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We shall give a description of the intersection cohomology groups of the
Schubert varieties in partial flag manifolds over symmetrizable Kac-Moody
Lie algebras in terms of parabolic Kazhdan-Lusztig polynomials introduced
by Deodhar.

1. INTRODUCTION

For a Coxeter system (W,S) Kazhdan-Lusztig [6], [7] introduced poly-
nomials

Pyw(q) = Z P, ,w,qu € Z[q], Qyw(q) = Z Qy,w,qu € Z[q],

kEZ kEZ

called a Kazhdan-Lusztig polynomial and an inverse Kazhdan-Lusztig poly-
nomial respectively. Here, (y, w) is a pair of elements of W such that y < w
with respect to the Bruhat order. These polynomials play important roles
in various aspects of the representation theory of reductive algebraic groups.

In the case W is associated to a symmetrizable Kac-Moody Lie algebra g,
the polynomials have the following geometric meanings. Let X = G/B be
the corresponding flag variety (see Kashiwara [3]), and set X* = B~ wB/B
and X,, = BwB/B for w € W. Here B and B~ are the “Borel subgroups”
corresponding to the standard Borel subalgebra b and its opposite b~ re-
spectively. Then X% (resp. X, ) is an ¢(w)-codimensional (resp. £(w)-
dimensional) locally closed subscheme of the infinite-dimensional scheme
X. Here ¢(w) denotes the length of w as an element of the Coxeter group
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W. Set X' = U, cw Xw- Then X' coincides with the flag variety consid-
ered by Kac-Peterson [2], Tits [10], et al. Moreover we have

and

for any w € W.
By Kazhdan-Lusztig [7] we have the following result (see also Kashiwara-
Tanisaki [4]).

THEOREM 1.1 .

(i)Let w,y € W satisfying w < y. Then we have
H* N ("Qx )y =0, H*("Qxw)yn/p = QT (—k) Tt

for any k € Z.

(ii) The multiplicity of the irreducible Hodge module "Q%,[—£(y)](—k) in
the Jordan Hoélder series of the Hodge module Q%.[—£(w)] coincides with
Pw7yak'

THEOREM 1.2 .

(i) Let w,y € W satisfying w = y. Then we have
H* M ("QY,)ysp =0,  H*("QX,)ys/B = QY (—k)®Tvwr

for any k € Z.

(il) The multiplicity of the irreducible Hodge module ”ng [£(y)](=Ek) in
the Jordan Hélder series of the Hodge module Q¥ [¢(w)] coincides with
Qy,w,k-

Here "Q¥.[—£(w)] and "Q¥ [¢(w)] denote the Hodge modules cor-
responding to the perverse sheaves "Qxw[—f(w)] and "Qx,, [¢(w)] respec-
tively. In Theorem 1. 1 we have used the convention so that "Q¥[— codim Z]
is a Hodge module for a locally closed finite-codimensional subvariety Z
since we deal with sheaves supported on finite-codimensional subvarieties,
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while in Theorem 1. 2 we have used another convention so that "Q[dim Z]
is a Hodge modules for a locally closed finite-dimensional subvariety Z since
we deal with sheaves supported on finite-dimensional subvarieties.

Let J be a subset of S. Set W; = (J) and denote by W7 the set of
elements w € W whose length is minimal in the coset wW. In [1] Deodhar
introduced two generalizations of the Kazhdan-Lusztig polynomials to this
relative situation. For (y,w) € W7 x W7 such that y < w we denote the
parabolic Kazhdan-Lusztig polynomial for u = —1 by

J,
Pla(q) =Y Pl d* €Z[q,
kEZ

and that for u = ¢ by

Pt @) =) P)oidt € Zlg]
kEZ

contrary to the original reference [1]. We can also define inverse parabolic
Kazhdan-Lusztig polynomials

2() = QM d* € Zq, 2l =Y QILd" € Zq)

kEZ kEZ

(see Soergel [9] and § 2 below).

The aim of this paper is to extend Theorem 1. 1 and Theorem 1. 2 to
this relative situation using the partial flag variety corresponding to J.

