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80. Intrecduction

0.0 By the celebrated work of Beilinson-Bernstein of the vanishing
theorem on the D-modules over flag varieties ([BB]}, we can study
representations of Lie group through the geometry of flag varieties.
In this lecture, we review this and add what happens when the

infinitesimal characters are not regular.

0.1 Let G be a reductive group and X its flag variety. Let g
be the Lie algebra of G, t the Cartan algebra and A the root
system. For xet*, let Xy be the corresponding character of the
center Z(g) of the universal enveloping algebra Ul(g). We
nermalize this so that X3 = X for w in the Weyl group W,
For X€&t*, set U, (g) = U(g)/U(g)Rer x,.
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M. KASHIWARA

Then we can construct a twisted ring of differential operators

D, on X such that T(X;D,) = u,(g). Beilinson-Bernstein's

A
achievements are summarized by the following three theorems (The last

one is an easy consequence of the first two)

Theorem A If A is regular and anti-dominant, any ccherent Qkumodule

is generated by global sections.

Theorem B If X is anti-dominant, then any coherent Ql-module
M satisfies Hn(x;g) =0 for n # 0

Theorem 0 Xf A is anti-dominant and regular, the category of

finitely generated Ul(g)—modules are eguivalent to the category of

coherent D,-modules.

A

In [BK], Brylinski and Kashiwara proved these thecorems in a
very special case (XA trivial, M is U-equivariant} in an ad-hoc

manner, in order to prove the Kazhdan-Lustzig conjecture.

0.2 Let GR R
subgroup of Gp and let G and K be their complexification.

be a real semisimple group, K a maximal compact
Let g and k be their Lie algebras. Then by Harish-Chandrxa [H],
admissible representaion of Gp is described by (g,K)-modules, so
called Harish-Chandra module.

By Theorem 0, {g,K)-module with infinitesimal character X3
is described by K-equivariant Ek—module.

The structure of irreducible K-equivariant Qk—module M can
be described by using the geometry of K-orbits. The crucial point
here is that X has only finite many K-orbits. First the support
of M is a closure of a K-orbit S. Assume, for the sake of
simplicity, Xy is the trivial infinitesimal character. Then, M
determines a K-equivariant local system F on &, and M is
completely described by the pair (S,F). If Xy, is not trivial, we
have to replace F with a twisted local system. When ) is not
regular, we have to put some auxiliary condition on F(see §9).

0.3 Except the irregular case, the contents of this article are

more or less known. In the appendix of the paper by Hecht, Milicic,
Schmid and Wolf [HMSW], we can find also the review of the result
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REPRESENTATION THEOQORY AND D-MODULES ON FLAG VARIETIES

of Beilinson-Bernstein. Also see Ginsburg [G].

0.4 We did not include the following important topics concerning
D-modules on the flag variety.

(1) The derived category of Ql—modules are equivalent to that of
wa—modules for any weW and Aiet*. This is obtained by
Beilinson-Bernstein {([BB]12).

(2) There is a one-to-one correspondence between K-orbits of X
and GR—orbits of X by Matsuki [M}. This gives the construction
of representations of GR corresponding to Harish-Chandra
modules by W. Schmid - J. Wolf., See [SW], [X].

(3) Relations with representation of the Weyl group, the affine
Weyl group and their Hecke algebras, Hodge modules, invariant
eigendistributions on the group.
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§]l Vanishing theorem for cohomology groups of modules over Qxfrings.

1.1 Let (X,gx) be a commutative ringed space over a commutative
ring k. A (k,gx)—gigg is a sheaf of rings A with a ring homo-
morphism QX + A such that the image of k » QX
in the center cf A. We do not assume that the image of QX +~ A is

+~ A 1s contained

contained in the center of A.
If there is no afraid of confusion, we simply call Qx—ring for
a (k,gx)wring. We shall study in this section the criterian for

the vanishing of cohomology groups of modules over Qx—rings.

1.2 Let us recall Serre's result on ample invertible sheaves.
Let k be a commutative field and let (X’QX) be a projective

variety over k.

Definition-Theorem 1.2.1 Let L Dbe an invertible O -module. Then

the following conditions are equivalent.

{1} There exists an integer r > 0 and a closed embedding

ar

j:x & B such that 1°%= J*0, (1) .

(2) For any pair of distinct closed points =x,y of X, there exists
r >0 and s er{x;IL®%) such that s(x)=0 and s(y)#0.

(3) For any coherent sheaf F, F@L®r is generated by global

sections for r > 0 {(i.e. ITX;F@LSI) ® gx -+ F@Lar is surjective),

8Ty = 0 for 0

(4) For any coherent gxwmodule P, Hj(X;F@L

and r > 0,

If these eguivalent conditions are satisfied, we say that L

is ample.

Here, for s e€T(X;L) and xeX, s(x) is the image of s in
(9x,x/ﬂx) ® L, with the maximal ideal m_ of QX'X.
—'pr

1.3 Let (X,gx) be a projective scheme over k and L an ample
invertible Qx-module. Let A Dbe an Qx—ring. Throughout this
section, we assume
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REPRESENTATION THEORY AND D-MODULES ON FLAG VARIETIES

{1.3.1) A 1is guasi-coherent as a left gx-module.

Theorem 1,3.1 Under the condition (1.3.1), the following conditions

are eguivalent.

(1) For any left A-module M, guasi-coherent over QX' M is

generated by global sections (i.e. A @ p(X;M) =M is surjective),.

(2) For n»0, A8 L8 -n) is generated by global sections.

O

=X
Proof, (1) = (2) triwvial.
(2} = (1) M is a union of coherent sub—gx—modules F. For such an
F, there exists a surjective morphism QXN > F @ L®n for nass 0.
Hence (& @ LG_n)N +A ® F is surjective. Since A @ A P

QX 9X N Qx
generated by global section, there exists A ——» A ® F. Hence the
O

=X
image of A ® I'(X;M) + M contains F. This shows (2) = (1).

1.4 Let (X,QX), L and A be as in the preceding sections.

Theorem 1.4.1 Under the condition (1.3.1), the following conditions
are equivalent.

(1) For any left A-module M, guasi-coherent over QX’ H (X:M} = 0
for n#0.

(2) For r » 0,

rx:a 8 1275 e ;¥ - rexia)
o &
—X
is surjective.
(3) For r »0,
a (L®r

o rx;t?)x) 8 a
X Oy

has a cosection (i.e. a left inverse) as right A-modules.

{4) For r =0,
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ae (1®
9.

“Te r(x;1%%)) + a
% k

Remark For =« z O, OX @ P(X;Ler) + L@r gives Oy + L®r®?(X;L®r)*
Remars =Xy o

and 2T . QXGP{X;LQr)*. The morphisms in (3) and (4) come from
them. ’

Proof (3) & (4) follows by the operation of the functor HomA(*,é).
(2) & (4) obvious. -

{1) = (2) follows from the exact seguence

0+u->a6 O Terx;1®%)) » A+ 0 and H (M) = 0

(3) = (1.
We have
(1.4.1) a (x;M) = limg H (X;F)

where F ranges over coherent subugxumodules of M. For such an F,
we shall show that H'(X;F) + Hn(X;g) is the zero map for n#0.

