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0. Introduction. In 1985, while studying the solutions of the quantum Yang-
Baxter equation, Drinfeld [D1] and Jimbo [J1] independently discovered a funda-
mental algebraic object known as a quantized universal enveloping algebra or quan-
tum group U,(g) associated with a symmetrizable Kac-Moody Lie algebra g which
may be thought of as a g-analogue or g-deformation of the universal enveloping
algebra of g. The quantized universal enveloping algebra has a Hopf algebra
structure and thus allows the tensor product structure on their representations. The
quantized universal enveloping algebra associated with an affine Lie algebra is also
known as a quantum affine Lie algebra. In [L] (also see [R]), it has been shown that
for generic g (i.e., g is not a root of unity) the integrable representations of a
Kac-Moody Lie algebra can be deformed consistently to those of the corresponding
quantized universal enveloping algebra. In particular, the internal structure of the
integrable highest-weight representations of an affine Lie algebra is essentially the
same as that of the corresponding quantum affine Lie algebra. However, working
in the larger context of a quantum affine Lie algebra, it often becomes easier to
extract more informations about the representations of the corresponding affine Lie
algebra by using the power of abstraction in representation theory.

The eminent role of the quantized universal enveloping algebras in two-dimen-
sional solvable lattice models is widely known. The R-matrices, which are the
intertwiners of tensor product representations, give the Boltzmann weights of the
lattice models with commuting transfer matrices ([J2]). The quantum parameter q
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corresponds to temperature in the lattice model. In particular, g = 0 corresponds
to the absolute temperature zero in the lattice model. So one can expect that the
quantized universal enveloping algebra has a simpler structure in that case. Moti-
vated by this, Kashiwara introduced the notion of crystal base and proved the
existence and uniqueness of this base for all integrable representation of U,(g), where
g is any symmetrizable Kac-Moody Lie algebra ([K1-K4]).

We first recall the basic concepts of crystal base theory. A crystal is a set B
endowed with the maps &, f;: BL1 {0} — B {0} (i € I) which satisfy (i) &0 = f0=0,
(i) for any b and i, there is n > 0 such that &b = f;"b = 0, (iii) for b, b’ € Band i € I,
b = fibifand onlyif b = &b'. A crystal may be regarded as a colored (by I) oriented
graph (also known as a crystal graph) by defining arrows for b, b’ € B, b 5 b if and
only if b’ = f;b. For an element b of a crystal B, we set &(b) = max{n > 0|é/b € B}
and ¢,(b) = max{n = 0|f"b € B}. Let P be a weight lattice. A crystal B is called
a P-weighted crystal if it has a decomposition B = | |,.pB; such that &B; <
Bj o, 1 {0}, fiB; = B;_, 11{0}, and for any ie I and b e B, the equality ¢,(b) —
g;(b) = (h;, 1) holds.

Let B, and B, be two crystals. A morphism ¢: B, — B, of crystals is defined to be
a map ¢ from B, to B, that commutes with the action of & and f,. Here we
understand #(0) = 0. Then the crystals and their morphisms form a category. For
two crystals B, and B,, we define their tensor product as follows. The underlying
set is B, x B,. We write b; ® b, for (b, b,). We understand b, ® 0 =0® b, =0
The actions of ; and f; are given by

filb,®by) = [ib, @b, if gi(by) > eilby)
=b,®fib, if b)) < eilby)
6by®@by) =28b, @by,  if i) = ei(by)
=b, ®&b, if b)) < eby).

Then B, ® B, is a crystal, and the category of crystals is endowed with the structure
of tensor category. If both B, and B, are P-weighted crystals, then so is B; ® B,.

Let M be an integrable U,(g)-module. Then we have M = @PiepM,, with
dim M, < oo. For each i € I, any weight vector u € M, can be written uniquely as
u=>Y f"u, whereu, € M,,,, Nkere; and n ranges over integers such that n > 0
and <{h;, > + n = 0. Define the endomorphisms &; and fi by

éiu — Z fi(n—l)u" , f;u — Z fi(n+1)u" .

Let 4 be the subring of Q(q) consisting of f € Q(g) that is regular at ¢ = 0.

A crystal lattice L of an integrable U,(g)-module M is a free A-submodule of M
such that M 2 Q(q) ®, L, L = E}—)AE‘,,L,1 where L; = LA M,,and &L c L, fiL
L. A crystal base of the integrable U,(g)-module M is a pair (L, B) such that (i) L is
a crystal lattice of M, (ii) B is a Q-base of L/qL, (iii) B = | |;.pB; where B; =
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B (L,/qL;), (iv) &B = BLi{0}, f;B = BLi{0}, and (v) for b, ¥’ € B, b’ = f;b if and
only if b = &' for i € I. We sometimes replace condition (ii) by: B, = B'Li(—B')
where B’ is a Q-base of L/qL. We call (L, B,,) a crystal pseudobase and B, /{+1}
the associated crystal of (L, B,).

Let P* be a set of dominant integral weights and V(A) be an irreducible integrable
highest-weight U,(g)-module with highest weight A € P* and highest-weight vector
va. Define L(A) to be the smallest A-module containing v, and stable under f7s.
Set B(A) = {b e L(A)/qL(A)|b = fl1 ﬂ2 f,kv A mod gL(A)}\{0}. Then the pair
(L(A), B(A))is a crystal base for V(A) ([K2]). A crystal is called a crystal with highest
weight if it is isomorphic to B(A) for some A € P*.

The theory of crystal base provides a remarkably powerful combinatorial tool to
study the internal structure of the integrable highest-weight representations of
symmetrizable Kac-Moody Lie algebra. In [MM], using the Fock-space represen-

tations of U (sI(n)) Misra and Miwa gave an explicit description of the crystal base

for the level-one representations of the quantum affine Lie algebra U,(sl(n)) in terms
of certain infinite Young diagrams which are parametrized by certain paths that
arise naturally in solvable lattice models. In [JMMOY], this result was generalized

to integrable highest-weight representations of arbitrary level for U, (gl\(n)). In[KN],
Kashiwara and Nakashima gave an explicit combinatorial description of crystal
bases of finite-dimensional irreducible representations of U,(g), where g is a finite-
dimensional classical simple Lie algebras of 4, B, C, D type.

Recently, we have developed the theory of affine crystals which has enabled us
to study the integrable highest-weight representations of arbitrary level for any
quantum affine Lie algebra U,(g) ((KMN?]). We briefly summarize the main results
of [KMN?]. From now on, we will assume g to be an indecomposable affine Lie
algebra over Q generated by {e;, filie I} (I = {0,1, ..., n}) and the Cartan sub-
algebra t. Note that dim t = n + 2 and g has a one-dimensional center spanned by
the canonical central element c. Recall that {o,]i € I} < t* denotes the set of simple
roots, and {;]i € I} < tthe set of simple coroots. Also P (resp. Q) denotes the weight
(resp. root) lattice. Let 6 € 0* be the generator of null roots (see [Kac]). Set
ty =P, Qh; = tand € = (P;; Qh; = t)*. Let cl: t* — t% denote the canonical
morphism. We have an exact sequence

0-Q6—-t*—-t5-0.

Then dimtj =n+1 and {1etf|i(c) =0} =), ;Qcl(x). Note that § —aye
Y iy Zo;. We define a map af: t% — t* satisfying: ¢l o of = id and af o cl(o;) = a; for
i # 0. Observe that for i € I the fundamental weight A; € af (t}) = t* and the weight
lattice P = ), ., ZA, + Z5 < t*. We set P, = cl(P) = Z,E,ch(A ) = t5. Wecall an
element of P, a classical weight and an element of P an affine weight Note that
af o cl(A;) = A,;. Recall that the quantum affine Lie algebra U, ,(9) is a Q(g)-algebra
generated by {e,, filie I} {q"|h e P*}. Let U)(g) be a Q(q)- algebra generated by
{e. filie I} U {q"|h € P}}. Then U(g)is also a quantlzed universal enveloping alge-
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bra with P, as the weight lattice. A P,,-weighted crystal is called a classical crystal
and a P-weighted crystal is called an affine crystal.

Let B be a classical crystal. For be B, we set ¢(b) = ) &(b)A; and ¢(b) =
Y @i(b)A;. Note that wt(b) = cl(p(b) — &(b)). A Z-valued function H on B® B
is called an energy function on B if, for any ie [ and b® b’ € B® B such that
(b ®Db') # 0, we have

HEb®b)=Hb®V) ifi#0,
—HO®V)+1 ifi=0and gyb) > &),
—HOGV)—1 ifi=0and go(b) < &o(b).

For a subset J of I, we denote by U,(g;) the Q(g)-algebra generated by
{ewfilke J} U {q"lh e P}}. We call a classical crystal virtual if, for any i, je I,
regarded as an {i,j }-crystal, B is a disjoint union of the crystals of finite-dimensional
integrable U,(ay;, j,)-modules. Let Mod/ (g, P,) be the category of finite-dimensional
U,(g)-modules which have weight decompositions with weights in P,;. Let B be
an associated crystal of a crystal pseudobase of an object of Mod/(g, F,;). Then
e, e(b)y = {c, p(b)y for any element beB. Set Pj =) ZA; and (P;) =
{Ae Py|A(c) =1} for l e Z. A classical crystal B is a perfect crystal of level I if B
satisfies:
(i) B ® B is connected;

(ii) there exists Ay € P, such that wt(B) < Ag + Y ix0 Z<o®; and #(B, ) = 1;

(iii) there is an object of Mod/(g, P,;) with a crystal pseudobase of which B is an

associated crystal;

(iv) for any b € B, we have {c, ¢(b)) = [;

(v) the maps ¢ and ¢ from B, = {b|<c, &(b)) = [} to (P;), are bijective.

Let B(A) be the crystal with dominant integral highest weight A and denote by
u, the highest-weight element of B(A). Let B be a perfect crystal of level [ with an
energy function H and let A € (P} ), be a dominant integral weight of level I. In
[KMN?], we proved the isomorphism of classical crystals

B(A)® B = B(A + wt(by)),

where b, is the unique element in B such that e(by) = A.

For A e(P}), let b(A) be the unique element of B such that ¢(b(A)) = A.
Then by the above isomorphism, we have an isomorphism of classical crystals
B(A) = B(e(b(A))) ® B. We define the sequence (b ), and (4;),»; inductively as
follows: let b, = b(A), A, = &(b(A)). For k =2, define b, = b(4,_;), 4 = e(by).
Then by repeating the above procedure, we obtain an isomorphism of classical
crystals

Vi B(A) = B(4) ® B®*
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given by uy—u; ® b, ® --* ® b,. Moreover, it can be shown that, for any b € B(A),
there exists k > 0 such that y;(b) € u;, ® B®*. The sequence (b;, b,, ...) is called the
ground-state path of weight A. A A-path in B is, by definition, a sequence p =
(p(n)), >, in B such that p(n) = b, for all n > 0. Let (A, B) denote the set of A-paths.
Then we have the following realization of the crystal B(A) as the set Z(A, B) of
A-paths:

B(A) is isomorphic to ?(A, By by B(A) 2 b p € (A, B) where
Y(b) = u;, ® p(k) ® -+~ ® p(1) for k > 0.

The weight of a path p = (p(n)),~, in B is given by the formula

wi(p) = A + i (af wep(K)) — af (wib,))
_ (

chV(A) = Y dimV(A)et= Y ",
net* pe P, B)

8

il

. k(H(p(k + 1) ® p(k)) — H(bss @ bk))) 9.

Hence we have

The one-point functions are the basic macroscopic quantities that describe the
multiphase structure of a given lattice model of statistical mechanics. For the
two-dimensional solvable lattice models, a method of computing the one-point
functions is known as the corner transfer matrix method ([B]), which reduces the
two-dimensional statistical sums of the one-point functions to the one-dimensional
statistical sums over certain paths ([ABF]). To apply Baxter’s corner transfer matrix
method, it is required that the second inversion relations hold. Suppose that a
U,(g)-module V has a crystal pseudobase and its associated crystal B is perfect of
level I. In [KMN?7, we showed that the second inversion relations hold for V. Thus
fora e P,and A € (P,),,, the one-point function P(a|A) can be written in the form

Plaln) = 92,

where

G(a) = q~4(p,A~af (a)) q4~(.o,6)w(p) ,
pe P(A,B)a)

P(A, B)(a) = {(p(k))2-, € P(A, B)la + i wt p(i) = }’cj wt b, for k > 0},
i=1 i=1
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w(p) = kZl k(H(p(K + 1) ® p(k)) — H(bi+1 ® b)),

Z= > Gla).

ae Py

Here (b,), is the ground-state path of weight A. Let V(A) be the irreducible
highest-weight module over U,(g) with highest weight A. Using the realization of
the crystal base B(A) as the set 2(A, B) of A-paths, we obtain the closed expression
of the one-point function P(a|A) in terms of string functions for U,(g):

Zi dim V(A)la—ié q—4(p,Aa—i,s)
ZMEWt(V(A)) dim V(A)uq—4(pvﬂ) 5

P(alA) =

where 4, = A — af(a).

As we have seen so far, the perfect crystals play a crucial role in realizing the
crystal bases ofintegrable irreducible representations of quantum affine Lie algebras
and in computing the one-point functions of vertex models. In this paper, we
undertake an extensive study of perfect crystals for quantum affine Lie algebras.
Let U,(g) be a quantum affine Lie algebra of type 45", B{, C{", DIV, A, AS).,
or D), . For a given level [, we construct a finite-dimensional irreducible representa-
tion ¥, of U,(g) with a crystal pseudobase such that its associated crystal is perfect
of level I. The main idea of the construction can be explained as follows.

We first start with a suitable crystal B for U, (g (0;) Whose internal structure is
explicitly described in [KN7]. We define the 0-arrows in such a way that B becomes
a virtual crystal for U,(g) and prove in a purely combinatorial way that B is a perfect
crystal of level L.

On the other hand, let ¥ be a certain finite-dimensional module over U (gr(0})
with a crystal base which is characterized by a polarization on V. Let us denote by
B, the associated crystal. The explicit description of B, is given in [KN]. We define
the actions of ey, fy, and g"° on V to make it an irreducible module for U,(g) and
verify that the polarization on V for U,(gp (o)) is also a polarization for Uy(g). The
action of f, induces the 0-arrows on B, extending it to a crystal for U,(g). We show
that B, is a perfect crystal of level 1. Using the global base ([K4]), we compute the
R-matrix for V explicitly, and by the fusion construction we obtain a certain
finite-dimensional submodule V] of V®' for U;(g). The polarization on V for Uy(g)
induces a polarization on ¥,. Our results on polarization show that ¥, has a crystal
pseudobase and that its associated crystal is isomorphic to B as crystals for U,(g,)
for some subsets J of I. Now we prove that these isomorphisms can be uniquely
extended to that of crystals for U,(g) and thus conclude that ¥, has a crystal
pseudobase whose associated crystal is perfect of level [. The fundamental results
on polarization and fusion construction used here are developed in Sections 2 and 3.

We illustrate our construction for the case of U, (C§") of level 2 in Figure 1. Let
U,(g) be the quantum affine Lie algebra of type C5"” and let I = {0, 1, 2} be the index
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FIGURE 1

set of simple roots for U,(g). We start with the crystal B = B(2A,) of the finite-
dimensional irreducible representation V(2A,) with highest weight 2A,, for U, (C,).
The crystal graph structure of B is given in [KN]. We define the 0-arrows on B as
shown in Figure 2. Then it is easy to verify that B is a virtual crystal for U,(g). By
letting 4o = 2(A, — A,), we show that B is perfect and of level 2. By [KN], we have
B = B(2(A, — A,)) as crystals for Uy(8¢1,23) and B = B(2(A, — A,)) as crystals for
U,(8y0,1 3)-

On the other hand, let V = V(A,) be the finite-dimensional irreducible represen-
tation of U,(C,) with highest weight A, as shown in Figure 3. It has a crystal base,
and the structure of the associated crystal B, = B(A), is given in [KN]. Since the
dimension of each weight space is one, we may identify the elements of the global
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FIGURE 2

FIGURE 3

base for V(A,) with those of the crystal base. So we will use the same symbol for
the global base as for the crystal base. We define the actions of e, and f; by

1 12 1 12 . 11
e0=’ eoz, andlfll#,, then eOu—-O’



PERFECT CRYSTALS OF QUANTUM AFFINE LIE ALGEBRAS 507

20 |1 20 |1 2112
—| = _—] = = i — — h =
fo , f0 , and if u ;é,,t en fou=20

The action of g™ is given by the relation " = g~"1~"2 It is straightforward to verify
that V' is a well-defined module for U,(g) with the actions given above. Let ( , ) be
the polarization on the U,(C,)-module V. Then one can directly check that it is also
a polarization for the Uy(g)-module V. The action of f, defines the 0-arrows on B,
making it a crystal for U,(g), as shown in Figure 4.

2o

FIGURE 4

With 4, = A, — A, it is easy to check that B, is a perfect crystal of level 1.

Let us denote by V, the U,(g)-module Q[x, x™'] ® V with the actions of e,, f,,
and ¢; given by x%oe,, x~%of, and t;, respectively. Then there is a U,(g)-linear map
R(x, y) V.®V,—V,® V, satisfying the Yang-Baxter equation. The map R(x, y)
depends only on the ratio x/y, and is called the R-matrix for V. As a U,(C,)-module,
we have

V(A2)® V(A,) = V(2A,) @ V(2A,) © V(0).

Let z=xy™'. Then up to a multiple of an element of Q(g)(2), the R-matrix
R(x, y) = R(z) can be computed explicitly:

R(z)=(1 - 442)(1 - qsz)PZAz +(z — 44)(1 - ‘142)1321\1 +(z — 44)(2 - qé)Po >

where P,,, P,,4,, and P, are the projections of V(A,) ® V(A,) onto V(2A,), V(2A,),
and V(0), respectively. We take the U,(g)-module ¥, to be the image of V, 2@V,
under R(¢% ¢7%) = R(¢*) in V; ® V,-». Since R(g*) = (1 — ¢®)(1 — q“’)P2A ,as a
U, (g{1 2y)-module, V; is 1sornorphlc to V(2(A, — Ay)). Since the Weyl group of C,
contains — 1, it can be shown that V, is isomorphic to V(2(A, — A,))asa U, (8g0,1)
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module. The polarization on V induces a polarization on ¥,, and our results on the
polarization show that V, admits a crystal pseudobase. Hence by the above observa-
tion, its crystal B, is isomorphic to B(2(A, — A)) as a crystal for U,(g(y,)) and is
isomorphic to B(2(A, — A,)) as a crystal for U,(g(o,1))- Thus we have two iso-
morphisms o: B— B, as crystals for Uy(g(y,,;) and y,: B— B, as crystals for
U,(g;0,1})- Then both i, and i, are isomorphisms of B onto B, regarded as crystals
for U,(g1,)- Asacrystalfor Uy(g)), B splits into a direct sum of crystals with highest
weight for U,(g1)):

B = BQA, — 2A) ® BQA, — 2A0) ® B(—2A, + 4A; — 2A,)
@® BQ2A, — 2A,) ® BQRA, — 2A,).

Since the highest weights for U,(g,,,) are all distinct, ¥ and , must coincide for
highest weight elements for U,(g;;,), and hence for all the elements of B, which
defines a unique isomorphism of B onto B, as crystals for Uy(g). Thus we conclude
that ¥, has a crystal pseudobase whose associated crystal is perfect of level 2.

1. Results. In this section, we summarize the results of this article, which give
explicit forms of perfect crystals of an arbitrary level for g = A", B, C{", D",
AG), AG).y and DE).

1.1. Perfect crystal (see [KMN?]). We assume that the rank of g is greater
than 2. We set P = {1e P,|(h, A> = 0 for any i} = Y Z oA, and (Py), = {i€
Pile, Ay =1} ={AeY ZA|c, iy =1}forleZ,.

Let B be a classical crystal. For be B, we set ¢(b) = Y &(b)A; and ¢(b) =
Y @i(b)A;. Note that wt(b) = cl(¢(b) — &(b)).

Definition 1.1.1. For le Z.,, we say that B is a perfect crystal of level | if B
satisfies the following conditions.
(1.1.1) B ® B is connected.
(1.1.2) There exists Ay € P, such that wt(B) < dg + Y.ivi Z<o®; and that
#(B,,) = 1.
(1.1.3) There is a U, (g)-module in Mod/(g, P,;) with a crystal pseudobase (L, B')
such that B is isomorphic to B'/{ +1}.
(1.1.4) For any b € B, we have {c, &(b)y = L.
(1.1.5) The maps ¢ and ¢ from B, = {b|{c, ¢(b)) = I} to (P;), are bijective.
We call an element of B, minimal.

Let B be a perfect crystal of level . For A € (P, );, let b(4) € B be the element such
that ¢(b(4)) = A Let ¢ be the automorphism of (P, ), given by g = &(b(4)). Then
the conditions (4.5.1) and (4.5.2) in [KMN?] are satisfied by taking b, = b(e¥™*A)
and A, = ¢*A. Hence by Theorem 4.5.2 in [KMN?] we have the following result.

ProposITION 1.1.2 ([KMN?2]). For 1€ (P}),, let Z(4, B) be the set of sequences
{p(n)},>1 in B such that p(n) = b(¢""*2) for n > 0. Then B(4) is isomorphic to #(1, B)
by B(A) 3 b—uu, ® plk) ® - ® p(1) for k > 0.
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1.2. (A%, B(IA))) (n=2,1<k<n). Letl=2Z/n+ 1)Z be the index set of
the simple roots for the affine quantized enveloping algebra of type A{V and let
J=1{1,...,n} be that of type A,. For iel we define 1?:J -1 by 19(j) =i+
jmodn + 1,i%:J > Ibyi?(j) =i — jmod n + 1. We also define 1®¥: J\ {k} — I
by 1®¥(j) = jmod n + 1 and i®®: J\{k} - I by i*¥(j) = k — jmod n + 1.

ProrosiTION 1.2.1.  For any integers k, | such that 1 < k < n, 1 = 1, there exists
a unique crystal B! of type A" such that 19%(B“') = B(IA,) and i7*(B*') = B(IA,)
for all i, where k' =n + 1 — k.

THEOREM 1.2.2. B! is perfect and of level I.

Let B = B(IA;) (1 < k < n) be the crystal of type 4, as described in [KNT]. Set
K =1{1,2,...,n,n+ 1}. Witheach b € B, we associate a table (M 1) <i<i<i<y =
m(b) where m; ; € K, m; , <m; ;,; and m; ; < m;,, ;. Furthermore, we associate
another table (x;) with m(b). Set

Xo,0 =1, Xo,1 = Xo,2 = """ Xg 441 = 0,
Xp=#{jIm; =i} (1<j<kO0<i<n+1),

V= Y Xy O0<j<k0O<i<n+l).
jsi'si

Then (x; ;) = x(b) (b € B) satisfies
x;,;=0 unlessO0<j<i<n+1+j—k,
Vin+1+j-k =1 O<j<kh),
Yii 2 Vj+1,i+1 O<j<isn+j—k).
THEOREM 1.2.3.  An element b € B%' is minimal if and only if
Xj ;= Xjog o1 Jor2<j<kandj+1<i<j+k —1.

The proofs of Proposition 1.2.1, Theorem 1.2.2, and Theorem 1.2.3 are given in
6.3.

Remark 1.2.4. By Proposition 1.2.1, we may take (A, — A,) for B*! as 1, in
(1.1.2)

Now we give the description of the bijection o: (P} ), — (P.}), for A". When
Ae(P}), can be written 1= Y omA;, we shall use the notation A=
(mg, my,...,m,).

PROPOSITION 1.2.5.  For a perfect crystal B! and A = (mg, m,, ..., m,) in (P}),

oMoy My, ooy My g, My oy M) Mgy Mgy ooy My, Mg, ., ).
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Proof. Let b be a minimal element in B*'. By Theorem 1.2.3, we obtain

k—1 n
o) = x1 pr1Mo + Zi (%30 = Xiwr, i) N + Z;c X, i\ »
i= i=
n
Z (xi—k'+1,i+1 - xi-—k‘,i)Ai'

i=k'+1

v
e(b) = x 1 Ao + D Xy i Ay +
=1

By the restrictions on x; ;’s and Theorem 1.2.3, x; ;4; = X 44; (1 KT < k' — 1) and
Xii— Xivq,i+1 = Xirp,i+w+1 — Xiex (0 <1<k — 1). Hence, we can get the desired
result. O

1.3.(CM, B(IA,))(n = 2). Letl = {0, 1, ..., n} be the index set of the simple roots
for the quantized universal enveloping algebra of type C{¥ and let J = {1, ..., n} be
that of type C,. We define 1,i: J —» I by «(j) = j, i(j)=n —j.

PROPOSITION 1.3.1.  For any integer | > 1, there exists a unique crystal B of type
C{Y such that 1*(B™") = B(IA,) and i*(B™") = B(IA,).

TueoreM 1.3.2.  B™!is perfect and of level I.

Let B = B(IA,) be the crystal of type C, as described in [KN].Set K = {1,2,...,n,
ii,..., 2, 1}. Sometimes it is convenient to identify i with 2n + 1 — i. With this
identification, the natural order of K reads 1 <2 <n<fi<- <2 < 1. With
each b € B we associate a table (m;;;) = m(b) where m;; e K, 1 <j<n 1 <j <1
The restriction on (m;;.) given in [KN] is translated as follows. Set

Xo,0 =1, Xo,1 =" = Xg,2,=0,
xj = #{j'|m;; =k} 1<j<n0<k<2n),

V= Y X  0<j<n0<k<2n).

j<k'sk
Then (x; ,) = x(b), (b € B), satisfies
Xjr=0 unless 0 <j<k<j+n<2n,
Yinmej=1 0<j<n),
Ve — Vu=0o0rl (j*=n+j—iand1<j<i<n),
Vik 2 Virarr  O<j<n—-1,0<k<2n-1).
We also use

lo=1, lj=l“lj+n=)’j,n 1<j<n),
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Zj = Yji T V= iF1 O<j<j*<n),
Zj, j-1 = lj + lj~1 1<j<n),

Wi = Zjy o+ Zjror ~ Zerpeer — Gy (LSPSESN).

Note that z, ; = 2land z; ; = 21;, (0 <j < n),and also that wy ; = z; ,—; — Z; pe1-i =
0.

THEOREM 1.3.3.  For b e B! the equality {c, ¢(b)) =Y i—o&(b) = | holds if and
Only ifzj,j* = lj ‘+‘ lj*

The proofs of Proposition 1.3.1, Theorem 1.3.2, and Theorem 1.3.3 are given in
6.4.

Remark 1.3.4. By Proposition 1.3.1, we may take I(A, — A,) for B*' as 4, in
(1.1.2).

ProposiTION 1.3.5. For a perfect crystal B™' and A= (my, my,...,m,) in
(Pc-;-)b

o (mOa My, My_yq, mn)’—')(mm My 15005 My, mO)'

The proof is similar to that of Proposition 1.2.5; so we omit it.

14. (D%, B(A,)) n=2). LetI={0,1,...,n} be the index set of the simple
roots for the quantized universal enveloping algebra of type D{?; and let J =
{1,...., n} be that of type B,. We define 1, i: J = I by 1(j) = j, i(j) = n —j.

PROPOSITION 1.4.1.  For any integer | > 1, there exists a unique crystal B™' of type
D$®, such that 1*(B™') = B(IA,) and i*(B™") = B(IA,).