Let Y be the partial flag variety corresponding to J. Let 1y be the
origin of Y and set Y* = B-wly and Y,, = Bwly for w € W’. Then Y%
(resp. Yy,) is an £(w)-codimensional (resp. £(w)-dimensional) locally closed
subscheme of the infinite-dimensional scheme Y. Set Y’/ = UweWJ Y.
Then we have

Y= || v, VY=|] Y,
weW’ weWY

and

ve=|]vy, Y,=|]Y
y2w

for any w € WY,

We note that the construction of the partial flag variety similar to the
ordinary flag variety in Kashiwara [3] has not yet appeared in the litera-
ture. In the case where W is a finite group (especially when W is an affine
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Weyl group), we can construct the partial flag variety Y = G/P and the
properties of Schubert varieties in Y stated above are established in exactly
the same manner as in Kashiwara [3] and Kashiwara-Tanisaki [5]. In the
case Wy is an infinite group we can not define the “parabolic subgroup” P
corresponding to J as a group scheme and hence the arguments in Kashi-
wara [3] are not directly generalized. We leave the necesary modification
in the case W is an infinite group to the future work.
Our main result is the following.

THEOREM 1.3 .

(i) Let w,y € W7 satisfying w < y. Then we have
J,—1
HH Qi) =0, H*CQf), = QU -k

for any k € Z.
(ii) The multiplicity of the irreducible Hodge module "Q¥,[—£(y)](—k) in

the Jordan Hélder series of the Hodge module Q. [—€(w)] coincides with
J—1
w,y,k*

THEOREM 1.4 .

(i) Let w,y € W7 satisfying w = y. Then we have
J,q
H2k+1(ﬂ-Q{’Iw)yly = 07 H2k(7rQ¥w)y1Y = QH(_k)EBPy’w’k

for any k € Z.

(ii) The multiplicity of the irreducible Hodge module ”Qg [L()](—Fk) in
the Jordan Holder series of the Hodge module Q{fw [£(w)] coincides with
Q;’;lk-

In Theorem 1. 3 we have used the convention so that "Q¥[— codim Z]
is a Hodge module for a locally closed finite-codimensional subvariety Z,
and in Theorem 1. 4 we have used another convention so that "Q¥[dim Z]
is a Hodge modules for a locally closed finite-dimensional subvariety Z.

We note that a result closely related to Theorem 1. 4 was already ob-
tained by Deodhar [1].

The above results imply that the coefficients of the four (oridnary or
inverse) parabolic Kazhdan-Lusztig polynomials are all non-negative in the
case W is the Weyl group of a symmetrizable Kac-Moody Lie algebra.
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2. KAZHDAN-LUSZTIG POLYNOMIALS

Let R be a commutative ring containing Z[g, ¢ '] equipped with a direct
sum decomposition R = P, ., Ri into Z-submodules and an involutive
ring endomorphism R 3 r — 7 € R satisfying the following conditions:

RiRj C Rz'_;,_j, E =R_;, 1€Ry, g€ Rs, q= q_l. (2.1)

Let (W,S) be a Coxeter system. We denote by £ : W — Z>, and 2
the length function and the Bruhat order respectively. The Hecke algebra
H = H(W) over R is an R-algebra with free R-basis {T,}wecw whose
multiplication is determined by the following:

TwiTws = Twywe if E(wlw2) = E(wl) + e(w2)7 (22)
Ts+1)(Ts5—¢q) =0 forse S.

Note that T, = 1 by (2.2). B
We define involutive ring endomorphisms H > h+— he€ H and j : H —
H by

YoraTw= Y TTh, G rTw) = Y ru(=0) T, L

weWw weWw weWw wew
(2.4)

Note that j is an endomorphism of an R-algebra.

ProprosiTION 2.1 (Kazhdan-Lusztig [6]). For any w € W there exists
a unique Cy, € H satisfying the following conditions:

Cw =Xy <u PraTy with Pyoy =1 and Py, € &)W R (25)

fory <w,

C. = -, (2.6)
Moreover we have P, ,, € Z[q] for any y < w.

Note that {Cy }wew is a basis of the R-module H. The polynomials
Py . for y £ w are called Kazhdan-Lusztig polynomials. We write

Pyw=>_ Pyunrd". (2.7)
keZ

Set H* = H*(W) = Hompg(H,R). We denote by { , ) the coupling
between H* and H. We define involutions H* > m — m € H* and
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j:H* — H* by

(m,h) = (m,h), (j(m),h) = (m,j(h))  form e H* and h € H.
(2.8)

Note that j is an endomorphism of an R-module. For w € W we define
elements S,,, D,, € H* by

<SwaTw> = (_1)£(w)6w,w> <Dwacw) = (_1)l(w)6w,w- (2-9)

Then any element of H* is uniquely written as an infinite sum in two ways
Y wew TwSw and Yy 7, Doy With 7,1, € R. Note that we have