We have H"(x;Fer¥®T)
set Vv = I(x;L%%

= 0 for n#0, r > 0.

}. By letting ®A M operate on A -+ (L®r®V*) @ A,

a k 9X
M -+(L®r®V*) ® M has a cosection by (3}.

kK Oy

Now, letting Hn(x;*) operate on a commutative diagram

+ L @V @ F

we obtain a commutative diagram
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REPRESENTATION THEORY AND D-MODULES ON FIAG VARIETIES

Y (2:F) — B0 x:L9T @ vt 8 F)

RO

B (X;M) —— HH(LT 6 Vr o ).

Since Hn(X;L®r ® V¥ @ F) = 0 for n#0, beoa = 0, Since b has a
cosection a = 0. By (1.4.1), we have HD(X;E) = Q. 0.E.D.

1.5 Let (X;QX), L and A be as in §1.3, Set R = T(X;3).

Let Modqc(é) be the categoxry of left A-modules guasi-coherent over
QX and Mod(R} the category of left R-modules. We define the
functors

F: Modqc(é)-+ Mod (R)
and

®: Mod(R) - Modqc(é)
by
T: M w» I'(X;M), 8: Nw» 2_3&_®RN.

Then ® and T are adjoint functors; i.e.

Hom (N, T(M)}

HE

Hom (® (N) ,M).

Proposition 1.5.1 (a) If the equivalent conditions of Theorem 1.4.1
are satisfied, then T is an exact functor and To® = id.

{b) If the equivalent conditions of Theorem 1.3.1 and those of
Theorem 1l.,4.1 are satisfied, then To® =z id, QoI = id.

Proof (a} The first assertion is obvious. Let 0 « M <« R(I) “ R{J)
be a free resclution. Then we have 0 « AQM « é(I) “ g(J).

Since T(X;*)}) 1is an exact functor, the rows of the following diagram

0 « rxzaem) « rxa )« poxalT)

t f 1

(1) @

0 M A ——e

are exact, Hence M ¥ P(X;A8M}.
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{(b) The proof is similar as that of (a). For M € Ob Modqc(é),
there exist an exact segquence
(1) (T}

0« M« A «at,

This gives the exact seguence

0 « rxsm « R o ROV
Operating ©, we have
0 « nerom « 2™ «ald,

Hence A ® T(X;M) » M is an isomorphism.

Proposition 1.5.2 Assume the equivalent conditions of Theorem 1.4.1

Let E be the full subcategory of Mo&qc(é) consisting of M such

that M is generated by global sections and M has no non-zero
subobject N such that T (X;N) = 0. Then I: E + Mod(R}) 4is an

equivalence of categories.

Proof We shall show first T is fully faithful. For two objects
ﬁl and M of E, ®: Hom(%l,gz)—*Hom(r(ﬁl},F(gz)) is injective

-2
because gl is generated by glcbhal sections. Let £: T(El) - P(Mz)
be a homomorphism. Since the kernel N of g@Rr(gl} > ¥1 satisfies
T{N) = 0, the composition of N =+ QQRP(EI) -+ EQRF(ﬂz) > M, is zero,

and hence, this gives a homomorphism g: gl -~ M,. It is evident
that ®(g) = £.

Let us show T: E » Modqc(R) is essentially surjective, For
an R-module N, Let I be the set of subcbjects M of é@RN such
that T({(X;M) = 0. Then I is inductively ordered and the sum of
any two subcbjects in I belongs again to I. Hence I has the
largest element %0' Then M = (é@RN)/go is an object of E and
satisfies T (M) = N.

Corollary 1.5.3 Assume the equivalent conditions of Theorem 1.4.1.

The set of isomorphic classes of the simple R-modules is isomorphic

to the set of the isomorphic classes of the simple objects M in
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REPRESENTATION THEQRY AND D-MODULES ON FLAG VARIETIES

§2 Twisted ring of differential operators

2.0 Let X be a complex manifold. Let D, be the ring of differ-

X
ential operators on X. We shall call twisted ring of differential
operators an Qx—ring locally isomorphic to D If L is an

'
invertible memo&ule, L@O EX®O Lg-l gives such an example.

b’ Qi ¢
In this section, we shall study the properties of such QX-

rings.

2.1 Let (X’QX) be either a smooth algebraic variety over a field
k of characteristic 0 or a complex manifold. The following
discussions are almost same in the both cases. We shall recall
the properties of the sheaf Dy of differential operators. Let Oy
be the sheaf of tangent wvector fields. Let Fk(QX) be the sheaf of
differential operators of order at most k., Then this gives an

increasing filtration called the order filtration of D, that satisfy

X

the following properties.

|
o

(2.1.1) F (D) for m<0

(2.1.2)  F, (D) =0

%-

(2.1.3)  F_(Dy) = {PEDy; [P,O,J€F . (D)} for m20.
(2.1.4) Dy =UF_ (D)

(2.1.5) 2 D) Fp (DICF Ly (D)

(2.1.6) (7, (D), T, (D) 1€ Py i - (B

o _ ~

(2.1.7)  gry(Dy) = Fy(Dy) /Fo(Dy) 3 0

(2.1.8)  s(0,) % gr'D, = @grfD, = @F (D) /F . (D.}
X =54 -X m =X m~]1 =X

where S(Ox) is the symmetric algebra of @x over OX' and the
arrow in (2.1.8) is given via {(2.1.7).
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2.2 Let oq: Fk(DX} + S (By)  be the homomorphism given by S(8g)=
F - .

gr D,. Then for a¢ Sp(OX) and b€ Sq(ex) taking PEFP(QX) and

QEFq(Qx}, we define

{a,b} = UP“'q“l (1p,Q1).

This does not depend on the choice of P,Q. We extend this by the
linearity:

{7 }: 5(04)88(0y) + $(0,).

This is called Poisson bracket., This satisfies the following

well-known properties:

(2.2.1) {a,b} = -{b,a}

(2.2.2) {ab,c} = bia,cHalb,cl

(2.2.3) {{a,b},c}+{{b,c},a}+{{c,a}l,b} = 0.

(2.2.4) If VEDy and a€0y, then {v,al=via).

The following properties are easily checked.

Lemma 2.2,1 (2.2.1), (2.2.2) and (2.2.4) characterises {, }.

Lemma 2.2.2 Let xiEQX {i=l,+++,n=dim X) be sections such that
dxi are linearly independent. Then for mzl, and aiesm—l(ex)

with {ai,xj} = {aj,xi}, there exists unique wu€S (Oy) such that

{a,xi}=ai.

Proof Let {vi} be the dual base of {dxi}. Then S(@X)=

O,[v,,es+,v.] and {f,x.} = ﬁﬁm_ This shows immediately this lemma.
X1 n J ij
2.3 We shall study gx-rings with the similar properties as Dy. Let

A be an quring with increasing filtration F(A) satisfying

(2.3.1) A =UF_(&)
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{2.3.2) 0y 3F,(A)

(2.3.3) Fm(§)=0 for m<0

(2.3.4) F_ (a)+F_ (A)CF (a)
ml— mz— ml+m2

(A).

