that if we
consider o(P) as a function on T*X, then this does not depend on our
choice of the local coordinate system (x;, .., X,).

1.3. Let M be a real analytic manifold, and X its complexification, e.g.,
M =R'c X =C" Let P be a differential operator on X. When
o(P) (x, &) # 0 for (x,&)eR" x (R™\{0}), P is called an elliptic differential
operator. In this case, we have the following result.

ProposiTiON 1.3.1. If u is a hyperfunction (or distribution) on M
and Pu is real analytic, then u is real analytic. More precisely if we
denote by o the sheaf of real analytic functions on M and by %
(resp. @b) the sheaf of hyperfunctions (resp. distributions) on M, then
P:Bjod — Bl (resp. P:Dble/ — Dbj</) is a sheaf isomorphism.

This suggests that if o(P)(x, &) # 0, we can consider the inverse p!
in a certain sense. Since (x, &) is a point of the cotangent bundle, p!
is attached to the cotangent bundle.

In fact, as we shall see in the sequel, we can construct a sheaf of rings
&y on T*X such that Py < m, &y, where m is the canonical projection
T*X — X. Moreover if P € @y satisfies o(P) (x, £) # 0 at a point (x, &) e T*X,
then P~ 1! exists as a section of &y on a neighborhood of (x, §).

This can be compared to the analogous phenomena for polynomial
rings, as shown in the following table.



Clx(, o x,] Dy
C T*X
the sheaf C¢. of

holomorphic functions &y

§ 2. MICRO-DIFFERENTIAL OPERATORS (See [SKK1, [Bj], [S], [K2])

21. Let X be an n-dimensional complex manifold and let my: T*X — X
be the cotangent bundle of X. Let us take a local coordinate system
{x1, . x,) of X and the associated coordinates (x;, .., X,; &, .., &,) of T*X.
For a differential operator P, let {P;(x, &)} be the total symbol of P as in
§ 1.2. We sometimes write P = XP;(x, 0).

Let Q = XQ;(x, J) be another differential operator. Set § = P + Q and
R = PQ. Then the total symbols {S;} and {R;} of R and S are given
explicitly by

(2.1.1) S; =P, +0;
1
(2.1.2) Ry= %  —(0%P))(0:Q))
AR R

where 0% = (0/05,)™ ... (0/0E, )™ and 8% = (8/3x )™ ... (8/0x,)™ .

The total symbol {P;(x, &)} of a differential operator behaves as follows
under coordinate transformations. Let (x,, .., x,) and (£, .., X,) be two local
coordinate systems. Let (£, , .., &,) and (€, , ..., £,) be related by

- 0X
(K:k ;é; axk

ie (xy, ., X8y, 8y) and (X,..,%,; &, .., ) are the associated local
coordinate systems of the cotangent bundle T*X. Let P be a differential
operator on X and let {P;(x, £)} and {P,;(%, &)} be the total symbols of P
with respect to the local coordinate systems (x;, .., x,) and (X,,.., %,),
respectively. Then one has

(2.1.3) Py(% )

= Y —— <Eaux> . < OpX>0p %P i(x, E).
v e, Vi ooy !
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Here the indices run over jeZ, veN, o,,..,a,€N" such that
Loy fyon]oy | =2andl =j+v—]o|—..—]|ol ForBeN" < of%>
denotes Y. £;0°%;.

7

2.2. The total symbol {P;(x, &)} of a differential operator is a polynomial
in & We shall define microdifferential operators by admitting P; to be
holomorphic in &.

For A € C, let O7,x(A) be the sheaf of homogeneous holomorphic functions
of degree A on T*X, i.e,, holomorphic functions f(x, &) satisfying

(ZE;0/08,—N[f(x,8) = 0.
Definition 2.2.1. For AeC we define the sheaf &x(A) on T*X by

Q- {(Px—j(x, E,v))jeN ; Py_je F(Q; mT*X()“_j))
and satisfies the following conditions (2.2.1)}

(2.2.1) for any compact subset K of Q, there exists a Cyx > 0 such that
sup| P,—;| < Cg/(jH  forall j>0.
K

Remark. The growth condition (2.2.1) can be explained as follows. For
a differential operator P = LP;(x, §), we have

T
P(x, 0) (<x, &> +pl = ZP;(x, &)ﬁ-u—_%%l—)

For P = (P, ;(x, £)) € 6(1) we set, by analogy

I
P(<x, &> +pf = 3 Pp_j(x, i)m:%m

(<x, &> +pP 7.

(<x, &> +prtti.

Then the growth condition (2.2.1) is simply the condition that the right
hand side converges when 0 < | <x, &> 4+ p| « 1.

Now, we have the following

ProposiTION 2.2.2 ([SKK], Chap. IL, § 1, [Bj] Chap. IV, § 1).
(0) &x(A) contains &y(h—m) as a subsheaf for meN.

(1) Patching by rule (2.1.3) under coordinate transformations, &x()) becomes
a sheaf defined globally on T*X.
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(2) By rule (2.1.1), &x(A) is a sheaf of C-vector space on T*X.
(3) By rule (2.1.2), we can define the “product” homomorphism :
&x(N) <§C§ Ex(W) = Ex(h+p),

which satisfies the associative law.

(4) In particular, Ex(0) and &y = U Ex(m) become sheaves of (non

meZ,
commutative ) rings on T*X, with a unit.
The unit is given by (P;(x,§)) with P; =1 for j=0 and P; =0
for j 0.
We define the homomorphism
G5t Ex(A) = Opx(M)
by (Pr-j)— Py

Then, o, is a well-defined homomorphism on T*X (i.e. compatible with
coordinate transformation) and we have an exact sequence

0= Ex(h—1) = Ex(1) 3 Ope(d) = 0.

Now we have the following proposition, which says that the ring &,
is a kind of localization of 2.

ProrosiTION 2.2.3.
(1) For Peé&() and Qe &), we have 03.+u(PQ) = oy(P)o,(Q).