Sw =) (-1)w=twp, D, (2.10)
y2w

by Cw = 3_, <y PywTy- By (2.6), we have

D, =¢"")D,, (2.11)
and we can write
D, = Z Qw,ysya (2.12)
y2w

where @, are determined by

z (_l)l(y)il(w)Qw,yPy,z = 5w,z- (213)

w<y<z

Note that (2.12) is equivalent to

T, =Y (-1)!"tWQ,.C,. (2.14)

ySw
By (2.13) we see easily that

Qu,y € Zlq], (2.15)
Qu,w =1 and deg Quy < (U(y) — l(w) — 1)/2 for w < y. (2.16)

The polynomials Q. for w < y are called inverse Kazhdan-Lusztig poly-
nomials (see Kazhdan-Lusztig [7]). We write

Quy = Z Qw,y,qu- (2.17)

kEZ
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The following is proved similarly to Proposition 2. fil (see Kashiwara-
Tanisaki [4]).

PROPOSITION 2.2 . Let w € W. Assume that D € H* satisfies the
following conditions:

D=3 5,rySy withry =1 andry € @f(:yo)_e(w)_l R; (2.18)
forw <y,
D =¢"™D. (2.19)

Then we have D = D,,.

We fix a subset J of S and set
Wy =(J), W' ={weW;ws>w foranyseJ} (2.20)

Then we have

w= || ww,, (2.21)
weWw’
l(wz) = £(w) + £(x) for any w € W’ and z € W. (2.22)

When Wj is a finite group, we denote the longest element of W; by w.

Let a € {g,—1} and define a' € {g,—1} by aa' = —q. Define an algebra
homomorphism x* : H(W;) — R by x*(T,) = a®®), and denote the
corresponding one-dimensional H(Wjy)-module by R* = R1*. We define
the induced module H”® by

H’* = H @g(w,) R, (2.23)
and define ¢/ : H — H”’? by ¢”%(h) = h® 1°.

It is easily checked that H% 3 k +— k € H’ and j° : H® — H’' are
well defined by

T Jalh) (7 ) a at
pra(h) = " (h), jU (" (h) =" (j(h))  forhe H. (2.24)
Note that j* is a homomorphism of R-modules and that

rk=T forr € Rand k € H”?, (2.25)
k=k forke H', (2.26)
o' 0% = idgs. . (2.27)
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For w € W7 set T):* = ¢/*(T,). Tt is easily seen that H”® is a free
R-module with basis {7.2:*},,cws. Note that we have

0" (Tye) = a® DT for we WY and z € Wj. (2.28)

ProposITION 2.3 (Deodhar [1]). For w € WY there exists a unique
Cla e H? satisfying the following conditions.

C =X <0 PPAT, with PL% =1 and P € L)@ Ry (2.29)

fory < w.
e = gt g, (2.30)

Moreover we have P;% € Z[q] for any y £ w.

The polynomials Pi’g for y,w € W’ with y < w are called parabolic
Kazhdan-Lusztig polynomials. We write

Pla=> Pl " (2.31)

kEZ

Remark. In the original reference [1] Deodhar uses

w 'aT aT w)— ,at a
(1) (@) = 3 (=) O RLET
ySw

instead of CJ in defining the parabolic Kazhdan-Lusztig polynomials.

Hence our P?f 2 is actually the parabolic Kazhdan-Lusztig polynomial P?f w

for u = a' in the terminology of [1].
PrOPOSITION 2.4 (Deodhar [1]). Let w,y € W7 such that w 2> y.

(i) We have

Prt= Y ()P

zeWs,yzlw
(i) If Wy is a finite group, then we have PyJ’*g) = Pyuw, wwy -

Set

H”** = Homg(H"", R), (2.32)
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and define o7 : H)%* — H* by
(fo%(n), by = (n,¢"*(h))  forn € H)** and h € H.

Then ‘¢’ is an injective homomorphism of R-modules. We define an
involution — of H”®* similarly to (2.8). We can easily check that

tpla(n) = t(pJ’a(ﬁ) for any n € Hbo*. (2.33)
For w € W7 we define S;>¢, D% € H'%* by
(ke 1)y = (=1)"Wsg,, ., (DIe, clay = (=1)4®)5, .. (2.34)

Then any element of H”/%* is written uniquely as an infinite sum in two
ways >, cws TwSy® and Y-, s Th, D with 7,1, € R. Note that we
have