THEOREM 1.4.2. B™'is perfect and of level I.

Let B = B(IA,) be the crystal of type B,. The description of this was given in
[KN7; however we shall introduce a simpler description of B(IA,). Set K = {1, 2, ...,
n,,...,2,1}. Sometimes it is convenient to identify i with 2n + 1 — i. With this
identification, the natural order of K reads 1 <2--<n<ni<-- <2 < 1. With
each b € B we associate a table (m; ;) = m(b) where m; ; e K, 1 <j<n 1 <j' <L
The restriction on (m; ;) is as follows. Set

Xo,0 =1, Xo,1 =" =X, =0,
xi,k: #{j,!mj,1'=k} (1 <j<n,k€K),

Vik= X X 0O<j<nkek).

jsk'sk
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Then (x;) = x(b), (b € B), satisfies
Xj;=0 unlessO<j<k<n—j+1,
Vi =1 O<j<n,
Vntjoi,iii — Vji =0 (1<j<i<n),
Vi Z Yi+1,k+1 O<jsn—10<k<2n-1).

< j <i<n),implies thatif m; ; = k

Note that the condition y,.;-; 71 — y;,: = 0, (1
= k (resp. k).

(resp. k), then there is no j’ such that m; ;

TueoreM 1.4.3.  For b € B™! the equality
n—1
e, 8(b)y = eo(b) + 2 ), ei(b) +¢,(b) =1
=1

holds if and only if x; ; = Xj4q 441 Jor l £j<i<nand x;, = Xy 5 for 1 <j <n.

The proofs of Proposition 1.4.1, Theorem 1.4.2, and Theorem 1.4.3 are given in
6.5.

Remark 1.4.4. By Proposition 1.4.1, we may take (A, — A,) for B"! as 4, in
(1.1.2).

PRrROPOSITION 1.4.5.  For a perfect crystal B and A = (mgy, my, ..., m,) in (P ),
o (mO’ My, oo, My, mn)H(mm My—v5 -5 My, mO)'

The proof is similar to that of Proposition 1.2.5; so we omit it.

1.5. (DM, B(IA,_,) and B(IA,)) (n > 4). LetI = {0, 1,..., n} be the index set of
the simple roots for the quantized universal enveloping algebra of type D{*) and let
J=1{1,2,...,n} be that of type D,. We define 1, 7; J » I by i1(j) = j, i(j) =n — j.

PROPOSITION 1.5.1.  For any integer | > 1, there exists a unique crystal B"' (resp.
B™') of type DV such that
() If n is even, then 1*(B™') = B(IA,) (resp. 1*(B™") = B(IA,-,)) and i*(B™") =
B(IA,) (resp. 1*(B™') = B(IA,-));
(i) If n is odd, then 1*(B™") = B(IA,) (resp. 1*(B™") = B(IA,-,)) and i*(B"}) =
B(A,_,) (resp. i*(B"") = B(A,)).

THEOREM 1.5.2.  B™!(resp. B"') is perfect and of level .

Let B = B(IA,) and B’ = B(IA, ;) be the crystals of type D,. The description of
these was given in [KN]; however similarly to the preceding case, we shall introduce
simpler descriptions. Set K = {1,2,...,n,7,...,2, 1}. We give the order on K as
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follows;
1<2<~-<n—1<2<n—-1<~~<§<T.

Note that there is no order between n and 7. With each b € B (resp. B'), we associate
a table (m; ;) = m(b) where m; ; € K for 1 <j < nand 1 <j’ <l The restriction on
(m; ;) is as follows. Set

Xo,0 = I, Xo,1 =" =Xg,1=0,
xj,k:: #{J/‘mj,]’zk} (1 <j<n9keK)9

Vik= ), X O<j<nkek).
J<k <k

Then (x;) = x(b), (b € B (resp. B')), satisfies

(1) x;, =0if n — jis odd (resp. even);

(2) x;7=0if n — jis even (resp. odd);

(3) xj,=OunlessO<j<k<n—j+ 1

@y =10 <j<n)

) Yurjmm =yl <j<i<n-—1)

(6) Yjn = Yj-1.n-1 if n — jis even (resp. odd);

(7) ¥j.5 = Yj-1,n—1 if n — jis odd (resp. even);

®) =y @<j<n—Lk<Kk)

Note that conditions (1) and (2) imply that n and 7 cannot appear simultaneously
in one row and conditions (5), (6), and (7) imply that k and k cannot appear
simultaneously in one column.

TuroreM 1.5.3.  For b € B™! the equality

n—2

(1.5.1) (e, e(b)) = go(b) + &1(b) + 2 Y, &b) + g, (b) + &,(b) =1

holds if and only if X ; = X5 141 =" = Xpyojpoy = Xpoira i1 JOr 2 < i< n.

The proofs of Proposition 1.5.1, Theorem 1.5.2, and Theorem 1.5.3 are given in
6.6.

Remark 1.5.4. By Proposition 1.5.1, we may take [(A, — Ag) (resp. [(A,—; — Ay))
for B™! (resp. B" ') as 1, in (1.1.2).

PROPOSITION 1.5.5.  For a perfect crystal B™' and A = (my, my, ..., m,) in (P ),
(1) if nis even, .

2 (m09 My, Moy oony My_o, My, mn)H(mn—1> My My 3, ..., My, Mg, ml)’
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(2) if nis odd,
O (Mg, Myy My, o ooy By gy My W) (M, Py, Moy .., Py, Mg, My ).

The proof is similar to that of Proposition 1.2.5; so we omit it.

1.6. (A%, BUA,) (n > 3)). LetI={0,1,...,n} be the index set of the simple
roots for the quantized universal enveloping algebra of type U,(4%)_,) and let
J={1,..., n} be that of type U,(C,). We define the maps 1o, 1: J > I by 15(j) =j
foralljeJand1,(1) =0, 1,(j) =jforj# 1.

Let B(IA,) be the crystal for U,(C,) with highest weight IA,. Set K = {1,..., n,
il, ..., 1} and consider the ordering on K given by

l<2< "<n<i<-<2<1.

Then the elements of B(IA,) are labeled by b = (lgk)}‘=1, where b, € K, b, < by, for
all k. Let x,(b) = # {k|b, = i}, X,(b) = #{k|b, =i} fori=1,..., n. It is clear that

PROPOSITION 1.6.1.  For any integer | > 1, there exists a unique crystal B*'
for U(AS)_,) such that 1§(B*') = B(IA,) and 1}(B*'") = B(IA,) as crystals for
Uq(cn)'

THEOREM 1.6.2. The crystal B! is perfect and of level I.
THEOREM 1.6.3.  For b € B, the equality

(e e®)y = eob) + e1(b) + 2 3 ex(b) = I
i=2

holds if and only if x,(b) = X;(b) fori=2,...,n.

The proofs of Proposition 1.6.1, Theorem 1.6.2, and Theorem 1.6.3 are given in
6.7.

Remark 1.6.4. By Proposition 1.6.1, we may take I(A; — A,) for BY"! as 1, in
(1.1.2).

PROPOSITION 1.6.5.  For a perfect crystal B*! and A = (mqy, my, ..., m,) in (P.f),,
01 (Mg, My, My, ..y My_q, M) (Mg, Mg, My, ..., g, M,).

The proof is easily obtained by (6.7.1), (6.7.3), and Theorem 1.6.3.

17. (B, B(IAy) (n = 3)). Let I ={0,1,...,n} be the index set of the simple
roots for the quantized universal enveloping algebra of type U,(B{") and let J =
{1,..., n} be that of type U,(B,). We define the maps 1o, 1,: J — I by 1,(j) = j for all
jeJand i (1)=0,1,(j)=jforj+# 1.

S
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Let B(IA,) be the crystal for U,(B,) with highest weight IA;. Set K = {1,...,n,
0,7, ..., 1} and consider the ordering on K given by

<2< <n<0<ii<--<2<]1.

Then the elements of B(IA,) are labeled by b = (_bk)fm, where b, € K, b, < by, for
all k. Let x;(b) = #{k|b, = i}, X;(b) = #{k|b, =i} fork =1,...,n, and set xo(b) =
# {k|b, = 0}. Note that x,(b) = 0 or 1 by [KN]. It is clear that xo(b) + Y x,(b) +

PRrOPOSITION 1.7.1.  For any integer | > 1, there exists a unique crystal B*' for
U,(B{V) such that 1§(B"") = B(IA,) and 1#(B"") = B(IA,) as crystals for U,(B,).

THEOREM 1.7.2. The crystal B! is perfect and of level .

THEOREM 1.7.3.  For b € BY'!, the equality
n—1
¢, é(b)) = eo(b) + &,(b) + 2 3 &(b) + &,(b) =1
=2

holds if and only if

0 liseven,

x;(b) = X,(b)(i = 1, ..., n) and xy(b) = {1 lisodd.

The proofs of Proposition 1.7.1, Theorem 1.7.2, and Theorem 1.7.3 are given in
6.8.

Remark 1.74. By Proposition 1.7.1, we may take I[(A; — A,) for B*! as A, in
(1.12).

PROPOSITION 1.7.5.  For a perfect crystal B*' and A = (mg, my, ..., m,) in (P} ),
0 (Mg, My, Wy, ooy My_y, M) (Mg, Mo, My, oy My, M),

The proof is easily obtained by (6.8.1), (6.8.3), and Theorem 1.7.3.

1.8. (DY, B(IA) (n = 4)). Let I ={0,1,...,n} be the index set of the simple
roots for the quantized universal enveloping algebra of type U,(D{") and let J =
{1, ..., n} be that of type Uy(D,). We define the maps 1,, 1,: J — I by 10(j) = j for all
jedJand i;(1)=0,1,(j)=jforj # 1.

Let B(IA,) be the crystal for U, (D,) with highest weight IA;. Set K = {1, ..., n,
i, ..., 1} and consider the ordering on K given by

<2< <pi<-<2<Il.

Then the elements of B(IA,) are labeled by b = (b,).-,, where b, € K, b, < by, for
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all k. Let x,(b) = # {k|b, = i}, X;(b) = #{k|b, =i} for k =1, ..., n. Note that we
have either x,(b) = 0 or X,(b) = 0. It is clear that ) x;(b) + Y. X;(b) = L.

PRrOPOSITION 1.8.1.  For any integer | > 1, there exists a unique crystal B! for
U,(D{V) such that 1§ (B*') = B(IA,) and 1§(B"') = B(IA,) as crystals for Uy(D,).

THEOREM 1.8.2. The crystal BY! is perfect and of level .

THEOREM 1.8.3. For b € B!, the equality
n—2

e, &(b)) = go(b) + ,(b) + 2 ) &(b) + &,-1(D) + &,(b) =1
i=2

holds if and only if x/(b) = x;(b) fori=2,...,n— L

The proofs of Proposition 1.8.1, Theorem 1.8.2, and Theorem 1.8.3 are given in
6.9.

Remark 1.8.4. By Proposition 1.8.1, we may take I(A; — A,) for B*! as 1, in
(1.12).

PrOPOSITION 1.8.5. For a perfect crystal B®' and A= (mg,my,...,m,) in
(RT)I’

o (mO’ My, Moy ooy Myogy My gy mn)}—.—)(ml’ Mg, Myy ooy My_2, My, mn—l)'

The proof is easily obtained by (6.9.1), (6.9.3), and Theorem 1.8.3.

1.9. (D?;, BO)® B(A,) @ - @® B(IA,) (n>2)). Let I={0,1,...,n} be the
index set of the simple roots for the quantized universal enveloping algebra of type
U,(D))andletJ = {1, ..., n} be that of type U,(B,). We define the maps 1,1,: J — I
by io(j) =jand 1, (j)=n—jforje J.

Let B = B(0)® B(A,) @+ @ B(IA,) be the direct sum of crystals with highest
weight for U,(B,). Set K = {1,...,n,0,7,..., 1} and consider the ordering on K
given by

<2< <n<O<i<-<2<]1.

Then the elements of B are labeled by b = (b)i,, where b, € K, b, < by, for all k,
and 0 <j < I Here we write b = ¢ when j = 0. Let xo(b) = # {k|b, = 0}, x;(b) =
#{k|b, = i}, X;(b) = #{k|b, =i}, fori=1,...,n,and let s(b) = Y x,(b) + X,(b) +
Y Xi(b). Note that x,(b) = 0 or 1 by [KN], and for b = (b)i—;, s(b) = j.

PROPOSITION 1.9.1.  For any integer | > 1, there exists a unique crystal B*'' for
U,(D{Z,) such that

1§(B') = B(O)® B(A,) @ @ B(IA,)
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and

1¥(BYY) = BO)® B(A,) @ - @ B(A,)

as crystals for Uy(B,).
THEOREM 1.9.2. The crystal B*' is perfect and of level l.

THEOREM 1.9.3. For b € BY, the equality

Cerolb)y = 5o0) + 2 Y, ) + e,(b) =
holds if and only if

0 liseven,

1%(b) € B(IA,), x,(b) = X(b)(i=1,...,n) and x,(b) = {1 lisodd.

The proofs of Proposition 1.9.1, Theorem 1.9.2, and Theorem 1.9.3 are given in
6.10.

Remark 1.9.4. By Proposition 1.9.1, we may take I(A; — A,) for B! as ig in
(1.1.2).

PROPOSITION 1.9.5.  For a perfect crystal B*' and A = (mg, my, ..., m,) in (Py ),
01 (Mg, My ey My g, 1) (Mg, My, oy My, ).

The proof is easily obtained by (6.10.5), (6.10.6), (6.10.13), and Theorem 1.9.3.

1.10. (A2, BO)® B(A,) @~ @ B(IA,) (n>2)). Let I=1{0,1,....,n} be the
index set of the simple roots for the quantized universal enveloping algebra of type
U (AD). Let Jo = {1, ..., n} be that of type U,(C,) and let J, = {1, ..., n} be that of
type U,(B,). We define the maps 15 Jo = I by 14(j) = j for je Jy and 1,: J,— I by
ln(j) =n _] fOI'j € Jn‘

Let B = B(0)@® B(A,)® - @ B(IA,) be the direct sum of crystals with highest
weight for U,(C,). SetK = {1,...,n,7,..., 1} and consider the ordering on K given
by

<2< <n<i<-<2<l.
Then the elements of B are labeled by b = (b,)}i—,, where b, € K, b, < by, for all k,

and 0 <j < I Here we write b = ¢ when j = 0. Let x;(b) = #{k|b, =i}, Xi(b) =
#{klb, =i} fori=1,...,n,and let s(b) = ) x;(b) + 2 X:(b).

PrOPOSITION 1.10.1.  For any integer | > 1, there exists a unique crystal B! for
U,(4%)) such that

1§(B*') = BO)® B(A,) @ -~ @ BUA,)
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as crystals for U(C,) and

(B B((l - 2BJ>A1) @@ B((—2)A,) ® B(Ay)

as crystals for U,(B,).
THEOREM 1.10.2.  The crystal B*'is perfect and of level I.

TueOREM 1.10.3.  For b e B!, the equality {c,&(b)) =¢eo(b) + 2 1, &(b) =1
holds if and only if x,(b) = X;(b) fori=1,..., n.

The proofs of Proposition 1.10.1, Theorem 1.10.2, and Theorem 1.10.3 are given
in 6.11.

Remark 1.10.4. By Proposition 1.10.1, we may take I(A; — A,) for B! as 1, in
(1.1.2).

ProposITION 1.10.5.  For a perfect crystal B*! and A = (mg, my, ..., m,)in(Py ),
o1 (Mg, My, ..., My, M) > (Mg, My, ..., M,_q, M,).
The proof is easily obtained by (6.11.1), (6.11.2), (6.11.9), and Theorem 1.10.3.

2. Polarization.

2.1. Order on Q(q). We shall give a total order on Q(q) as follows.

Set Q@)+ = | |ucz{q"(c + gA)|lc > 0} and f > g if and only if f — g € Q(g),-
Hence f = g if and only if there exists ¢ > 0 such that f{g) = g(¢)for 0 < q < e.

2.2. Positive definite form on V. Let V be a Q(q) vector space and (, ) a
Q(g)-valued symmetric bilinear form on V. We say that( , )is positive semidefinite if

2.2.1) (v,v) =20 foranyve V.
We say that ( , )is positive definite if and only if
(2.2.2) (v,v)>0 for any nonzerove V.
Note that (, ) is positive definite (resp. semidefinite) if and only if, for any finite-
dimensional Q-subspace W of V, (, )|, is positive definite (resp. semidefinite) for
0<g« 1.

If (, )is positive semidefinite, we have

(2.2.3) (u+v,u+0v)<2u u + 2(,0),

(2.2.4) (u, v)* < (u, w)(v, v).



Pl

PERFECT CRYSTALS OF QUANTUM AFFINE LIE ALGEBRAS 519

LemMa 2.2.1. Let ( , ) be a positive definite symmetric bilinear form on V and

L = {u e V|(u, u) € A}. Then we have
(i) L is an A-module;

(i) (L, L) = 4;

(iii) If dim V < o, then L is a free A-module of finite rank.

Proof. Itis obvious that L is stable by the multiplication of elements of A. Hence
the first assertion follows from the fact that L is stable by summation, which is an
easy consequence of (2.2.3). The assertion (ii) follows from (2.2.4). In order to prove
(iii), let us take a free A-module L, of finite rank such that Q(q) ®, L, = V and
Lo L. Then L ¢ L§ = {ue V|(u, L) = A} from (ii). Since L; is a finitely gener-
ated A-module, L is also finitely generated over A. O

Remark. Under the assumption of Lemma 2.2.1, the Q-valued symmetric bi-
linear form on L/qL induced by ( , )is positive semidefinite but not positive definite
in general, as seen by the example V = Q(q)u, (4, u) = g and L = Au.

The following lemma gives a sufficient condition for a given L to be equal to
{ueViu u)e A}.

LEMMA 2.2.2. Let( , )be abilinear symmetric form on a Q(q) vector space V and
L a free A-submodule of V such that V = Q(q) ®, L. Assume that

(2.2.5) (L, L)<= A,
(2.2.6) (', )o is positive definite,

where ( , ) is the Q-valued symmetric form on L/qL induced by (, ). Then( , )is
positive definite and

2.2.7) L={veV|bv)e A},
(2.2.8) L={veV|w L)c A}.

Proof. For anonzero v e V, let us take nsuch thatve g"L and v ¢ g"*"'L. Then
(v, v) € ¢*"((q "0, ¢ "v)o + qA) and (¢™"v, ¢""v)o >0 by (2.2.6). Hence (v, v) > 0.
Therefore ( , ) is positive definite. Now we shall show (2.2.7). Assume that ve V
satisfies (v, v) € A. Let us take the smallest n = 0 such that v e ¢7"L. If n > 0, then
q"v ¢ gL and hence by (2.2.6) (¢"v, ¢"v) ¢ qA, which is a contradiction. Hence n = 0
and v e L. This proves (2.2.7). Finally we shall show (2.2.8). For v e V such that
(v, L) c A, let us take the smallest n >0 such that g"ve L. If n>0, then
(q"v, L/qL), = 0 and hence by (2.2.6) ¢"v = 0 mod gL. This is a contradiction. O

2.3. Z-form. Let us introduce the subalgebras A, and Kz of Q(g) as follows:
23.1) Az = {f(9)/9(9)|(a). 9(q) € Z[q], 9(0) = 1},

K, = Az[q~1]~
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Then we have
(2.3.2) K;nA=A4,.

The following lemma is immediate.

LemMA 2.3.1. (i) qAz is the Jacobson radical of A4 (i.e., any element of 1 + qA4
is invertible).
(i) Az/qA, = Z.

Let V be a Q(qg)-vector space and ( , )a positive definite symmetric bilinear form
on V. Let L be a free A-submodule of V such that V = Q(q) ®, L and Vk, @
K z-submodule of ¥ such that V = Q(g) ®k, Vk,- Assume

(2.3.3) (Vk,» Vk,) = Kz,
(2.3.4) (L, L) = A.

Let(, ), be the induced Q-valued symmetric form on L/qL. By (2.3.3) and (2.3.4),
(s )ois Z-valued on Vi n L/Vy, N qL. Assume further that

(2.3.5) (, )ois positive definite,
(23.6) B ={be Vg, L/Vg, nqL|(b, b), = 1} generates L/qL over Q.

Lemma 2.3.2.  Assume (2.3.3-2.3.6). Then we have

(i) B is pseudobase of L/qL;

(i) Vi, " L/Vi,nqL =3 .5 Zb.

Proof. We shall take B' = B such that B= B'U(—B') and B'n(—B) = ¢.
Then B’ also generates L/qL. For by, b, € B, we have (b, b,)2 < (by, by)o(b2b,) = 1.
If (by, by)§ = 1, then (by, by)o = + 1 and hence (b; F b,, b, F b,), = 0, which implies
by = +b,. Thus B’ is an orthonormal base of L/qL, which proves (i). For u € Vk, 0
L/Vk,nqL, let us write u = Y sen ayb. Then a, = (u, b), is an integer. Thus we
Obtam (i1). O

2.4. Polarization. Let M and N be a Uyg)}-module. A bilinear form ( , ).
M ®qq N — Q(g) is called an admissible pairing if it satisfies

(q"u, v) = (u, g"v),
(24.1) (e;u, v) = (u, g7 't o),
(f;lt, U) = (ua qi-ltieiv)’

forallue M andve N.
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Let M be a Uy (g)-module. A symmetric bilinear form ( , ) on M is called a
prepolarization of M if it satisfies (2.4.1) for u, v e M.
Let ¢ be the antiautomorphism of U,(g) given by

(24.2) v =q", W) =gl () =4 e
Then we have

(2.4.3) (Pu, v) = (u, Y(P)v) for any P e U,(g).

In particular, we have

(ef™u, v) = (u, g7 "'t "f "),
(2.4.4)
(fi"u, v) = (u, g7 " tle(™v).

A prepolarization is called a polarization if it is positive definite. The following
proposition is proved in [K4].

PROPOSITION 2.4.1.  For any 1€ P, V() has a polarization ( , ) such that the
crystal lattice L(4) is characterized by L(A) = {u € V(2)|(u, u) € A}. Moreover, B(}) is
an orthonormal base of L(A)/qL(1) with respect to the induced symmetric bilinear form
onit.

COROLLARY 2.4.2. Let M be an integrable U,(g)-module in O,,(g) and (, ) a
prepolarization on M. If (, ) is positive definite on H = {u € M|e;u = 0 for all i},
then( , )isapolarization. If (', ), is positive definite on H ~ L/H n qL, then ( , )o
is positive definite on L/qL.

Proof. We have the orthogonal decomposition

M= @ H,® VJ).

ie Py

If we denote by ( , ), the polarization on V(1) such that (u;, u;) = 1, thenforv e H,
and u € V(4),

v®u,v@u) = (v, v)(u, u),.

Then the assertion follows from the fact that the tensor product of positive definite
forms is positive definite. The last statement is similarly proved. O

LEMMA 243. Letu,u’' € M, and e;u = e;u’ = 0. Then

(fi®u, f;0u') = gltr>-h [<hil,c D} (u, ).
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Proof. By (2.4.4), we have

(1, f10') = (w47 tfelOf )
= gMBd> =Ry o £y

On the other hand, e®f;® = Y, f;¢ e*=D {1}, implies e®f;®u’ = [4*’ ]’ Thus
we obtained the desired result. O

PROPOSITION 2.4.4. Assume that M is an integrable U,y(g)-module and
dim M, < o for any A. Let ( , ) be a polarization on M. Then we have

) @Eu, &u) < (1 + q)(u, u) and (fiu, fi) < (1 + q)(u, u) for any u and i;

(i) L = {ue M|(u, u) e A} is a crystal lattice of M.

Proof. (i) We may assume u € M. Setu =) f;¥u, where u, € M, 1, N Ker e;.
Then fu =) f;**Vu,. By Lemma 2.4.3, we have

; 2k
(2.4.5) (u, u) = Ek: q;c(<h,~,l>+k) |:<h,, Ai + ].(uk’ )
and
IO h;, A 2k
@46 (ufu=Dapreonn GBI ),

Hence, (fiu, fiu) < (1 + q)(u, u) follows from (uy, ;) = 0 and

+ k n -+ k
4.7 D= | " <(1+ kn >0.
(2.4.7) q; [k 11 (1 + q)g; [ K l fork,n=0

The statement on &, is similarly proved. 3
(ii) By Lemma 2.2.1, L, is a free A-module and L is stable by &; and f; by (i). O

LemMa 2.4.5. Let ( , )be a polarization on an integrable U,(g)-module M. Then
for A€ P and ue M, we have

(fiu, i) < @O~ (fu, fu)  and  (Eu, Eu) < g7 PP e, eu).
Proof. Setu =Y f{¥u, where u, € M, nKer e;. We have

(fae fow) = 3 (5 Vuy, 5Dy

and

(fius fu) = ¥ [k + T2 Vuy, 50y
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If k + 1> <hy, A + ko) then f*+Dy, = 0. Hence we may assume k > 1 — (h,, A
which implies g7~ "+*?[k + 1]? > 1. This shows the first inequality. The second
inequality follows from the involution of U,(g), f;— e;, ¢;— f;, ¢"+—q~". O

LEmMMA 2.4.6.  Let L be a crystal lattice of an integrable U,(g)-module M, ( , )a
prepolarization on M such that (L, L) = A and( , ), is the induced symmetric bilinear
form on L/qL. Then (&u, v)y = (u, f;v)o for any u, v e L/qL.

Proof. We may assume u = f;®u’ and v = 9 where u’, v' € L and e;u’ =
e;v' = 0. Then Lemma 2.4.3 implies

@, v) = (f*700, f90) = Sy (f0, f0') € Oy (1 + qA) (', V).

Similarly, we have (1, f;v) = (f;®u, ;9"D0) € 5, 11+ gAY W', v'). ]
2.5.  The complete reducibility of U,(8)g,-modules. Let us c:enote by U,(g)z the
Z[q, q* J-subalgebra of U,(g) generated by e™, £, ¢" and {

q

n
U, (8)z (resp. U, (g)z) the Z[g, ¢~* J-subalgebra of U,(g) generated by ef (resp. ;™).
We set Uj(g)x, = Kz ® U,(9)z, U (9)x, = Kz ® U;(g). Let M be a U,(g)-module
M in 0,,(g). For A € P, we denote by I,(M) the isotypic component of M of type
V(A). Hence

. Let us denote by

(2.5.1) M =~ @ L,(M)
Ae Py
and
(2.5.2) I,(M) ~ Homuq(g)(V(A), MY® V(4).

The purpose of this section is to prove the following proposition.

ProrosiTioN 2.5.1. Let M be an Uy(g)-module in O,,(g) such that I,(M)=0
except for finitely many A € P,. Let M k. be a Uy(@)x,-submodule of M. Then M, K,
@15& (MKZ N 1;(M)) and MKZ N L(M) =~ (I(M); n MKZ) ®xk, V(/l)xz- Here V(/l)xz
is the U,(g)x,-submodule of V(J) generated by the highest-weight vector u;.

In order to prove this, we shall prove the following lemma.

Lemma 2.52. For AeP, and pel —Q,, there exist finitely many P, e
(U;(g)KZ)l_# and Q, € (Uq"(g),(z)#_,l such that u = Zk Qi Peu for any u € V(4),.