(2) ([SKK] Chap. II, Thm. 2.1.1) If Pe&(\) satisfies o,(P)(q) # 0 at
qe T*X, then there exists Qe &(—\) such that PQ = QP = 1.

The relations between &y and 2, are summarized in the following
theorem.

THEOREM 2.2.4 ([SKK], Chap. 1L, § 3).
(i) &x contains n~ '@y as a subring and is flat over lg.,.
(i) Exlyix = Dy, where TEX s the zero section of T*X.
(i) For a coherent ZDy-module ., the characteristic variety of .M

coincides with the support of &y & myl 4.

-1
ny Zx
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§3. THE ALGEBRAIC PROPERTIES OF & (See [SKK], [Bj])

3.1. In the preceding section, we introduced the notion of micro-differential
operators. The ring & of micro-differential operators has nice algebraic pro-
perties similar to those of the ring of holomorphic functions.

Let us recall some definitions of finiteness properties.

Definition 3.1.1. Let &/ be a sheaf of rings on a topological space S.

(1) An «/-module .# is called of finite type (resp. of finite presentation)
if for any point x € X there exists a neighborhood U and an exact
sequence 0 « |y « /7|y (resp. 0 « M|y « A |y « A y).

(2) . is called pseudo-coherent, if any submodule of finite type defined on
an open subset is of finite presentation. If .# is pseudo-coherent and of
finite type, then .# is called coherent.

(3) . is called Noetherian if .4 satisfies the following properties:
(a) M is coherent.

(b) For any x € X, ./, is a Noetherian .« -module (i.e. any increasing
sequence of .o7 ~-submodules is stationary).

() For any open subset U, any increasing sequence of coherent
(| y)-submodules of .# |, is locally stationary.

As for the sheaf of holomorphic functions, we have

THeEOREM 3.1.1 ([SKK] Chap. II, Thm. 3.4.1, Prop. 3.2.7). Let T*x
denote the complement of the zero section in T*X.

(1) &y and &x(0) are Noetherian rings on T*X.

(2) &y isflat over W'Dy

(3) Ex(M)|34x is a Noetherian &Ex(0)] ¢, x-module.

(4) For peT*X, 40), isalocal ring with the residual field C.

(5) A coherent &y-module is pseudo-coherent over & (0).

§4. VARIANTS OF & (See [SKK], [Bjl, [S])

4.1. We have defined the sheaf of rings &. However we can introduce
other sheaves of rings, similar to &, which makes the theory transparent.
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42. The sheaf & = lim &/&(—m) is called the sheaf of formal micro-

meN
differential operators. This is nothing but the sheaf similar to &, obtained
by dropping the growth condition (2.2.1).

43. We can define the sheaf £° of micro-differential operators of infinite
order ([SKK]). For an open Q < C", we set

rQ;e”) = {(pj)jeZ , DG E F(Q§ (OT*XU))
satisfying the following conditions (4.3.1) and (4.3.2)}.

(4.3.1) For any compact set K < ), there is a Cg > 0 such that
sup|p;| < Cgi(—j)!forj < 0.
K

(43.2) For any compact set K < Q and any & > 0, there exists a
Cg.. > 0 such that

&l
sup | p;j| € Cx,— for j=1
K J!

44. We can also define the sheaf & on T*X by #"(us(0F})). (See
[KS] Chap. II, [SKK]). Here n = dim X, ¢00,"} is the sheaf of holomorphic
forms on X x X which are n-forms with respect to the second variable,
and p, is the micro-localization with respect to the diagonal set of X x X
(See [SKK] Chap. II for the details).

4.5. We have &y = 6% < &%, &x = &x. Moreover, &%, &% and &, are
faithfully flat over &y. The sheaf &y is Noetherian. The sheaf &% contains
&x(\)y's compatible with the multiplication.

4.6. If we denote by v the projection map T*X — T*X/C*, then Ry, 6% = 0
forj # 0 and &° = vy~ 'y, &%.

47. In[SKK], &, &, and & are denoted by #/, # and .

4.8. To explain the differences between &, &%, &® and &, we shall take the
following example. Let X be a complex manifold and Y a hypersurface of X.
We shall take local coordinates (x, .., x,) of X such that Y is given by
x; = 0. The Zy-module Zy/Dyx, + Y, Zx0; is denoted by Byx. Set

j>1
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Cyix = Ex _% gnx,(gnx = @ﬁxgg(gm“
%;‘,"Ix = g;{o 6@ (g”X and (g$|}( = éal;?(g”x

Then we have, setting p = (0, dx,), xo = 0
(gY|X.p = {a + blogx,;ae 0y F1/x,], be Oy, xg}/(OX,xo

I1e

(@X,xo[l/xl:l/(px,xg) D Oy &,
9'0:)'|X,p = {a+ blogx;ae Ox, xl1/x], be @X|Y,xg}/@X,xo
((Qx.xofl/xl]/@x,xo) @ @X|Y.xo'

Here @XW = lip 0y/x™0y is the sheaf of formal power series in the

i

x,-direction.
(g;ﬁX.p = {a +blogx,;ae (]*/" I@X)X()’ be (OX,xg}/(pX,xo
where j is the open embedding X\Y o X.

(gl;IX.p = li_{n OU)Ox, x, -
U

Here U ranges over the set of open subsets of the form

{xeX;|x|<egRex; <elmx,}.

48. If we use &%, the structure of §-modules becomes simpler. We just
mention two theorems in this direction.

TaeoreM 4.8.1 ([KK] Thm. 5.2.1). Let # be a holonomic & y-module.
Then there exists a (unique) regular holonomic &x-module .M., such that

" @ MEEYD Moy
Ex Ex

THEOREM 4.8.2 ([SKK7] Chap. II, Thm. 53.1). Let X and Y be
complex manifolds and let T3%Y be the zero section of T*Y. If M
is an &y xy-module whose support is contained in T*X x T{Y, then there
exists a (locally) coherent &y-module & such that

ESvy ® MZEEZXy @ (g®@y).