(2.3.5) (F_ (), ¥ (@Q)]ICF (A
my = ! Tm, m, +m,-1
Then ng{§)=$(Fm(§)/Fm_l{§)) has the structure of commutative

ring. Moreover E*,*]:Fm (R)OF (A} - F (A) gives the

v 2 ml+m2—l
bracket { , } on gxr (a).
Associating to PeFl(g), the derivation
Oy2a ~ [P,a]EFO(é) = Oy
. F
we obtain gry(A) + 0y

Assume further
(2.3.86) gri(é) > By is an isomorphism.

This gives a ring homomorphism S(@X) - ng(g). This preserves the
bracket { , }.

Lemma 2.3.1 Under the conditions (2.3.1)-(2.3.6), S(0,) » gr' (a)

is injective.

Proof We shall prove that, for mz2 the injectivity of ¢m~l=
F . . .. . s F
S {8y) ~ gr, _; (&) implies the injectivity of Wm; S, {0y) + grp(A).
Assume uESm(GX) satisfies %h(u)=0. Then for any a€0,,
?h_l({u,a}) = {# {(w,a} = 0, and hence {u,a}=0. Then Lemma 2.2.2

implies u=0,

Proposition 2,3.2 Under the conditions (2.3.1)~{(2.3.6), the follow-

ing conditions are equivalent

(2.3.7) S(@X) - ng(g) is an isomorphism.

(2.3.8) F (A) = FL(A)F (&) for m2l.
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(2.3.9) Fm(§)={PE§; [P’a]EFm—l(é) for any aegx} for mp0,

{2.3,10) The condition (2.3.9) holds for any mzl.

Proof
(2.3.7) & (2.3.8) clear by the preceding lemma.

(2.3.7) == (2.3.9) It is enough to show
- . =0,
Fm(é)—{PEFm+1(§), [P,a]EFm_l(éj for any aegx} for mz0
This follows from

{ues (@Xn {u,gx}=0}=0 for mz0.

m+1
(2.3.10) == (2.3.7) Assuming that Sj(OX) > grg(ax) is an
isomorphism for j<m, we shall show the surjectivity of Sm(ax) +
gri(A). For Jj<m, let cj: Fj(A) + Sj(ex) be the composition

& " ) &
Fj(é) > grj(é) = Sj(ex). Let }vcl,---,xneégX be such that dxl,---,
m=1 ([Brx510.
Since [[P,xi],xj]z[[ij],xi}, {ui,xj}={uj,xi}. Hence there exists
uESm(OX) such that {u,xi}=ui. Let QEFm(é) be an element that
gives the image of u by Sm(ex) -+ gri(é). Replacing P with P-Q,

dxn forms a base of QX. For PEFm(é), set u; =g

we may assume that [P’xiJEFm~2(é) for any i. Since y: a » [P,al]
is a derivation from O, to gri_l(ﬁ) and (x;)=0, we have y=0.
Hence, we have [P,0yl€F  ,(A). This shows PEF,_,(A).

Q.E.D.

Definition 2.3.3 An Oy—ring A 1is called twisted ring of differ-

ential operators if it admits a filtration F(A) satisfying (2.3.1)-
{2.3.6) and the eguivalent conditions (2,.3.7)-(2.3.9).

Remark that if A is a twisted ring of differential operators,
then the filtration F{A) is uniquely determined by (2.3.3) and
(2.3.9). We call Fr(A) the order filtration of A.

2.4 Let A be a twisted ring of differential operators. Let Fl(g)*

be HomEX(Fl(g),gx) with the left Qx—module structure of Fl(é).
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Then, similarly to the de Rham complex, we can define a complex:

a a ? a 2
o, $r i Ar, @ AT @)% e,

P p+l
Here @: AFl(é)*-mwaA F(B}* is defined by

(@£) (Bghe + AP)=] (=1) Ty (By) (£ (RAs ARy APy A *APL))

i+
+ 7 (-1) Jf([pi,pj];\pof\---npi_l/\pi+l/\ APs AP qAs = sAB) .

i<i p

The exact sequence 0 + Oy » F;(A) » 6, > 0 gives 0 > ﬂi T F (A)* >

R4
gx + 0 and we obtain a short exact seguence of complexes.

0 0 0
a .1 Y . 03
0 — QX > QX 3 QX X >
+ +
(2.4.1) + a ¥ a 2 3
Ouuagxm-—)Fl(é}*——-sf\Fl(é)*—————i/\Fl(I-_‘&)*—"-—?-"
+ + +l *2
d LY 38 & &
0 > Oy > Oy r Sy
¥ ¥ ¥
0 0 0

Assume that there exists iEFl(é)* that is mapped to 1 by2 Fl(g)*
QX (such an 1 exists locally). Then n=di belongs to QX and
satisfies dn=0. Remark that 1n c¢orresponds to curvature form.

Take another section 1i' of Fl(é)* satisfying the same
property as 1 and set npn'=di'. Then £&=i'-i 4is a l-form and
n'=n+df.

2.5 Conversely let n be a c¢losed 2-form. Let us define an Qx—ring

én the Qx—algebra generated by Oy with the fundamental relation

(2.5.1) i: 0y éﬂ is left Q,-linear,

5.4
(2.5.2) [j{vl),j(v2)1=j([vl,vz])“<n,lev2> for vl,vzeex.
{(2.5.3) [j{v),al=v{a} for VE@X, a&gx.
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Then we can check easily that én is a twisted ring of differential
operators.

If A, i and 1y are as in §2.4, then A=zAy.

If  1is a closed 2-form and ¢ 1s a l-form then we have a

; ; : - N
canonical isomorphism én by A 2 Oy 2V > v<f,v egm_dg.

*Rpag

Proposition 2,5.1 If X 1is a complex manifold, then a sheaf of

twisted differential operators is locally isomorphic to QX'

In fact any closed 2-form is locally the exterior derivative of

a l1-form.

2,6 Let QX be the de Rham complex Q}O{ . _Q;L{ > ch ++.. and let

oal(ﬂi) be its subcomplex 0 -» ﬂ; -+ gi e

Theorem 2.6.1 The set of isomorphic classes of twisted rings of

differential operators is isomorphic to HZ(X;U>1{QQ)).

Proof We can calculate HZ(X; °>1(9§)) by the Cech cohomology.
Let ZK=={Ui} be an open covering. Then Hzﬁz; g>l(g§)) is given
by B

2 1
such that
(2.6.1) dni=0, ninnj=d£ij on Uint
{2.6.2) Eij+£jk+£ki=0 on UiﬂUjﬂUk.