Proof. Set V(2)z = Uy(a)zu;. Then V(A)z = Y, 5y ZLq, 971G, (b) where G, (b)
is the (lower) global base (see [K4]). Then we have (G,(b), G,(b)) € 8y + qA4.
Hence, det((Gy(b), G1(b"))y, v e 5(a, 1S invertible in 4, (see Lemma 2.3.1). Therefore,
there exists Gf(b) € Kz ® Vz(4), such that (G§(b), G;(b')) = Jy,. Let us write
G,(b) = Q(b)u, and G¥(b) = R(b)u, for Q(b), R(b) € (U; (8)k,)u-3-
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Now we shall show

(2.5.3) Y QOWRD)u=u for any u e V(4),.
beB(A),
For any b, € B(4),, we have

(¥ (R(D))G;(b), u;) = (G,(bo), R(b)u,)

= 5“70 .
Since (R(b))G;(b,) is a constant multiple of u,, we obtain

Y (R(b))G;(bo) = 5bbou/'t .
Thus we obtain

; O(b)Y(R(b))G(bo) = ; 055, Q(b)u; = G, (by).

This shows (2.5.3). Now it is enough to note that there exists P(b) € (U;(Q))KZ such
that P(b)u = y(R(D))u for allu e V(J),. O

COROLLARY 2.5.3. Let Ae P, let M be a direct sum of copies of V(A), and let
Mg, be a U,(g)k,-submodule. Then

My, =~ (M; " My ) ® V(dg, -

Proof. 1Tt is obvious that My, o (M, N Mg,) ® V(J),. Let us show the other

inclusion. For pe A — Q. and u € (Mg,),, we have u = Y Qi P.u where Q, and P,
are as in Lemma 2.5.2. Then P,u e M; N M,, and hence Q,Pu e (M; N Mg,)®
V(M O

Proof of Proposition2.5.1. SetS = {Ae P,|I,(M) #0}and H = {ue M|eu =0
for all i}. By induction, it is enough to show that, for any A € S such that (1 + @) n
S = {1}, My, = (N n My,) ® (H, 0 My,) ® V(d),, where N = (D)1 Li:(M).

By the assumption on A, we have M, = I,(M), = H,. Let us consider the exact
sequence

(2.54) 0-N->MS5H,QV()—0.

Then n(M,) = (H, " Mg,) ® V(A), by Corollary 2.5.3. On the other hand, My, =

(H; N Mg,) ® V(A)g,. Thus Mg, = (N 0 My,) @ n(Mg,). O
2.6. Criterion for the existence of crystal pseudobase.

PROPOSITION 2.6.1.  Let M be an integrable U,(g)-module such that dim M, < oo
for all A € P, let My, be a U,(g)g,-submodule of M, and let ( , ) be a polarization on
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M such that (Mg, M, k) © Kz. Let Lbea free A-submodule of M such that (L,L) < A
and Q(q) ®, L = M. Assume that

(2.6.1) the induced bilinear from ( , ), on L/qL is positive definite,
(2.6.2) B = {be My, n L/Mg, " qL|(b, b), = 1} generates L/qL.

Then (L, B) is a crystal pseudobase.

Proof. By Lemma 2.2.2 and Proposition 2.4.4, L is a crystal lattice of M. Lemma
2.3.2 implies that B is a pseudobase of L/gL. By Proposition 2.4.4, ( , ), satisfies

@u, u)o < W, uw)y and  (fiu,fi)o < (w,u)y  forue L/qL.

Hence B U {0} is stable by & and f. Let us show that, if b e B and &b € B, then
fi&b=b. Lemma 24.6. implies (ﬁebb)o-(ebeb)o—l (fié:b, fie.b)y =
(ébe‘febom(ebeb)o—lHence(f,eb b, fié:b — b)o = 0, which implies b =
fié;b. Similarly, if b € B and f;b € B, then &fib=0. O

PROPOSITION 2.6.2.  Assume that g is finite-dimensional and let M be a finite-
dimensional integrable U,(g)-module. Let ( , ) be a prepolarization on M, and My_ a
U,(g)-submodule of M such that (Mg,, My, ) < K. Let 4y, ..., A, € P,, and we
assume the following conditions.

(2.6.3) dim M, < Y%, dim V(3), ~ fork=1,...,m

(2.6.4) There exist u; € (Mg, );, (j = 1,..., m) such that (u;, w) € 9, + qA,
and (e;u;, e;u;) € qq; > M40 4 foralliel.

Set L = {ue M|(u,u)e A} and set B={be My, 0 L/My, 0 qL|(b, b)o = 1}. Then
we have the following.
(i) (, )isa polarization on M.
(i) M =~ @V().
(iii) (, )o is positive definite, and (L, B) is a crystal pseudobase of M.
Proof. Let Q, =) Z_,a,. For Ae P, let I,(M) be the isotypic component of

M of type V(4). Then M = @I,(M)is an orthogonal decomposition with respect to
(', ). We shall prove the following for each 1 € P,.

(2.6.5), (> JolrannrL/,anngr is positive definite.
(2.6.6), L(M) = V(1)®s where s = # { j|A; = 1}.
(2.6.7),

There exist v; € I,(M), " M kg for j such that 4; = A satisfying (v;, v;,) € 6;; + gA.
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By induction on 4, it is enough to show (2.6.5-2.6.7),, under the assumptions that
(2.6.5-2.6.7); hold for X' € P, n (A + Q )\ {A}. Set N = @1 cp,n(iroiia} L2(M). By
Corollary 2.4.2, (, )|y is a polarization. Therefore, by Proposition 2.4.4, LN N is
a crystal lattice of N. Then by Corollary 2.4.2, ( , )olnnr/nngr 18 Positive definite.

Set D = {j|A; = 4}. For j € D we write

— ’
u;=0; + U;

with v; e [ Z(M) and uj € N. Proposition 2.5.1 implies that v; and u; belong to My,

Then (el u;, e;u;) = (e, e;uf) € qq; >+ ) A by (2.6.4). Hence Lemma 2.4.5 1mphes
that (&;u;, &u; ) € gA4,and by (2.6.5) &u; € qL for any i. Since N has no highest-weight
vector of weight 4, we have {v eNAmL/NAquIe v =0 for all iel} =0. This
implies u] € L. Thus we obtain (u;, u;) € 4. Therefore (v;, v;)) = (;, u;: up) — (U, uj) €
;7 + qA. Thus we obtain (2.6. 7),1 Moreover, M contains V(A) at least # D-times.
On the other hand, (2.6.3) implies that M contains V(1) at most # D-times. Thus
we have (2.6.6),. Finally, (2.6.5), is a consequence of (2.6.7), and Corollary 2.4.2.
Thus we obtain (2.6.5-2.6.7), for any A € P,. Then (i) and (ii) are consequences of
(2.6.5), and (2.6.6),. By Proposition 2.4.4, BL1 {0} is invariant by & and fi. By (2.6.7),
we can show that B generates H n L/H n gL where H = {u € M|e;u = 0 for all
i e I}. Thus B generates L/qL. Hence by Proposition 2.6.1 (L, B) is a crystal pseudo-
base of M. O

3. Fusion construction.

3.1. Elementary representations. We follow the notations in Section 2. In this
section we construct U,(g)-modules with perfect crystal pseudobase. We employ the
fusion construction. Namely, we construct first a Uy(g)-module whose crystal base
is perfect and of level 1 and then construct general ones by using its tensor products
and R-matrix.

Let V be a finite-dimensional integrable U,(g)}-module. We assume that there is
a Uy(@)k,-submodule Vi, of V such that Vi, is a finitely generated K z-module and
V= Q(q) ®k, Vi, Let ( , )bea polarlzatlon of V.

Let (L, B) be a crystal base of V satisfying the following property.

(3.1.1) B is perfect of level | = 1.
In particular, V is an irreducible U,(g)-module by (4.6.1) and Lemma 344 in

[KMN?Z2]. Let A, be an element of P, as in (4.6.2) in [KMN?]. We shall take u, € L,
such that B, = {u, mod gL}. We may assume, by replacing Vg, ,

(3.1.2) Vk, = Uq(9)g, 4o -

In particular, we have

(3.1.3) Vi, " Qq)uo = Kz
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In fact, if Vi, 0 Q(q)uo > pu, for ¢ € Q(g), then Vi, > Uy(g)g, puo = ¢ Vg, Hence
Qe Kz.

By (4.6.2)in [KMN?], we have # (B ® B),;, = 1. Hence using (4.6.1) and Lemma
3.4.4 in [KMN?], V¥ ® V is an irreducible U;(g)-module. Then we can apply Theo-
rem 3.4.1 in [KMN?2]. Hence there exists a U,(g)-linear endomorphism R of
Aff(V) ® Aff(V) satisfying

(314 (1®T)oR=Ro(T®1) and (T®1oR=Ro(1®T),
(3.1.5) RDNe(I1®@R)e (RN =(1®R)(R®1)o(1®R),
(3.1.6) R(af (uo) ® af (ug)) = o(T' ® T)(af (ue) ® af (uy)),

for a nonzero (T '®T)eZ[q, ¢, T'®T, T® T *]. Since R* is in
Q(@(T® T™1), we obtain

(3.1.7) RP=o(T®T o(T"®T).
By normalizing the bilinear form ( , ) we may assume that
(3.1.8) (ug, ug) = 1.

This implies that

(3.1.9) (Vs Vi) = Kz

In fact, (Vk,, Vk,) = (Vk,» o) = ((Vky)ags to) = (Kzlo, Ug) = Kz by (3.1.2) and
(3.1.3).

3.2. R-matrix for multiple tensor products. For the sake of simplicity, let us
denote V, = @ (Q(q)[x, x™*] ®qp V). Then the R-matrix R gives a Uy(g)-linear
map V, ® V, - V, ® V.. We denote it by R(x, y). Note that R(x, y) depends only on
x/y. Let | be a positive integer and &, the /th symmetric group. Let s; be the simple
reflection (the permuation of i and i + 1) and let I(w) denote the length of w e S,.
Then for any w € &, we can define R, (x;,...,x): V, ® @V, - Ve @ ®
V.  as follows:

Xw(i)

(3.2.1) Ri(xq,...,x) = 1.
(3.2.2) Rsi(xls c X)) = (®j<iidej) & R(x;, Xi41) ® (®j>i+1 idvxj)~
(3.2.3) For w, w’ with I(ww') = I(w) + I(w’),

wa:(xl, PN X,) = wa(xw(l), ey xw(l)) o Rw(xl, ceey x,).
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3.3. Construction of V; and (V))g,. Fixr € Z,. For each le Z., we set
Rl =R (qr(l~1) qr(l—3) q—r(l—l)).
Wwo 3 PEEEE .

I/;r(l—l) ® Vqru-a) ® e ® I/q—r(l—l) - I/q—r(l—l) ® V:I—r(z~3) ® e ® V;m-—x)

where w, € S, is the permutation given by i+>1 + 1 —i. Then R, is a Uy(g)-linear
homomorphism. We define

(3.3.1) ¥, =ImR,.

Then V; is an integrable U,(g)-module. We have

(3.3.2) R,(u§") = n(q)ug".
where
(3.3.3) Yilq) = 1<I_;[,<l @(g*v7?).

Here ¢ is given by (3.1.6). Now we assume that

(3.3.4) ¢@(g**") does not vanish for any k > 0.
We set
(3.3.5) R=yu(@7'R,.

We define the K ,-form of V] by
(3.3.6) Mk, = R((Vi,)®") 0 (Vg,)®".

Then (V)g, is a U,(g)g,-submodule of V] such that Q(q9) ® M)k, = Vi- If we set
u, = u’, then (V))g, 3 u;. We have

(3.3.7) (Vz)zao = Q(q)u,
(3.3.8) the weights of ¥, are contained in Idg + Y i, Z<o %
Let us denote by W the image of

RGN Ve ® Ve = Ve ® Vi
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and by K its kernel. For each i, R, decomposes as

V;Ir(zvn ® e ® V;—r(z—n - V:]-r(z—zwa) ® Vq—ru—zi-l) ® V;l—ru-znn

. id@R(q“r(’“Zf“l),q""‘2"‘“”)@1’{1- .

® I/q—'r(l"li'ﬂ e

V:]ru‘n @ e ® l/q—r(l—l) .
Therefore,

(3.3.9) ¥, considered as a submodule of V®' = V.44 ® =+ @ Va-ny

1-2
is contained in () V&' @ W® V279,
i=0

Similarly, we have
(3.3.10) V;is a quotient of V&Y 122 VO @ K @ V&U7270,

3.4. Polarization on V;. Now we shall define the polarization on V,. The follow-
ing is immediate.

Lemma 3.4.1. Let M; and N; be U,(g)-modules and let ( , ); be an admissible
pairing between M; and N; (j = 1, 2). Then the pairing ( , ) between M; ® M, and
N; ® N, defined by (u; ® u,, v, ® vy) = (uy, vy), (U3, v3), for all u;e M; and v; € N;
is admissible.

The polarization on V gives an admissible pairing between V, and V,-.. Hence it
induces an admissible pairing between V, ® - ® V, and V-1 ® -~ ® V.

LEMMA 342, If x;= x4 forj=1,...,1 then foranyu,u' e V, @ - ® Vy,,
we have

(u, Ry (x4, - xpPu') = (', R, (x4, ..., Xp)u).

Proof. 1Ifx;= lforallj,V, ® - ® V, isanirreducible U,(g)-module by Lemma
3.4.4 and Corollary 4.6.3 in [KMN?]. Hence Lemma 3.4.2 in [KMN?] implies that
V., ® @V, is an irreducible Uy(g)-module for generic x,, ..., x;. Hence it is
enough to check it for u = u’ = u,. This is obvious. O

By taking x; = ¢"*"V, x, = ¢"""¥, etc., we obtain the admissible pairing ( , )
between W = Vqru-n ® Vqru-s) & - ® I/;I—r(l—l) and W' = Vq—ra—x) ® Vq—ru—s) ® ®
Vw1 that satisfies

q
(3.4.1) (w, Rw') = (w', Rw)  for any w, w’' € W.
This allows us to define a prepolarization ( , ), on V, by

(3.4.2) (Ru, Ru'), = (u, Ru')
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foru,u’ € Vya-u @ Vpu-» ® *+* @ Vjra-n. Since the pairing ( , ) between W and W’
is nondegenerate, we obtain the following proposition.

PROPOSITION 3.4.3. @) (, ), is a nondegenerate prepolarization on V.
(i) (R, Rew) = 1.
(iii) ((Vl)Kza (Mg, = Kz.

Then by applying Proposition 2.6.2 (with m = 1) and Proposition 2.6.1, we obtain
the following result.

PRrOPOSITION 3.4.4. Set Iy = I\{io}. If V; is an irreducible U,(g;, )-module, then
the U,(g)-module V; admits a crystal pseudobase.

Similarly, we have the following result.

PROPOSITION 3.4.5. Let m be a positive integer and assume the following condi-

tions:
(i) <hy, LAy + joy,» =0 fori#i,and 0 <j < m.
(i) dim(V)pg ke < D 1o dim V(Ao + joti )iz +kaye fOT O < k < m, where V(2) is
an irreducible U, (g, )-module with highest weight A.

(ili) There exists iy € I such that {i e I|Ch;, 0> < 0} = {i, }.

(iv) —<hy,, lhg — ;> = 0.
Then we have

Vi @o V(Ao +jo,)  as a Uygy,)-module,

and V; admits a crystal pseudobase as a Uy (g)-module.

Proof. It is enough to show

(3.4.3) €®u;, ePu), el + g4 for0<k<m,

io ip
k k —2(1+ Chy, Lag iy
(3.4.4) (eiei(o)ula eiei(o)ut)l € qq; 20 Pelrothmon 4

for0 < k < mandi € I,. In fact, by applying Proposition 2.6.2 to the U,(g;,)-module
V,, we can show that it is isomorphic to (—B}';O V(4o + jo ). Moreover, if we define
L and B as in Proposition 2.6.2, then (L, B) is a crystal pseudobase of the U,(gy )-
module ¥V, and the induced symmetric bilinear form on L/qL is positive definite.
Then proposition 2.6.1 implies the desired result.

In the following, we use

[ﬂ eq M1 4+ q4), [aleq'™4  fora, b>=0.

Since cl(—oa;,) = cl(0 — o)) € Zi#o Z., cl(x;) and the weights of ¥V, are contained in
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Ao + Y iniy L<ocl(er;), we obtain f; u, = 0. Therefore we have

—<h; 1A
(3.4.5) (e, ei(f’uz)z=q§‘j'<"‘°”’1°>"‘)[ < B °>]' .

From this follows (3.4.3).
Let us prove (3.4.4). For notational simplicity we shall write O or 1 instead of i,
ori,. Ifi #0, 1, we have

(3.4.6) e;eu, = ePeu; =0
Ifi = 1, we have
(34.7) (erefu, e;euy), = (v, ),
where
v = qo 15" fdar 1T fre efu;.
Now, by setting u = l4,, we have
(3438) b = oMo gL~ Guntia) (0 f o oy,
On the other hand, fie; = e, f; — {¢,}, implies
(34.9) $Ofreefu = f§(ey fi — {ti}1)eu,
= e, fef vy — [<hy, 1+ koo )], f§Peu, .

Similarly to fyu, = 0, we have f, fiu, = 0. Hence

—<Shg, p— o
etip =]~
V]

Thus we obtain

—<{hg, o — o
(3.4.10) ed@&mm=[ <°f 0}%ﬂm
4]

—<h0,ﬂ—-061> u
k o

= [<hy, /f‘)]l[
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Comparing (3.4.7-3.4.10), we have

K B\ (= Chg > =k =1 = Chy, ptk
(e1ePuy, ey efuy), = g o> gt~ Bk i

— e — ¢k
X <[<h17 H>]1[ ¢ 0,;: 061>]0 ~[Khy,n+ kao>]1{ <lj’#>] >
0

Since (g, tig) <o, 001> = (04, 001)<{hy, o), we have
(ety, o) (1 = Chyy ) — (g, o) k(= Chos o — 21> — k)
= (oty, 0y ) (1 = Chy, o+ ko)) = (g, o) k(— <hos 1> — k),
and the sum of this and
(otg» %o)k(—Chos > — k) + (oy, 0y)(—1 — by, p 4 kot))
becomes — 2(cy, oy )<hy, 1 + ko). Hence (e, euy, e, efu)), € gy 2"++4. O

4. Constructions of level-one representations. In the following we calculate the
explicit forms of R-matrices. Except in the case of (D{?;, V'), all nonzero weight
spaces of the representations which we treat here are one-dimensional. So we denote
by b the lower global base corresponding to an element b of the crystal of a
representation except in the case of (D, V). In Sections 4.1-4.9 we denote byt
the Cartan subalgebra of g, by {o;]s € I} < t* the set of simple roots, by {hliel} ct
the set of simple coroots and by {A;|i € I} the set of fundamental weights of the
corresponding Lie algebras, where I = {0, 1, ..., n}. We assume that the norm ofa
short root is equal to one. For any finite-dimensional U,(g)-module W and the
choice of iy, we set W, = ®(Q(q)[x, x '] Qg W) The calculations of the R-
matrices here are carried out in the following manner. For a finite-dimensional
U,(g)-module W and the choice of iy, we first decompose W ® W into the direct
sum P, W, of irreducible Uy(8\ (i,))-modules. Then the R-matrix R(x/y): W, ®
W, - W, ® W, can be written as R(x/y) = @), 7;(x/ y) Py, by Schur’s lemma, where
Py, is the Uy(gp (i,)-linear projection from W, @ W, to W,. Let w; be the highest-
weight vector of W,. Except in the case of Section 4.8, we find elements P; of Uy(g)
and Bi(x, y) of Q(q)[x, x~%, y, y~*] which satisfy Pu; = B;(x, y)u;+; in W, ® W, for
an appropriate order of J. Then we have recursion relations

P:0¢/Y) B (v, %) = Bilx, Y)Vier1 (X/3).

From those relations we can determine y;(x/y) for all j€ J up to a multiple of an
element of Q(g)(x/y).
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4.1. (AP, VF. Letg= ;I\(n + 1) be the affine Lie algebra of type A{. Define
A(i e Z) by

[ A forl <i<n,
70 otherwise.

We assume that ((h;, 2,)); <; j<, 1 the Cartan matrix of type 4,. We set 10 0. Let
U,(sl(n + 1)) be the subalgebra of U, (sI(n + 1))associated with {h,, w1l <i,j<n}

4.1.1. Decomposition of the tensor product. Let V(A )(1 < k < n) be the irreduc-
ible highest-weight U, (sl(n 4 1))-module with highest weight Ak and (L(Ag), B(Ay))
its crystal base. By [KN] the elements of B(A,) are labeled in the following way.

B(Ay) = {m)i_, |1 <my < <m <n+ 1}
Then
(4.1.1) V(A ® V(A = DR HPV(Re s + Ay).
The highest-weight elements for the corresponding crystals are given by

@, .., k—ik+1,...,k+1i)  for BAw; + Apss)-

4.1.2. Construction of the representation of U;(gl\(n + 1)). Define the actions of
ey and f, on V(A,) by

b (1 by oosi) b =(iyss i, n+ 1)
° otherwise,

enh = (Jis - osdk-1n+ 1) it = (1,j, .. ) jx=1)
° 0 otherwise.

Itis easily verified that V(A,)is a well- deﬁned U; (sI(n + 1))- module with the actions

of ey, fo given above and g"o = g~®* M) We denote this U/ (sl(n + 1)}-module
by V*. By the construction it is obvious that V'* has a crystal base.

4.1.3. Construction of a polarization of V*. Let( , ) be the polarization of the
U,(sl(n + 1))-module V(A,). We shall show

(4.1.2) (q"u, v) = (u, g"v),
(4.1.3) (eou, v) = (u, o' t5"fov),

(4.1.4) (fott, ) = (u; g5 toeov),
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for any u, v € V¥ It is sufficient to prove (4.1.2)—(4.1.4) for the lower global bases u
and v. The equality (4.1.2) is obvious by the definition of the action of g". By direct
calculations we have the following lemma.

LemMa 4.1.2. (1) Let b be a global base which satisfies e;b = 0 and (h;, wt(b)) =
1. Then (b, b) = (f;b, f;b).

(2) Let b be a global base which satisfies e;b = 0 and {h;, wt(b)) = 2. Then (b, b) =
(b, fPb) = q; ' [217* (fib, fib)-

Note that, for any b € B(A,) and i (1 < i < n), ¢;(b) + ¢;(b) < 1. Hence, by using
Lemma4.1.2,(4.1.2)~(4.1.4) are verified for lower global bases u and v. Consequently,
(, )isa polarization of Uy(sl(n + 1))-module vk

4.1.4. Calculation of the R-matrix. By the decomposition (4.1.1), R(x/y) can be

written as R(x/y) = (Ppigt+t—k k)%P(Ak R where PAk +&,,, Is the projection
Pieiy VIA)® V(A = V(K + Agyy). Let (0 < i < min(n + 1 — k, k) be

the highest-weight vector in the U,(sl(n + 1))-module V(Ak) ® V(A,) with highest
weight 7\k—i + Ay Weset P= fof, "'fk+if1 oo

LemMa 4.1.3. Let v,y = Pu; (1 <i<min(n + 1 — k, k)). Then v;_, is nonzero
and is proportional to u;_; .

Proof. Ifx=y=1,v_, #0in L/qL. Hence v;_, # 0. By a direct calculation
the weight of v;_, is A,_; + A,;. We must check that v;_, is a highest-weight vector.
Since [e,, f;]1 = 0forr # [, e,v;_; = 0for k — i <r < k + i. As is immediately seen,
the following set of vectors is a base of the weight space of V(A,) ® V(A,) with
weight A, _; + Avsie

(A, k—dymy, o om)® L, k=i by, Dmy, om b O (L, L L
={k—i+1,....,k+i}}.

It follows that e,v;_; = Oforr <k —iandr >k + i O

Let us define b{? and b{ by

b = (o, ®(1,2,..., k=i, k+1,....k +1),
PP =1, .. k—ik—i+2 ..., kk+i
®U,.., k—i+Lk+1... k+i-1).

For any element v of V¥ ® V* we write Pv = ), FY'b/, where b’ runs over the set
of tensor products of global bases of V'*. In the following subsections we use these

notations in a similar way. The following lemma is by direct calculation, and we
leave it to the reader.
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LemMA 4.14. Let b be an element of V* ® V* which is a tensor product of two
global bases of V* and has the weight A,_; + Ays;. Then F,, # 0 if and only if
= b{). Moreover, P,b{) = g7'y™'b{™V and P,bY = x~1b{+D).

LEmva 4.1.5. If we write u; = b{’ + Y, ayh, then ayp = -«qz"".

Proof. Letb, . ., =0,....k—im,...,m)®(,. — i1y, ..., 1), where
{my,....,m}u{l,.. l}— {Jik——z<]<k+z} Note that bY) = b4y, and
bY = b s rksir We write a, instead of a,_for o = (my,..., m;). There are rela-
tions

ek(bk~i+1,...,k - qbk—i+1,...,k~1,k+1) =0

€ jO—iv1,. —jk—jiz,. or1 — Dr—ier, . k=j=1,k=j+1,....k+1) = 0
for1<j<i-2,

vt Be—iv k—1+3,..., = qbiiva,. k1) =0

ek+j(bk—i+2 ,,,,, kok+j qbiisa,.. k,k+j+1) =0
for1<j<i-1.

Since all the weight spaces of V'* are one-dimensional and each length of J-strings
(1 <j < m)isatmost 1, e,u; = 0 for all  implies

Q—i+1,.. k-1,k+1 = —4,
h—it1,. k= o=t 2, kb1 Fhmitd, . k=j=1,k-j+1,.. kb1 = L0 —q  for 1 <j<i—2,
il k—i+3,.. k+1 Bemitz,. . k+1 = 11 —4,
Gy—iva,. ket Ok—iva, greje1 = 10 —q  forl<j<gi—1.

It follows that a,0 = —¢*~*, O

By these lemmas we have in V} ® V}

Pu; = q—lx_l)’_l(x - QZiJ’)“i—1 -

From this

AL = for1 <i<min(n+1—k, k).

So we have proved the following result.
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PROPOSITION 4.1.6. Let z = xy~'. The R-matrix, up to a multiple of an element

of Q(q)(2), is of the form

min(n+1-kk) r 2 min(n+1—k,k) 2i
Re)= @ Jle-¢) 11 (0—9")Ps_ i,
r=0 i=1 j=r+1

42. (CV, V™). Letg= gg(n) be the affine Lie algebra of type C{¥. We assume
that (Chy, 00)1 <, j<n 1 /tlae Cartan matrix of type C,. We set iy = 0. Let U (sp(n)) be
the subalgebra of U,(sp(n)) associated with {h;, o1 <1i,j < n}. In this case g5 =
g,=q*and q; = q (i # 0, n).

4.2.1. Decomposition of the tensor product. Let V(A,) be the irreducible highest-
weight U,(sp(n))-module with highest weight A, and (L(A,), B(A,)) its crystal base.
By [KN] the elements of B(A,) are labeled in the following way.

B(An)= {(mi)?=1‘m1 < <mna mie{l""sna ﬁ’--'a-l-},
i+m—j+ 1) <mifm=mi<j)},

where the ordering of {1,...,n,7, ..., 1 } is given by

<2< <n<n<--<l.
Then

@2.1)  VA)®VA)=VRA)DV2A)® @ V(2A)® V),

where V(0) is the trivial representation. The highest-weight elements for the corre-
sponding crystals are given by

(N1 ®(,...,057A...,i+1)  for BQ2A),
(e ® @ n—1,...,1)  for B(0).