Exxy Exxy

Here & denotes the exterior tensor product. (See § 8).
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§ 5. THE VANISHING CYCLE SHEAF

51. Let M be a real manifold and f: M — R a continuous map. For a
sheaf & on M, #7-15+(F)| ;-1 is called the (j-th) vanishing cycle sheaf
of #. Here R = {reR;t > 0}. This measures how the cohomology groups
of # change across the fibers of f. Its algebro-geometric version is studied
by Grothendieck-Deligne ([D]).

5.2, Let (X, Ux) be a complex manifold. Let f: X — R be a C*-map and
consider the vanishing cycle sheaf #7.-15+(0) | r-10)- Let s be the section
of f7}0) — T*X given by df. Then we have

Prorosition 5.2.1 ([KS1] §3, [K2] §4.2). yf}—1(g+,((ﬁx)1f_l(o) has a
structure of an s~ & y-module.

Let P be a differential operator. If o(P) does not vanish on s(f~*(0)),
then P has an inverse in s™ '€y by Proposition 2.2.3. Therefore we obtain

COROLLARY 5.2.2. If o(P)| p-10) # O, then

P Jf}“‘n"((gx) | =10y %}'1(11*)((9)() | S-10)
is bijective.
5.3. More generally, let .# be a coherent %,-module, and set
F ' = RA omy (M, Oy).
Then the preceding corollary shows that ‘
RO, g F ) p-10p = 0 if  s(f710) n Ch(lt) = O .

Here Ch.# denotes the characteristic variety of ..

54. To consider vanishing cycle sheaves is very near to the “microlocal”
consideration. In this direction, see [K-S2].

§ 6. MiCRO-DIFFERENTIAL OPERATORS
AND THE SYMPLECTIC STRUCTURE ON THE COTANGENT BUNDLE

6.1. The ring &y is a non-commutative ring. This fact gives rise to new
phenomena which are not shared by commutative rings such as the ring of



— 16 —

holomorphic functions. They are also closely related to the symplectic
structure of the cotangent bundle.

6.2. Let us recall the symplectic structure on the cotangent bundle.

Let 0, denote the canonical 1-form on the cotangent bundle T*X of a
complex manifold. Then dBy gives the symplectic structure on T*X. The
Hamiltonian map H: T*(T*X) = T(T*X) is given by

6.1.1) <mn,v> = <dby,vAH(m)> for mneTHT*X)
and ve T(T*X).

For a function f on T*X, H(df) is denoted by H, and the Poisson
bracket {f, g} is defined as H{g). If we denote by & the Euler vector
field (i.e. the infinitesimal action of C* on T*X), then we have

¥ = H(—0y).

With a local coordinate system (x,, .., x,) of X and the associated local
coordinate system (X, .., X,; &y » s &) Of T*X, we have

9X = Zé}d‘x!>

doy = Y d&dx;,
H:dE;— 0/0x;, dx;— —0/0E;

(.9} =Z(Q-ﬁi—ﬁg—>-

6.3. This structure is deeply related to the ring of micro-differential operators.
The first relation between them appears in the following

PROPOSITION 6.3.1. For Peé&(\) and Qe é(n), set
[P,0] = PQ — QP e E(h+pu—1).
Then
1w 1([P, Q1) = {o3(P), 0,(Q)} -
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An analytic subset V of T*X is called involutive if f|, = g|, =0
implies {f, g}, = 0.

The following theorem exhibits a phenomenon which has no analogue
in the commutative case.

THEOREM 6.3.2 ([G]). Let # be a coherent &y-module defined on an
open subset Q of T*X and let % be a & x(0)| o-module which is a
union of coherent &x(0)-modules. Then V = {peQ; ¥ is not coherent over
&x(0) on any neighborhood of p} is an involutive analytic subset of Q.

CorOLLARY 6.3.3 ([SKK] Chap. 1I, Theorem 53.2, [M]). For any
coherent & y-module 4, Supp # is involutive.

Since any involutive subset has codimension less than or equal to
dim X, we have

COROLLARY 6.3.4.  The support of a coherent & y-module has codimension
< dim X.

After some algebraic calculation, this implies

THEOREM 6.3.5 ([SKK] Chap. II, Theorem 5.3.5). For any point pe T*X,
&x,, has a global cohomological dimension dim X.

6.4. An analytic subset A of T*X is called Lagrangean if A is involutive
and dim A = dim X. A coherent & y-module is called holonomic if its support
is Lagrangean.

§ 7. QUANTIZED CONTACT TRANSFORMATIONS

7.1. In the previous section, we saw that the symplectic structure of
T*X is closely related to micro-differential operators via the relation of
commutator and Poisson bracket. In this section, we shall explain another
relation.

Definition 7.2.1. Let X and Y be complex manifolds of the same
dimension. A morphism ¢ from an open subset U of T*X to T*Y is
called a homogeneous symplectic transformation if *8, = 0y.
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We can easily see the following

(7.2.1) If @ is a homogeneous symplectic transformation, then ¢ is a local
isomorphism and is compatible with the action of C*.

(7.2.2) Assume Y = C" and let (y,, ... ¥»3 N1, - M) be the coordinates of
T*Y, so that 6, = Y ndy;.

Set p; = nye@and g; = y;° Q. Then we have

(12.3.1) {pjspk} = {%’a‘h} =0, {Pj,CIk} = 5,:1: forj,k = 1,..,n.

(7.2.3.2) p; is homogeneous of degree 1 and g; is homogeneous of degree 0
with respect to the fiber coordinates.

(7.2.4) Conversely assume that functions {q;, .., qu> P15 - p.yonUc T*X
satisfy (7.2.3.1) and (7.2.3.2). Then the map @: U — T*Y, given by

Usx+— (Q1 (X), Has) qn(x)» P1 (X), ey pn(x)) € T*Y s

is a homogeneous symplectic transformation. We call (qy, -, 4} P15 - P.)
a homogeneous symplectic coordinate system.

TueoreM 7.2.2 ([SKK] Chap. II §3.2, [K2] §24, [Bj] Chap. 4 §6).
Let @:T*X > U — T*Y be a homogeneous symplectic transformation,
let py beapointof U andset py = ¢©(py). Then we have

(a) There exists an open neighborhood U’ of px and a C-algebra
isomorphism ®: @ 1&y|y > Exly (wecal (o, D) a quantized contact
transformation ).