Then we can patch twisted rings of differential operators An on

i

Ui by

A

[ = A
-y UiﬂUj

Ao +ac . lwno, ®20 luao,
nyray 4 UMYy ny U3N0;

and obtain a globally defined twisted ring of differential operators.
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Conversly if A is a twisted ring of differential operator, then
there exist an open covering W& = {Uj} of X and a section ij:
9X|Uj - Fy ({x_)|U:I of 01|Uj As in §2.4 :Lj defines a closed 2-form
nye and 13-1k gives a l-form £, 5k so that (2. l 1) and (2.6.2)
are satisfied., Hence they give an element of H (M,g>l(ﬂx))

It is easy to see that they do not depend on the choices
introduced there and these two correspondences are inverse to each

other.

Corollary 2.6.2 If X is a complex manifold, the set of the

isomorphic classes of twisted rings of differential operators is

isomorphic to Hl(X;d QX)'
In fact, 0>l(9§) is guasi-isomorphic to agxf—l].

Remark 2.6.3 In an algebraic case, a twisted ring of differential
operator is not locally isomorphiec to QX even in the etale

topology. In fact, for a closed 2-form n, An 1is isomorphic to Dy

if and only if 1 is a coboundary.

Remark 2.6.4 Let A be a twisted ring of differential operators.
Then

Aut (2)=End (A)=H' (X; o, ,05) =Ker(d: T (X;0%) » I(x;02).

Here Aut and End signify the sheaf of automorphisms and endo-
morphisms as Oy-rings. For a closed l-form w, the associated
automorphism of A is Fl(é)a P — P+<01(P),m> 3 Fl(é).

Remark 2.6.5 Let A be a twisted ring of differential operators

and L an invertible O -module. Then L&_ A& L® 1 is also a
X 9% %

twisted ring of differential operators. Then the cohomology class

c(L®§®L®_l)€ HZ(X; oy @) corresponds to [Ll+c(A). Here [L] is

the image of the class of L in ﬂl(x;gx*) by the homomorphism
1 2 .
H (X;QX*) + B7(¥; Uglg }  given by O * ————% Ker(d Qx -+ QX)+

OalQ.Il}' More generally, for any A€k (k is the base field when
X 1is algebraic and k=C when X is a complex manifold), we can
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define LQAQQGLQHA such that c(L@lﬁg&L®_A)mc(§)+A[L]. in fact take
an open covering {U.} of X and siEP(Ui,L) such that L=9Xsi.
Then we can patch AIU and AIU by (éiU.)lU.ﬂU. 3P +—

(s. /s ) P(s, /s ) A E(A]U )]U ﬂU Remark that for any

Pr— aAPa A

X
aed,,
2.6.4). Hence if s is an invertible section of L and P is
“* gives a section of L®A®A®L -,

is a well- deflned automorphism of A (See Remark
a section of A, s’epes

Remark 2.6.5 The map from the set of the isomorphic classes of

twisted rings of differential operators to Hz(x;ozl(ﬂi)) is alsc
given as follows.

Let us consider the diagram (2.4.1). Since the columns are
exact, it defines a morphism in the derived category [O + Ql + ees]
e g>l(ﬂx)[2]. Hence we obtain H (X; QX) + H (X,g>l(g )) The image

of 1en° (X; Q) ©T(X;0 ) gives the corresponding class c(A)€
2 (X705, (82)) .

2.7 If A is a twisted ring of differential operators, then its
opposite ring é?p is also a twisted ring of differential operators.
If c(ﬁ)EHz(X;U>l(nk)) denotes the corresponding cohomology class,

then c(§°P) = [lemx] -c(a). Here [lemx]e Hz(x;0>lﬂé) is the one

given in Remark 2.6.4. We omit its proof. We just remark that it
follows from the following fact:

L {)(n)
. 8-1 o-1, "1'V
(2.7.1) If we define ®: v »— even + n @————————u ® n, then
@ defines a left Qx—linear isomorphism Fl(éép) > Fl(mX l®§®wx)
where .= AimX  apng g € wy. The diagram
%
0, — F. (%)
==X 1V~ i
-1

@-1
. ).
9% > Fy (uy "OR8w,) O

93

commutes, Moreover, P([v;,v,]1}1=1@{v,),¢(v,)] for vl,vze.Fl(QOPL
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This shows c(gép) = —c(wi_lﬁéﬂwx) by the construction given by
Remark 2.6.5.

2.8 et f: X+ ¥ be a morphism of smooth algebraic varieties or
complex manifolds. Let EY be a twisted ring of differential
-1 R
*® *
operators on Y. Let f (éY) be gx@ -1 £ éy' Then £ (QY) is a
Y

£f 0
right f—léy—module. Let EndAY(f*éy) be the ring of right fuléy—

linear endomorphisms of f*éy._ Let us define subsheaves Fm of

End (f*éy) inductively by

iy

(2.8.1) Fm = 0 for m< 0O

(2.8.2} F. = {PEEnaéY(f*gY); [P,0.J€F ;1 for m3z 0

# -
Set £ éY —lJFm.

Proposition 2.8.1 f#gy is a twisted ring of differential operators

with Fm(f#éy)=Fm' and we have a Cartesian diagram

#
(2.8.3) Fy(£'A,) s £¥F (Ay)

} o
*
@X sy £ OY .
Proof It is enough to check Fy=0y and (2.8.3) by Proposition
{2.3.2). The other properties are easily derived by the definition
of Fm.

Lemma 2.8.2 {Pef*(gY}; [P,a}Ef*FmHl(EY) for any aegy} =f*Fm(§Y)
for mz0.

Proof Take yl,...,ynEEQY such that dyl,---,dyn forms a base,
and VitV E By be its dual base. Then P +—r [P,yi] gives a
homomorphism from f*Sm(@Y) -+ f*Sm_l{eY). If we identify f*S(OY) =
9X®k[vi’."’vn]’ then P — [P,yi} is given by a/avi. Hence for
mzl, {PEf*Sm(GY); {P,yi]=0 for any il}=0. This shows

{Pef*Fm(gy); [?'yiJEf*Fm—z(éY)}C:f*Fm—1(§¥)‘ The lemma follows
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immediately from this.

Proof of Proposition 2.8.1 (continued) If ¢EF0, then for ae;gy,
[#(lel),al=0. Hence 90(191)659_X by the preceding lemma. Hence
©(a®P)=aP(101)P= P(181)a@P for a€0, and PEA,. Thus PEO,.
Assume ‘PEFl. Then for a E Oy [P, ale Fye Hence a— [;0,61]69_X

gives a derivation of Oy~ If we denote it v, then [¢X1®l),a]=v(a)€9x.
Hence ¢(l®l)&f*Fl(§Y) and its image on f*GY coincides with the
image of v. Hence we have Fl + f*Fl(éY)Xf*eyex. It is easy to

check that this an isomorphism.

2.9 Let £f: X+ ¥ and Ay be as in the preceding sectiocn. Then
f*éy has a structure of (f#éY,f"lgy)—bimodule. If M is a left
%Y-module, then

£*M = 08 £
i P
£ 70y £ Ry

has a structure of left f#éy—module.

2.10 Let f: X+ Y and g: Y + 2 be two morphisms of smooth
varieties and let 5Z he a twisted ring of differential operators on
Z. Then we have a canonical isomorphism

(2.10.1)  £'g¥a, = (gon)*a,.