4.2.2. Construction of the representation of U,;(s/g (n)). First, we prove the follow-
ing lemma.

LemMa 4.2.1.  Let V(A,), denote the weight space of V(A,) of the weight A. Then
dim V(A,); = 1 for any A.

Proof. Suppose that V(A,); # {0}. Let A=Y ., ri¢; and S = {i|r; # 0}. Since
there is an element b € B(A,);, #S = n — 2k for some integer k > 0. For k =0,
dim V(A,), = 1 is obvious. So we assume k > 1. Take any b € B(A,);. Then there
is a set of integers (j,, ..., j,) which satisfies the following two conditions.

D 1l<j<jy<-<je<nh

(2) b contains j; and j; for 1 <i < k.
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Takeany (jy, ..., ji) which satisfies (1) and (2). Set | = # {p € S|p < j}. Sincej, > 2,
Jx = 2k + 1, and hence n — j, < n — 2k — I. By the definition of I, n — j, must be
equal to n — 2k — . Then the following properties must be hold.

G) Ifl,=#{ieSlj,<i<jpu)rthenj, =j, +2+1,

“ Iflo = #{ieSli<j,}, thenj, = I, + 2.

O IESU{ji,..nixy={nl<i<n—klr<ry(1<i<n-—k— 1)}, then

{ilry — 1> 2,10 <ji} = 4.
It follows that the set {j;, ..., j,} is uniquely determined by S and hence by A.
O

Define the actions of e, and f, on V(A,) by

iy ) b=, iy, 1)
Job= {O otherwise,

eb = (jlv'*’jn—laT) ifb:(l,jlw")jn-l)
° 0 otherwise.

It is easily verified that V(A,) is a well-defined U‘;(g;;(n))-modgl\e with these actions
ofey, fo givenabove and g" = g~"* "+ We denote this Uj(sp(n))-module by V.

4.2.3. Construction of a polarization of V". Let( , ) be the polarization of the
U,(sp(n))-module V(A,). Let us prove (4.1.3). Set ba,=(1,2,...,n). Then

(4.2.2) SO £ fby =2, T) = eoby .

Let b =(1,j;,...,j,—1) Then b and eyb can be written as

(4.2.3) = gy,
(424) eob — ﬁ’(:lk) (m)eo bA ,
where iy, ..., i €{2,...,n} and n; € {1, 2} (1 <i < k). By Lemma 4.12 and (4.2.2),

(bA s ba,) = (eoby,, eobA ). Hence 1t follows from Lemma 4.1.2, (4.2.3), (4.2.4), and
the commutativity of e, with e;(i # 1), f;(j # 0) that (b, b) = (e,b, e,b). Since

(ba qaltalfoeob) = (bs b)’

We have proved (4.1.3). The ¢ equality (4.1.4) is similarly proved. Consequently, ( , )
is a polarization of the U’(sp (n))-module V™. O

4.24. Calculation of the R-matrix. By the decomposition (4.2.1), R(x/y) can
be written as R(x/y) = P, y;P, A D yoFo, where Py, and P, are the projections
P VA ® V(A,) —» V(2A,;) and PO V(A ® V(A, )-> V(0) respectively. Let uy,,
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(1 < i< n)and u, be the highest-weight vectors in the U,(sp(n))-module V(A,) ®
(A,,) with weights 2A,; and 0 respectively.
We set fo /{2 - fi‘z’. Let us define b{” and by by

B = (e @ (L, .oy iy By ooy i+ 1),
O =1, . hi4+2.. it D@, ., i+ L., i+2).

The proofs of the following lemmas are similar to those of Lemma 4.1.3 and Lemma
4.1.4.

LEMMA 4.2.3. - Letu;.; = Piuy, . Thenu,,, is nonzero and is proportional to u,, -

LEMMA 4.2.4. Let b be an element of V" V" whzch Is a tensor product of global
bases and has weight 2A;. Set P,b =Y, F{'b'. Then F,J "£0 if and only if b = b{
or b. Moreover, P.bP = q=2y b and P,b“’ = x1p{*Y,

LemMA 4.2.5. If we write uyn, = b + Y .50 ayb, then ayp = — g™,
Proof. Let by, . ., = . imy, . ,m )W, .., i, ..., ;) with
i<m, <--<m,_; <i Note that b"’ bisy... pand bY = bi+2 ,,,,, 1. We write a,

instead of a, for o = (my,...,m,_;). Using the fact that all the weight spaces of V"
are one-dimensional and each length of j-strings (1 < j < n)is at most 2, in a similar
manner as in the proof of Lemma 4.1.4, we have

R YOS - SRR TOR -~ o TR TS AP FETR, ol & —[21":q
It follows that b§) = —g?®~9, O
By Lemma 4.2.3-4.2.5 we have in V! ® V!

21 -1 2(n—i+1
Puyp, =q x7y (x — g*07i

y)“ZA,»H >

where u,, (1 < i< n) and u, are supposed to be normalized as in Lemma 4.2.5.

From this

2(m—i+1

7 x—q*" Ny
2(n—-i+1)x

= forO<ig<n—1.
Yier V4
Consequently, we have the following result.

PROPOSITION 4.2.6. Let z = xy~t. The R-matrix, up to a multiple of an element

of Q(q)(z), is of the form

-

n=1 j

R(z) = z—q**™) [T (1 = g**V9) Py, D[] —a**)Ps.
i=j+1 k=1

J k=1

I
(=]
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43. (DM, V™). Let g= s/E(Zn) be the affine Lie algebra of type D{". Define
Ai e Z) by

[ A; forl<i<n,
‘o otherwise.

We assume that (Chy, @;)); <i j<n 1 the Cartan matrix of type D,. We set i, = 0. Let
U,(s0(2n)) be the subalgebra of U, (so(Zn)) associated with {h;, a;|1 <i,j < n}.

4.3.1. Decomposition of the tensor product. Let V(A,) be the irreducible highest-
weight U, (so(2n))-module with highest weight A, and (L(A,,), B(A,)) its crystal base.
By [KN] the elements of B(A,) are labeled in the following way.

B(An) = {(mi)?:llmi = + or — H mi = +} .
i=1

Let N, be the largest integer which does not exceed —;— Then

(4.3.1) V(M) ® VA, = @ VA, + A,z

The highest-weight elements for the corresponding crystals are given by

n—2i

(+s'“: +)®(+’7 'Tb s T T, _) fOf B(éioxn +Kn-2i)'

4.3.2. Construction of the representation of U,;(g;(?.n)). Define the actions of ¢,
and f, on V(A,) by

fib = (+, 4,000y iy_s) ifb=(—, —, iy, ips)
° 0 otherwise,

e b = ('—’ _ajla"'bjn—z) ifb = (+9 +?j15 "'Jjn-z)
0 0 otherwise.

It is easily verified that V(A,) is a well- deﬁned U’(so(2n)) module with the actlons

of ey, fo given above and g'o = g " 720t *he)=h We denote this U’(so(2n))
module by V",

4.3.3. Construction of a polarization of V". Let( , ) be the polarization of the
U,(s0(2n))-module V(A,). Note that for any b € B(A,) and i(1<i<n), ¢(b)+

&(b) < 1. Hence, as in 4.1.3, ( , ) is a polarization of U’(50(2n)) module V",

4.34. Calculation of the R-matrix. By the decomposition (4.3.1), R(x/y) can be
written as R(x/y) = (—Bx 1 Pn-2iP60A,+ K, 00> Where Py z oz o is the projection
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Psointin: VA ® VIA,) > V(GioA, + A,2). Let u,,(1<i<N,) be the
hlghest-welght vector in the U, (so(2n))-module V(A,) ® V(A,) Wlth the weight
8o, + A,_zi. We set P, = f0f2f3 “foegiss fife * fa—zi- Let us define b{? and by
by

. -2
b?):(_l“"“! +)®(+9”'9 +, = _);

n—2i n—2i

b(l) (+ —T"_? =t +)®(+9s +,+, +’ ""9'”7_)'

The proofs of the following two lemmas are similar to those of Lemma 4.1.3 and
4.14.

LEMMA 4.3.2. The element Pu,_,,(0 < i < N,) is nonzero and is proportional to
Up—2(i-1)-

LeMMA 4.3.3.  Let b be an element of V" ® V" which is a tensor product of global
bases and has the weight 8,,A, + A,_,;. Set P;b =Y, FY't'. Then Fb # 0 if and
only if b = b or b{). Moreover, P,b{) = ¢~'y7*b{™" and P,bY = x7'b{ ™"

LemMa 4.34.  If we write u,_o; = bY + Y, ayb, then ayo = —q*7>.
Proof. Let us set by_;=(+,, +, =, +, ", +, =)®(+, ", +,—,"",
n=j n—=2i+1 n-j
—s T+, = +)and n—j (+9'“$ +, — 5+, +, =+, +)®
n~21+1 n—j

(_(__’...’ + Sty =, +,—,'“,—).Byusing
ey—j(b_je1 — qb,_;) =0 for2<j<2i—-1,
epjbajrs —ab—) =0 for1<j<2i-2,
e, (b — gb,) =0

It is easily verified, in a similar way to the proof of Lemma 4.1.4, that u,_,; must be
of the form

a1 = b + 2 (—1¥a'b; + z (— 1y gy

+ (terms without the elements of the global base already appeared).

Since b = b,_5;+2,+, we have proved the lemma. m]

By these lemmas we have in V! ® V!

Pu, ;= q_lx—ly_l(x - ‘141‘»2}’)“"—2(1—1)-
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From this

4i—-2

In-26-1 _ YV — Q4i—2x for1 <i<N,.
y

VYn-2i X —dq

So we have proved the following proposition.

ProPOSITION 4.3.5.  Let z = xy™'. The R-matrix, up to a multiple of an element

of Q(q)(2), is of the form

R(z) =

g@z

J Ny o
H q4k’2) '1'11 1- q4l ZZ)P(ajOK,,JrK,,_zj)-
k=1 =

4.4. (DY, V') We use the same notations as in 4.3. Let us set i, = 0.

4.4.1. Decomposition of the tensor product. Let V(A ) be the irreducible highest-
weight U, (s0(2n))-module with highest weight A, and (L(A ), B(A,)) its crystal base.
By [KN] the elements of B(A,) are labeled in the following way.

BA)={Mlie{l,2,....,n#,...,1}.
Then
(4.4.1) VA @ V(A) = V(2A) @ V(A,) @ V(0).

4.4.2. Construction of the representation of Ué(s/o(2n)). Define the actions of ¢,
and f, on V(A,) by

foM =@, fo@ =1, fob=0otherwise,
eo2)=(1), eo(l)=2), eyb=0otherwise.

It is easily verified that V(A,) is a well-defined U’(so(2n)) module with the act1ons

of e, f, given above and g0 = g ~h~ 20t i) =he-1=hn We denote this U'(so(Zn))
module by V1.

4.4.3. Construction of a polarization of V. Let( , ) be the polarization of the
U,(so(2n))-module V(A,). Note that for any b e B(A,) and i(l<i<gn), g(b)+

&(b) < 1. Hence, as in 4.1.3, (, )is a polarization of U’(50(2n)) module V1,

4.4.4. Calculation of the R-matrix. By the decomposition (4.4.1), R(x/y) can be
written as R(x/y) = y,5, Pap, @ Ya,Pa, ® 7o P, Where P, A, €tc. is, as in the previous
sections, the projection to the corresponding U, (50(2n))- u‘reducxble component. Let
Uo, U, and u,,, be the highest-weight vectors in the U,(so(2n))-module V(A,) ®
V(A,) with the corresponding highest weights. Direct calculations show the follow-
ing lemmas.
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LEMMA 4.4.1. The highest-weight vectors g, Uy, and u,,, are, up to constants,
(1) o = Y1y (— ) @ () + Lizs (=D g (= 1) ® (n — i)

() up, =) ®(Q2) - q(2)® (1),

(3) uza, = ® ().

LEMMA 4.4.2. With the expressions of uo, u,, and u,,, in Lemma 4.4.1, we have
in Vxl ® V;l

(1) fouo =g~ x 7y x —g>? Vi,

Q) fofafs  famaSuSu-t fzqu =q'x” Yy Mx—q J’)uzAl

By Lemma 4.4.2
Yo _ x_:.ﬂ__l and A X7 ‘1 Y
Ya, Y — ‘1 Yaa, YV q X

So we have proved the following result.

PROPOSITION 4.4.3. Let z = xy~t. The R-matrix, up to a multiple of an element

of Q(q)(2), is of the form
R@) = (1 — @2)(1 — ¢ 22) Py, ® (z — ¢*)(1 — > *2) Py,

®(z—q*" )z —q*)Po.

45. (BM, V). Letg= gc\’(2n + 1) be the affine Lie algebra of type B{". We
assume that (Chy, #;)); <; j<n 1S the Cartan matrix of type B,. We set iy = 0. Let

U,(so(2n + 1)) be the subalgebra of U, (gS(Zn + 1)) associated with {h;, o;|1 <
j <n} In this case g, = ¢ and ¢; = ¢° (z#n)

4.5.1. Decomposition of the tensor product. Let V(A;) be the irreducible highest-

weight U, (so(2n + 1))-module with highest weight A, and (L(A,), B(A,)) its crystal
base. By [KN] the elements of B(A,) are labeled in the following way.

B(A) ={()ie{l,2,...,n0,7,...,1}.

Then
(4.5.1) VA ®V(A) = VAN @ V(A,) @ V(0).
The highest-weight elements for the corresponding crystals are given by

(1) ® (1) for B(2A,), (1) ® (2) for B(A,), and (1) ® (1) for B(0).
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4.5.2. Construction of the representation of U;(s/S(Zn + 1)). Define the actions
of e, and f, on V(A,) by

fo@ =1, fo(D)=@), fob =0 otherwise,
eo(l)=(Q2), e,(2=(1), eyb=0otherwise.

It is easily verified that V(A,) is a well-defined U‘;(s/n;(2n + 1))-module with the
actig\ns of ey, fo given above and g = g M2t Hh-0-hy  We denote this

U,(so(2n + 1))-module by V'*.

4.5.3. Construction of a polarization of V. Let( , ) be the polarization of the
U,(s0(2n + 1))-module V(A;). By using Lemma 4.1.2 we have

(@) (1) = q,[21,(0), (0))  forie{l,...,n 7 ..., 1}.
It follows from this that ( , )is a polarization of Ué(gE(Zn + 1))-module V1,

4.5.4. Calculation of the R-matrix. By the decomposition (4.5.1), R(x/y) can be
written as R(x/y) = y,4, Paa, @ ¥4, P, ® yoPo, Where P, etc. are, as in the pevious
sections, the projections to the corresponding U,(so(2n + 1))-irreducible compo-
nents. Let ug, uy, and uy,, be the highest-weight vectors in the Uy(so(2n + 1))-
module V(A;) ® V(A,) with the corresponding highest weights. Direct calculations
show the following lemmas.

LeEmMMA 4.5.1.  The highest-weight vectors uy, u, ,, and u, A, Gre, up to constants,
@) uo = Y1y (=70 @ () + (- 1)'[215 4> P(0) @ (0)
+ 250 (=P — ) @ (n — i),

@) ur,=()®2) — > ® (1),

() uzp, =)@ ().

LemMMmA 4.5.2.  Consider the highest-weight vectors uy, Up,, and u,, in Lemma
4.5.1. Then we have in V! @ V!

) fouo = q>x71y 7 (x — g*"*y)uy,,

@) fofafs "‘fn—lfn(z)ﬁ.—l o 'fzqu = q_zx-l)’—l(x - ‘14J/)”2A,-

By Lemma 4.5.2

4n—2

. a4
(/S i PP U Tl .

Yo X—q"%y YA, X—d'y’
So we have proved the following proposition.

PROPOSITION 4.5.3.  Let z = xy~'. The R-matrix, up to a multiple of an element

of Q(g)(2), is of the form
R(@) =1 - q*2)(1 — g*"22)P,,, ® (1 — ¢*"?2)(z — q*)Ps,

® @z — gz —q*" H)P,.
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4.6. (AD_,, VY). Let g be the affine Lie algebra of type A%)_,. We assume that
(Chis 0;)1 <1, j<n 18 the Cartan matrix of type C,. We set i; = 0. Let U,(sp(n)) be the
subalgebra of U,(g) associated with {h;, a;|1 <i,j < n}. In this case ¢, = q* and
q; = q(i # n).

4.6.1. Decomposition of the tensor product. Let V(A ;) be the irreducible highest-
weight U, (sp(n))-module with highest weight A, and (L(A,), B(A,)) its crystal base.
By [KN] the elements of B(A,) are labeled in the following way.

BA)={Mlie{l,2,....n7,..., 1}.
Then

(46.1) V(A ® V(A) = V(2A,) ® V(A,) @ V(0).
The highest-weight elements for the corresponding crystals are given by
(H® (1) for B(2A,), (1) ® (2) for B(A,) and (1) ® (1) for B(0).

4.6.2. Construction of the representation of U,(g). Define the actions of e, and
foon V(A,) by

@ =@1), fo(O=@Q), fob=0otherwise,
eo()=02), e =(1), eob=0otherwise.

It is easily verified that V(A,) is a well-defined Uj(g)-module with the actions of e,
f, given above and g" = g™~ 2(*" i) We denote this Uj(g)-module by V.

4.6.3. Construction of a polarization of V*. Let( , ) be the polarization of the
U,(go)-module V(A,). Note that forany b € BA)andi(1 <i<n),@b) +eb) <1
Hence, as in 4.1.3, ( , ) is a polarization of Uj(g)-module Vi

4.6.4. Calculation of the R-matrix. By the decomposition (4.6.1), R(x, y) can be
written as R(x, y) = 7,4, Pan, @ Va,Pa, ® 70Po, Where P, etc. are, as in the previ-
ous sections, the projections to the corresponding U,(g,)-irreducible components.
Let ug, u,, and u,,, be the highest-weight vectors in the U,(go)-module V(A;) ®
V(A,) with the corresponding highest weights. Direct calculations show the follow-
ing lemmas.

LEMMA 4.6.1.  The highest-weight vectors ug, Uy, and U, are, up to constants,
(1) o = Y1 ()T ® () + i (1" — ) @ (n — D),

Q) ur,=(H®(2) —q(2) R (1),

(3) uzp, =@ ().

LEMMA 4.6.2.  With the expressions of U, us, and u,,, in Lemma 4.6.1, we have
in Vxl ® V:vl
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(1) fouo = q7'x7 Y7 x + ¢*"Y)ua,,
Q) fofafs  fomiSufu=r "'fz“A2 =g xTy M x — QZY)uZA,-

By Lemma 4.6.2

Xﬁ%:y—i_qznx and M&:Xizx

Yo X+q*"y Ya, X—q°y°

So we have proved the following proposition.

PROPOSITION 4.6.3. Let z = xy™*. The R-matrix, up to a multiple of an element

of Q(q)(z), is of the form
R@) = (1 = ¢*2)(1 + ¢*"2)Pys, ® (1 + ¢*"2)(z — ¢*) P\, ® (2 — ¢*) (2 + ¢*") P, .

47. (AQ), V'). Let g be the affine Lie algebra of type 4%). We assume that
(Khiy 0) 1 <ij<n and (Chyy %0)0<i, j<n—1 are the Cartan matrices of type C, and B,
respectively. We set iy = n. Let U,(sp(n)) and U,(so(2n + 1)) be the subalgebras of
U,(g) associated with {h;, ;|1 <i,j < n} and {h;, ;|0 <1i,j < n — 1} respectively.
We define a bijective map 1: {0, 1,...,n — 1} - {1,..., n} by 1(p) = n — p. In this
case 4o = ¢, 4; = ¢°(i # 0, n) and g, = ¢*.

4.7.1. Construction of the representation of Uy(g). Let V(A,) be the irreducible
highest-weight U, (so(2n + 1))-module with highest weight A, and (L(A,), B(A,))
its crystal base. The parametrization of elements of B(A,) is already given in 4.5.
Define the actions of e, and f, on 1*¥V(A,) by

D) =),  f,b=0otherwise,
e,(1) = (1),  e,b =0 otherwise.

It is easily verified that 1*V(A,) is a well-defined U,(g)-module by the actions of e
J, given above and g = q~¢o****+In-1 We denote this U:(g)-module by V.

n

4.7.2. Construction of a polarization of V'. Let( , ) be the polarization of the
U,(s0(2n + 1))-module V(A,4,). Asin 4.5.3, ( , ) is a polarization of U,(g)-module
Vi

4.7.3. Calculation of the R-matrix. By the decomposition (4.5.1), R(x/y) can be
written as R(x/y) = y,a,_,1%Por, @ 74, ,1*Pa, ® yo1* Py, where P, etc. are, as in
the previous sections, the projections to the corresponding U,(so(2n + 1))-irreduc-
ible components. Let u, u,, ,, and u,,  be the highest-weight vectors in the
U,(s0(2n + 1))-module i*V(A,) ® 1*V(A,) with the corresponding highest weights.
Direct calculations show the following lemma.

LeEMMA 4.7.2.  With the expressions of ug, uy,_,, and u,,  in Lemma 4.5.1, we
have in V! @ V!
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(D) futto = q7*x7 'y e + ¢ 2Y)usy,
@) fufumr N 0(2)f1f2 "'fn—zuA,,,2 = q_zx_ly—l(x - ‘14)’)“21\,,_,-

By Lemma 4.7.2

Voa,, Y+ x Voa,, Y —4a*x
= int2 and L= i

Yo X+q7%y YA, X—47Y

So we have proved the following proposition.
PRrROPOSITION 4.7.3.  Let z = xy™'. The R-matrix, up to a multiple of an element
of Q(q)(z), is of the form
R@) =1 —q*2)(1 + g* " 22)1*Ps, ® (1 + ¢ ?2)(z — q*)1* Py,
@ (1 - q*z)(z + ¢*"*)Py.

4.8. (D2, V'). Let g be the affine Lie algebra of type D{?,. We assume that
(Chis @)1 <i, j<n 18 the Cartan matrix of type B,. Let U,(so(2n + 1)) be the subalgebra
of U (g) associated with {h;, o;|1 < i,j < n}. We set i, = 0. In this case g, = g, = ¢,
a; = q*(i # 0, ).

4.8.1. Construction of the representation of U,(g). Let V(A;) @ V(0) be the direct
sum of the irreducible highest-weight U, (so(2n + 1))-modules with highest weights
A, and O respectively and (L(A,) @ L(0), B(A,) ® B(0)) its crystal base. Since the
dimension of any nonzero weight space of V(A,) is one, we denote, as usual, by b
the lower global base corresponding to b € B(A,). Let us denote by () the element
of B(0). The parametrization of elements of B(A,) is also given by [KN] as

BA)={Wie{l,2,...,n0,7,...,1}.
Define the actions of ¢, and f, on V(A;) @ V(0) by

o) =),  fo-)=[21s(1),  fob = 0 otherwise,
eo()=[21oD), eo)=("), eob =0 otherwise.
Itis easily verified that V(A,) @ V(0) is a well-defined U,(g)-module with the actions
of eg, fp given above and g = g~ 2"+ *4-0"h We denote this Uj(g)-module by V.

4.8.2. Construction of a polarizationof V'. Let( , ), be the polarization of the
U,(so(2n + 1))-module V(A,). We shall define a symmetric bilinear form ( , ) on
V! by

()= ()=0 forueV(A,),

(), () = qo[21o((): ()1,
(u, v) = (u, v), foru,ve V(A,).
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Since (, ), is positive definite, ( , ) is positive definite. As already proved in 4.5.3,
((1), (1)) = ((1), (1)). It follows that ( , )is a polarization of the U,(g)-module V.

4.8.3. Decomposition of the tensor product. Asa Uy(so(2n + 1))-module, we have
the splitting

4.8.1)
V(A)@V(0) (VA B V(0) = V(2A,) @ V(A,) ® V(A)®* @ V(0)®2.

LEMMA 4.8.1. uy,, Uy, Uy, Ux,, U, and uf are the highest-weight vectors with
the weights 2A,, A,, Ay, Ay, 0, and 0 respectively.

(1) uzs, = ()@ (1).

Q) uy, =(H® Q) —*Q (1)

B3) up, =® ()

@ uz, =()® ().

(5) ug=0)®(). i

6) ud =1 (=1 PO ® () + (—1)'¢* "V [2],1(0) ® (0)

+ Z?;é _ 1)n+i+1q2(n+i)(n — l) @ (n _ l)

4.8.4. Calculation of the R-matrix. We express the R-matrix R = R(x/y) as

R(uyy,) = a*Mu,y R(uy,) = a™u,
. 2 A ” . 2 0 N
Rui) =Y a;'ul,, R(ub) =Y aduf.
= =t

LemMa 4.8.2.  Consider the highest-weight vectors defined in Lemma 4.8.1. Then
we have in V! @ V!

(1) eguzp, = yua, + ¢*xu3,,

Q) fofi Saes FPhms fo2 e fittgn, = x7y g xuy, + yuz ),

) fofi "'fn—iﬂz(z)fnﬂﬂn—z "'fzqu = x—lyml(x’/l}\1 - qzyuix),

@ fouo = [21ox 'y~ (yup, + x13,),

(5) fous = g 2x7 1y (xup, + g*"yug).

From this we obtain
Y X\ Ay oo X @Y
2 (a;')=a 2 >
qaxy qay ¢

(X, _q2y)(a:1\1) = aAz(% _q?.x)’

(q(l +q%)y q(l+ qZ)X>(aﬁl) _ (ag_)<Q(1 +q%)x g1+ qz)y>'

4n q4n X

x qay

Let Pys,, Py, P,,;l(i =1, 2) and Pug(i = 1, 2) be the projections from V' ® V! to
V(2A,), V(A,), Uys0(2n + 1))uj (i = 1,2) and U (s0(2n + 1)uj(i = 1, 2) respec-
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tively, where u, 5, etc. are the highest-weight vectors in Lemma 4.8.1. Then we have
the following result.

PROPOSITION 4.8.3.  Let z = xy~*. The R-matrix, up to a multiple of an element

of Q(q)(z), is of the form

R(z)=(1 = ¢*2*)(1 — ¢*'2*)Py, ® (1 — ¢*'2*)(z* — q") Py,

2 2
® DL Zl ai/f\lei, ® D kZI a3 Py
f= =
Here (a}') and (ap) are given by

1-q%z ¢*(1— 22)>

Ay _ qén
R P

W =@+ (1 — @ — q* — g% — g2 4 g 4 gt
agz — q4n+2 + (1 - qz _ q4 . q4-n . q4n+2 + q4n+4)22 + q224,
afy = q(1 + ¢*)(1 — q*)z(1 — 2%)

a9, = (1 + ¢ gl + g 2)(1 — g*2)z(1 — 22).

The eigenvalues of (aj') are (1 — q*'z%)(z + ¢*)(1 — ¢*z) and (1 — ¢*"z%)(z — ¢*) %
(1 + ¢*2). Furthermore,

det(a) = (z* — ¢*")(1 — g*'z%)(z* — q*)(1 — ¢*2?).

In particular, the eigenvalues of (ag}) have no common zeros.
49. (D, V™). We use the same notations as in 4.8. We set i, = 0.

4.9.1. Decomposition of the tensor product. Let V(A,) be the irreducible highest-
weight U,(so(2n + 1))-module with highest weight A, and (L(A,), B(A,)) its crystal
base. Define A;(i € Z) by

- A; forl <i<n,
70 otherwise.