() If ®:0 '&y — Exly is a C-algebra homomorphism then for any
m, ® gives an isomorphism @ '&y(m) > Ex(m)|y. Moreover the
following diagram commutes:

@1 Ey(m) 5 Exm)]
l Gm l G"l
O Opyim) B Opsy(m) |

(c) Let ® and @ be two C-algebra homomorphisms e 16y = Exly-
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Then there exist % e C, aneighborhood U' of py and PeT(U; &)
such that o,(P) is invertible and
Q) = POQP!  for Qeo 'Eyly.

Moreover L is unique and P is unique up to constant multiple.
(d) Let Y = C" andlet U be an open subset of T*X.

If P,eT(U;64(1) and Q;eT(U; &x0) (1<j<n) satisfy
(7.2.5) [P, P] = [Q;, Q] =0
[P, Qi = 85
then there exists a unique quantized contact transformation (@, ®) such that
@(p) = (06(Q1) (P), > 5o(Q) (p), 01(P) (P), ..., 51(P,) (P))

and ®(y;) = Q;, ¥, = P;.
We call {Q,, .., Q. Py, .., P,} quantized canonical coordinates.

7.3. We shall give several examples of quantized contact transformations.

Example 7.3.1. 1If P() is a constant coeflicient micro-differential operator
of order 1, then
(xl + [Pa xl]? x2+ [P7 X2]3 ey Xn+ [Pv xn]’ axl 3 esey a)cy.)
gives quantized canonical coordinates.

Example 7.3.2. More generally if P is a micro-differential operator of
order 1 and exp tH,,, exists, then exp tP gives a quantized contact trans-

d
formation ®,, by solving the equation m Q) = [P, D(Q)] with the initial
condition ®(Q) = @ fort = 0.

Example 7.3.3. (Paraboloidal transformation [K2] p. 36). Set
X =C'" = {{t,x)e C x C",

Q= {tx;1,8eT*X;1# 0},G = Sp(n; C)

0 1
= {ge GL(22n; C);'gJg = J}  with J:< 1 0)'

o
For ¢ =< §>GG, let ¥, be the quantized contact transformation
Y

given by
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0, — ad, — PBxd,
X y0,0, ' + 3x
0, — 0,

1
t— 4+ §{<6x,‘yoc6x> 87 4+ <0, "YBx> 0!

+ <yBx, 8,> 87t + <x,'8Px>1.

Then we have ¥, ¥, = ¥

g192 °

§ 8. FUNCTORIAL PROPERTIES OF MICRO-DIFFERENTIAL MODULES
(See [SKK)

8.1. External Tensor Product.

Let X and Y be complex manifolds and let p, and p, be the projections
THX xY)— T*X and THX x Y) - T*Y, respectively. Then &y .y contains
pii€y @ ps &y as a subring. For an §y-module .# and an &y-module A",

C

we define the &y . y-module . & A" by

(8.1.1) M N = Exyy ® (i @p;tA).
-1 -1 C
p1 €x % p2 &y
Then one can easily see

ProrosiTiON 8.1.1.

() # ® N is an exact functor in M and in A" and Supp (AN
= Supp # x Supp A"

(@) If A is &Ex-coherent and N is & y-coherent, then M & N s
&y « y-cOherent.

8.2. For a complex submanifold Y of a complex manifold X of codimension /,
the sheafl lim &xth (Oy/#™ Ox) has a natural structure of Zy-module,
which is denoted by %y x. Here # is the defining ideal of Y. The homo-

morphism Oy — &xtl (Oy, Q%) > Q% @ By x gives the canonical section
Ux

oY, X) of Q% ® Byx. If we take local coordinates (x,, .., x,) of X such
Ox

that Y is defined by x; = .. = x, = 0, then we have



e 2

Box = DT, Dy + T Dby
J>

isi

If we denote by & the canonical generator of the left hand side, then
oY, X) corresponds to dx; A .. A dx; ® 8. We set

Cyx = Ex ® n 'Byx.

nlgy

Therefore locally we have
(g}'lxgéax/zdéuxxj"‘ ZdévXaj-
Jjs i>

Then %y x is a coherent éy-module whose support is TFX.

8.3. For an invertible OUy-module &, £ ® &4y ® £® ' has a natural

Ox Ox
structure of sheaves of rings, by the composition rule

(QPRs® 1) o (s®O®s® ™) = s @ PQ @ s°7!

for an invertible section s of ¥ and P, Q e &.
Then the category Mod (6y) of left &y-modules and the category
Mod (£ ® €x ® £®71) of left (¥ ® 6y ® £® Y)-modules are equi-

Cx Ox Ox Ox
valent by the functor

Mod(8x)3 M — L @ M eMod (L Q@ Ex @ L2
Ox

Ox Ox

8.4. Let wy be the canonical sheaf on X, ie. the sheaf of differential
forms with top degree. Let a be the antipodal map of T*X, ie. the
multiplication by — 1. Then we have the anti-ring isomorphism.

(8.4.1) Oy REx Qw5 a lEy.
Ox Ox
This homomorphism is given by using a local coordinate system (x,, .., x,,)
as follows. For P = Y P(x, d)e &4 we define P* = Y P¥(x, 0), called the
formal adjoint of P ([SKK] Chap. 11, Th. 1.5.1), by
, =0 .,
(8.4.2) P¥(x, =& = Y TﬁgaxPj(x, £).

j=1—|q|
aeN7

This is well-defined and satisfies

(8.4.3) (P¥)* = P
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(8.4.4) (PQ)* = Q*P*.
Then the isomorphism (8.4.1) is given by
(8.4.5) dx @ P @ (dx)® "1 s P*

where dx = dx, A .. A dx, e oy. This is independent of coordinate trans-
formations.