In fact, g*éz is a left g#éz-module. Hence f*g*§z=(gof)*éz is a
left f#g#éz~module. Hence we obtain f#g#éz > End((gof)*éz). It
# 4

is easy to prove that this gives an isomorphism from £'g A, to the
subring (gof)#éZ of End((gof)*éz).

2.11 We have the following lemma, whose proof is left to the reader.

Lemma 2,11,1 Let f: X+ Y be a morphism of smooth varieties, and
A, & twisted ring of differential operators on Y. Then
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where = { &0

Since f*(égp) is a right f#(ggp)OP—module, f*(AYp)G is a

Oy Yy sy
right f#(gY) module by this lemma. Together with the right module

structure on £*(adF), gives a (f—l . f# )=bimodule structure on
Zy = o

f*(AYP)ﬁw We set

X/Y°

(2,11.1) vex=E* g Ouy FERS vy v
£

#
Then for a left £ éY module M, £, (%Y+X # M)

is a left éy—
module. (éY)
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£3 Twisted sheaves and regular holonomic modules over twisted

rings of differential operators

3,0 We know that the derived category of wamodules with regular
holonomic Qx-modules as cohomology groups is eqguivalent to the derived
category of EX-modules with constructible cohomologies. 1In the case
of twisted rings of differential operators, we have the similar
theories. However, we have to introduce the notion of twisted

sheaves that we are going to discuss in this chapter.

3.1 Let (X,gx) be a2 smooth algebraic variety defined over a field
k of characteristic 0 or a complex manifold. The notion of
regular holonomic system can be generalized in the case of twisted

rings of differential operators.

3.2 Let A be a twisted ring of differential operators on X and
let F(A) be the order filtration of A.

3.3 For a coherent A-module M, a filtration F(M) over F(Aa)
(i.e. F (A)F MCF . (M) is called a good filtration if there

exists locally a finite number of sections {ui} of M and integers

m; such that Fk(g) =2Fk_mi(§)ui. Such a filtration exists

always at least locally.

3.4 if F(M) is a good filtration, then ngg is a coherent
(grpg)—module. If we denocte 7w: T*X + X, the cotangent bundle of X,

then we have a ring homomcrphism

F
(3.4.1) g2 + 7140npuy-

In the algebraic case, (3.4.1) is an isomorphism. We set Ch(M)=
supp(QT*x ® -1 F n—lngg) and call this the characteristic variety
T Tgr A

of M. Since this is independent from the choice of F(M), thisg is
a well-defined closed subset of T#*X,
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3.5 We have

Proposition 3.5.1 Ch M is always involutive. {i.e. the ideal

defining Ch M 1is closed under the Poisson bracket).

In particular the codimension of Ch ¥ is g dim X at any point of
Ch M.

Definition 3.5.2 A coherent A-module iz called holonomic if

codim Ch M = dim X.

Let M Dbe a holonomic Qx—moaule and A = Ch M. If there exists

a good filtration F(M) such that f]ng@ =0 for any £f£E¢€ ngé
with f]A = 0, then we call M regular holonomic.

3.6 If X is an open subset of T and if M = D/DP with a non-
zero differential operator P, M is always holonomic. Moreover M
is regular holonomic on a neighborhood of =x=0, if and only if 0 1is
a regular point of the eguation Pu=0 in the classical sense; that

m .
is, if we set P= ) aj(x)Bj, with a

0, ord a. z ord am~(m—j).
j=0

m

Here ord is the order of zero at the origin.

3.7 Since any twisted sheaf of differential operators is locally

isomorphic to D, {in the complex case), many properties of regular

5.4

holonomic Qx—modules are valid for those over A. Here are some of

their properties.

Proposition 3.7.1 {i} A coherent submodule and a coherent guotient

of regular holonomic module is regular,

(ii) If H' + M - M"Y is an exact seguence of coherent modules and

if M" and M" are reqular holonomic, then so is M.

3.8 In this section, we assume X is a smooth algebraic variety,
and we work in the algebraic category. Let j: X «+X be an embedding

into a proper smooth variety X, For any holonomic Ex—module M,
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jeM is always holonomic, If J,M is regular holonomic, we say
M is completely regular. This property does not depend on the
embedding 7.

Regular holonomicity has the following functorial properties.

Proposition 3.8.1 Let f: X + Y be a morphism

(i) iIf M is a {completely) regular holonomic Dy,-module, then

=¥
f—lBY .
Torj {f*gy, M) is a (completely) regular holonomic Qx-module.
(ii) If M is a completely regular holonomic Qx-module, then

. L
] i i -
R f*(EY+X®2x§) is a completely regular holonomic Dy module.

Proposition 3.8.2 Let f£f: X =Y be a surjective map of smooth

varieties X, ¥. Let M be a holonomic gywmodule. Then M is

D.
completely regular if and only if Torgy(f*gy,g) is completely

regular for any J.

3.9 Let D(DX) be the derived category of the abelian category
of Dx
consisting of bounded complexes with regular holonomic cohomology

-mocdules and let Drh(DX) be the full subcategory of D(DX)
groups.

3.10 Assume X complex analytic. Let D(QX) be the derived

category of sheaves of C-vector spaces and let Dc(@x) be its full
subcategory consisting of bounded complexes whose cchomology groups
are constructible. Recall that a sheaf F is called constructible

if there exists a complex analytic stratification on whose strata
F is locally constant of finite rank.

3.11 Now the Riemann-Hilbert correspondence says

Theorem 3.11.1 Let X be a complex manifold

*) .
RHomEX(QX, ) D (Dy) + D, ()

is an equivalence of categories.
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An object FeDC(EX) is called perverse, if codim Supp HJ(F)zj and

codim Supp ExtJ(F,EX);j for any Jj. Let RH(QX) be the categoxry of

regqular holonomic Qx—modules and Perv (gx) the full subcategory

of Dc(gx) consisting of perverse objects. Then

Theorem 3.11,2 RHom. (0.,*): RH(D,) =+ Perv{l,) is an eguivalence
DX —X X =X

of categories.

Remark 3.11.3 Let X be a proper smooth algebraic variety defined
over £, and let X_. be the underlying complex manifold. Then

by GAGA, we have Drh(gx) = Drh(gxan} and RH(QX) = RH(QXan). This

is also true in twisted cases.

3.12 We shall generalize the Riemann-Hilbert correspondence in the

twisted case.

3.13 Let (X;A) be a commutative ringed space. Let us take an

open covering {u, }. of X, invertible A -modules L.. and
171el Uint 1]
A-linear isomorphism ik (Lijeij)luinU.nUk|_~% LikEUinU.ﬂUk
which satisfies J ]
(3.13.1) Lii = A.
(3.13.2) @...=id. , ¢...=id. .
1ij Lij 113 Lij
(3.13.3) For i,j.,k, %¢I, we have a comumnutative diagram of
morphisms of &] ~modules:
UipU.nUan
Pi5%
L. .8L., 8L J .
13779k ke 3 Lik®Lk2
9}k2 gikl
¢,
. .8L. : 13% 5 L,
Llj le > ng .