By [KN] the elements of B(A,) are labeled in the following way.

B(A,) = {(m)isIm; = + or —}.
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Then
49.1) V(A) ® V(A,) ~ Pi-o V(SioA, + A,-).

The highest-weight elements for the corresponding crystals are given by

i

(+"“a +)®(+a7 '¥“5 AT *) fOI' B(5i07\n + K:!*i)'

4.9.2. Construction of the representation of Uy(g). Define the actions of ¢, and
fO on V(An) by

C(Friyering)  ATh = (=i i)
Job= {0 otherwise ’

enbh = ("Sjlr"wjn-l) ifb:(“}‘»jla-")jn—l)
© 0 otherwise.

It is easily verified that V(A,) is a well-defined U,(g)-module with the actions of e,
fo given above and g" = 72" 0"k We denote this Uj(g)-module by V™.

4.9.3. Construction of a polarization of V". Let( , )be the polarization of the
U,(so(2n + 1))-module V(A,). Asin4.3.3,( , )isa polarization of the U;(g)-module
| 48

4.9.4. Calculation of the R-matrix. By the decomposition (4.9.1), R(x/y) can be
written as R(x/y) = @}, v:Ps, i, +i» Where P; z .z is the projection P; i .z:
V(A,) ® V(A,) = V(5,A, + A,). Let u,(0 < i < n) be the highest-weight vector in
the U, (so(2n + 1))-module V(A,) ® V(A,) with the weight S\, + A;. We set P, =
fofifr - - fi Let us define b{? and bS by

. i
b(;):('i'a'”: +)®(+37 +, = —)a

. i+1 i+1
b(21)=(+’”’> +’ > +>“'3 +)®(+a.”’ +a +) s, .—')

The proofs of the following two lemmas are similar to those of Lemma 4.1.3 and
4.14.

LeMMA 4.9.2.  The element Pu; (0 < i < n — 1) is proportional to u;,.

LeEMMA 49.3. Let b be an element of V" ® V" which is a tensor product of global
bases and has the weight 3,,A, + A;. Set P;b = 3, FY'b’. Then F'" £ 0if and only
if b = b or b. Moreover, P.b{) = q 1y 'b{*V) gnd P,b) = x~1p¢+),

Lemma 4.9.4.  If we write u; = b{) + ), ayb, then ayp = (—1)"7'g?"™9*3,
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k i k
PrOOf. Letbkz(""'”) =+, ;’ +, +)®(+9“'5 :F-ai_)”'7_7 _T_’ _3”"_)
fori+1<k<nandbP =0, =(+, -, +)®(+, -, ¥, —, -, —). By using

epoiby—¢*b_) =0 fori+2<k<n,
en(bn-H - qbn) = 09
en(bgi) - qbn-—l,*) =0,

it is easily verified that u; must be of the form
. i—l . .
w; = b + Z.:) (— l)ﬂlqzﬁlbn—j
f=

+ (terms without the elements of the global base already appeared). O
By these lemmas we have in V! ® V!
Pu; = q ' x 7'y Hx + (= 1)@ Dy,
where ¢; (0 < i < n) are normalized as in Lemma 4.9.4. From this

Vi1 B y + (__ 1)n~iq2(yu—i+2)x

v - x + (___ 1)rx~iq2(n-i+2)y forO<i<n-—1.

So we have proved the following result.

PROPOSITION 4.9.5. Let z = xy~!. The R-matrix, up to a multiple of an element

of Q(q)(2), is of the form
RE = BT 1+ (—177 522 T ¢ + (— 175y g,

5. Applications of fusion construction.

5.1. (AD, V(I(A, — Ayp))). Let us take A" as g and let I and i, be as in 4.1. Let
V = V¥ (1 < k < n) be the U,(g)-module with the polarization constructed in 4.1.1
Then as an U,(g ;;,;)-module, ¥ = V* is isomorphic to V(A — A,). Now, we shall
employ the results and notations in Section 3. Taking A, = A, — Ay, the condition
(3.1.1) is satisfied. The existence of Vg, is obvious. We have, by using the explicit
form of the R-matrix in Proposition 4.1.6,

min(n+1-k,k)

e@= [ (—g%).

j=1
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Here ¢(u) is the one given in (3.1.6). Therefore if we set
(5.1.1) r=1,
the condition (3.3.4) is satisfied. We have
R(@*) = (g Py,
Here P, is the projector to the U,(g;(;,))-module V(24,). Hence we obtain
(5.1.2) Im R(g*) = V(24,).

Therefore, we obtain by (3.3.9)
-2

(5.1.3) Vic ) V() ® V(240) ® V(4o)®' 27,
j=0

Thus, applying [KN], we obtain the following lemma.

LemMA 5.1.1.  Let I, = I\{0}. Then as an U,(g, )-module, V, is isomorphic to the
irreducible highest-weight module with highest weight (A, — Ag).

By applying Proposition 3.4.4, we obtain the following proposition.

PROPOSITION 5.1.2. Forl < land1 < k < n, there exists a polarized Uy(g)-module
V¥ satisfying the following:
() V¥ has a crystal pseudobase.
(i) For anyje I, V}*is isomorphic as a U,(81\(jy)-module to the irreducible module
with highest weight I(A;., — A,).
Proof. (i) is an immediate consequence of Proposition 3.4.4, and (ii) is already
proved for j = 0. Since the Weyl group contains the cyclic permutation, I 3 i+—

i+jel, wt(V*) o l(Aj — A ;) and wt(V") S A — A) + Y1 Zcocl(e;). Hence
V¥ contains the U, (g,\ { J}) module V(A — A )) Comparing the dimensions, we
obtain V* = V(I(Aj1, — A)). O

52. (CM, V(I(A, — Ap))). Let g be of type CM and I, i; as in 4.2. In 4.2 we
constructed U(g)-module V with polarization. It is obvious that V has Vg, As a
Uy(8r\fio})- module V isisomorphic to V(A, — A,). Hence taking 4, = A, — AO, the
condition (3.1.1) is satisfied. By the explicit form of the R-matrix given in Proposition
4.2.6,

o) =[] (1 —q*" V2.
=1
Therefore, if we set

(5.2.1) r=2,
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then the condition (3.3.4) is satisfied. We have

R(g*") = @(q*)Pas, -

Here P, is the projection to the Uy(gr y,;)-module V(24,). Thus, by [KN] and
Proposition 3.4.4, we have the following.

ProrosiTiON 5.2.1. (i) V, has a crystal pseudobase.
(it) V, is isomorphic to V(I(A, — Ao)) as an U(gp (0})-module and is isomorphic to
V(l(Ao — A,)) as an Uy(gy, (y)-module.

The last statement follows from the fact that the Weyl group of C, contains — 1.

5.3. (DM, V(I(A, — Ay))). Let g be of type DIV and take I, iy as in 4.3. In 4.3 we
constructed the polarized Uy(g)-module V. As a U,(gy, ;;,3)-module V is isomorphic
to V(A, — A). It is obvious that V¢, as in 6.1 exists. Hence taking 4o = A, — Ay,
the condition (3.1.1) is satisfied. We have, by Proposition 4.3.5,

o(z) = ::Hl (1 —q%2),
where N, is the largest integer which does not exceed n/2. Therefore, if we set
(5.3.1) r=1,
then the condition (3.3.4) is satisfied. We have

R(@*) = @(g*") Py, -

Hence we have by (3.3.9), [KN], and Proposition 3.4.4, the following.

ProposiTioN 5.3.1. (i) V] has a crystal pseudobase.

(i) ¥} is an irreducible U,(gy\ (o))-module with highest weight I(A, — Ao) and an
irreducible module with highest weight l(Aq — A,) or (A, — A,) as an U8y m)-
module according that n is even or odd.

(i) follows from the fact that A, — A, or A; — A, is in the Weyl group orbit of
A, — Ay according to the parity of n.

54. (DM, V(I(A; — Ap))). Let g be of type DIV and take I as in 4.4 and i, = 0.
Let V be the polarized U,(g)-module constructed in 4.4. Then V is isomorphic to
V(Ay — Ao) as an U,(gy, (o})-module. Hence taking A; — A, as 4o, the condition
(3.1.1) is satisfied. By Proposition 4.4.3, we have

o) =1 —q¢2)(1 — ¢*"?2).
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We set
(54.1) r=1.
Then the condition (3.3.4) is satisfied, and

(5.4.2) R(@*) = ¢(q*) Py, -

Thus we obtain, by (3.3.9), [KN], and Proposition 3.4.4, the following.

ProrosITION 5.4.1. (i) Vis an irreducible module with highest weight I(A, — A,)
as a U,(gy\ (0})-module.
(i) V, has a crystal pseudobase.

55. (BM, V(I(A, — A,))). Let g be of type BV and I, iy =0, as in 4.5. We
constructed in 4.5, the polarized U,(g)-module V. It is an irreducible module with
highest weight A; — A, as an U,(gy, (o))-module. Hence taking A; — Ag as 4o, the
condition (3.1.1) is satisfied. We have, by Proposition 4.5.3,

p(z) = (1 — g*2)(1 — ¢*"?2).
Set
(5.5.1) r=2.
Then the condition (3.3.4) is satisfied and
(5.5.2) R(g*) = ¢(q*) Py, -

Hence by (3.3.9), [KN], and Proposition 3.4.4, we obtain the following result.

ProrosiTioN 5.5.1. (i) V,is an irreducible module with highest weight [(A; — Ay)
as an Uy(gy\(0y)-module.
(i) ¥, has a crystal pseudobase.

5.6. (A2, V(I(A, — Ay))). Letgbeof type A%)_, and I, i, = 0 as in 4.6, where
we constructed the polarized Uy (g)-module V. It is an irreducible module with
highest weight A; — A, as an U, (gp (o})-module. Hence taking 1, = A; — A,, the
condition (3.1.1) is satisfied. We have by Proposition 4.6.3

o(2) = (1 — ¢*2)(1 — q*"z).
We set

(5.6.1) r=1.
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Then the condition (3.3.4) is satisfied and

R(@*") = @(q*") Py, -

Hence by (3.3.9), [KN], and Proposition 3.4.4, we have the following result.

PRrOPOSITION 5.6.1. (i) V,is an irreducible module with highest weight (A, — A,)
as an U,(gp (o))-module.
(i) V; has a crystal pseudobase.

5.7. (A2), Po<kcip V(U — 2k)(A,—; — A,))). Let g be of type AY) and I, iq = n
as in 4.7, where we constructed the polarized U,(g)-module V. It is an irreducible
module with highest weight A,_; — A, as Uy(gy\ ;»y)-module. Hence taking A,-; — A,
as Aq the condition (3.1.1) is satisfied. Note that

(5.7.1) o0, = 2(A, — A,_y).

We have, by Proposition 4.7.1,

(5.7.2) o(z) = (1 — g*z)(1 + g*"**2).
We set
(5.7.3) r=2.

Then the condition (3.3.4) is satisfied, and

(5.74) R(@”) = (1 = ¢*)((1 + g*"* )Py, + (g* + ¢*""?)P),
where P, is the U, (g, (,))-linear projector to V(4). We set, as in Section 3,
(5.7.5) V,=1ImR,.

In order to apply Proposition 3.4.5, we shall prove

(5.7.6) dim(V); < Y dim V(( — 2k)(A,—y — AD):

O<k<li/2

for any A. Let W be the kernel of R(g*"). Set U = V®/Y 122 Vi@ W Vo2,
Then by (3.3.10), V; is a quotient of U. Hence

dim(¥), < dim U;,.

Set S(g) = (1 + q*"*®)P,;, + (q* + ¢*"**)P,. Then R(g”) = (1 —¢%)S. Then at
g =1, U is isomorphic to S(V). Thus dim U, is equal or less than the weight
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multiplicity of U,(gy\;,y)-module S'(V). Setting & =A;— Ay, chV=1+
Y o<i<cn—1 (€% 4+ e7%). Thus we obtain

1
ch(S'V)t' = _
zl' V) 1- t)Hosisn-l (1 —eft)(1 — e™%it)
This implies
1
57.7 ch(V)t! < _
G717 D (1) § Py e T

This means that the coefficient of e*t* (1 € P, 0 < k) of the left-hand side is less
than or equal to that of the right-hand side.

LEMMA 5.7.1.

1
(I =] To<icn-1 (1 —e")(1 — e7%1) T o<Gi<

ch(V((l — 2k) (A, — A"

Proof. Let us first calculate the character of V(j(A,-, — A,)). By [KN], crystal
bases of V(j(A, — Ay)) consistsof a; @ - ® a; where 1 < a; < <a; < 1. Here
aj, ..., a; are elements of {1,2,...,n,0,7,..., 1} with the ordering 1 <2<+ <
n<0<f<--<1. Moreover, 0 does not appear more than once in ay, ..., g;.
Note that i has weight ¢;, { has weight —¢; and 0 has weight 0. Thus we have

1+t
(1 — e%t)(1 — e~%it)

(5.7.8) Y ch(V(j(Ay-y — A = I

Thus we have the desired result. I}

As a corollary of this lemma, we obtain (5.7.6). Thus we can apply Proposition
4.4.5, and we obtain the following result.

ProrosITION 5.7.2. (i) V; has a crystal pseudobase.
(i) V, is isomorphic to

Bo<kcrz V(U = 20)(Ay—y — A))

as a Uy(gy\ (ny)-module.

58. (D, @l=o V(j(A; — 2A4))). Letgbe of type D{?; and I, i, asin 4.8, where
we constructed the polarized U (g)-module V. This is isomorphic to V(A; — 2A,) ®
V(0) as a Uy(gr\(oy)-module. This admits a V, and taking 4, = A; — 2A,, the
condition (3.1.1) is satisfied. By Proposition 4.8.3, we have

(5.8.1) o(2) = (1 — ¢*z%)(1 — ¢*'2?).
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Let us take
(5.8.2) r=1.
Then the condition (3.3.4) is satisfied. By the calculation, N = Ker(q?") contains u Ao
up, —uz, and g(1 + ¢*)(1 + quy — (1 — ¢*"*?)(1 — @) "'u3. Hence by Lemma
4.8.1,at g =1, N contains (*) A V(A,), /\* V(A;) and (*) ® (-) + u, where u is an
element of V(A;) ® V(A,). Hence

V®l/(z Ve QON® V®(l~2—j))
is generated by S'(V(A;)) and () ® S (V(A,)). Hence we obtain

Y ch(IDt' <3 ch S'(V(A )t + Y, ch SV (A )t
= (1 + 1)) ch S{V(A))E

- 1+t
= (1 - t) H§=1 (1 _ ezjt)(l — e..sjt) .

On the other hand, by (5.7.6)

. - 1+t
Oggl ch V(](Ai - 2AO))t - (1 _ t) H (1 _ esjt)(l . e"Ejt) :

Thus we obtain

i
dim(V}); < ZO dim V(j(Ay — 2A0));
=

for any A. Thus we can apply Proposition 3.4.5, and we obtain the following results.

ProrosiTioN 5.8.1. (i) V] has a crystal pseudobase.
(i) ¥, is isomorphic to = V(i(A; — 2A,)) as a U, (g 10y)-module.

59. (D@E,, V(I(A, — Ay))). Let g be of type D2, and I, iy = 0 as in 4.9, where
we constructed the polarized U,(g)-module V and calculated its R-matrix. This V
is isomorphic to V(A, — Ao) as a Uy(g;,(0y)-module. Hence setting 1o = A, — A,
the condition (3.1.1) is satisfied. We have, by Proposition 4.9.5,

(5.9.1) o) =TT (1 + (=1)g?i*?z).
i=1
Hence setting

(5.9.2) r=3,
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the condition (3.3.4) is satisfied, and

R(q*) = (P(qzr)Puo .

Thus by (3.3.9), [KN], and Proposition 3.4.4, we have the following result.

PROPOSITION 5.9.1.  For I > 1 there exists a Uy(g)-module V, such that
(1) V; has a crystal pseudobase, and
(ii) V, is isomorphic to V(I(A, — Ay)) as a Uy(gr(0y)-module.

6. Perfectness of the graphs. In this section we prove the perfectness of the
crystals introduced in Section 1, whose representations have been constructed in
Section 5.

Let Uy (g) and U,(g') be quantum universal enveloping algebras with I and I’ as
index sets of simple roots and with 4 and A’ as generalized Cartan matrices. Suppose
that a map 2: I — I’ satisfies (4); ; = (4'),.- If B’ is a crystal for U,(g'), we make
a crystal B for U,(g) by putting B = B’ as a set and drawing a j arrow from b to b’
if and only if there is an 1(j) arrow from b to b’. We denote the identity map from
B’ to B also by 1*.

6.1. sl(2)-crystals. Here we give the rule of arrow in tensor products of sl(2)-
crystals. We denote by I = {1} the index set of the simple root for sl(2). For j € Z/2,
let

(6.1.1) B(j) = {un (D —j <m <jmej + Z}

be the crystal of the (2j + 1)-dimensional irreducible sl(2)-module. The arrows in
B(j) are

Un(J) > 1 () (—j <m <J).

We abbreviate u,(0), u,,(1/2), u_,,,(1/2) by 0, +, —, respectively. The following
proposition is immediate and is useful to describe the arrows in tensor products of
sl(2)-crystals.

ProrosiTION 6.1.1.  Let By, B, be crystals for U (sl(2)). The following are mor-
phisms of crystals.

B, ®B, - B;®B(0)® B,
(6.1.2) w w

by®b, = b ®0®b,,
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B, ® B, - B, ® B(1/2)® B(1/2) ® B,

(6.1.3) w w
b, ®b, +> by ® + ® —®b,,
B(j) - B(1/2)°®

(6.1.4) w w

um(j) = &_ ®® “)®\+ ®'® +}~
j—Ym ]-\F(m

For example, the following is a string of 1-arrows in B(1/2)®* ® B(0) ® B(1/2)®2.

+TR+®+R® -R0® —® +

1

-~ @+ +R -0 - + .

~— R+ R+ —R0® —® —

The following proposition follows from [KN].

PROPOSITION 6.1.2. Take
(6.1.5) b:(+)®x1®(_)®)’1®...®(+)®xk®(_)®)’k

in B(1/2)®M where M = Y *_, (x; + ). Then
J

(6.1.6) wt b = i (o — yAL,
k

(6.1.7) &, (b) = ; (p)+»

(6.1.8) ®1(b) = (—pi)+»

where the p; are defined inductively by

(6.1.9) Po=0, p=y—%—(=DPj-1)+>
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and
Xy =X ifx=20

=0 if x<0.

We omit the proof.

6.2. sl(n + 1)-crystals. We use the description of crystals for U,(sl(n + 1)) given
by [KN]. We recollect some of their results here.

LetA= Ay, + -+ A, (n>ky = =k, > 0) be a dominant integral weight for
sl(n + 1). We consider B(A), the crystal for U,(sl(n + 1)) associated with the irreduc-
ible representation with highest weight A. The crystal B(A) is given as follows. Let
Y be the Young diagram with the columns of length &, ..., k;. We identify Y with
the set of pairs of integers (j, j) such that 1 <j < k;, 1 <j < L Then B(A) consists
of the maps

b: Y o {1,...,n+1},

(6.2.1) w w
(j,J) = bj, J
satisfying b; ;; < b; j.; and b; ;» < b;,, ;. We call this b a standard tableau, as usual.

Fix i, let ¢;: {1} — J be the map given by ¢;(1) = i, and let B; = ¢*(B(A)). We are
going to give the arrows in B;. Set B = @, B, where the sum ranges over the maps
d:{1,...,M}—{0,1/2} and B, = B(d(1))® - ® B(d(M)). Define : B,— B as
follows. For a given b € B(A), we shall define d = (d(1), ..., d(M)) and ©(b) = s, ®
- @ sy € B;. Suppose that (j,j') € Y is the mth element in the sequence

(6.2.2) (1,'1), 2h,....(k, 1),
(15 l - 1): (27 l - 1)5 LR (kl—ln l - 1)3

(1, D,2, 1),...,(k;, 1).
Then we define

(6.2.3) d(m) = 1/2 ifb , =iori+1
=0 otherwise,
s(m) = + ifb; ;=i
= — ifh =i+ 1

=0 otherwise.
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The map 7 is a morphism of crystals, and the i-arrows in B(A) can be read from the
1-arrows in B by using Proposition 6.1.2.

It is convenient to use a different labeling of B(IA,). Let A be a corresponding
weight of a Young Diagram Y = (I,,..., [,).

Consider the set of tables of nonnegative integers (X; ;); < j<n, 1 <i<n+1 SUCh that

(6.2.4) Z X =1 (1<j<n),
(6.2.5) Z X 2 Z Xj+1,i+1 1<jgn1<ign).
We denote this set by X(A). Define the map
x: B(A) — X(A)

(6.2.6) w w

b x(b) = (x;)
by
(6.2.7) x; = #{J1b;=i}.
The following is immediate.

PROPOSITION 6.2.1.  The map x given by (6.2.6—6.2.7) is bijective. The weight of b
is given by

n+1

wth= Y

1

k
xj,i(Ai — Aioy)-
j=1

[

Here we set Ag = A,y = 0.

For b, b' € B(A) we write b = p'ifand only if b’ = fb and fiv' =0. We also write
b< b if and only if b = &b and &b’ = 0. Note that b=}’ and b’ < b are not
equivalent. If b = b, then r = ¢,(b). If b’ < b, then r = &(b’).

Now set B = B(A) where A is a dominant integral weight of sl(n + 1). Consider
the sequence

1,2,...,n— 1,n,
1,2,...,n—1,
1,2,
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Forb e Bwedefiner; ;€ Z ,and b(j,i)e B(1 <i<n+ 1 —j)insuchaway that

1r1 1 er 2, n-—lgn-l

b(l, 1) = b(1,n — 1)"="b(1, n)
lglb(z 1)2r22 . n- lrzn,b(zn—l)
Lrp- 13b( _1 1)Zrn lzb(n_l,z)
B b, 1).

Then we have the following result.

PROPOSITION 6.2.2.  The last element b(n, 1) is the lowest-weight element in B, and
(6.2.8) Tt S Tt i1
If we replace the arrow <= with =, then the last element b(n, 1) is the highest-weight

element in B, and we have (6.2.8).

Proof. Because of the symmetry e; <> f;, e"«<>e™ of U(sl(n + 1)), it is enough
to prove the case for <. We call the subset of Y given by {(r,i) € Y|b, ; = s} the
(r, s)-block of b. The value Of b(], :Y—{I,...,n+ 1} is constant on each (r, s)-

block. More precisely, for b’ P b”, we have
b, 9)-vtock = 'l 5)-b1ock — 1 fi+i=s1<j<s—r,
= 'l(r,-btock otherwise.

Namely, the value of the (r, s)-block decreases one-by-one in the process of =L at
(L )=(1,8—1), ..., (s —r,r). Therefore, we have b(n, 1)l 5 biocx = and 7;; =
Y 1<j<iXjj+i- The assertion immediately follows from this. O

In the following subsections, we shall give the proofs of the results in Section 1.
Note that in those proofs we may only estimate <c, &(b)) but {c, ¢(b)> by consider-
ing duals of crystals (see [KMN?], §5).

6.3. (A, BUA))(n = 2,1 <k <n). We shall use the notations in 1.2.

PROPOSITION 6.3.1.  Let J' = {1,...,n — 1} be the index set of the simple roots
for Uy(sl(n)) and let 1': J' — J be 1'(j) = j. Set B’ = 1"*(B(IAy)). The crystal B’ splits
into | + 1 connected components.

(6.3.1) B = oo BimA, + (| — m)A,_,).
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Here we mean A, = Ay =0. If By and B, are both isomorphic to B', then the
isomorphism B, — B, is unique.

Proof. An element b € B(IA,) corresponds to a highest-weight element in B’ if
and only if

vy =j (<j<k-11<j<l),

=n+1 (m+1<j <),

for some 0 < m < I. The weight of 1'*(b) is mA,, + (I — m)A,_,. Hence we have (6.3.1).
The uniqueness of the isomorphism B; — B, follows from the fact that the highest

weights of the connected components of B’ are all different. O
Set
(6.3.2) F=n+1-k

Proof of Proposition 1.2.1. The existence of B®! is proved i in Section 5. Let us

prove the uniqueness. Suppose that B, and B, are crystals of U, (5I(n + 1)) such that
19%(By) = 19%(B,) = B(IA,) for i = 0, n. Let t®: 19%(B,) — 1("*(B2) (i = 0, n) be the
isomorphisms of sl(n + 1)-crystals. By Proposition 6.3.1 we have 1/ =1™ as a
morphism of sl(n + 1)-crystal and these maps can be extended to the isomorphism
7: By — B, such that |w.g,, = 1. O

The proof of Theorem 1.2.2 is divided into several parts. Without loss of general-
ity, we can assume that k < k'. For b € B*! weset (x; ;) = x(12*(b)). For convenience
wesetxo o =1LXo 1 ="""=Xg o1 =0and X4y o =" = X44q ysy = 0. The follow-
ing is immediate from Proposition 6.1.2.

PROPOSITION 6.3.2.
k

&(b) = Z Pﬁ)+ @;(b) = ('—pk+1,i)+

Jj=1

where p; ; (0 <j < k + 1,1 <i< n)are defined inductively by

Po,i = 0, Dji = Xj,i41 — Xj—1,i — (”‘Pj—1,i)+-

ProOPOSITION 6.3.3. For b e B we have

Z &(b) =1 — x; .-
i=1

The equality holds if and onlyif p;; > 02 < i< k)andp,; 20k +1<i<n-—1).

@
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Proof. Note that p;; < 0if j > i, and also that p; , > 0. We have ¢,(b) = x; ».
For 2 <i <k, byuseof x, — (—x); = x we have

i i-1
&(b) = 21 (pj,0)+ = Zl (pj,)+ + Pii
i= j=
i-1
= 21 (P, )+ + Xiie1 — X1, — (= Pic1, )4
=
i-2
= Zl (pj,i)+ + D1t Xpir — Xie1i
=

= Z (141 — xj—l,i)-
i=1
Fork + 1 <i<n, we have
X k=1 K
&(b) = Zl (i) 2 21 (Pj,0)+ + Pri = Z‘i (Xj,i01 — Xjo1,1)-
J= J= J=

Therefore, we have

n

Z &(b) = Xy gy + 1 F Xp s =1L — X ]

i=1
We set (x] ;) = x(i®*(b)). Define
K k
(6.3.3) L=7Y %, O<j<h), L= xi, O <j<k).
i=j i=j

These integers are the same for b and b’ if b 51 for some i # 0, k. Note that
lo = Iy = 1. We are going to show the following proposition.

PRrROPOSITION 6.3.4.
f=1— 1l fl<i<k+1
=0 fk+1<i<k.