8.5. The isomorphism (8.4.1) can be explained as follows. Let Ay be the
diagonal set of X x X, and let p; be the j-th projection from TE (X x X)
to T*X for j = 1,2. Then the p; are isomorphisms and paepil = a
Let g; be the j-th projection from T*(X x X) to X(j=1,2). Then c(Ay, X x X)

gives the canonical section of q; 'oy ® G axixx - SInce Cayxxx is a
a2 <’x

p 1 '€ y-module, this section gives a homomorphism

pitéx =gz toy ® Caxixxx -
a2 ‘ox
It turns out that this is an isomorphism and the right multiplication of

0y on &y corresponds to the ¢y-module structure of g;'oy ® Fayxxx
~1

. . g2 O
via g, . Thus we obtain *

(mx®ép)x®mx NS gy oy ® Caxlxxx -
Ox ar 0x
This last being isomorphic to p; '€y, we obtain
Oy ®ExQ0F P S pipytEx xalEx.

Ox Ox

8.6. By 8.3 and 84, if .# is a left &y y-module for an open set U of
T*X, then oy ® a~ ./ is a right (€ x,y)-module.
Ox

8.7. For a left coherent 6"X-module M, Exth (M, Ex) is a right coherent
&y-module. Therefore Exth, (M, Ex) ® @ ' is a left &y-module by § 8.6.

If .# is holonomic then &xt}, (A, é”x) = 0 for j # n = dim X (See [SKK],
[K1]). Set .#* = &xty, (A, é‘}) ® ©$"'. Then .#* is also a holonomic
Ox

& y-module.
We call ./#* the dual system of 4. We have 4** = 4, and M — AM*
is an exact contravariant functor on the category of holonomic &y-modules.
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8.8. Let X and Y be complex manifolds, and let p,: THX xY) —» T#*X

and p,: THX xY)— T*Y be the canonical projections. Let p4 denote

p,ea. Let A be a left &y, ,-module defined on an open subset Q of

T*(X x Y). Then, by §8.6, oy ® # has a structure of (p; &y, ps ‘&)
Oy

bi-module. For an &y-module A",

M= pr o, @A) Q@ pilA)
o Pg_ 10"1/
has a structure of &y-module. We have the following

THEOREM 8.8.1. Let Q, Uy and Uy, be open subsets of T*(X xY),
T*X and T*Y, respectively. Let A" be a coherent (8y.y|q)-module and
A" a coherent (&y|y,)-module. Assume
() prpr'UsxnSupp Xt ~pd *Supp & — Uy is a finite morphism.

Then we have

a—1 — .
a ?/‘011’72 &y (O)Y ® xv pg 1‘/1/‘) l p—lux = 0 fOr J # 0
J oy 1

(b) A = pfl0y®A) ® ps ' A)]|y, is a coherent &y-module.
y 1

a—
p2 &y

(¢) Supp # = Uy o p, (Supp & np5~" Supp A).

We denote p,((oy ® #) & p4 'A) by J H oo N
Oy a—1 Y
P2 6y

8.9. Let f:X — Y be a holomorphic map and let A, be the graph of f,
ie {(x, f(x))e X x Y;xe X}, then ¥ = B asx«y i a coherent &y . y-module
whose support is T% (X x Y). Now let & be the canonical map X x T*Y

Y
— T*X and p the projection X x T*Y. Then we have the following
Y

diagram
T*X ped X x T*Y o T*Y
Y
(8.9.1) id | 2 I id.
T*X «— TXI(X x Y) =2 T*Y
Py P2
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We set Eyoy = Oy ® Gy, xxy and consider this as a sheaf on X x T*Y
Oy Y

by the above isomorphism. Then &y.y is a (& '€y, p~'éy)-bi-module.
For an &y-module A",

jxcm = RB,p (Exay @ p i),

p~lsy

We shall denote this by f*4  and call it the pull-back of .. Then
Theorem 8.8.1 reads as follows.

TueorREM 8.9.1. Let Uy and Uy be open subsets of T*X and
T*Y, respectively. Let A" be a coherent (&y|y)-module. Assume

i) p; (Supp )N G, NUy) = Uy is a finite morphism.

Then we have

-1
() Tortt Y (Exay, N) =0 for j#O0.

(b) M = &pExy ® p;lA)|y, isacoherent &x-module.
-1
py &y

(c) SuppM = &,p;' Supp A n Uy.

8.10. Similarly let g: Y — X be a holomorphic map and let A, be the
graph of ¢, ie. {(g(y), y)e X x Y;ye Y} Then we have the isomorphisms

Wg

T*X & Y x T*X T*Y
(8.10.1) I ] I id.
T*X - TE(XxY) - T*Y
P2

We set &y.y = Oy ® €4, x~y and regard this as a sheaf on Y x T*X.
Oy X

Then &4y is a (p~ '€y, ® ~'&y)-bi-module. For an &y-module ./ we have

J(gmxwo%f = Rp,® '(Exy ® BN,

w—igy

We shall denote this by JJV . Then Theorem 8.8.1 applies to this case
E)
and we have
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TueoreM 8.10.1. Let Uy and U, be open subsets of T*X and
T*Y, respectively. Let A" be a coherent (&y|y,)-module. Assume

(i) p,:®, Supp A) " p, {Uy) — Uy is a finite morphism.
Then we have
-1
@) TorPs N(Exey,®,'N) =0 for j#0.
(b) M = py(Exey ,6? B, ' A )y, is acoherent &y|y ~-module.
®g Sy

(c) Supp .# = p(®, " Supp 4 "Uy).

§9. REeGuULARITY CONDITIONS (See [KK], [K-O7)

9.1. Let us recall the notion of regular singularity of ordinary differential
equations. Let P(x,d) = Y a;(x)0' be a linear differential operator in one

ism

variable x. We assume that the a(x) are holomorphic on a neighborhood of
x = 0. Then we say that the origin 0 is a regular singularity of Pu = 0 if

(*) Ordx=0aj(x) = 0rdx=0am(x) - (m_]) .