In this case, we say ((Ui)ifl,{Lij},{$ijk}) a twisting data.
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Remark that {3.13.1) and (3.13.2) are consequences of (3.13.3).

i
open set £ of X, a twisted sheaf F on ( with twist T 1is

data F={Fi’ pij} with

3.14 Let g;({Ui}.eI, {Lij}, {Tijk}) be a twisting data. For an

(3.14.1) F, is an A|QnUi—module’
(31420 0450 (24583 [gnuino, * Filaaunog o
such that

(3.14.2.1) p,.=1.

{3.14.2.2) For i,3,k, on UintﬂUkﬂQ

Lij®ij®Fk —_—— LikaFk

%4k
Pyx Pik
%j
L 4OF Fy

commutes.
Then the category M(Q;T) of twisted sheaves on & with twist
T form an abelian category. If Q<:Ui for some U, then M(Q;T)
is equivalent to the category of (Alg)-modules.
Moreover it is a champs in the sense of Giraud [G], i.e.
i) For F,F'éM(Q:T), U HrﬂomM(U,T)(FlU’F'lU) is a sheaf on .
ii} Let SZmUQj be an open covering and let Fjé M@,.,T). If

ij: Fklﬁjﬂﬂk 3 Fjiﬂjnﬂk is given so that

(3.14.3) ¥5; = id
(3.14.4) ﬁj%k= %k'

. . -1_
Then there exists Fe M(8;T) and that ai.F|Qi > Fi with aiaj "9ﬁj'

3.15 Remark that a twisting data T gives an element c(T) of
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HZ(X;AX). If two twisting data 21, T, satisfy c(gl)ﬁctgz), then
M(Q;El) and M(&;T,)
equivalence is not unique. In fact the ambiguity is given by @1 for

are equivalent (as a champs). But this

a twisted invertible A-module L. Also, note that for any

c eH2(X;Ax), there exists a twisting data T with c{T}=c.

For a twisting data g;{bij}, we denote by gﬁl the twisting
&-1
data {Lij t.

3.16 Let X be a complex manifold and A a twisted ring of

differential operators. Since A 1s locally isomorphic to Dy,

there exists an open covering =0, of X and an élU =module Ei
1

which is an invertible QU -module. Set

i
L.. = Hom (L.i . £.| Y.
ij —A'-1 Gij ] Uij
Then Lij is an invertible gUij—module. Moreover LijQij 3 Lik

canonically. Thus {Lij} defines a twisting data T on X. Then

we have

L..@L.| 3 . .
i =3 Uij —1|U..
Hence gé{éj} ig a twisted sheaf with twist Efl. Moreover A -+

End (L) defines a structure of A-module on L. Then we can define

DR(M) = RHom, (L,M)
for an A-module. This gives a functor from the derived category of
A-modules to the derived category D(T) of twisted sheaves with twist T.
Similarly to Dy, we have the following Riemann-Hilbert correspondence
in the twisted case. Let us define D . (A) and DC(E) just as

D, (D) and D_(E,).

rh

Theorem 3.16.1 Drh(é) is eguivalent to Dc(z}.

Theorem 3.16.2 The category of regular holonomic A-modules is

equivalent to the category of twisted perverse sheaves with twist T.

3.17 Let X be a complex manifold and A a twisted ring of differen-
tial operators on X. Let Y be a closed analytic set. Let M be a
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regular holonomic 5|X\Y—module which can be extended to a holonomic
A-module defined on X. Then there exists a regular holonomic A-
mcedule “g defined on X satisfying

w
(3.17.1) Moy =M

(3.17.2) Wﬁ has no non-zero coherent submodule supported in Y

nor non-zero ccherent quotient supported on Y.

This ﬂg is unique and called the minimal exitension of M.

3.18 This can be generalized into an algebraic case. Let X be a
smooth algebraic variety, A a twisted ring of differential operators.
Let M be a holonomic A-module defined on an open set U of X.

Then there exists a holonomic A-module ﬂg defined on X satisfying
(3.17.1) and (3.17.2). Such a "M is unique.

3.19 Let X be a complex manifold and A a twisted ring of
differential operators on X.

Theorem 3,19.1 The set of the isomorphic classes of irreducible

reqular holonomic A-modules is isomorphic to the set of pairs (S,F}

where 8§ 4is a Zariski locally closed non-singular connected subset

of X and F is an irreducible twisted locally constant sheaf of

finite rank on S with twist T. Here (§,F)=(s',F') if s5ns’' isg

open dense in both S8 and S$' and if FlSﬂS' = F'|Sns,.

Let M be an irreducible regular holonomic., Then Supp M must
be irreducible. Let S' be a non-singular locus of Supp M. Then
§§E§(£,§)|S vanishes for k# codim § and when k=codim 8, this is
a twisted local system on some Zariski open subset S of S' with
twist T. Conversely, for (S,F), there exists a regular holonomic
A-module M defined on X\35 such that Egggﬁ(g,g)zF[—codim s].
Then we associate to (S5,F} the minimal extension of M onto X,

3.20 Let us give an example of twisting data

Example 3,20.1 X=P1=U0UU1 with U0=P1\{w}, Ul=@l\{0}. For A,
2mix
e .

let C€; be the invertible € -module with the moncdromy

UOﬁUl

Then T = {(UO’U1)7®A} defines a twisting data on X. If
there is no twisted local system on X.

2TiA
e

#1,
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§4 Equivariant twisted rings of differential operators

4,1 Let X be a complex manifeld or a smooth algebraic variety
defined over €. Let G be a complex analytic group or algebraic
group acting on X. Let g be the Lie algebra of G and 9X the
sheaf of vector field on X. Then the infinitesimal action induces

a Lie algebra homomorphism

D :g > I(X;0.)

4,2 Let gx(g) be the ring generated by G

% and g with the

fundamental relation:

(4.2.1)

10

¢ ¥ Uglg) 1is a ring homomorphism,
(4.2.2) g 1 Ux(g) is a Lie algebra homomorphism,
(4.2.3) [§®),i(a)] = 1i(D(a)(a)}) for A€g and a€0y.

Fhen gx(g) = EX ® U(g), where Ul(yg) is the enveloping algebra of
g. The multiplication rule of 9X®U(g) is given as follows:

g acts on gx and U{g} (by the left multiplication) and hence
we have g ~+ End(0,8U(g)}, which extends to U(g) + End{0,8U(g}).
Moreover QX acts on 9X®U(g) and we obtain 9X®U(g) > End(gx@U(g)).
This gives the left multiplication of sections of 9X®U(g) on

QXGU(Q). This gives the ring structure on 9X®U(g). We can easily
prove that QXQU(E) ig isomorphic to Hx(g).

4.3 Let g be the kernel of Oy®g » By. Then we have [g.9] € §
(in U.{g)). TIf G acts transitively on X, § 4is a vector sub-
bundle of 9X ® g.