Proof. Define b € B“! by (%; ;) = x(b) where
X,1=1, Xi2=""=X;,=0, X =1—1,

X5, =15, Xp3=""=X;,=0, Xo 1 =1 — 1y, x2,k+2=l—lly

xk’k’—:lk, k-k,k"f'l =lk"1—lk7""‘>-ck,2k=l-—ll'
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Then 2%®*(b) is the highest-weight element in the connected component of the
crystal ((©®*(B*!) that contains 1©¥*(p). By Proposition 6.2.1 the weight of b is
given by

k=1
A= 3 (=) Ay + Ay ) + @l = DA+ (= 1) Ay — L Ay

Jj=1

Therefore, the weight of i®*(b) is
k-1
A= j; (lj - lj+1)(Ak—j + An+1~k+j) + (- ll)Ak’ - llAk'
On the other hand, in terms of [/, A reads as
k-t
A= }_:1 (7 = L) A = Ay =) — U= DA + LA,

Comparing these two expressions of A, we get the assertion. O

PROPOSITION 6.3.5. For b € B*! we have
eo(b) = Xk

The equality holds if and only if p; < 0 for 2 < j < k where p; are defined inductively
by

' to ot ’ ’
po =0, Pj = Xjkr1 — Xj—1, — (= Dj1)+ -

Proof. From Proposition 6.3.4 we have I} =1 — [, =1 — x, ,. Therefore, we
have

k
eo(b) = Ek(i(k)*(b)) = Zl (PJ{)+ = x/l,k+1 =l-1= Xk ke - o
=

From Proposition 6.3.5 and 6.3.7 we have the following corollary.
COROLLARY 6.3.6. For b e B! we have Y 1—,¢,(b) > L.

Since ¢ = Y %o h;, b is minimal if and only if Y 7, &,(b) = L
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PROPOSITION 6.3.7.
Xie=le—j = be—jor — T+ 11 g flsjsk-—1
=1-1, ifj=k
=0 fk+1<j<k,
Xj 1 = L ifji=1
= Tera—jmta—j = Terr—jmr1—; U 2<j<k
=Tre fj=k+1
=0 fk+2<j<k.
Proof. We connect (x; ;) and (x; ;) in the following scheme.
100 (p) BN 1(©-R1*(b): the lowest-weight element in 1%9*(B%)
(635) Proposition 6.3.4

i©0*(p) &2, j0.0+(p). the owest-weight element in i©P*(B*).

We use [; and [j of (6.3.3). We set formally I,,, = 0. Let b e B*' be given by
i) = x(19*(b)) where

Visi = hewjoi = bewjoinn fj<i<k

=0 fek+1<i<k+j—1

=1-1 fi=k+j.
Then 199*(b) is the lowest-weight element in the connected component of
1©9*(B*Y) that contains 1@P*(b). Set (z;;) = x(1®*(b)). Note that i®*(B*!) =
B(IA,). We have
(6.3.6) Zji = Dejoi = lwjoing fj<is<k=l_;—1jy

=0 fk+i<ig<k+j-—1

==l ifi=k+].



566

KANG, KASHIWARA, MISRA, MIWA, NAKASHIMA, NAKAYASHIKI

By Proposition 6.2.2, b is obtained from b by the process

637) b UENThk — 1,k — 1) L2 po ) (e, 1)
RIS e g ke — 1) T2 (g )
P (L ke — 1)
LR e ke 1) TR T e — 1) bk, )
RIS e — 1, k4 1) IS LTI g g — 1)

k+1 P‘x I+

If k = k', the last line is *

With these r; ; we get

(6.3.8)

b(1, k + 1)

Lragest
=>

i®*(b) =

k+2, rx R+2

krlk

L b1, k) =

b(2, k + 1) = b. For convenience we put 7, , = 0.

é;k—l,k—l'é’;k—Z,k—l . 51:222 é"u
A2 k1 -3, k- ~
elk 2,k lezk 3,k-2, . e"(x 2

~F -
ell Jhe—1

5¥en—13",n

Stk 3 k42 |

€y €n-1 CTErfa €ey1
STh=1,k+1 30 c~1 k+2 . .« 3Tk=1,n-1
€ en-1 €r+2

STkl Lev2 .
€, €n-1

&1 (b).

If k = K/, the last line is e,>**'i®*(b). Note that in the first half of (6.3.8) the &’s are

withie{l,...,

k — 1}, and in the latter half

&'s are withie {k + 1, ..., n}. Hence

they commute each other. Furthermore, &,_, in the first row commutes with all the
é;s in the second and subsequent rows except for the é,_, in the second row, and
this &,_, commutes with all the

&.s in the third and subsequent rows except for the
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&, in the third row, and so on. Therefore, we can write

(6.3.9) i®*(b) = (a sequence of &,, ..., &2, Cxiny---» Ey)b"
(63.10)  b" =@y girighen grcinnt L gk ® Y i < K
— é;‘ ié’;l 2. .e LS 2 xé;irl:é;ciizl -1, é’rz‘k-ﬁ-ll‘(k)*(‘b) lfk — k,.

In (6.3.9) neither &,_, nor &, appears. Hence, if we set (x;) = x(b"), then we have
X{,=xj, and Xj,.; = X4, Proposition 6.2.2 implies that r, ;>r; ;;; and
Fet1—jin+1-j = te—jn—j- Therefore, from (6.3.6) and (6.3.10) we get x;; and X} ;4 as

above. O

Proof of Theorem 1.2.3. Letl;; = Y i<i<i X;,#- Consider the following statement
for1 <j<g<k—1.

(4); Pis1-j,: 2 0 (j+1<i<k),

Pr+1-ji = 0 (k+1<i<n-—Jj).

(B); Xisiojinn =X (J+1<i<k),
Xk+1-ji+1 = Xk—j,i k+1<ig<n—j).

(©); Pj+1 = 0.

(D); Pi+1 < 0.

(B); Fivr—ji = liwn—ji = lern—j (j<ig<k-1),

Terr—gi = bvr—ji = b1y (kH1I<isn+1—)).
(F); Frg= = leviegs

rk+1—j,n+1—j - lk+1—j,n+l—-j - lk+1—j‘

From Proposition 6.3.3 and 6.3.4, the equality Y /-, &(b) = I holds if and only if
the following (4), and (D); (1 <j < k — 1) hold. We will show the equivalence of
the following.

(1) (A),and (D); (A <j<k—1)

@ (B);, (A<j<k-1)

Note that (i1) implies Theorem 1.2.3.

First, we show that (4); (1 <j < j,) implies (E);,. Let us trace (6.3.7), the process
of the standard tableau b changing to b, more closely under the condition (4);
(1 <j <jo). Note that at each r; ; step "2 the standard tableau changes some nodes
fromito i+ 1. We claim the followmg
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(6.3.11) Assume (4); (1 <j <j,). Then for 1 <j <j,, the changes for :’:‘Ef’:‘f
(j <i<k—1) take place on the (i + 1 — j)th row, and the changes for =~ ="

(k + 1 <i<n—j)takeplace on the (k + 1 — j)th row. Furthermore, (E); and (F);,,
are valid.

Let us prove this by induction on j,. Since f; in the process from b to b(1, k — 1)
and those from b(l, k — 1) to b commute, it is enough to prove the two cases
separately. Since the proofs for them are similar, we give it for the first half.

First, consider the case j, = 1. Since p,_; ,—; =0, we have p, ,—; = X, —
Xg-1,1-1 < 0. Therefore, we have ¢ (b) = (_pk+1,k—12'_+ = (—Prr-1)+ = Xp—1,1-1 —
X x = le—1.1-1 — I This implies that the changes for "K' are on the (k — Dth
row. Hence, by the definition of p;;, py_; ;-5 of b(k — 1,k — 1) is equal to that
b. Therefore, noting that I,_, ;_, for b(k — 1, k — 1) has changed to I, we have
P20l — L,k — 1)) = (= prs1,k-2)+ = (“Pk—l,k—z){rlk—z,k—z = .

By continuing this we can prove that changes for o (1 i<k — 1)take place
only on the ith row. Therefore, the first half of (E), follows. Furthermore, it turns
out that for b(1, 1) and after, the change from 2 to 3 is possible only on the first row.
This proves (F),.

Now let us proceed the induction step to j, = 2. Define b(2) by

b(1, 1)L e ()

Compare b(2) with b. Among [; ;, those which have changed their values are I, ;
(I<i<k-—1andl ;(k+1<i<n).Forb2)wehavel,; =1 (1<i<k—1)and
L, =1L (k + 1 <i<n). Moreover, p;; appearing in (4); (2 <j < k — 1) have not
changed. Therefore, the same structure of the proof remains for the next step. By
repeating this we can prove the assertion.

Now we go back to the equivalence of (i) and (ii).

Let us prove (i)=-(i). From (B); (1<j<k—1) it is easy to see (4);
(1 <j < k — 1). Therefore, we have (E);. Note that the convention r; , = 0 is consis-
tent with (E), with i = k. Substituting all these to (6.3.11) we have

/ s —
Xj k= ll,j+1 - ll,j = Xq,j+1>

Xjig 1 = lk+1—1,n+1—j = Derr—j = beejn—j + be—j>
for 1 <j <k — 1. Note that from (B); we have [_; — L _j = X4 + X jimj —
Xpp1—jk+1—;A0A L i = by —j we1—j = Xg—j g—j = Xg+1-j.k+1~;- L herefore, we have
Xit1,k+1 = Xp—j,k = X1, j+1- Hence we obtain (D); for 1 <j <k — 1.

Let us prove (i) = (ii). We assume (i). Note that (C), is valid. Assume (4); for
1 <j' < jand (C);_;. From (A4); we have

k+1-j
(6.3.12) 0< ) Pritjor S Xewr—jsr — X1,j41»

i=2
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n—j n—j
(6.3.13) 0< Z Pr+1-ji S Z (xk+1~j,i+1 - xk—j,i)-
i=k+1 i=k+1

Therefore, we have

n—j

(6.3.14) Xgr1—jk+1 — X1,j-1 ; (Xrr1—jivr — Xp—ji) 2 0.
i=k+1

’

From (C);_, and (D); we have x;; — X/;1 1+ = 0. Therefore, by using Proposition
6.3.7, we have

! ’
0< Xjk = Xj41,k+1

=lej = bevs—j = 1 T 11 e = Tertmjonrt—j F Temjinj-
From (6.3.11) we have (F); and (F);.,. Therefore, we have

n—j

(6.3.15) Xpt1—jk+1 = X1,j-1 T ;ﬂ (s —jirr — X—ji) < 0.
i~

Comparing (6.3.12-6.3.15), we have (B); and p;,; = 0 (in particular, (C);). From (B);
and (A); follows (A);,;. Thus by induction we have proved (ii). O

Suppose that b € B*!is minimal and set (x; ;) = x(b). Set a; = x; ; (1 < i < k) and
by =x;;(2<i<k).LetA=)",4A, beadominant integral weight of level /, i..,
A€ Ly, Y oA =1 We claim that there exists a unique b such that &(b) = 4;.

PROPOSITION 6.3.8.  With the notation as above, the equalities e(b) = 1,(0 < i < n)
hold if and only if

/L:ak l=0
= b,y I<ig<k —1
= Gy~ Gito2-k kK<i<n.

Proof. The assertion follows from Proposition 6.3.2 and Proposition 1.2.3. O

ProPOSITION 6.3.9. Let A and b be given as above. Set A’ = A + wt b. Then we
have

Ai = Aivp— O<i<k-1)
:Ai—‘k (k<i<n)9

where N =Y 1o AA,;.
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Proof. Set m; = #{(j,j)lm;;, =i} where (m;;)=m(b). We have 1=
A+ my—my Ik < k' — 1, then we have

m; — My = b —a; (i=0)
=a; — a1 — by (I<i<k-1)
=a—by  (i=k
= bir1—1 — by k+1<i<k—1)
=by g+ Gy — Gy K <i<n).
If k = k', then we have
m;—myy =b, —a (i=0)

=a; — G4y — by (I<isk-—1)

=0 Gyy + Qg — Qg kK<i<k-1)

=yt Qipgop — Gipr-p (i=k

=buyok+ Gz — Gy (k+1 <i< n).

The assertion then follows from Proposition 6.3.8. O
PROPOSITION 6.3.10. B*'® B*!is connected.

Proof. Let u, € B** be the highest-weight element of :(2*(B*!) and v, € B! be
the lowest-weight element of :®*(B*!). For any b, ® b, € B*' ® B!, we shall show
that b; ® b, is connected to u, ® v,. By the description of the actions of fiin [KN7,
we can easily obtain that f,-uo =0fori=1,...,k—1,k+1,..., n. Assuming that
fouo # 0, we have wt 1O*(foup) = IAx + oy + -+, by ag= —Y ;o in the
sense of classical weight. This is a contradiction to the fact that u, is the highest
element of 19*(B%') = B(IA,). Then fyu, = 0. Therefore, we have ¢;(u,) = 0 for
j# k. Let uy ® b be the highest-weight element of the connected component of
19*(B*! ® B*') that contains b; ® b,; hence b; ® b, is connected to u, ® b by
fl, ..., f.. b can be written in the following form: b=¢; - &,vo_(i; # k). By
@;(ug) =0 (j # k), if j # k, then fi(uy ® b) = uo ® f;b. Hence, f; =+ f;,(uo ® b) =
g @ vg. ]

Now, we have completed the proof of the Theorem 1.2.2 by Theorem 1.2.3,
Proposition 6.3.10, Corollary 6.3.6, and Remark 1.2.4.
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The following will not be used in the rest of the paper, and the proof is omitted.
Let ¢ = (co, €15 ..., ) and ¢* = (c%, ..., ¢f_;) be a partition of {1,...,n+ 1}

suchthat l = ¢y <c¢; < <¢,=n+1and cf < <cf_;. For ¢, ¢’ we denote
¢ < ¢'if and only if ¢; < ¢}(V)). Define

k'—1
A(Cﬁ b) = Z xcf—(—l—j,c}* >
=
B(c) = {b e B|A(c, b) < A(¢’, b) if ¢’ < ¢, Alc, b) < A(c’, b) otherwise},
F(c)j,i = 1 ifi = cj"'l
=—1 ifi=g¢
=0 otherwise.
PROPOSITION 6.3.11.  With the notation as above, we have the following.
(1) B = || B(c) is a disjoint union.
(2) If b e B(c), then fob = 0 if and only if
c=(Lkk+1,...,n+1) and x4 =0.

(3) Suppose that fyb # 0. Then we have Vii = X;; + F(c);; where (y; ;) = x(fob).
64. (CM, B(IA)) (n = 2). We shall use the notation in 1.3.

n >

LEMMA 6.4.1. We have

W = Xjy F Xje ] — Xjoj iy — Xjroq, 77 flr<j<i<n
=X = Xi-1a  FlI<j<i=n.

The proof is immediate. From this we have the following proposition.

PROPOSITION 6.4.2. For b € B we have
&(b) = Z (pi)+
=
where p; ; (0 < j < i < n) are defined inductively by
Po,i =0,

Pji = @;; — (= Pj-1,1)+ 1<j<gi<n).

Then we have another propostition.
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PROPOSITION 6.4.3. For b € B we have

The equality holds if and only if p, ; 202 <i<n)

Proof. Recall the proof of Proposition 6.3.3. Similarly, we have g;(b) = ) i-; w; ;,
where the equality holds if and only if p; ; = 0 (2 < i < n). The right-hand side then
reduces to [ — [,. O

Proof of Proposition 1.3.1.  The existence is given in Section 5. Let us prove the
uniqueness. Let J' = {1, ..., n — 1} be the index set of the simple roots for sl(n), and
let 1%": J' - I be 1%"(j) = j. Set B' = 1(>"*(B™!).

PROPOSITION 6.4.4. As a crystal of Uq(gl\(n)), B’ splits as

B = @og,,su-szlng(All ,,,,, z,,)

where

,,,,,

If B, and B, are both isomorphic to B, then the isomorphism B, - B, is unique.

We omit the proof of Proposition 6.4.4 which is similar to that of Proposition
6.3.1. From this follows the uniqueness of B™' similarly to the proof of Proposition
1.2.1. (see 6.3.) O

Proof of Theorem 1.3.2. Set (xj,) = x(i*(b)). Similarly, we define y; ;, z; ;+, and
$O on.

PROPOSITION 6.4.5. For b € B"! we have
go(b) = 1,.
The equality holds if and only if p; < 0(2 < j < n) where pjare defined inductively by
Po =0, Pj=Z}—1,j—Zf,j»1 “(_P}—1)+~

In particular, we have p, =1 — 1] = 0.

Proof. By an argument similar to that which was used in the proof of Proposi-
tion 6.3.5, we have Il = 1 — I, _;. Therefore, we have

olb) = £,(1*(b)) = Z“’”* S1-1 =1, O
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COROLLARY 6.4.6. For b e B™', we obtain {c, e(b)) = Y o &(b) =

Proof of Theorem 1.3.3. Let b be an element in B™! such that {c, ¢(h)) = [ and
b be the unique element in B™' such that :©"*(b) is the lowest element in the
connected component of B’ that contains :(%"*(b). This is obtained by

1O%(p) " TR (1, — 1)L 2 g, 2) T, 1)
nlrz,‘lb(zn—_l)n 2r2,‘_2‘2r22b(2 2)
n— 1r,.1n1

b(n — 1, n — 1) = 19%(b).

Here r;; are determined in such a way that for each pair b;i" — bz we have
fib, = 0. By Proposition 6.2.2 we have r; <1y (1 <js<n—2)wherer; =7,

n—j, 'l‘—J
Srn-1 .., 30 —
With these r;set b” = &% -+~ &1'b. Then we have Xj, = Xj,and xj ,.; = X} 4, where

(x7:) = x(l*(b”)). In this way we have
Zi g1 = 2L 1y — Ty 1<j<gsn—1).
Here we set 1y = 0.

From Proposition 6.4.3 and 6.4.5, the equality Y ", ¢,(b) = I holds if and only if
the following (4); and (D); (1 <j < n — 1). Consider the following statements.

(A); Pis1-;: =0 (J+1<i<n),
(B); @i41-5;=0 (J+1<i<n),
(C)j PJ/‘H =0,
(D)j P}+1 =0,
(E); Tamjor = Zynj — 2y
We will show the equivalence of
@) (B); 1<jg<n—-1.
(ii) (4), and (D); 1<j<n—1).

Note that (i) implies Theorem 1.3.3. Let us derive (i) from (ii). Assume that (4),,
., (4); and (C);_; are valid. From (A4); we have w;,,_; ; = 0. Therefore, we have

n

Z Wig1-ji = Zy,nt1-j — Z1,n—j T ln—j - ln+1—j
i=j+1

A\

0.
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Note that (E)y: 1,—; = z, , — 21, holds in any case, and noting that the changes for
r;,; take place on the first row, we have that (4),, ..., (4); imply (E),, ..., (E);. From
(C)j-; and (D); we get

’ ’

(6.4.1) Pi+1 = Zjjrr = Ziar,; = bixg — [+ 1 j = 1o jy 2 0.
Then by using (E);_;, (E); and [} + [,.,_; = I, we get
(6.4.2) Pie1 = Zymi1-j = Zon—j + bpmj = by 2 0.

From (6.4.1) and (6.4.2) we have (B); and (C);. From (B); and (4);, we have (4);.,.
Thus we proved (i) by assuming (ii).

Next, we show that (i) implies (ii). Note that (i) means w;; =0 (1 <j<i<n).
Note also that p, ; > 0 (1 <i < n). From these we can inductively show p; ;=0
(2 <j < i< n).Inparticular, we have (4); (1 <j < n — 1). As we noted before, (4),,
..., (A); imply (E)y, ..., (E);. Therefore, we have pjy; = z; yu1-j — Zy,p—j + biej —
ly+1-j. Since w; ; = 0 (2 <j < i< n), pj; = 0. Hence, we obtain (C); and then (D);.

O

ProrosiTION 6.4.7. B*'® B™'is connected.

The proof is similar to that of Proposition 6.3.10.
Now we completed the proof of Theorem 1.3.2 by Theorem 1.3.3, Proposition
6.4.7, Corollary 6.4.6, and Remark 1.3.4. O

6.5 (D2, B(IA,)) (n = 2). We shall use the notation in 1.4. We describe the
actions of & and f; on (m; ;) as follows. First, we read each column of (m; ;) from
the right to the left and obtain the sequence u, - - u, where u, is the kth column
from the right.

(1) The casei # n.If there areiand i + 1 in u,, then we identify it with +; if there
arei + 1and i in u,, then we identify it with —; and otherwise, we identify it with 0.
Then we obtain the actions of & and f; (1 <i < n).

(2) The case i = n. If there are n in u,, then we identify it with +; if there are &
in u,, then we identify it with — and otherwise, we identify it with 0. Then we obtain
the actions of &; and f,.

We also use
ljzyj,n (1 <j<n)>
o = {xj,i-ﬂ = Xj-1,i (I<j<i<n),
i = C_.
Xj’,',“x‘j_lyn (1 <J<l—-n).

NOte that 601,,- = xl’i..}.l - xO,i = xl,i+1 2 O.

ProOPOSITION 6.5.1.  For b € B we have

e(b) = ;‘1<p,»,,-)+
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where p; ; (0 < j < i < n) are defined inductively by
Po,i =0,
Pii = @i — (—Pj-1,0)+ I<j<i<n).

Then we have the following proposition.

ProrosiTioN 6.5.2 For b € B we have
n—1
2) &) +eb)=1—1,.
i=1
The equality holds if and only if p; ; 2 0 (2 < i < n)

Proof.  Recall the proof of Proposition 6.3.3. Similarly, we have g,(b) > Y 'i_; w; ;,
where the equality holds if and only if p; ; > 0 (2 < i < n). The right-hand side then

reducesto l — [,. O

Proof of Proposition 1.4.1. The existence is given in Section 5. Let us prove the
uniqueness. Let J' = {1, ..., n — 1} be the index set of the simple roots for sl(n), and
let :©: J' > I be 1"(j) = j. Set B’ = 1®m*(B™Y), O

PROPOSITION 6.5.3.  As a crystal of Uy (sl(n)), B’ splits as

B = ®0<1,,<~-<1,<10=1 B(All ..... z,,)
where

If B, and B, are both isomorphic to B, then the isomorphism B, — B, is unique.

We omit the proof of the Proposition 6.5.3 which is similar to that of Proposition
6.3.1. From this follows the uniqueness of B™' similarly to the proof of Proposition
1.2.1. (see 6.3.) O

Now we are going to prove Theorem 1.4.2. Set (x],) = x(i*(b)). Similarly, we
define x;;, y; ., and so on.

PROPOSITION 6.5.4. For b € B*! we have
gb) = 1,.
The equality holds if and only if p; < 0(2 <j < n) where p; are defined inductively by

. ;o ’ ,
Po =0, Dj = Xj 5 — Xj—1,n — (—Pj—1)+-

In particular, we have py =1—17 = 0.
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Proof. By an argument similar to that which was used in the proof of Proposi-
tion 6.3.5, we have I{ = [ — [, ,,_;. Therefore, we have

colb) = *(B) = 3. (b)) > 1= L = . o

COROLLARY 6.5.5. For b e B™, we have

(e, e(b)> = eo(b) + 2 f e(b) + &,(b) > |

Proof of Theorem 1.4.3. Let b be an element in B™' such that {c, ¢(b)> = [ and
b be the unique element in B™' such that 1©™*(b) is the lowest element in the
connected component of B’ that contains :‘®™*(b). This is obtained by

nlrlnl "2r2112 2’12 1’11

10 () b(l,n— 1) Z7p(1,2) 2 b(, 1)

nlrz,,_ n2r2n2 2r22

b(2,n—1) b(2,2)

"1rnxn1

b(n —1,n— 1) =19%(b).

Here r;; are determined in such a way that for each pair b, (i) — b2 we have
fib, = 0. By Proposition 6.2.2 we have r; < rjy; (1 <j<n-— 2) wherer; =1,
With these r;set b” = &, -+ &'b. Then we have Xi, =X and x] .y = xj,
(5.0 = x(z*(b”)). In this way we have

n=j,n=j°
2+ Where
6.5.1) x}+1,£ - = 2(7,‘ Py—j— )= (yj',n - }’1{+1,n) I<jgsn—1).
Here we set 1y = 0.

From Proposition 6.5.2 and 6.5.4, the equality eq(b) + 2 11 &(b) + ¢,(b) = |

holds if and only if the following (4), and (D); (1 <j < n — 1). Consider the follow-
ing statements.

(A)j Pi+1-5.: = 0 (J+1<i<n),
(B); @p41-5:=0 (J+1<i<gn),
(©); Pjaa=0.
(D); P+ <0,

(E)j Ta—j—1 = V1,j+1 = VYu—jin O<j<sn—1).
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We will show the equivalence of the following two statements:
i) B, (<j<n—1),
(ii) (A4); and (D); I<j<sn-1).
Let us derive (i) from (ii). Assume that (A),, ..., (4); and (C);_, are valid. From
(A); we have @, _;; = 0. Therefore, we have

=i
(6.5.2) Xp—jon Z Xn—jmtn=1 Z Xn—joz,n-2 Z " Z X, juez 2 X1, j41»

(653) xn-j+1,ﬁ > xn—j,n and then zyn—j,n—l > yn—j+1,n + yn—j,n‘

Note that (E)y: 7,—; = y;,; — V... holds in any case, and noting that the changes
for r; ; take place on the first row, we have (4),, ..., (4); imply (E)y, ..., (E);. From
(C);-; and (D); we get

(6.54) Pjr1 = Xjr1,5 — Xjn < 0.
Then by using (E);_y, (E);, (6.5.1), (6.5.4), and yj , + V1.0 = I, we get
(6.5.5) Pi+1 = 2(V1,j = Yu-jti,n — Vit F Vuojn) = Wnmjon = Vnt1-j,n)

= 2()’1,;’ - yl,j+1) + (yn—j,n - yn—j+1,n) <0.

From (6.5.3) and (6.5.5) we obtain y; ;11 — 1= Vojin — Vn—jn—1 and then

(656) xl,j-H ; xn——j,n'
From (6.5.2) and (6.5.6),
(6.5.7) Xi,j+1 = Xg j42 =7 = Xy g

Then we have (B); and (C);. From (B); and (4);, we have (A);+1- Thus we proved (i)
by assuming (ii).

Next, we show that (i) implies (ii). Assume (C);_, Note that (i) means ;=0
(I<j<i<mn)andp, ;> 0(1 <i< n). From these we can inductively show pii=0
(2 <Jj < i < n). In particular, we have (4); (1 < j < n — 1). As we noted before, (4);,
.-., (A);imply (E)y, ..., (E);. Therefore, we have

(6.5.8) Pirr = 2(¥1,;— Y1,j01) + n—jon = Yu—j1,n)-

From (B);, we have x,_;, = x, j,;. Hence y,_; , — y,—j 1 = Y1,j41 — Y1,;- From
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this and (6.5.8), we obtain
Pis1 = =20n=jin = Yumjon=1) + Vumjon = Yu—jr1,0)
= Vnejin-1 = Yu=jin) ¥ Wnejin—1 = Yu—j1,n)
= = Xyojn t Xy jr1i = Opejyrn = 0.
Hence, we obtain (C); and then (D);. O

PROPOSITION 6.5.6. B™' ® B™!is connected.

The proof is similar to that of Proposition 6.3.10.
Now we have completed the proof of Theorem 1.4.2 by Theorem 1.4.3, Proposi-
tion 6.5.6, Corollary 6.5.5, and Remark 1.4.4. O

6.6. (DY, B(IA,—;) and B(IA,)) (n > 4). We shall use the notation in 1.5. We
describe the actions of & and f; on (m;, ;) as follows. First, we read each column of
(m;, ;) from right to left and then obtam a sequence u;u, *** u; where u, is the kth
column from the right side. Then the actions of ¢; and f: on u, are as follows.

(1) The casei # n.

(i) If u, contains i and i + 1, then fu, is obtained by replacing i and i + 1 with
i + 1 and i and otherwise, ﬁuk = 0.