Here ord,_, means the order of the zero. In this case, the local structure
of the equation is very simple. In fact, the Dy-module /PP is a direct
sum of copies of the following modules:

Oy = Dy/Dx0, Bioyx = Dx/Dyx, D/ DA(xd—N"*1 (heC, meN)
D)D" 1 x  (meN), Dy/DyO(x0)" ' (meN).

If we denote by u the canonical generator, then we have Pu = 0.
By multiplying either a power of 0 or a power of x, we obtain

2. bix) (x0Yu = 0

N

ji=0
o0 . N-1 .

with by(x) = 1. Hence # = Y O(x0Yu = Y O(xéYu is a coherent O-sub-
=0 j=o

module of .# which satisfies (x0)# < . We shall generalize this property

to the case of several variables.

9.2. Let X be a complex manifold, & an open subset of T*X and V
a closed involutive complex submanifold of Q. Let us define



—_— 26 —

Fv = {ueéq; oi(P)|y = 0}

and let &, be the subring of &y|q generated by #,. For a coherent
&y-module ./, a coherent sub-&4(0)-module & of .# is called a lattice of
A i M = ExS. The following proposition is easily derived from the fact
that &(0) is a Noetherian ring.

ProrosiTioNn 921 ([K-O] Theorem 1.4.7). Let .# be a coherent
&« | o-module. Then the following conditions are equivalent.

(1) For any point peQ, there is a lattice M, of M on a neigh-
borhood of p such that Jy oy = M.

(2) For any open subset U of Q and for any coherent &(0)-submodule &
of M|y, Ev& is coherent over &0)|y.

Definition 9.2.2. 1f the equivalent conditions of the preceding proposition
are satisfied, then we say that .# has regular singularities along V.

Remark that if .# has regular singularity along ¥, then the support of .#
is contained in V. Let us denote by IR, (%) the set of points p such that
¢ has no regular singularities along ¥ on any neighborhood of p.

The following theorem is an immediate consequence of Gabber’s
Theorem 6.3.2.

THEOREM 9.2.3. IR,(#) is an involutive analytic subset of ..

In fact, if we take a lattice .#, of .#, then T*X\IR, (%) is the largest
open subset on which &,.#, is coherent over &(0).

9.3. If an &-module .# has regular singularities along an involutive sub-
manifold V then .# is, roughly speaking, constant along the bicharacteristics
of V. More precisely, let Y and Z be complex manifolds and X = Y x Z.
Let z, € Z and let j be the inclusion map Y ¢ X by yr> (¥, zo). Then we
have

THEOREM 9.3.1. Let # be a coherent &y-module. Assume that H
has regular singularities along T*Y x T3Z. Then I is isomorphic to
JEl & 0.

Note that any involutive submanifold ¥V of T*X with 84|, # 0 is
transformed by a homogeneous symplectic transformation to the form
T*Y x T3Z.
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9.4. Noting that any nowhere dense closed analytic subset of a Lagrangean
variety is never involutive, Theorem 9.2.3 implies the following theorem.

THEOREM 9.4.1. Let # be a holonomic & y-module. Then the following
conditions are equivalent.

(i) There exists a Lagrangean subvariety A such that . has regular
singularities along A.

(ii) For any involutive subvariety A which contains Supp 4, 4 has
regular singularities along A.

(iii) There exists an open dense subset € of Supp.# such that M
has regular singularities along Supp 4 on Q.

If these equivalent conditions are satisfied, we say that .# is a regular
holonomic & y-module.

The following properties are almost immediate.

THEOREM 9.4.2.

() Let 00— .M'—» # — H" -0 be an exact sequence of three coherent
&Ex-modules. If two of them are regular holonomic then so is the third.

(@) If # is regular holonomic, its dual #* is also regular holonomic.

We just mention another analytic property of regular holonomic modules,
which generalizes the fact that a formal solution of an ordinary differential
equation with regular singularity converges.

THeoREM 9.4.3 ([KK] Theorem 6.1.3). If .4 and A& are regular
holonomic ~ &x-modules, then &xt} (M, N) - Exth (M, Ex ® &) and
Ex

Extly (M, N) - Exth (M, EF @ N) are isomorphisms.
Ex

§ 10. STRUCTURE OF REGULAR HOLONOMIC &-MODULES
(See [SKK], [KK])

10.1. Let A be a Lagrangean submanifold of T*X. We define #, and
&, asin §9.2.

Then &x(—1) = &,-&(—1) is a two-sided ideal of &, and &,/E,(—1)
is a sheaf of rings which contains ©,(0) = &(0)/#.(—1), the sheaf of
homogeneous functions on A.
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Let us take an invertible @ -module % such that %2 = 0, @ o~ ".
Ox

Such an % exists at least locally. For P = P (x,d) + Po(x,0) + ..€ ¢
we define, for ¢ € @, and an invertible section s of .Z,

Ly (s®2®dx) 2
) = Lot =77 _ L oA
L(P) (ps) = {le((P) t50 % ® dx + (Po 2}; 8xi0§i> (P} §

Here dx = dx; A .. A dx,e wy and s®? ® dx is regarded as a section
of w,. The Lie derivative Ly, of Hp operates on o, as the first order
1

differential operators so that Ly, (s®?®dx) is a section of ®, and
1
Ly, (s®?®dx)/s®* @ dx is a function on A.
I3

We thus obtain L: ¢, — &ndo(#). Then this does not depend on the
choice of local coordinate system and moreover it extends to the ring
homomorphism L: &, — &nd(¥). Since the image is contained in the
differential endomorphism of %, we obtain the ring homomorphism
Ly P QI @ L.

o

o

A A

ProposITION 10.1.1. By L, ,/EA(—1) coincides with the subsheaf of
PR DR LY consisting of differential endomorphisms of & homo-

[N (’/‘A
geneous of degree 0.

If we take
Fred = 9(x,0) + 9(x,0) + ...

such that d9, = —0y mod 1,Q! and
. 829,
Ezm = SO(X,i)mOde

then L(9) gives the Euler operator of . Such a § is unique modulo
FX=1) = E5(—1) n &x(1).