4.4 Let us recall the notion of G-equivariant Q,-modules. Let us

X
consider
p
1, u
p2 1
(4,4.1) G xG XX—-ﬁ"——) G x X ¢e—=—=— X
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where pr is the projection, U the multiplication map :(g,x) - gx,
i(x) = (1,x} and the pj are given by

Pl(gl,gz;x) = (gl,gzxi) ’ pz(glrgzrx) = (glgzrx)l
p3(glf92rx) = (gzrx)-

Then we have WP =hoPy  PreP,=pr Py; MHeP3=Prep; and jpel=prei=id.

An Oy -module F is called G-equivariant 1f an -linear iso-

9Gxx

morphism « : W*F ¥ pr*F is given such that it satisfies:

(4.4.2) irup 5%, faprap
S” S" commutes.
p3 (@)
{4.4.3) pEH*F >p§pr*F
i il
pf(a) p% (o)
piu*F —3 pipr*F = p3u*F _— p§pr*F

commutes.

4.5 For a G-equivariant gx—module F and for geG, let ug;x»x be

the map X = gx. Then we have u;F 3 F. Let Tg he an inverse

a
HE(TetAu)§t=o

we obtain a Lie algebra homomorphism D:g +'EndE(F), which satisfies

homomorphism. Then setting A.u= for Aeg and u€F,

D{A)au = aD{A}u + D{A)(a) u

and hence it extends to a ring homomorphism U,(g) - End.,(F).

Thus F has a structure of left Qx(g)nmodule.

4,6 Similarily to G-equivariant Qx-modules, we shall define the notion
of equivariant twisted rings of differential operators. Let A be
& twisted ring of differential operators on X. We say that A 1is
#

G-equivariant if an gx—ring iscmorphism «: u'A 3‘pr#§ is given
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satisfiving the following property:

L #
(4.6.1) ifufa 28 sfpHa
¢l ' Sl| commutes.
N S |
#
po (e}
(4.6.2) pgu#g 2 Y p%pr#g
¥ #
$ 4 P1(® . Pyla) 4 4

plu A — Plpr A = Pﬁlﬁé ———} P3Pr A
commutes.

Let A be a G-equivariant twisted ring of differential
operators., Since u*A is a u#éfmodule, we have pr#A z-u#A + p*a

by operating on 161 ¢ u*A. Hence we obtain p*D, ~+ pr#A + p*A,

G
where p: G XX + G 1s the projection. Thus we obtain i*p*DG +
i*¥*a . This gives ¢ + A. This extends to an 9X~ring homomorphism
gx(g) + A, Note that the composition g - Fl(é) > By coincides

with D.

4.7 Let A be a G-equivariant twisted ring of differential opera-

tors. Then pr#é = EG ® A, and hence pr*aA ¢ pr#

A becomes a subring.
A left A-module M is called G-ggquivariant if B:p*M 3 pr*M gives

a structure of equivariant Ox—modules and g is pr'A-linear

# #

(through y"A s.pr#é and the y’'A-module structure on p*M}.

If B is only pr¥*A-linear, we call M quasi-G-equivariant,

If N is a Grmodule (see §4.8), then g@gN has a structure

of G-equivariant A-module.

4.8 We shall investigate the description of G-equivariant twisted
rings of differential operators and quasi-G-equivariant modules

when X 1s a homogeneous space. Let x be a point of X. Let H

be the isotropic subgroup of X at x and let h be its Lie algebra.
We assume G/H ¥ X. An H-module of finite dimension is, by definition,
a finite-dimensional vector space V with a group morphism H - GL({V}
and we assume that this is algebraic in the algebraic case and

holomorphic in the complex analytic case. An H-module is a vector
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space with H-action, which is a union of finite~dimensional H-modules.

The following is well-known.

Theorem 4.8.1 The category of G-equivariant O,-modules is equivalent

to the category of H-modules by M = M(x), where M(x) = C g gx
X, %

Let YX be the inverse functor of M = M(x}. Then in the
analytic case (and in the algebraic case with suitable interpretation},

for an H-module V, we have for an open set U of X:

(4.8.1) P(U;YX(V)) = {f;V-valued function on p_lU such that

£{gh) = h"Lflg) for g ¢P 'U and h € H}.

Here p:G -+ X 1is the projection g =» gx. Note that
(4.8.2) g = Vg(h) (see 54,3}

Alsoc note that

(4.8.3) If V is a G-module and W is an H-module,

v, (VOW) = V. (W) 2\1.

4.9 Let X be an H-invariant element of h*. Then A([h,h]}=0

and hence X gives a l-dimensional representation €, =E*l1, of h
by A'lJL = A(A)lx for A¢h. On the other hand, A gives anH-linear
homomorphism from h to € and hence a G-equivariant homomorphism
Ex(h) =g to yx(m) = 0,. Then we can easily check that

X
1 Uy(g) (A= A{p)) is a both-sided ideal. We set
Aeg
(4.9.1) A (W) = Uglg)/ XMHX(Q)(Awl(A)).
aegd

Theorem 4.9.2 (i} QX(A) is a G-equivariant twisted ring of

differential operators ,

(ii) Any G-equivariant twisted ring of differential opetators is

isomorphic to gx(l)(for a unigque A).
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We shall give only a sketch of the proof. Let A be a G-
equivariant twisted ring of differential operators.

As in §4.6, we have a ring homomorphism gx(g) + A. Since X
is a homogeneous space, this is surjective, and § is mapped into
Fo(é) # 0,,. Since this is H-lipear, it comes from some H-invariant

X
A € h* and we obtain gx(l) + A, which is an isomorphism.

4,10 In order to describe gquasi-G-equivariant éx(k)~modules,
we shall introduce the notion of twisted ({(g,H)-module. Let A€h*

be an H-invariant form.

Definition 4,10.1 A twisted (g,H})-module M with twist ) is a g-
module M with a structure of H-module on €, &M such that

(4.10.1) Two h-module structures on mk®g which come from the g-

module structure on M and the H-module structure on ml@g‘ coincide,

{4.10.2) g® (¢, €M) ~ €y M given by A ® 1, ¢ u> 1, & Au

ii H~linear.

If M is an H-module, then Ulg) @ {E_x@ M) is a twisted
h

{g,H}-module with twist A. Here the action of H on

EA ® Ulg) & (T AQM) is given by H3h : 1. 9 P& 1 _ © u '
- h - — A =X

1, @ ad(h)P © 1_, ® hu.

A A

Theorem 4.10.2 (i) The category of gquasi-G-eguivariant gx(x)—
modules is equivalent to the category of twisted (g,H)-modules with

twist .

(ii) For a twisted (g,H)-module M with twist i, the corresponding
gquasi-G-equivariant éx(k)—module is isomorphic, as a G-equivariant

gx—module, to YX(EXQQ).

We shall give here only the sketch of the proof.