(i) If u, contains i + 1 and i, then &,u, is obtained by replacing i + 1 and i with
iand i + 1 and otherwise, &u, = 0.

(2) The casei = n.

(i) If u, contains n — 1 and n, then f,u, is obtained by replacing n — 1 and n with
7iand n — 1 and otherwise, f,u, = 0.

(ii) Ifu, contains 7iand n — 1, then &,u, is obtained by replacing 7i and n — 1 with
n — 1 and n and otherwise, é,u, = 0.

From these descriptions, we obtain the actions of é; and f; in the following way.

(a) The case i # n. If u, contains i and i + 1, then u, is identified with +; if u,
contains i + 1 and i, then u, is identified with —; and otherwise, u is identified with 0.

(b) The case i = n. If u, contains n — 1 and n, then u, is identified with +; if u,
contains 7 and n — 1, then u, is identified with —; and otherwise, u, is identified
with 0.

For b € B (resp. B’) we also use the notation

Wj ;= Xjiv1 ™ Xj—1,i I<j<isn-2).
Ifniseven,forj=2,...,n
X Xzt ifjis odd (resp. even),
Ppn=1 =g ifjis even (resp. odd);
P N ifjiseven (resp. odd),
B T

0 ifjis odd (resp. even).
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Ifnisodd,forj=2,...,n

jon—1

@i 0 ifjis odd (resp. even);

3 {x.-—— — Xj—3,n—1 ifjis even (resp. odd),
Jn—1 =

Xi T~ Xje3,nm1 ifjis odd (resp. even),
0 ifjis even (resp. odd).

PROPOSITION 6.6.1.  For b € B we have
5= Y (3y0-
=1
where p; ; are defined by inductively as follows; for 0 <j <i<n-—2,
Po,i =0,
D=~ (~prde  (I<j<i<n—2),
forO0<j<i=n—1orn,
Poi=p1,: =0,
Pii=wi;— (=P (<j<i=n—1n).
LeEmMMA 6.6.2. For b e B we have

e1(b) + 2&5(b) + -+~ + 2¢,_,(b)

n—3

= kz_:l (lpk,kl + 2y p-1 — 2)’k,n—2) F Yu-2,n-1 = VYu-2,n—2-

The equality holds if and only if p,_; ; > 02 <i<n—2).

Proof. From the identities x, — (—x), = x and |x| + x = 2(x),, for 2 <i <
n—2

(6.6.1) (P1,)+ + 0+ (Picr, )+ + 2(pii)s = @+ + @+ |l
(6.6.2) (P1,i)+ + 4 (Pi—l,i)+ Z0;+ 0+ ;.

The equality of (6.6.2) holds if and only if p;_; ; > 0. Hence, by the definitions of
w; ;, (6.6.1), and (6.6.2), we obtain the desired result. O
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LEMMA 6.6.3. For b e B we have

(6.6.3)
n—3
8n—1(b) + 8r|(b) = l + yn—2,n—2 - yn—Z,n—l - yn—'l,n-l + 2 kZ:l (yk,n—-Z - yk,n—l)'

The equality of (6.6.3) holds if and only if p,—y ,—y =0 and p, , > 0.
Proof. From the identity x, — (—Xx), = x, we obtain

(1) If nis even,

ne1(b) 2 @y g + O3 1+ F Oy s
(6.6.4)
gn(b) > wz,n + 604‘,, + R COn,n ’

(i) if n is odd,

8rr—l(b) 2 wz,::-l + w4,u~1 + 4+ wn—l,n-l s
(6.6.5)
8,,(b) 2 wl,n + w3,n + -+ wn,n'

The equalities of (6.6.4) and (6.6.5) hold ifand only if p,; ,—y = Oand p, , = 0. From
(6.6.4), (6.6.5), and the definitions of v, ,; and w, ,, we obtain the desired result.
O

By Lemma 6.6.2 and Lemma 6.6.3, we obtain the following.

PrOPOSITION 6.6.4. For b € B we have

(6.6.6)
n—1
gl(b) + 2(82(b) + o+ 8n~2(b)) + 6”_1(b) + 8Il(b) = I— yn—l,n-l + kZ }pk,kl'

=2
The equality of (6.6.6) holds if and only if p—; , 202 <k<n—2),p,y -1 20,
and p, , = 0.

Proof of Proposition 1.5.1. The existence is given in Section 5. Let us prove the
uniqueness. Let J' = {1, 2,,,,n — 1} be the index set of the simple roots for sl(n)
and let 1%": J' - I be 1°°"(j) = j. Set B = 1O»*(B™}).

PROPOSITION 6.6.5.  As a crystal of U,(sl(n)), B splits as follows.
(i) If nis even,

B= @ B(Ay,.,,....1,)

0, <lya s €l <lp=1

where [ = Yi,n and Azz ,,,,, I, =™ Zk=0,2,4,...,n (e = lev2) A
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(i) If nis odd,

where I, = y; , and Az,,t3 ,,,, [ Zk=1,3 ..... n (e — Le2) Ay
If B, and B, are both isomorphic to B, then the isomorphism B; — B, is unique.

We omit the proof of Proposition 6.6.5 which is similar to that of Proposition
6.3.1. From this, the uniqueness of B follows similarly to the proof of Proposition
1.2.1. (see 6.3.). O

Now we are going to prove Theorem 1.5.2. Set (x;,) = x(*(b)). Similarly, we
define y; ;, @], and so on.

PROPOSITION 6.6.6. For b € B we have
(667) 80(b) > yn,n )

where p; , is defined by the same formulas as p; , for (x; ;). The equality of (6.6.7) holds
if and only if p; , <O forj=3,...,n

Proof. By asimilar argument to that which was used in the proof of Proposition
6.3.5, we have

Vin=1—=Yujiayn (Jj is even).
Therefore,
(6.6.9)

EO(b) = gn(i*(b)) = ‘Z‘l (p},n)+ > (P/z,n)+ 2 a)ll,n = x/2,nTl‘ = l - y,Zn = .Vn,n'
j=

Note that if n is odd, i*(B™") = B(IA,-,) = B. The equality of (6.6.9) holds if and
onlyifp; , <Oforj=3,...,n ]

COROLLARY 6.6.7. For b e B*! (resp. B" %), we have
n—2
e, e(D)) = go(b) + &1(b) + 2 ) & (b) + &,1(b) + &,(b) = L.
k=2

Proof of Theorem 1.5.3. Let b be the unique element in B™* such that 1/%"*(p)
is the lowest element in the connected component of B’ that contains 1"*(b). This
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is obtained by

nll,, n2r2,,2 2r,2 1r11

10%(b) "b(l,n — 1) 27p(1,2) 2 b(1, 1)

n1r2n- n— 2r2,,«2 2r22

b2, n—1) 27b(2,2)

"1'n1n1

b(n — 1, n — 1) = 1O%(p).

Here r;; are determined in such a way that for each pair b, (i)’ -2 we have
fib, = 0. By Proposition 6.2.2, we have ;<7 (1<j<n-—2) and i;< 7y

Jjt+
(1<j<n-—3)wherer,=r, ¥ = Fy—j—1,,—;- With these r; and 7, set

n—jon—js
b = & peima e B g2 - B,

We set (x7,) = x(b"). We have x| ,_; = X[ ,_1, X}, = X} ,,, X] 7=1 = X} ;=5

From Proposition 6.6.4 and Proposition 6.6.6, the equality of (6.6.10) holds
TP 20Q2<k<n—2),p 10120, Py 20, e =02<k<n-—2)and
Pin<0(4<j<nandjiseven)

Now for 1 <j < [(n — 2)/2] we consider the following statements where [ ] is
Gauss’s symbol.

(A); pi—2j41,: 20, Pi-2j+2,i =0 Z<isn-2),
Pn-2ji2.n = 0and p, 541 51 2 0.
(B); ®i—aj41.i=0 (i <i<nyand w;_554,;=0 2ji—1<i<n).
(€); Pajran=0.
(D);  Pojr2n < 0.
(E)j Tw—2j—2 = Fp—2j-1 = V1,2j+1 — VYn-2jn>
Fpmjm2 = (J/2,2j+2 - yn—2j,n) + (}’1,2j+2 - y1,2j+1)9

Tu—2j-3 = V2,2j4+2 — Yu-2jn-

Here, the equality of (6.6.10) holds if and only if (4), and (D);(1 <j < [(n — 2)/2]).
Let us show the equivalence of

@) (B); (A <j<[n—-2)2].
(i) (4); and (D); (1 <j < [(n—2)/2]).
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Note that (B); implies Theorem 1.5.3. Let us derive (i) from (ii). Assume that (4),,
.-»(4);, and (C);; are valid. From (4);, we obtain

(6.6.11) g 20 (Q<i<n—2),
(6.6.12) Wigje2i 20 (Qj<i<n—2),
(6.6.13) Op2js2.0 2 0,
(6.6.14) Oy_sje1n = 0.

Also, from p;_5;., ; = 0 we obtain

(6.6.15) @ 25411 Z (= Pic2ji)s = —Pim2jyi = — Di—2ji + (—Pic2jmy, i)+ -
This implies
(6.616) Wi—2j+1,i + Wi—2j,i =0 (2] +1<ig<n— 2)

From (6.6.11) and (6.6.13), we get

(6.6.17)  Xpo2j42,i=T Z Xu-2jmtn—1 = Xn—sjezim—2 2 7 = X3, 2542 = X1 241 -
From (6.6.14),

(6.6.18) Xpe2ji 1,571 =2 Xn—2jm2,n-1 -

From (6.6.12),

(6.6.19) Xp—2ju-1 Z Xn—2j-1,n-2 Z " Z X3 gj11 Z X1 2j-

From (6.6.16)

(6.6.20)

Xu=2j-1,n-1 T Xp=2j=2,n-1 Z Xp-2j-2,n-2 F Xy-2jo3 -2 Z " 2 X3 2j02 + X1 2542+

From (6.6.17)—(6.6.20) we obtain

(6.6.17y Yu-2jn-2 = Yu-2j+2,5 2 V1,2i+1 — V1,2j»
(6.6.18) Yu-2j-1,n-2 = Yn=2jn-1 2 Yu-2j-2,n-1 — Yn=2j-2,n~2»
(6.6.19y Yu—2jn=1 = Vu-2jn-2 2 Y2,2j41 — V2,2»

(6.6.20) (Vn-2j-1,1-1 = Yn-2j1,n-2) + Vu-2j-2,n-1 — Yn-2j-2.n-2)

2 (V2,2542 = V2,2j4+1) + V12542 — Vi,2j+1)-
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From (6.6.17)—(6.6.20), we obtain
(6.6.21) Va-2j-1,n-1 = Yu-2jt2.n = ()’2,2j+2 - )’2,2j) + ()’1,2j+1 - }’1,2,')-

Note that (E)o: 1,2 = V1,1 — Yuomw Tn-2(V2,2 = Yu-2-2) + (V1,2 — y1,1) and 7,5 =
V2.2 — Yu.n holds in any case and also that (4),, ..., (4); imply (E),, ..., (E);.
From (C);—: p5j,,» = 0 we obtain

p/2j+2,n = w’2j+2,n = X,2j+2,;.‘1? - x/2j—1,n—1 .
From this and (D);,
(6.6.22) X542, 771 S Xgj-1,n-1 -
Similarly to the previous cases, we get

Xojtn1 = (yn-Zj,n - yn—2j+2,n) - (rn~2j+1 Fy—2j- N Fy—2j- 1)s

Xoj42,571 = Tp-2jm1 — Tu=2j-2 -
Therefore, from (6.6.22) and these, we obtain

(6.6.23)

fn—Zj—l - in-—2j~2 < (yn—Zj,n - yn—2j+2,n) (n 2j+1 T Fy— 2j- 1) (n 2i T Py 2j— 1)

From (6.6.23), (E);-,, and (E);,

(6.6.24) (V2.2j42 = V2,2)) + V1,2j42 = Y1,2) = Vu-2jn — Vn-2j42.n-

From (6.6.21) and (6.6.24) we have the equalities (6.6.11-6.6.22) and (6.6.17)—
(6.6.20)". Hence, we obtain (B),, ..., (B);. In particular, from the equalities (6.6.22)
we get w,;4,, = 0. From this and (C);_y, Phji2,n = —(—D%;.)+ = 0. Hence, we
obtain (C)} From wtl~2j+2,n =0 in (B)j= Dn—2j+2,n = 0 in (A)j9 and pn-—2j+2,n =
Op-2j+2,n — (—Pu=2j,n)+> WE Obtain p,_,; ., > 0. Similarly, we obtain p,_5;—y,, = 0.
Therefore, we obtain (4);, from (4);and (B);. Thus, we proved (i) by assuming (ii).

Next, we show that (i) implies (ii). Note that (i) means w;; =0 (1 <j < i< n).
Alsonotethatp; ; > 0(1 <i<n),p,,-; =0andp,, > 0. From these we can show
p;: = 0(2 <j < i< n)inductively. In particular, we have (4); (1 <j < [(n — 2)/2]).
As noted before, (4), ..., (4); imply (E),, ..., (E);. Therefore, we get

! 14 7 !
(6.6.25) DPojran S @Dojran = Xajr2 571 — X2j-1,n-1

= (Vn—2js2.n — Yn—2jn) + (V2,2i42 = V2,2) + (V1,242 — V1,25)-
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We have

(6.6.26) Yu—2j+2,0 = Yn-2jin = ~ Xu-2j41,78 — Xn=2j,n>
(6.6.27) Va,2j+2 = Y2,2j = X2,2j42 t X2, 2j41>
(6.6.28) Vioja = Yi.2j = X1,2j42 T X1, 2541 -

Note that ifi = nor 1, x; ; = Xj_y ,—1 + X;41,;=7. Hence, from this and (6.6.26),

(6.6.29)
Yu—2j+2,n = Yu-2j,n = —Xp—2jn-1 — Xp-2j+2,7=1 — Xn-2j-1,n-1 — Xn-2j+1,7-1
From (B);,
(6.6.30) X3, 2542 T X2 2541 = Xu—2j—1,n-1 T Xp=2j,n-1>
(6.6.31) Xq,2j+2 7 X1, 2541 = Xy—2j-2,n-1 "+ Xp-2j-1,n-1-

Hence, from (6.6.25)-(6.6.31),
! —
p2j+2,n < _(xn-2j+2,l‘x-_—‘1 - xn—2j~1,n—1) - (xlz—2j+1,n—1 - xn—Zj-Z,n——l)
= Wp-2j+2,n — Wyp-2j+1,7 — 0.

Thus, we obtain (D);.
PROPOSITION 6.6.8. B™' ® B™!is connected.

The proof is similar to that of Proposition 6.3.10.

585

Now, we have completed the proof of Theorem 1.5.2 by Theorem 1.5.3, Corollary

6.6.7, Proposition 6.6.8, and Remark 1.5.4.
6.7. (A%)_1, BUA,) (n = 3)). We shall use the notation in 1.6. Fori =1, ..

O

'9n)

the rule of drawing the i-arrow on B(IA,) is given in [KN]. From that rule, it is

easy to see that
&(b) = X(b) + (xias (b)) — Xppy (b)) fori=1,...,n—1,
671  @b) = xi(b) + Firs(b) — 41 b))y fori=1,...,n—1,
e,(0) =X,(0),  @u(b) = x,(b).
We define a bijection o: BIA,) — B(IA,) by
xi(a(0)) =X1(b),  X(o(b) = x,(b),

x;(o(b)) = x(b), X (c(b)) = X,(b) fori=2,...,n.
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Then it is straightforward to see that 6 = idg,,). Now we define the rule of 0-arrow
by

6.7.2) fo(b) = of,a(b).
That is, b > b’ if and only if 6(b) = o(b’). Note that

g(b) = x1(b) + (x5(b) — X5(b))+,
(6.7.3) @o(b) = X1 (b) + (X2(b) — x2(b))+-

Now let us denote by B!'! the crystal B(IA,) endowed with 0O-arrows defined as
above.

Proof of Proposition 1.6.1. For b, b’ € B, by definition, b > b’ if and only if
a(b) EN a(b'). It immediately follows from the rule of arrows given in [KN] that
b5 b'ifand onlyif 6(b) - o(b')fori = 2,...,n. Therefore we obtain an isomorphism
13 (B = 1F(BY!) = B(IA,) of crystals for U,(C,) induced by the map o. In particu-
lar, B! is a crystal for U,(8r\13) of type U,(C,). It remains to show the commuta-
tivity of the 0-arrow and 1-arrow. For b € B*!, by the definition of 0-arrow, we
observe that if x,(b) = X,(b), X,(b) = 1, then

X, (fo®) = x,(b) + 1,
1 (fob) = %, (b) — 1,
x(fob)) = x;(b)  fori+2,
X(fob) = X(b)  fori+# 1;
if x,(b) = X,(b), X, (b) = 0, then f,(b) = 0; and if x,(b) < X,(b), then
X1 (foB) = x,(b) + 1,
%,(fo®) = X,(0) — 1,
x(fo®) = x(b)  fori#1,
X(fob)) =X(b)  foris#2.

On the other hand, by the rule of arrows given in [KN], we have if x,(b) = X,(b),
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x;(b) > 1, then

Xy (fy(m) = x;(b) = 1.

x2(f1(0) = x,(b) + 1,

xi(fi(B)) = x;(b)  fori#1,2,

X (fi(b) = X(b)  forall i;
if x,(b) = %,(b), x,(b) = 0, then f;(b) = 0; and if x,(b) < X,(b), then

2(1(0) = X,(b) + 1,

X, (fi(8)) = X»(b) - 1,

x(fib) = x(b)  foralli,

Z(fi(h) =% (b)  fori#1,2.

Now it is straightforward to check that f, f; = f; fe.
To prove the uniqueness of B!, we need the following proposition.

PrOPOSITION 6.7.1. Let J' = {2, ..., n} be the index set for the simple roots of
U,(C,-,) and define amap 1': J' — I by i'(j) = j for j € J'. Then 1'*(B"!) splits into a
direct sum of mutually distinct crystals for U/(C,_,) with highest weight

(Er =t — 1) Ao + (t; — T, — t)Ay + 1A,

where t, t,, I; are nonnegative integers such that t; + t, + f; = L.

Proof. Let b be an element of B*! with x;(b) = t;, X,(b) = f,fori = 1,..., n. Then
b is a highest-weight element of *(B*!) if and only if {, = 0, t; = f, = 0 for i = 3,
..., n. In this case, the weight of b is

(ty =t =)Ao + (8, — E; — )A; + 1A,
Itis clear that t; 4+ ¢, + ; = [, and it is easy to see that there is at most one highest
element in '*(B*"") with a given highest weight. O
Now we prove the uniqueness of B,

THEOREM 6.7.2. Let B be a crystal for Uy (AS)_,) such that 1(B) = B(IA,) and
1¥(B) = B(IA,) as crystals for Uy(C,). Then there exists a unique isomorphism -
B! — B as crystals for U(AZ)_,).
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Proof. Let Yy 1(B>") — 1(B) and v, : 17 (B*") — 1¥(B) be the isomorphisms of
crystals for U,(C,). Observe that "*(B) splits into a direct sum of mutually distinct
crystals with hlghest weight for U,(C,-,). Therefore, i, and ; must coincide on
highest-weight elements of U,(C,,), and hence for all elements of B"'. Thus we
obtain a unique 1somorphlsm y: B! — B as crystals for U (A%)_, ]

In Section 5 we proved that there exists a finite-dimensional irreducible represen-
tation V of Uq(A‘;f,,’ ,) with crystal base (L, B) such that 1§(B) = B(IA,) and 1§(B) =
B(IA,) as crystals for U,(C,). Hence by Theorem 6.7.2, there is a unique isomorphism
BY! =~ B as crystals for U,(A%)_,). Hence, we have completed the proof of Proposi-
tion 1.6.1. O

PROPOSITION 6.7.3.  The crystal B! ® B*! is connected.
Proof. Tt is similar to Proposition 6.3.10. O

Proof of Theorem 1.6.2 and Theorem 1.6.3. We first show that {c, &(b)) > [ for
all b e B Since ¢ = hy + hy + 2h, + -+ + 2h,_; + 2h,, we have from (6.7.1) and
(6.7.3)

(6.7.4) e, 8(b)) = x,(b) + X, (D) + 2 i (x:(b) + (x,(b) — Xi(b))+)-

Set So = {j € J'Ix,(b) = (B}, Sy = {j € '|x,(B) > X(B)}, and S, = {j € J'|x,(b) <
X;(b)}. Then (6.7.4) becomes

(6.7.5) (e, e(b)) = x,(b) + X,(b) + 2 Zs X{b)+2 Y x(b)+2 Z X;(b)

jesy jesS,

x(b) + X1 (b) + Z (¢;(b) + X;(b))

JjeSo

Z (5;(b) + X;(b)) + Z (x;(b) + X,(b))

jes, jes;
=;m@+;z@=L
Now let A = Y ", k;A; be a dominant integral weight of level /, i.e.,
(6.7.6) (A, ¢ =ky+ kg +2ky + -+ 2k, + 2k, = 1.

We will show that there exists a unique element b € B*' such that ¢(b) = k; for all
i =0,...,n For existence, we take b € B"! with

x1(b) = ko, X1 (b) = ky,
x(b) = Xi(b) = k; fori=2...,n

Then it is easy to see that g;(b) = k; fori=0,1,...,n
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For the uniqueness, let b’ be an element of B**! such that ¢(b’) = k; for all i = 0,
1,...,n Then <c, e(b")> = L. In (6.7.5), the equality holds if and only if S; = S, = ¢,
ie., x;(b) = x,(b") for all i = 2, ..., n. Hence we have
go(b') = x,(b') = ko,
&y (b") =X, (b") = ky,
Si(b,) = xi(b/) = f,(b/) - ki fOI‘ i= 2, R (8
which completes the proof of Theorem 1.6.3, and then by the arguments above,

Remark 1.6.4, and Proposition 6.7.3, we have completed the proof of Theorem 1.6.2.
O

PROPOSITION 6.7.4.  Let A and b be as in the proof of Theorem 1.6.2. Then we have
N = A+ af(wt(b)) = ki Ag + koAy + Y, kA,
i=2

and the minimal vector b’ for A’ is given by
x;0)=ky, X (0)=ko,
x; (b)) =%(")=k; fori=2,...,n.

Thus the ground-state path of weight A is the sequence (b', b, b', b, b', b, ...).

6.8. (BY, B(IA,) (n > 3)). First, note that the proof of Proposition 1.7.1 is
similar to that of Proposition 1.6.1.

We shall use the notations in 1.7. For i = 1, ..., n, the rule of drawing i-arrow on
B(IA ) is given in [KN7]. From that rule, it is easy to see that

gib) = Ti(b) + (xpp1(b) — Fpsy b))y fori=1,...,n—1,
68.1)  @b) = xi(b) + (Fiss () — X401 (b)), fori=1,...,n—1,
en(b) = 2%,(b) + xo(B),  @u(b) = 2%,(b) + Xo(b).
We define a bijection o: B(IA,) — B(IA,) by
xo(o(B) = x(b),  x1(c(B) =X,(b),  Xi(a(b)) = x,(b),

x;(a(b)) = x;(b), X;(a(b)) = Xi(b) fori=2,...,n.
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It is easy to see that 62 = idp,,,. Now we define the rule of O0-arrow by
(6.8.2) Jo®) = of 6 (b).
That is, b > b’ if and only if a(b) > o(b'). Note that

go(b) = x4 (b) + (x,(b) — X,(b))+,

¢o(b) = X1 (b) + (X5(b) — x5(b)). .

Let us denote by B! the crystal B(IA,) endowed with 0-arrows.

(6.8.3)

Proof of Proposition 1.7.1.  To prove the uniqueness of B!'!, we need the follow-
ing result.

PROPOSITION 6.8.1. Let J' = {2, ..., n} be the index set for the simple roots for
U,(B,-,) and define a map 1": J' — 1 by i'(j) = j for j € J'. Then "*(B'"!) splits into a
direct sum of mutually distinct crystals for Uy(B,,) with highest weight

(E1 =ty =)Ao + (t; — T1 — 12)Aq + 134,

where ty, t,, t, are nonnegative integers such that t, + t, +f, = L.
Proof. 1t is similar to Proposition 6.7.1. O
Now we prove the uniqueness of B,

THEOREM 6.8.2. Let B be a crystal for Uy(B{") such that 1§(B) = B(IA,) and
1¥(B) = B(IA,) as crystals for U,(B,). Then there exists a unique isomorphism
B! — B as crystals for U, (B{").

Proof. It is similar to Proposition 6.7.2 using Proposition 6.8.1 instead of
Proposition 6.7.1. O

In Section 5 we proved that there exists a finite-dimensional irreducible represen-
tation V of U (B{"’) with crystal base (L, B) such that 1¥(B) = B(IA,) and 1#(B) =
B(IA ) as crystals for U,(B,). Hence by Theorem 6.8.2, there is a unique isomorphism
BY! = B as crystals for U,(B{"). Now, we have completed the proof of Proposition
1.7.1. O

PROPOSITION 6.8.3. The crystal B*' ® B! is connected.
Proof. 1t is similar to Proposition 6.3.10. 0O

Proof of Theorem 1.7.2 and Theorem 1.7.3. We first show that {c, e(b)> = I for
all b e B! Since ¢ = hy + h; + 2h, + - + 2h,_, + h,, we have from (6.8.1) and
(6.8.3),

(6.8.4) e, e(b)) = x4(b) + X4 (b) + 2 Zz (Xi(b) + (xi(b) — Xi(b))+) + xo(b).
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Set So = {j € J'|x;(b) = X(b)}, S; = {j € J'|x;(b) > X;(b)}, and S, = {j € J'|x;(h) <
X;(b)}. Then by (6.8.4) we have

(6.8.5) (e, e(b)) = Xo(b) + x,(b) + X, (b) +2 Y, X;(b)

JjeSo

+2 ) x(b)+2 Y X(b)
jes,

jesS;

= Xo(b) + x1(b) + X, (0) + ), (x;(b) + %,(b)

JjeSo

+ 2 () +50) + 3 (x(0) + X))

jesS, jeSy
=xo(b) + Y, xi(b) + > Xi(b) =L
i=1 i=1
Now let A = Y % k;A; be a dominant integral weight of level ], i.c.,

(6.8.6) A€y =ko+ kg + 2y + -+ 2k, +k, = 1.

We will show that there exists a unique element b € B*! such that ¢,(b) = k; for all
i=0,...,n For existence, we take b € B!*! with

Xo(b) =0 if k, is even,
=1 if k, is odd,
x(b) = kqg, X.(b) =k,
xi(b) = X,(b) = k; fori=2,...,n—1,

x,0) =%, = 2 X0

The proof of the uniqueness is similar to the argument in the proof of Theorem
1.6.2. Hence, we have completed the proof of Theorem 1.7.3 and then that of
Theorem 1.7.2 by the arguments above, Remark 1.7.4, and Proposition 6.8.3. [

PROPOSITION 6.8.4.  Let A and b be as in the proof of Theorem 1.7.2. Then we have

A=A+ af(wt(b)) = kiAo + koA, + Y kA,
i=2
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and the minimal vector b’ for A’ is given by

x (b)) =ky, X (b)) =k,

x;(b) = x;(b') = k; Jori=2,...,n.

Thus the ground-state path of weight A is the sequence (b', b, b', b, b, b, . ..).