S = Z (—1)Hw) 4w pLa pla (2.35)
yeWerZw

by Ci* =32, <\, PyhaT,. We see easily by (2.28) that

tQO']’a(S{II,’a) — Z (_a)f(x)sww for w € W. (2.36)
zeWy

By the definition we have

D" = ¢"™ D}, (2.37)
and we can write
D= > Qrusye (2.38)
yeEWy, ygw

where Q;% € R are determined by

Yoo (m)fwtmgle ple =5, . (2.39)

w,y= Y,z ’
yeW7 wly<lz

for w, z € W satisfying w < 2.
Note that (2.38) is equivalent to

= 3 ()l (2:40)
yeW7 ySw
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By (2.39) we have for w,y € W;

sy € Z[q), (2.41)
5% =1and deg Q% < (L(y) — L(w) —1)/2 for w < y. (2.42)

We call the polynomials Qi]% for w £ y inverse parabolic Kazhdan-Lusztig
polynomials. We write

wy =D Qo (243)
kE€EZ

Similarly to Propositions 2. fil, 2. 2, 2. fi3, we can prove the following.

PROPOSITION 2.5 . Let w € WY. Assume that D € H)%* satisfies the
following conditions:

D=3 cwsy>urySy® withry =1 andry € @I R (2.44)
fory € W7 satisfying w < y.
D =¢""D. (2.45)

Then we have D = De.

PrROPOSITION 2.6 (Soergel [9]). Let w,y € W such that w < y.

(i) We have Qi,;l = Qu,y-
(i) If Wy is a finite group, then we have

Qt‘{;,qy = Z (_l)l(z)+l(w‘1)@ww1,y$'

zeW ,wwySyz

3. HODGE MODULES

In this section we briefly recall the notation from the theory of Hodge
modules due to M. Saito [8].

We denote by HS the category of mixed Hodge structures and by HSy
the category of pure Hodge structures with weight k¥ € Z. Let R and Ry
be the Grothendieck groups of HS and HSj respectively. Then we have
R = @z Rr and R is endowed with a structure of a commutative ring
via the tensor product of mixed Hodge structures. The identity element of
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R is given by [QF], where Q¥ is the trivial Hodge structure. We denote by
R > r = 7 € R the involutive ring endomorphism induced by the duality
functor D : HS — HS°P. Here HS°P denotes the opposite category of
HS. Let Qf(1) and Qf(—1) be the Hodge structure of Tate and its dual
respectively, and set Q (£n) = Q(£1)®" for n € Z>o. We can regard
Z[q,q7'] as a subring of R by ¢" = [Q¥(—n)]. Then the condition (2.1) is
satisfied for this R.

Let Z be a finite-dimensional algebraic variety over C. There are two
conventions for perverse sheaves on Z according to whether Qu[dim U] is
a perverse sheaf or Qu[— codim U] is a perverse sheaf for a closed smooth
subvariety U of Z. Correspondingly, we have two conventions for Hodge
modules. When we use the convention so that Qu[dim U] is a perverse
sheaf, we denote the category of Hodge modules on Z by HMy4(Z), and
when we use the other one we denote it by HM.(Z). Let D®(HMq4(Z))
and D?(HM.(Z)) denote the bounded derived categories of HMq(Z) and
HM,(Z) respectively. Note that d is for dimension and ¢ for codimension.
Then the functor HM4(Z) — HM.(Z) given by M — M[—dim Z] gives
the category equivalences

HMq4(Z) = HM.(Z),  D'(HMq4(Z)) = D*(HM.(Z)).

We shall identify D’(HMq(Z)) with D°(HM.(Z)) via this equivalence, and
then we have

HM,(Z) = HMq(Z))[- dim Z]. (3.1)

Although there are no essential differences between HMq4(Z) and HM.(Z),
we have to be careful in extending the theory of Hodge modules to the
infinite-dimensional situation. In dealing with sheaves supported on finite-
dimensional subvarieties embedded into an infinite-dimensional manifold
we have to use HMg, while we need to use HM, when we treat sheaves sup-
ported on finite-codimensional subvariety of an infinite-dimensional man-
ifold. In fact what we really need in the sequel is the results for infinite-
dimensional situation; however, we shall only give below a brief explana-
tion for the finite-dimensional case. The extension of HM4 to the infinite-
dimensional situation dealing with sheaves supported on finite-dimensional
subvarieties is easy, and as for the extension of HM. to the infinite-di-
mensional situation dealing with sheaves supported on finite-codimensional
subvarieties we refer the readers to Kashiwara-Tanisaki [4].