10.2. Let .# be a regular holonomic &y-module whose support is A.
Let .#, be a coherent sub-&,-module of M which generates .#. Such an
My is called a saturated lattice of .#. Then A = Mo)E(— )y is an
& o/& A(— 1)-module, which is coherent over ¢,(0).

Since a coherent sheaf with integrable connection is locally free, we have

LemMa 10.2.1. . #Z is a locally free O \(0)-module of finite rank.



— 29

Since 9 belongs to the center of &,/&,(—1), 3 can be considered as an
endomorphism of %”omgA/,gA(,l)(]/, Z), which is a locally constant sheaf
on A. Its eigenvalues are called the order of .# with respect to .#,.

10.3. Let us take a section G < C of C —» C/Z. Then there exists a unique
saturated lattice .#, such that the orders of .# with respect to .#, are
contained in G (See [K4]). Then

F = Homg, s, (M, L)
and
M = exp 2nid € Sut(F)

does not depend on the choice of G.

THeoreM 10.3.1 ([KK] Chapter I, §3). Assume that there exists an
invertible  Oj-module % such that £%®* = 0, Q@ w§ 1. Then the
category of regular holonomic &y-modules with support in A is equivalent
to the category of (F,M)s where F is a locally constant C,-module
and M € fut(F).

104. If ue.#, then the solution to L(P)o = 0 for Pe &, with Pu = 0
is called a principal symbol of v and denoted by o(u). The homogeneous
degree of o(u) is called the order of w. In the terminology of § 10.2, the
principal symbol is a section of Homg s (- 1(Esu/E(—1Du, £) and the
order is the eigenvalue of 8 in Homg, s, 1(Eu/EN(— Du, £).

10.4. When the characteristic variety is not smooth, we don’t know much
about the structure of holonomic systems. In this direction, we have

THeorREM 10.4.1 ([K-K] Theorem 1.2.2). Let Z be a closed analytic
subset of an open subset Q of T*X,n = dim X, and let 4 and N
be holonomic & | g-modules.

(1) If dimZ < n—1, then
nQ; Homg (M, N)) - T(Q\Z, Homg (M, N b))
is injective.
(i) If dimZ < n—2, then
T(Q: Homg (M, N) — T(Q\Z; Homg (M, N))
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is an isomorphism.

In particular if Supp 4 <= Ay U A, and if dim(A;NA,) < n—2, then
A is a direct sum of two holonomic & y-modules supported on A; and
A,, respectively.

Here is another type of theorem.

THeorREM 10.4.3 ([SKKO]). Let A4 = &u = &/ be a holonomic
&-module defined on a neighborhood of peT*X. Assume Supp .4
= A, VA, and
B A,A, and A~ A, are nonsingular and dimA; = dim A,
= n,dim (A;nA,) = n—1.

(i) Ty A nT,A; = TuAnA;) forany p' in a neighborhood of p in
A0 A,

(ili) The symbol ideal of ¥ coincides with the ideal of functions vanishing
on Ay U A,

Setting k = ord,u — ordy,u — 1/2, we have
(a) # has a non-zero quotient supported on Ay <>.# has a non-zero

submodule supported on A, < ke Z.

(b) #, isasimple &, module <>k ¢ Z.

14

Sketch of the proof. By a quantized contact transformation, we can
transform p, A;, A, and # as follows:

p = (0,dx,)
Ay = {(x8;x; =& = .. =, =0}
Ay ={x8;x; =x, =8 =..=§ =0}
F = E(x10,—\) + &E(x,0,—p) + Z 80;

j>2

In this case, we can easily check the theorem.

§11. APPLICATION TO THE b-FUNCTION (see [SKKO])

11.1. As one of the most successful application of microlocal analysis,
we shall sketch here how to calculate the b-function of a function under
certain conditions.
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11.2. Let f be a holomorphic function on a complex manifold X. Then,

it is proved ([Bj], [Be] [K1]) that there exist (locally) a non zero poly-

nomial b(s) and P(s)e Z[s] = 2 ® C[s] such that P(s)f(x)*"! = b(s)f(x)*
def C

for any se N. Such a polynomial b(s) of smallest degree is called the
b-function of f(x) and is denoted by b(s). For the relations between the
b-function and the local monodromy see [M1], [K3].

11.3. Set # = {P(s)e Z[s]; P(s)f* = O for se N} and A" = Z[s]/¢. We
shall denote the canonical generator of A" by f* Then t:.4"3 P(s)f*
- P(s+1)f - f*e A gives a Z-endomorphism of A4 and A" = @[s]f”l.
Here f**! = f. f*e A" In this terminology b (s) is the minimal polynomial
of s € End (N [t N).

For Ae C, we set ., = D[s1/#+2[s](s—2)) and denote by f* the
canonical generator of .#,. Then f**!'i» f f* defines a P-linear homo-
morphism 4, ., — M, .

11.4. Let W be the closure of
{5 x,8)e C x T*X; § = sdlog f(x), f(x) # 0}
inC x T*X. Set Wy = W n {s=0} « T*X. Then we can prove

ProrosiTiON 11.4.1 ([K1]).

(i) N is a coherent Dy-module and Ch(A) = p(W), where p is the
projection from C x T*X to T*X.

(i) For any hreC, #, is a regular holonomic D y-module and
Ch () = W,.

(i) A/t is a regular holonomic  Dy-module and  Ch (A /tN)
= Wy 0 (ref)"H0).

11.5. In the sequel, for the sake of simplicity, we assume that there exists
a vector field v such that uo(f) = /. Therefore we have ov*(f*) = s*f*
Hence A4 is a @Z-module generated by f° If we set # = @ n ¢, then
N =P/ g and # = D[s] (s—v) + D[s].F.

11.6. The following lemma is almost obvious but affords a fundamental
tool to calculate the b-function.



Lemma 11.6.1. Let ¥ be an &x-module and w a non-zero section
of &. For heC, we assume

iy vw) = Aw
(i) Fw =0
(1) fw = 0.

Then we have b () = 0.