6.9. (DM, B(IA,) (n = 4)). First, note that the proof of Proposition 1.8.1 is
similar to that of Proposition 1.6.1.

We shall use the notations in 1.8. Fori = 1, ..., n, the rule of drawing the i-arrow
on B(IA,)is given in [KN]. From that rule, it is easy to see that

g;(b) = X;(b) + (x;31(b) — X;41(b))+ fori=1,...,n—2,

@i(b) = x;(b) + (X;41(b) — x;4,(B)  fori=1,...,n—2,
(6.9.1)

8-y (b) = Xoy () + %,(0),  @p1(b) = X, (b) + X,(b),
e(b) = X,—1 () + X,(b),  @,(b) = x,-1 (D) + x,(b).
We define a bijection o: B(IA,) - B(IA,) by

x1(o(b)) =x,(b),  Xi(a(b) = x,(b),

x;(a(b)) = x,(b), X (o) =%b) fori=2,...,n.
It is easy to see that 6> = idp,,,. Now we define the rule of the 0-arrow by
(6.9.2) fob) = af,a(b).
That is, b > b’ if and only if 6(b) > o(b'). Note that

&o(b) = x1(b) + (x,(b) — X,(b))+,

@o(b) = X1(b) + (X,(b) — x,(b)) .

(6.9.3)

Let us denote by B! the crystal B(IA,) endowed with O-arrows.

Proof of Proposition 1.8.1. For the uniqueness of B, we need the following
result.

PROPOSITION 6.9.1.  Let J' = {2, ..., n} be the index set for the simple roots for
U,(D,-,) and define amap 1': J' — I by 1'(j) = j for j € J'. Then 1"*(B"") splits into a
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direct sum of mutually distinct crystals for Uy(D,-,) with highest weight
(fy =ty — ) Ao + (t; — 1 — L)AL + A,

where t,, t,, I, are nonnegative integers such that t; + t, + t; = .
Proof. 1t is similar to Proposition 6.7.1. O
Now we have the uniqueness of B,

THEOREM 6.9.2. Let B be a crystal for U (D) such that 1§(B) = B(IA,) and
1¥(B) = B(IA,) as crystals for U/(D,). Then there exists a unique isomorphism
B! — B as crystals for Uy(DV).

Proof. Similar to Proposition 6.7.2 using Proposition 6.9.1 instead of Proposi-
tion 6.7.1. (m]

In Section 5 we proved that there exists a finite-dimensional irreducible represen-
tation ¥ of U,(D{") with crystal base (L, B) such that :3(B) = B(IA,) and 1§(B) =
B(IA,) as crystals for U,(D,). Hence by Theorem 6.9.2, there is a unique isomorphism
B! = B as crystals for U (D{"). Now we have completed the proof of Proposition
1.8.1. O

PROPOSITION 6.9.3.  The crystal B*"' ® B! is connected.
Proof. 1t is similar to Proposition 6.3.10. O

Proof of Theorem 1.8.2 and Theorem 1.8.3. We first show that <{c, &(b)) = [ for
allbe B Sincec = hg + hy + 2h, + -+ + 2h,_, + h,_, + h,, we have from (6.9.1)
and (6.9.3),

(6.9.4) <c,e(b)) = x;(b) + X;(b) + 2 il (x:i(b) + (xi(b) — Xi(D))+) + x,(b) + X,(b).
i=2

SetSo = {j=2,...,n— 1x;b) = %(B)}, Sy = {j = 2,.... n — 1|x,(b) > %,(b)}, and

S, ={j=2,....,n—1]x,(b) < X;(b)}. Then by (6.9.4) we have

695) () =x,(B) + X)) +2 Y, Kb)+2 Y x,(b)

jeSo jeSy

+2 Y Xi(b) + x,(b) + X,(b)

JjesS,

= x,(b) + X,(b) + Z (x,(b) + X;(b)) + Z (x;(b) + X;(b))

JjeSy es

+ Y (x;(b) + X;(b)) + x,(b) + X,(b)

JjeSz

=3 xib) + 3 xb) = L.
i=1 i=1
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Now let A = ) 7 k;A; be a dominant integral weight of level [, i.e.,
(6.9.6) Aoy =ke+k +2ky+ - +2k,_,+k,y+k,=1

We will show that there exists a unique element b € B!+! such that ¢,(b) = k; for all
i=0,..., n For existence, we take b € B*! with

x(b) = kg, X (b) =k,

x;(b) = X;(b) = k; fori=2...,n—2,
X,_1(b) = X,_,(b) = min(k,_,, k,,)

Xy(b) = (ky-y — Kn)+

Xu(b) = (ky — Ky—1)+ -

The proof of uniqueness is similar to the argument in the proof of Theorem 1.6.2.
Hence, we have completed the proof of Theorem 1.8.3 and then that of Theorem
1.8.2 by the arguments above, Remark 1.8.4, and Proposition 6.9.3. O

PROPOSITION 6.9.4.  Let A and b be as in the proof of Theorem 1.8.2. Then we have
n—2
A=A+ af(wt(b)) = kyAg + koAy + Y, kA + kAyy + kg A,
i=2

and the minimal vector b’ for A’ is given by
x.(b") =ky, X, (b)) =k,
x;(b") =Xx,(b") = k; fori=2,...,n—2,
Xp_1(b) = X,_{(b) = min(k,_,, k,)
%,(0) = (ky = ky—y)+ »
X, (b) = (ky—y — k) -

Thus the ground-state path of weight A is the sequence (b', b, b', b, b', b, ...).

6.10. (D{?,, B(O)® B(A,) ® - @ B(IA;) (n > 2)). We shall use the notation in
1.9. Fori=1,..., n, the rule of drawing the i-arrow on B is given in [KN]. From
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that rule, for be B and i=1, ..., n — 1, we observe that, if x;,;(b) = X4 (b),

x,(b) > 1, then
x(fi(b) = x,(b) — 1,
Xis1 (fib) = Xpsa (0) + 1,
x(fih)) = x;(b)  forj#i,i+1,
Z(fib) =%b) forj=1,...,n;

(6.10.1)

if X;41(b) = X140 (b), x;(b) = 0, then fi(b) = 0; and if x;,(b) < X;+,(b), then
Xi(fib) = X(b) + 1,
6102 fﬁxéw»=xﬁaw—1,
%(fi0)=x%0b) forj#ii+1,
X (b)) =xb)  forj=0,1,....n.
We also note that if x,(b) = 1, then
Xo(f(0)) = 0,
%,(f,(b) = %, (b) + 1,

%(fuh) =X b) fori=1,...,n—1,

(6.10.3)

xi(fi(h)) = x,(b)  fori=1,...,n;
if xo(b) = 0, x,(b) > 1, then

xo(fu0) = 1,

X fu(b)) = x,(b) — 1,

x(f,(b) = x;(b) fori=1,...,n—1,

(6.10.4)

(b)) =%b) fori=1,...,n;
and if x4(b) = 0, x,,(b) = 0, then f.(b) = 0.1t easily follows that, fori = 1,...
&;(b) = X;(b) + (x;41(b) — X;41(b))+»

@i(b) = xy(b) + (Xis1(b) — xi11(b))+,

(6.10.5)
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and

&x(b) = 2%,(b) + xo(b),
(6.10.6)
@a(b) = 2x,(b) + X0 (D).

We define a bijection o: B — B as follows. Let b = (b)i—, € B(jA,). Fori=1,...,
n — 1, we define

xi(0(B)) = (Xy-i4+1(b) — Xy—i41(D))+ + min(x,_;(b), X,—i(b)),
(6.10.7)

Xi(0(b)) = (Xyois1(b) = X,—i41(0))+ + min(x,—(b), X,—,(b)).
We also define
(6.10.8) Xo(a(h)) =0 if | — s(b) is even,

=1 ifl— s(b)is odd,

I— s
o) =0+ w0 - x .
(6.10.9)
o) =| 0+ - 500

where [x] denotes the greatest integer < x. Then it is straightforward to see that
0% = idg... Note that s(a(b)) = [ — t(b), where t(b) = xo(b) + 2 min(x,(b), X,(b)).
Now we define the rule of the 0-arrow by

(6.10.10) fob) = af,a(b).

That is, b S b if and only if a(h) > a(b'). Observe that if s(b) < I — 1 and x,(b) >
X,(b), then

X1 (fo0) = x,(b) + 1,

xi(fob) = x;(b)  fori=2,...,n,
(6.10.11)

X(fob)) =%(b) fori=1,...,n,

Xo(fo(b)) = xo(b);
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if s(b) = I, x,(b) = X,(b), then fo(b) = 0; and if x, (b) < X,(b), then
x(fo(b)) = x;(b)  fori=0,1,...,n,
(6.10.12) %, (foB) = X, (b) — 1,

S fob) =%Xb)  fori=2,...,n.
Thus we have

go(b) = 1 — s(b) + 2(x(b) — X;(b))+,
(6.10.13)
@o(b) =1 — s(b) + 2(X;(b) — x,(b))+-
Let us denote by B! the crystal B endowed with 0-arrows defined as above.

Proof of Proposition1.9.1. By (6.10.1)~(6.10.4) and (6.10.7)-(6.10.9), it is straight-
forward to check that b= b' if and only if 6(b)' = a(b’) fori=1,...,n— 1. It is
immediate from the definition that b > b’ if and only if ¢(b) > (b'). Therefore, we
obtain an isomorphism of crystals for U,(B,) induced by the map o:

1§(BY) = 1f(B"') = B(O)@® B(A,) @ @ B(IA,).
In particular, B™' is a crystal for U,(g ) of type Uy(B,). By (6.10.3), (6.10.4), and
(6.10.11)~(6.10.13), it is easy to check that f, f, = f, fo.

PROPOSITION 6.10.1.  Let J' = {1, ..., n — 1} be the index set for the simple roots
for U,(sl(n)) and define amap 1': J' - I by 1'(j) = j for j € J'. Then '*(B*Y) splits into
a direct sum of crystals for U,(sl(n)) with highest weight

_2t1A0 + tlAl + (fn - tn)An—l + 2(tn - fn)Ana

where t,, t,, I, are nonnegative integers such that t, < t,, t, +t,+ 1, <L

Proof. Let b be an element of B! with x;(b) = t;, X;(b) = f;, (i=1,...,n) and
xo(b) = to. Then b is a highest-weight element of /'*(B") ifand only iff, = 0,1, < 7,
andt; =1, =0fori=1,...,n— 1. In this case, the weight of b is

—2tlA0 + tlAl + (fn - tn)An-l + z(tn - EII)AII'

It is clear that ¢, + ¢, + £, < L O
Now we prove the uniqueness of B*".

THEOREM 6.10.2. Let B be a crystal for Uy(D3,) such that

15(B) = B(0) ® B(A,) ® - @ B(IAy)
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and
17(B) = B(0)® B(A,) @ @ B(IA,)

as crystals for U,(B,). Then there exists a unique isomorphism . BY' — B as crystals
Jor Uy(D2,).

Let ¥o: 13(BYY) — 1&(B) and y,: 1¥(B'"") — 1*(B) be the isomorphisms of crystals
for U,(B,). We wish to show that , and y, coincide on every element of B*%. We
first prove the following lemma.

LEMMA 6.10.3.  Let b = (b,)i-, be an element of B*' suchthatb, = 1 forallk = 1,
-+ J. Then ¥, (b) = Yo (b).

Proof. We use a downward induction on j. Ifj = [, it is obvious. Suppose j < I.
Since b is a highest-weight element of 1*(B*!) with highest weight —2jA, + jA,,
W,(b) is also a highest-weight element of /*(B) with the same highest weight.
Therefore, ,(b) = Y, (b') for some highest-weight element b’ of 1'*(B*') with highest
weight —2jA, + jA;. Thus by Proposition 6.10.1, b’ has the form x,(b") = j, x,(b’) =
X()=0fori=1,...,n—1, x,(b') =X%,b') =t, and x,(b') = t,, where [ is a
nonnegative integer, t, = 0 or 1, and j + 2t + t, < L

Note that b’ = f,7" - f7"b,, where by = (by, )i is an element of B such that
boo=1forallk=1,...,j+ 2t + to,. Then we have

(6.10.14) V() = o (b') = o (£, -+~ o)
= ST fET g (be) = £ fE T o)
= T o (F T b),
Suppose that 2t + t, > 0. Observe that
fo TR (b) =y, (fo ) £ 0.
On the other hand,
i) = i 3 )
e R TS

— fnzﬂ-zo .. 'f”-22t+t0wn(ﬁ)l~j—(2:+r0)+1f-12:+t0b0)
=0,

which is a contradiction. Therefore 2t + t, = 0, and hence & = b. O
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Proof of Theorem 6.10.2. Let b be a highest element of 2’ (B**"). Then by Proposi-
tion 6.10.1,X,(b) = 0, x;(b) = X;(b) = Ofori = 2,...,n — 1. Set x,(b) = t{, x,(b) = t,,
X,(b) = t,, and x,(b) = t,. It is clear that ¢, + ¢, + t, + £, < land
wt(b) = =2t Ag + t1 Ay + (€, — t) Ay + 2(2, — LA,
By the same argument of Lemma 6.10.3, ¥,(b) = ¥/, (b') for some highest-weight
element b’ of //*(B!'") with the same highest weight. Set x;(b’) = s, x,(b') = s,,
X,(b') = §,, and xo(b') = s5. Then s, =¢; and 5, — s, =, — 1.

Note that b’ = f;?5 o fsntso*n ... fontsoSp where by = (bo, )i is an element
of B! with by, = 1 for all k =1,..., s(b'). Therefore we have

(6.10.15) Yu(b) = Yo (b')
= Yo fEmToo fny s o o fn oo Tonp )
_f25n+sofs,,+so+s" . s"+s°+s"l/lo(b0)
=fn2§,,+so ";'s:;t-so—f-E,, "'J;f"+s°+§"‘/’pz(bo)
_ n2s,,+sofs,,+so+s,, .. fs,,+s0+s,,|//n(f +so+§”b0)‘
Ifs, + s¢ + 5, > t, + to + £,, we have
f~01o(s,+sn+so+§,1)+1'/jn(b) l//,,(fl (s1+s,,+so+§,,)+1b) £0.
On the other hand,

(6 10 16)fl (s;+sn+s0+sn)+ll// (b,)

__ Fl=(sy+s,+sp+8,)F1 F28,+80 FsptsotE, | Fsptsgts, 7Fsptso+s,
- fO " " n " n:l " f2" nl//n(fln nbO)

28, +50 FSutso+S, . FSntSotS, Fl—(s1+s,+s0+5,)+1 s, +so+s,
—Jn " n—"~1 " fz" nfO e " tpn(fln ubO)

— f2s,,+s0fsn+so+s,, . fs"+so+sn¢n(fl (sl+sn+so+sn)+1f1sn+s0+§nbo)
— 0’

which is a contradiction.
Ifs, + 5o + 5, <t, + to + I,, we have

Fl—(ty +,+to+i,)+1 XL—(ty e, +tgtin)+1
Jrtrat ot ity ) =y, (LGt _ g
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But, since f§ f1by = f{fobo for 0 < s <1 — s(by), 0 < t < s(by),

(6 10 17) fl (ty+1, +t0+t,,)+ll// (b')

— f25,,+sofs,,+so+s,, . fsn+so+s,,l//n(fl (tl+t,,+t0+t,,)+1fls,,+so+§,,b0)

25,,+scfs,,+so+s" . 'En+30+§nl// (fls,,+so+§nbn)
n 3

where b” = (b))irst)s®)*1 i a highest-weight element of '*(B"!) such that b} =
for all k. Hence (6.10.17) is the same as

(6.10.18)
f23n+s0fs,l+s(,+s,, .. 'ﬁsn+30+§"‘//n(b”) — ‘;25,,+so ";s::—so-hin . 'f;sn+so+§"wo(b”)

- l//O(f;IZS,,-FsOfs"-'}-soﬁ-sn .. .f'"’ls,,+so+§,,bu) # O,

which also gives a contradiction.

Therefore, we must have s, + sq + 5, =, + t, + £,, which implies b = b'. Thus
W, and y, coincide with each other on every highest-weight element of :’*(B**!), and
hence on every element of B*!, which completes the proof. m]

In Section 5 we proved that there exists a finite-dimensional representation V of
U,(D{3,) with crystal base (L, B) such that

15(B) = B(0)® B(A,) @ - @ B(IA,)
and

1¥(B) = B(0O)® B(A,)® - @ B(IA))

as crystals for U,(B,). Therefore by Theorem 6.10.2, there is a unique isomorphism
B! = Bas crystals for U (D{Z;). Now, we have completed the proof of Proposition
19.1. o

PROPOSITION 6.10.4.  The crystal BY"' ® B! is connected.

Proof. Since each element is connected to a highest-weight element of
1F(BY @ BYY, it suffices to prove that all the highest-weight elements of
1¥(B"! ® B') are connected to each other. Let b, be the element of B! given by

xolbe) =0,  xy(bo) =1,  X(by) =0
xi(bo) = k_i(bo) =0 fori=2,...,n

We will show that all the highest-weight elements of 1¥(B'' ® B!'!) are connected
to by ® by-
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By (2.2.17) in [KMN?], the highest-weight elements of 1 (B"! ® B"') are of the
form b, ® b,, where b, and b, satisfy

Xx(by) =] forsomej=0,1,...,1,

Xo(by) =0, X,(b))=0,

x{b;) =X(by)=0 fori=2,...,n,

Xo(by) =0, X,(b) =0,

x;(by) = X;(b,) =0 fori=3,...,n.
Let x,(b;) = t,, x,(b,) = t,, and X,(b,) = t;. Then we have

_ Fitsb) 2l Fjrty ey | Fitty iy F2(jtey ) Fiteg i
bO ® bO = Jo 1 f;1~1 f;z n—1

"'fg+tl+t2f1j+ll+t2(b1 ® bz),

which completes the proof. O

Proof of Theorem 1.9.2 and Theorem 1.9.3. We first show that {c, &(b)) > I for
all b e B! Since ¢ = hy + 2h; + -+ + 2h,_; + h,, we have from (6.10.5), (6.10.6),
and (6.10.13),

(6.10.19)¢c, e(h)> = I — s(b) + 2(x,(b) — X,(b))+
+2 ;1 (Xi(b) + (xi41(b) — X;41(b))+) + 2X,(D) + x4(D).

Set So = {j € J|x;(b) = X;(b)}, S; = {jeJlxb) > X;(b)}, and §, = {jeJlx;b) <
X;(b)}. Then (6.10.19) becomes

(6.1020) {c,e(b)y =1—sb)+2 ) X(b)+2 ), xb)

JjeSg S,

+2 ) X(b) + xo(b)

Jjess

=1—sb)+ Y (xb) + X;(b) + Z (x;(b) + X;(b))

jeSo eS;

+ Y (x;(b) + X;(b)) + xo(b)

jeS;

=1—s(b) + s(b) = 1.
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Now let A = Y 7_, k;A,; be a dominant integral weight of level /, i.e.,
(6.10.21) A, ey =kq+2k,+ - +2k,_, +k,=1.

We will show that there exists a unique element b € B!'! such that g,(b) = k; for all
i=0,...,n For existence, we take b € B! with

xo(b) =0 if k, is even,
=1 if k, is odd,
(6.10.22)
x,(b) = X;(b) = k; fori=1,...,n—1,

kn - xO(b)

x,(b) = X,(b) =
Then it is easy to see that

g;(b) = X,(b) = k; fori=1,...,n—1,

e,(b) = 2X,(b) + xo(b) = k, .

Moreover, we see from (6.10.21) and (6.10.22) that

6o(b) =1 — s(b) = 1 - (z xi(b) + Y %i(b) + xo(b))

— - <z T ki + ky — xob) + xo(b)> . (2 S kit k,,)

= ko .

For uniqueness, let b’ be an element of B! such that g(b') = k; for all i = 0, 1,
..., n. Then {c, &(b’)> = L. In (6.10.20), the equality holds if and only if S, = S, = ¢,
ie, x;(b')=Xx,(b')foralli=1,..., n. Hence

gob')=1—s(b")=ko,
ab) = x,0) =) =k  fori=1,...,n—1,

g, (b)) = 2x,(b') + xo(b') = 2%,(b) + xo(b') = k, .
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Thus we have
x(b') = X,(b") =k; fori=1,...,n—1,

%) = 51 = 2200,

which implies

Xo(0') =0 if k, is even,
=1 if k, is odd.

Hence b = b’. Now we have completed the proof of Theorem 1.9.3 and then that of
Theorem 1.9.2 by the arguments above, Remark 1.9.4 and Proposition 6.104. O

PrOPOSITION 6.10.5.  Let A and b be as in the proof of Theorem 1.9.2. Then we have
A+ af(wt(b)) = A.

Thus the ground-state of weight A is the sequence (b, b, b, b, ...).

6.11. (A%), BO)® B(A,)® - ® B(IA,) (n = 2)). First, note that the proof of
Proposition 1.10.1 is similar to that of Proposition 1.9.1.

We shall use the notations in 1.10. Fori = 1,..., n, the rule of drawing the i-arrow
on B is given in [KNT]. From that rule, for i = 1, ..., n — 1, we observe that

&:(b) = Xi(b) + (x;41(b) — X141 (D)),

(6.11.1)

@;(b) = x;(b) + (X;41(b) — Xi11(D))+
and
(6.11.2) &, (b) = X,(b),  @,(b) = x,(b).

Let B' = B((l — 2[I/2])A,) ® --- ® B((l — 2)A,) @ B(IA,) be the direct sum of
crystals with highest weight for U,(B,). Set K’ = {1,...,n,0,7,..., 1} and consider
the ordering on K’ given by

<2< <n<0<i<--<2<].

Then the elements of B’ are labeled by b’ = (b;)]-,, where b, € K', b, < b;,, for
all k, and 0 <j <. Here we write b’ = ¢ when j = 0. Let xo(b') = # {k|b; = 0},
x;(b') = #{klb, =i}, X(b')= #{klb, =1} and let s(b’)=) x,(b')+ xo(b') +
Y x,(b'). Note that xo(b') = 0 or 1. Fori = 1, ..., n, the rule of drawing the i-arrow
is given in [KNT.
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We define a bijection o: B — B’ as follows. Let b = (bi-1 € B(jA,). For i =1,
..., h— 1, we define

xi(0(0) = (Xy-i+1(b) — X141 (b)) 4 + min(x,_;(b), X, (b)),
(6.11.3)

Xi(o (b)) = (xpir1(b) — Xyi41 (D)4 + min(x,_;(b), X,—:(b)).
We also define
(6.11.4) Xo(o(b)) =0 if I — s(b) is even,

=1 if | — s(b) is odd,

o) =5 |+ - xion.,
(6.11.5)
o) =5 |+ i - 5,00

Note that s(o(b)) = I — ¢(b), where ¢(b) = 2 min(x,(b), X,(b)). Hence a(b) € B'.
We define a map 1: B’ — B in the same principle. More precisely, fori =1, ...,
n — 1, we define

xi(t(0) = (Xyzix1(b) = Xpeir1 (b')4 + min(x,_;(b'), X,_,(b")),

(6.11.6)
ST)) = (oporaa V) = Fyoioa () + min(e,(b'), %yi(5),
and
%, (a(b) = [’ =50 ')} @) — 5 (b))
6.11.7)
me0 =[5 |+ ) - 5,00,

It is straightforward to see that 16 = idz and o1 = idy..
Now we define the rule of the O-arrow by

(6.11.8) folb) = tf,0(b).
That is, b % b ifand only if a(b) = o(b'). Then we have
go(b) =1 — s(b) + 2(x,(b) — X1(b))+,

(6.11.9)
Po(b) = I — s(b) + 2(X,(b) — x,(b))+-
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Now let us denote by B! the crystal B endowed with 0-arrows defined as above.

PROPOSITION 6.11.1.  Let J' = {1, ..., n — 1} be the index set for the simple roots
for U,(sl(n)) and define amap 1= J' — 1 by I'(j) = j for j € J'. Then ™ (B"") splits into
a direct sum of crystals for U, (sl(n)) with highest weight

_ZtlAO + tlAl + (fn - tn)An—l + (tn - En)Ana

where t,, t,, I, are nonnegative integers such that t, < f,, ¢, +t, + f, <l
Proof. 1t is similar to Proposition 6.10.1. O
Proof of Proposition 1.10.1.  Now we have the uniqueness of B’

THEOREM 6.11.2.  Let B be a crystal for U(AY)) such that
1§(B) = B(0)® B(A,) @ @ B(IA,)
as crystals for U,(C,) and

[

H(B) = B((l _ zH)Al)@--@ B(( — 2)A,) ® B(A,)

as crystals for Uy(B,). Then there exists a unique isomorphism : B“' — B as crystals
Jor U (AS)).
Proof. 1t is similar to Theorem 6.10.2. O
In Section 5 we proved that there exists a finite-dimensional representation ¥ of
U,(4%)) with crystal base (L, B) such that
1§(B) = B(O) @ B(A,) @ @ B(lA,)

as crystals for U,(C,) and

1y (B) = B<<l - 2BDA1> @ @ B((—-2)A,) @ B(A,)

as crystals for U,(B,). Therefore by Theorem 6.11.2, there is a unique isomorphism
BY!' = Bas crystals for U,(A%)). Now we have completed the proof of Proposition
1.10.1. (]

PROPOSITION 6.11.3.  The crystal B*"' ® B! is connected.
Proof. 1t is similar to Proposition 6.10.4. O

Proof of Theorem 1.10.2 and Theorem 1.10.3. We first show that {c, (b)) = !
for all be BV Since ¢ = hy + 2h; + -+ + 2h,_; + 2h,, we have from (6.11.1),
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(6.11.2), and (6.11.9),

6.11.10) (e, s(b)> = [ — s(b) + 2(x,(b) — %, (D))
£2F ) + (e ) — T B))s) + 25,0,
i=1

Set Sy = {jeJIx;(b) =X;(b)}, S; = {jeJ|x;(b) > X;(b)}, and S, = {je J|x;(b) <
X;(b)}. Then by (6.11.10) we have

61L11) (e o) =1—sB)+2 ¥ KB +2 Y x0)+2 Y %)

€Sy jeSs

=1—sb)+ Y, (x(b) + x(b))

JjeSo

+ 2 (50 + X)) + 3, (x50) + X(b)

j€s, i€,
=] —s(b) + s(b) = 1.
Now let A = Y %, k;A; be a dominant integral weight of level |, i.e,,
(6.11.12) Ae)=ky+2ky+-+2k,_; + 2k, =1

We will show that there exists a unique element b € B**! such that ¢;(b) = k; for all
i=0,..., n For existence, we take b € B*! with

(6.11.13) x;(b) = X(b) = k; fori=1,...,n.
Then it is easy to see that
g(b) = Xx;(b) = k; fori=1,...,n.

Moreover, we see from (6.11.12) and (6.11.13) that

solb) = 1 — s(b) = | - <z xiB) + ), fci(b))

The proof of uniqueness is similar to the argument in the proof of Theorem 1.9.2.
Hence, we have completed the proof of Theorem 1.10.3 and then that of Theorem
1.10.2 by the arguments above, Remark 1.10.4, and Proposition 6.11.3. O
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PROPOSITION 6.11.4. Let A and b be as in the proof of Theorem 1.10.2. Then we
have

A + af(wt(b)) = A.

Thus the ground-state path of weight A is the sequence (b, b, b, b, ...).
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