Let Z be a finite-dimensional algebraic variety over C. When Z is a
smooth variety, one has a Hodge module QX[dim Z] € Ob(HMq(Z)) cor-
responding to the perverse sheaf Qz[dim Z]. More generally, for a locally
closed smooth subvariety U of Z one has a Hodge module "Q# [dim U] €
Ob(HM4(Z)) corresponding to the perverse sheaf "Qu[dim U]. For M €
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Ob(D*(HM4(Z))) and n € Z we set M(n) = M ® Qf(n). One has the

duality functor

Dg: HMy(Z) - HM4(Z)°®,  Dgq: D*(HM4(Z)) — D*(HM4(Z2))°P
(3.2)

satisfying Dg o Dg = Id, and we have
D4("Qf [dim U]) = "Q{f [dim U)(dim U) (3.3)
for a locally closed smooth subvariety U of Z.
Let f: Z — Z' be a morphism of finite-dimensional algebraic varieties.

Then one has the functors:

f*:D°(HM4(Z")) —» D*(HM4(Z)), f': D*(HMq4(Z')) — D*(HMq4(2)),
fe: D*(HM4(Z)) = D*(HM4(Z")), fi: D*(HMq(Z)) = D*(HM4(Z")),

satisfying
f*oDq =Dgof, fsoDg =Dgof.

We define the functors f*, f', f., fi for D*(HM,) by identifying D*(HM.)
with D°(HMg). For HM, we use the modified duality functor

D, : HM(Z) = HM.(Z)°*,  D.: D*(HMq4(Z)) — D*(HM4(Z))°P
(3.4)

given by
D.(M) = (Dg(M))[-2dim Z](— dim Z).

It also satisfies D, o D, = Id. For a locally closed smooth subvariety U of
Z we have "QH[— codim U] € Ob(HM,(Z)) and

D.("Qf [ codim U]) = "Q¥[— codim U](— codim U). (3.5)
When f : Z — Z' is a proper morphism, we have f, = fi and hence

fioDg = Dgofi. When f is a smooth morphism, we have f' = f*[2(dim Z—
dim Z")](dim Z — dim Z') and hence f* o D, = D;of*.

4. FINITE-CODIMENSIONAL SCHUBERT VARIETIES

Let g be a symmetrizable Kac-Moody Lie algebra over C. We denote
by W its Weyl group and by S the set of simple roots. Then (W, S) is a
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Coxeter system. We shall consider the Hecke algebra H = H (W) over the
Grothendieck ring R of the category HS (see § 3), and use the notation in
§ 2.

Let X = G/B be the flag manifold for g constructed in Kashiwara [3].
Here B is the “Borel subgroup” corresponding to the standard Borel subal-
gebra of g. Then X is a scheme over C covered by open subsets isomorphic
to

A = Spec C[zy; k € N]

(unless dim g < 00).

Let 1x = eB € X denote the origin of X. For w € W we have a point
wlx = wB/B € X. Let B~ be the “Borel subgroup” opposite to B, and
set X¥ = B-wlx = B~wB/B for w € W. Then we have the following
result.

PROPOSITION 4.1 (Kashiwara [3]).

(i) We have X = | |,,cp X™.
(ii) For w € W, X" is a locally closed subscheme of X isomorphic to A™
(unless dim g < o0) with codimension £(w).

(iii) For w € W, we have X¥ = || XV.
YyEW 2w

We call X% for w € W a finite-codimensional Schubert cell, and X¥ a
finite-codimensional Schubert variety.

Let J be a subset of S. We denote by Y the partial flag manifold cor-
responding to J. Let m : X — Y be the canonical projection and set
ly = 7(1x). We have m(wlx) = 1y for any w € Wj. For w € W’ we set
Y* = B-wly = m(X%). When Wj is a finite group, we have Y = G/P;
and Y = B~ wPjy /Py, where Py is the “parabolic subgroup” correspond-
ing to J (we cannot define P; as a group scheme unless W is a finite
group).

Similarly to Proposition 4. fil we have the following.

PROPOSITION 4.2 .

(i) We have Y = | | ,cpps Y.
(i) For w € WY, Y% is a locally closed subscheme of Y isomorphic to
A (unless dimY < oo) with codimension {(w).
iii) For w € W7, we have Y* = ||  YV.
yeW’ y2w
(iv) For w € WY, we have 7= (Y"™) = | | ¢y, X"
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We call a subset  of W (resp. W) admissible if it satisfies
w,y € W (resp. W), w<y,y € Q= w e N. (4.1)

For a finite admissible subset Q of W7 we set Y = |J,cqV¥. It is

a quasi-compact open subset of Y. Let HMiB _(YQ) be the category of
B~ -equivariant Hodge modules on V¥ (see Kashiwara-Tanisaki [4] for the
equivariant Hodge modules on infinite-dimensional manifolds), and denote

its Grothendieck group by K(HMZ (Y®)). For w € W’ the Hodge mod-
ules Q¥ [—¢(w)] and "Q¥L., [—£(w)] are objects of K(HMZ™ (Y?)). Note
that Qyw[—f(w)] is a perverse sheaf on Y because Y is affine. Set