Proof. There is a P e 2 such that by(s)f* = Pf*"*. Hence (b (v)—Ff)f*
= 0, which implies b(v) — Pfe 7. Since b (v)w = b (A)w we have

0 = (blv)=Pf)w = b(Mw.
This implies b () = 0.

11.7. Let  be the symbol ideal of # Then the zero set of 7 is W,
and the zero of # + Oo(v) is W,. Let A be an irreducible component of
Wo. If 7 4+ Op,xo(v) is a reduced ideal at a generic point p of A then
we call A a good Lagrangean.

If A is a good Lagrangean, then W is non-singular on a neighborhood
of a generic point p of A and o = o(s)|» has non zero-differential. Let
p: W — X denote the projection. We define m(A) e N as the degree of zero
of fop along A, and set [, = (fop/c™™)| .. Let ® be the non-vanishing
n-form on X. Then (p*®) A do is an (n+ 1)-form on W. Let u(A) be the
degree of zeros of (p*w) A do along A, and let m be the n-form on A
given by

p*o A do

“‘gﬁ(—A)——A-_—n/\dG

-1

If we set Ky =M ®o® 'ew, ® ®f !, then this is independent of the

choice of w. We have

ProrosiTiON 11.7.1 ([SKKO]). If A isagood Lagrangean, then for any
reC, ., is a simple holonomic system on a neighborhood of a generic
point p of A and we have

M o(f* = fivKa-
In particular

ord f* = —m(Ah — p(A)/2.



(i) There exists a monic polynomial ba(s) of degree m(A) and an
invertible micro-differential operator P, of order m(A) such that

ba(s)f* = PAf-f° in 6@
@

and o(Pala = fat.

Remark that f, and ®, are homogenecous of degree —m(A) and
—p(A), respectively.
Remark also that the minimal polynomial of se &nddé @ A /tA)| 4
D

is ba(s). In fact, if P/*" = b(s)f*in & @ A", then (P-P 5 'ba(s)—b(s))f* = 0.
This implies that P - P 'b,(v) — b(v) € & #. Hence

(PP 5 'h(v)—b(v))|w = 0.

If ord P-P;ib(v) = ord P > deg b, then o(P)|, = 0. Therefore P = P’
+ P" with P e &7 and o(P') < o(P). Hence P'[**! = b(s)f*. Thus, we may
assume ord P < deg b. Then

0 = o(b(@)—P-PL b))l = o) — (o(P) i/ abal0)) .

This shows that b(s) is a multiple of b,(s).

COROLLARY 11.7.2. If every irreducible component of W, is good
Lagrangean, then b (s} is the least common multiple of the b,(s).

11.8. Let A, and A, be two good Lagrangeans. We assume the following
conditions for a point pe A, N A,

(11.8.1) dim,A; n A, = n—1 and A;, A, and A; n A, are non singular
on a neighborhood of p.

(11.8.2) For any point p’ on a neighborhood of p in A, n A,, we have
T AN TaA, = T (ANA,).

(11.8.3) _#Z + Oo(v) coincides with the defining ideal of A; U A, with the
reduced structure.

In this case we say that A, and A, have a good intersection.

We have the following theorem.
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THEOREM 11.7.3. Let A, and A, be good Lagrangeans with a good
intersection. If m(A{) = m(A,), then

m(A1)y—~m{Az)— 1

k=0

1
<ord,\2fs—ord,\lfs+§+k> | by(s) .

In order to prove this let us take A € C such that

k = ord, f* — ordy,f* — 1/2e N and
(11.8.4)
k' = ords, f**! — ord,,/*"! — 1/2eN.

Recall that
1
k = (m(Ay)—m(A\ — E(M(AZ)_“(A])_l/z)

and k' = k + (m(A,)—m(A,)). Then by Theorem 10.4.3, .#; has a non-zero
quotient .% whose support is A;. Let we ¥ be the image of fre d,.

Let o: .4, - & be the canonical homomorphism and B:.#,,, — .4,
be the homomorphism given by f**!ws f - f* Then, since k' ¢ N, .#,
has no non-zero quotient supported in A;. Hence o = 0. Therefore
fw = af(f**!) = 0. Thus we can apply Lemma 11.6.1 to conclude that
b,() = 0. If ke Z with 0 < k < m(A,) — m(A,) then

1

1
A = m(k -+ 5(“(/\1)"“(/\2)_1)>

satisfies (11.8.4). This shows that b (s) is a multiple of

m(A1) = m(Az)— 1

1
<(Wl(/\1)~m(/\z))s - E(H(Al)“u(/\ﬁ_l) + k>

k=0
m{A1)—~m(A2)— 1

1
= const. 11 <ord,\2f5 — ord,, f* + 3 + k>.

k=0

If we refine this argument, we can prove

THEOREM 11.8.2 ([SKKOJ). If A, and A, are good Lagrangeans with
a good intersection and if m(A,) = m(A,) then

b/\l( ) m(A1)—m{A2)— 1

1
= const. ord, f* —ords [+ =+ k.
o I (o = ot + 5 )
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Example 11.8.3.

(i) X =M =C" and f(x)= detx.

s+1

O) —s—1/2
5+2

@ —25—42 bs) = T1 (s+)).
S+n

@ —ns—n?/2

Here @ means a good Lagrangean which is the conormal bundle to an
a-codimensional submanifold. O—O means that the two corresponding
good Lagrangeans have a good intersection.

The polynomial attached to the intersection is the ratio of the corres-

ponding b,-functions, calculated by Theorem 11.8.2. The polynomial attached
to the circle is the order of f*.

() X =C" f(x) = x? + .. +x}

(0) 0
s+1
—s—1/2 b(s) = (s+1) (s+n/2)
s+n/2
3

O) —25—n/2

ii) X = C* [ = x*y+ 22



(254+2) (25 +3)
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s+1

—s—1/2  bs) = (s+ 1)Xs+3/2)

s-+1




[Be]
[Bj]
{D]
[G]

[H]
(M]

[(M1]
[K1]
[K2]
[K3]
[K-K]
[K-S1]
[K-S2]

[K-O]

[0o]

[Sato]

[s]

[SKK]
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