HMZ (V) =lmHMZ (Y?), KHM (Y)) = lim K(HM (Y'?)),
(4.2)

where ) runs through finite admissible subsets of W+7. By the tensor
product, K (HMZ™ (Y)) is endowed with a structure of an R-module. Then
any element of K(HMZ™ (Y)) is uniquely written as an infinite sum

3 rulQU[-£(w)]] with ,, € R.
weWwJ

Denote by K(HMZ™ (Y)) 5 m — m € K(HMZ™ (Y)) the involution in-
duced by the duality functor D.. Then we have 7m = 7m for any r € R
and m € K(HMZ™ (v)).

We can similarly define HMZ™ (X), Q¥.[—£(w)] and "Q¥., [—£(w)] for
w € W, K(HMP™ (X)), and K(HMZ™ (X)) > m = m € K(HM? (X))
(for J = 0).

Let pt denote the algebraic variety consisting of a single point. For
w € W (resp. w € W7) we denote by ix, : pt = X (resp. iy, : pt —
Y) denote the morphism with image {wlx} (resp. {wly}). We define
homomorphisms

®: KHM? (X)) = H*, & :KHM? (V) - H/' Y (4.3)
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of R-modules by

(M) = ) (Z( 1) [H'“zxm(M)]> Suw, (4.4)

weW \k€Z
/(M) = ) (Z( 1) [H’“ZYW(M)]> Syt (4.5)
weWJ \k€Z
By the definition we have
B([QL[—Lw)]) = (-)AWS, forwe W, (4.6)
&7 ([Qu [-£(w)]]) = (~1)*™)S5™" for w e W, (4.7)

and hence & and &’ are isomorphisms of R-modules.
The projection 7 : X — Y induces a homomorphism

™ KHMEZ (V) - K(HM? (X))

of R-modules.
LEMMA 4.1 .

(i) The following diagram is commutative.

KHME(v)) —2 H b

W*JV thw‘l,—l

KHM? (X)) — H

7*(m) for any m € K(HMZ (Y)).
(i) ® (m) = ®(m) for any m € K(HM? (X)).
(iv)®/ (m) = &7 (M) for any m € K(HME (Y)).

~~
=
A
3
*
~~
3
I

Proof. Forw € W7 we have 7*(Q#.,) = Qf_lyw, and hence Proposition
4. 2 (iv) implies

Q) = Y [QK..].

zeEWy

Thus (i) follows from (4.6), (4.7) and (2.36)
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Locally on X the morphism 7 is a projection of the form Z x A*® — Z,
and thus 7* o D, = D, orr*. Hence the statement (ii) holds.

The statement (iii) is already known (see Kashiwara-Tanisaki [4]).

Then the statement (iv) follows from (i), (ii), (iii), (2.33) and the injectiv-
ity of to/ 1. ]

THEOREM 4.1 . Let w,y € W satisfying w < y. Then we have
” ” J,—1
H*5 ("Q.) =0,  Hi ("Q¥.) = QY (—k)FPwk
for any k € Z. In particular, we have

&7 ("QYu [-E(w)]) = (-1 D

Proof. Let w € W7 and set

(D Q@) =D = 3 S

yeEW? y2w
By the definition of "Q¥,, [—¢(w)] we have
Do("Qiu [~0(w)]) = QY [~ L(w)](—L(w)),
and hence we obtain
D=¢"D (4.8)
by Lemma 4. 1 (iv). By the definition of ®’ we have

ry = > (=1)*[H N, ("Qik)], (4.9)

kEZ
and by the definition of Q. [—¢(w)] we have

Ty =1, (4.10)
for y > w we have H*i},  ("Q4f.) = 0 unless (4.11)

0=k < (Uy) — Hw) - 1).

By the argument similar to Kashiwara-Tanisaki [4] (see also Kazhdan-
Lusztig [7]) we have

[H*i},("QY.)] € Ry. (4.12)
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In particular, we have
for y > w we have r, € @11 Ry, (4.13)

Thus we obtain D = D! by (4.8), (4.10), (4.13) and Proposition 2. 5.
Hence r, = QJ,!. By (4 9) and (4.12) we have [H***1i}, ("Qy.)] = 0

y7w

and [H%zyy(”ng)] = q*Qu,y 1 for any k € Z. The proof is complete. |
By (2.35) and Theorem 4. 1 we obtain the following.

COROLLARY 4.1 . We have

QY [—L(w)]| = Y Pl QY [—L)]]

y2w

in K(HMZ™(Y)). In particular, the coefficient P’ ’y « of the parabolic
Kazhdan-Lusztig polynomial Pu{’yl is mon-negative and equal to the mul-
tiplicity of the irreducible Hodge module "Q¥,[—£(y)](—k) in the Jordan
Hélder series of the Hodge module Q. [—¢(w)].

5. FINITE-DIMENSIONAL SCHUBERT VARIETIES
Set

Xw =Bwlx = BwB/B forweW. (5.1)

Then we have the following result.

ProposITION 5.1 (Kashiwara-Tanisaki [5]). Set X' =, cw Xw-
Then X' is the flag manifold considered by Kac-Peterson [2], Tits [10], et
al. In particular, we have the following.

(i) We have X' = | |,cpy X
(iiyFor w € W X, is a locally closed subscheme of X isomorphic to
AW,
iti)For w € W we have X, = X,.
y
yeW,ySw

We call X, for w € W a finite-dimensional Schubert cell and X,, a
finite-dimensional Schubert variety. Note that X' is not a scheme but an
inductive limit of finite-dimensional projective schemes (an ind-scheme).

For w € W7, we set Y,, = Bwly = 7(X,,). Similarly to Proposition 5.
fil we have the following.
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PROPOSITION 5.2 . SetY' =, cws Yuw. Then we have the following.

(i) We have Y' = | |, cyys Ye-
(i) For w € WY, Y, is a locally closed subscheme of Y isomorphic to
AL,
(iii) For w € W7, we have Y, = L] Yy,.
yeW’ ySw
(iv) For w € W7, we have 7 (Yy) = | e, Xwe-

For a finite admissible subset Q of W7 we set Y} = U, cq Ya- It is a
finite dimensional projective scheme.

Let HMZF (Y3) be the category of B-equivariant Hodge modules on Y.
For w € W” the Hodge modules Qf} [((w)] and "Q¥ [{(w)] are objects of

HMZ (YY). Note that Qy, [¢(w)] is a perverse sheaf because Yy, is affine.
Set

HMY (V') = lim HME (V), K(HME (v")) = lig K(HME(Y3)),  (5.2)
Q Q

where ) runs through finite admissible subsets of W+“. By the tensor
product K (HMZ(Y")) is endowed with a structure of an R-module. Then
any element of K (HMZ (V")) is uniquely written as a finite sum in two ways

D QY [L(w)]] and D ry["QY, [6(w)]] with 1y, 7, € R.

weWY weWJ

Denote by K(HMZ(Y")) 3 m = m € K(HMZ(Y")) the involution of an
abelian group induced by the duality functor Dy. Then we have 7 = Fm
for any 7 € R and m € K (HMZ (Y")).

We can similarly define HMg (X'), Q¥ [£(w)] and "Q¥_[¢(w)] for w €
W, K(HMZ(X"), and K(HMEZ(X")) 5 m —» m € KHME(X")) (for
J =0).

For w € W (resp. w € WY) we denote by ix/, : pt = X' (resp.
iy’ w : pt = Y') denote the morphism with image {wlx} (resp. {wly}).
We define homomorphisms

v KEMI(X') - H, v .KEMIY') - H  (53)
of R-modules by

(M) = (Z(—l)k[ﬂki}:,w(M)]> T, (5.4)

weW \k€Z

(M) = (Z(—l)k[H’“i?,w(M)]) T (5.5)

weWJ \k€Z
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By the definition we have

T([QY, [t(w)]) = (-1)*™)T, forw e W, (5.6)
QY [((w)]]) = (1) ™T)e for w e W, (5.7)

and hence ¥ and ¥/ are isomorphisms.

Let 7' : X' = Y’ denote the projection. Let 2 be a finite admissible
subset of W and set Q' = {w € W’ ; wW,; NQ # 0}. Then ' is a finite
admissible subset of W7 and 7' induces a surjective projective morphism
X4, — YY,. Hence we can define a homomorphism 7/ : K(HMB(X")) —
K(HMEB(Y")) of R-modules by

m((M]) = Y (=) [H ai (M)]. (5-8)

kEZ
LEMMA 5.1 .

(i) The following diagram is commutative.

KHMZ(x") —2— H

J Lo

K@EME(Y") —— HI0
\I;J

(ii) 7] (m) = /(M) for any m € K(HME(X").
(iii) @ (m) = ©(m) for any m € K (HMZ (X")).
(iv)®7 (m) = ¥/ (M) for any m € K(HME(Y")).

Proof. Let w € WY and z € Wj. Since X, — Yy, is an Al(w)—bundle,
we have 7{(Q¥, ) = Q. [-2{(x)](—£(x)), and hence

m([QF,.[(wa)]]) = (=0)“®[QF, [E(w)]].

Thus (i) follows from (5.6), (5.7) and (2.28).
The statement (ii) follows from the fact that 7’ is an inductive limit of
projective morphisms and hence 7] commutes with the duality functor Dy.
The statement (iii) is proved similarly to Kashiwara-Tanisaki [4], and we
omit the details (see also Kazhdan-Lusztig [7]). Then the statement (iv) fol-

lows from (i), (ii), (iii), (2.24) and surjectivity of /4. |
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THEOREM 5.1 . Let w,y € W7 such that w = y. Then we have
ok % 7,q
H2k+1 Y’,y(WQ{{U) — 0, H2le’,y(ﬂ.Q}I{u) — QH(—k)@Py,w,k
for any k € Z. In particular, we have

Y (["QY, [(w)]]) = (=1 Cye.

Proof. Let w € W and set

D) ([rQ ) =C= Y T

yeWw? y<w
By the definition of "Q{}. [£(w)] we have
D4 ("QY, [((w)]) = "QY, [£(w)](¢(w)).
Hence we obtain
C =q e (5.9)

by Lemma 5. 1 (iv). By the definition of ¥ we have

ry =Y (=DF[H*. ,("QE)], (5.10)

kEZ

and by the definition of "Q¥ [£(w)] we have

ro =1, (5.11)
for y < w we have H*i%,  ("Qy,) = 0 unless (5.12)
0S ks (Uw)—L(y) —1).

Moreover, by the argument similar to Kazhdan-Lusztig [7] and Kashiwara-
Tanisaki [4] we have

[H*iy ,("Qy,)] € Ry. (5.13)
In particular, we have

for y < w we have ry € @i(:%)—e(y)q Ry. (5.14)
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Thus we obtain C = C:¢ by (5.9), (5.11), (5.14) and Proposition 2. fi3.
Hence 1, = P;>d. By (5.10) and (5.13) we have [H**1i}, ("Q¢f )] =0
and [H?*i%,  ("Q4f, )] = ¢"Py,w,k for any k € Z. The proof is complete. |

We note that a result closely related to Theorem 5. 1 above is already
given in Deodhar [1].
By (2.40) and Theorem 5. 1 we obtain the following.

COROLLARY 5.1 . We have

[QY; [w)]] = D Qi Qi [ew)]]

ySw

in the Grothendieck group K(HMZE(Y')). In particular, the coefficient
Q;:Z]’k of the inverse parabolic Kazhdan-Lusztig polynomial Q;:?U 8 non-
negative and is equal to the multiplicity of the irreducible Hodge module

"QH,[6(y)](—k) in the Jordan Hélder series of the Hodge module Q¥, [¢(w)].

ACKNOWLEDGMENT

We would like to thank B. Leclerc for leading our attention to this problem. We also
thank H. Tagawa for some helpful comments on the manuscript.

REFERENCES
1. V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic ana-
logue of Kazhdan-Lusztig polynomials, J. Algebra, 111 (1979), 483-506.

2. V. Kac, D. Peterson, Infinite flag varieties and conjugacy theorems, Proc. Nat.
Acad. Sci. U.S.A., 80 (1983), 1778-1782.

3. M. Kashiwara, “The flag manifold of Kac-Moody Lie algebra” in Algebraic Analysis,
Geometry and Number Theory, Johns Hopkins Univ. Press, Baltimore, 1990.

4. M. Kashiwara, T. Tanisaki, “Kazhdan-Lusztig conjecture for symmetrizable Kac-
Moody Lie algebras II” in Operator Algebras, Unitary Representations, Enveloping
Algebras, and Invariant Theory, Prog. Math. 92 Birkhduser, Boston, 1990, 159-195.

5. M. Kashiwara, T. Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with
negative level, Duke Math. J. 77 (1995), 21-62.

6. D. Kazhdan, G. Lusztig, Representations of Cozeter groups and Hecke algebras,
Invent. Math., 53 (1979), 165-184.

7. D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Proc. Sympos.
Pure Math. 36 (1980), 185-203.

8. M. Saito, Mized Hodge Modules, Publ. Res. Inst. Math. Sci. 26 (1989), 221-333.

9. W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilting modules,
Representation theory 1 (1997), 83-114.

10. J. Tits, “Groups and group functors attached to Kac-Moody data” in Workshop
Bonn 1984, Lecture Notes in Math. 1111 Springer-Verlag, Berlin, 1985, 193-223.