Let M be a quasi-G-equivariant éx(k)~module. Then M has two

actions of g on M which comes from the éx(l)-module structure

L qrmenal (et wac, X"ﬁ:wq,.a) Hie o eovak | ‘y{iv-% a @(ﬂh«uﬂ Fonao,
C;;I:.E.,dDX(m) o5

Mk (O, UG-l
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and the structure of G-equivariant gx—module {(see §4.5), Let o
the first action and g the last action. Then Yy = B~ is Q_X-linear
since [c(A),al=[B(A),a] = D{@A)(a). Since go® M- +M via o« Iis

g-linear with respect to the g—action, we have

T
(4.10.3) [8(a),a(a")] = al([A,A']). (B, v~ ), v] FrYreP oy
Ewi\DRCM) X

This implies Y : g +Endo (M} is a Lie algebra homomorphism. Hence
=X
we obtain v :g > End;(M(x4)). For A€h, v(A)=B(A)-a(A) = B(A)-A(A)

we have B{A) = Y{(A)+AM(A). Since the infinitesimal action of H ong_'i_(xe)
ceincides with g, the h-module structure of g(xg) by v is
igomorphic to E—A®E(x0)' Therefore C€_,6M(x,) 1is a twisted
{g,H)-module with twist A. Conversely let M be a twisted (g, H)-
module with twist A. €,8M is an H-module. TLet M = V,(C,8M) be
the corresponding G-equivariant Qx—modules. The morphism (4.10.2)
gives a g-action y: g ~»End, (M) and the G-equivariant structure
defines g: g +End(gx). Then o= B-y defines and A_X(A)—module

structure on M.

4,11 If moreover M is G-equivariant, then we have § =
Therefore Y=0 and the g-module structureion C_,8M(x,) dis trivial.

The converse is also true and we obtain the following proposition.

Proposition 4.11.1 The category of G-equivariant E_A_X(A)—modu}.es
is equivalent to the category of H-modules M such that h acts

trivially on u:_;\eg.

4.12 We have

(4.12.1) (M) = Yy (€8 U(@0_)).

A

For a twisted (g,H)-module M with twist A and a G-module V,

M ® V has canonically a structure of twisted (g,H)-module and
T

(4.12.2) YX(GA®(M$V)) = yx(mA®M)$v
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4.13 In a complex analytic case, we can describe gx(A) as follows.

Let p: G * X be the projection g =~ gXg. Let F be the sheaf on
G defined by

(4.13.1) F = {960,; R,¥ = -A(2}y¢ for any Aéh}.

tA
Here RA?(g) = 3% g (ge )|t=0'

Then F is locally constant along fiber of p with the
monodromy corresponding to ), and F has a structure of p_lgxw
module. Then g acts on F through the left action of G on G.
Then QX{A) is the subring of p*Endm(F) generated by Oy and g.

4.14 Let &' be another Lie group and H' its subgroup. Let

¥: G'~G be a group morphism such that ¢(H')C H. Set X' = G'/H',
X = G/H. Then Y induces the map £: X'+ X. Let h,h' be the
Lie algebra of H and H'. Let xéh* be an H-invariant form,

Then, we can easily prove

Proposition 4.14.1 (i) £'A (2) = Ay, (A[h').

(ii) For a twisted (g,H)-module M, we have E*EX(Eﬁag) = YX,(EA@@)
as gx,(xig')—module.

4,15 For a homogeneous space X with the isotropy subgroup H,

we have the following proposition.

Proposition 4.15.1 AX(A)OP = &X(ZQ—} ), where pebh* is given

by p(a} = -%trg/h(adA) for Ac€h,

This follows from the following observation. By g2A» ~A€ g,
we have an anti-isomorphism & of O, -ring U,(g) onto it self.
Then, we have ¢(A) = -A+2p(A} for Ae€g. Here p: g -+ Oy is

the G-equivariant homomorphism given by p € h*.

4.16 Even in algebraic category, any G-equivariant twisted ring A
of differential operators on homogeneous space of G is locally

isomorphic to Dy in the %ariski topology. In fact, if p:G » X
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is a G-equivariant projection, then p#é = D,. Hence if p has a
secton i, then A = i#p#é E DX' Since G -+ X has a section localily
in the étale topology, A is locally isomorphic to Dy, in the

&tale topology. Hence there exists a non empty set U and an

étale map f£: U +~ X such that f#é is locally isomorphic to DU'
There exists an open set § of X such that f_lﬂ + 0 1is finite
and étale. Now, A 1is isomorphic to §r1 for some closed 2-form N
defined on @, by shrinking § if necessary. Since f#E is locally

isomorphic to Dy« f*n = dw for some l-form w, Hence n=d{f,u)/n
where n is the number of sheets of £ +Q +U. Hence A, = Dy
on {. Since A is G-equivariant, A is locally isomorphic to

DX on the G-translates of &, which cover X.
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85 Flag variety

5.1 We shall review about flay varieties. Let G be a connected
algebraic reductive group defined over &. The set of Borel group
forms an algebraic variety and called the flag variety of G. We
shall denote it by X, Then G acts on X transitively. For =€ ¥,
the isotropy subgroup b(x) at x coincides with the Borel sub-
group corzesponding to x€X and G/B(x) - X (g » g%} gives an
isomorphism,

Let b{x) denote the Lie algebra of k(x} and E(X) =
[b(x),b(x}] the nilpotent part of b{x). Then x » b{x}) and
x » n(x) form G-eguivariant vector budles on X. Note that x»~
b(x)/n(x) 1s the trivial bundie, because the isotropy subgroup B(x)
acts on b(x)/n{(x) trivially.

§;g Let us fix xoe X, B = B(xo), and let U dencte the unipotent
part of B. Let us take a Cartan subgroup T of B. Then T = B/U.
Let us denote by g,b,n, and t the Lie algebra of G,B,U and T,
respectively. Let A be the root system of {g,t) and by the
set of positive roots consisting of roots appearing as weight of b.
For aeh, let hae t the corcot of o and Sy the simple
reflection corresponding to o,i.e. £% 3 A& ) —<hd,A> . Let W be the
Weyl group,i.e. the group generated by sa's. Recall that we have

W = NG(T)/T and we have the Bruhat decomposition:

{5.2.1} G = {_ BwB
WEW
{5.2.2) X = tv}waO
weW
{5.2.3) X %X = L_JG(wa,xo).
wEW

Here w in the right hand side is an element of NG(T) which gives
w by taking moed T. Let QCt* be the Z-module generated by 4.
Set

(5.2.4) Q+ = z Z+a.
QEAL
Here 2, is the set of non-negative integers.

We say ret* is anti-dominant (resp. regular) if <ha,1>#l,2,3,...
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(resp. <ha,}\>#0} for any BEA, . The following lemmas are well-known.

Lemma 5,2.1 The following conditions are equivalent.

(i) % is anti-dominant.

(ii) For any wewW, i-wi € Q\{0}

Lemma 5.2.2 The following conditions are equivalent.

(i) A is regular and anti-dominant.

(11) For any we€W with w # 1, we have i-w) § Q.

5.3 Let P be the lattice of weights of T. We regard PcCt* and
for AE€EP, let b v b}‘ denote the character of B given by B > T »+
C*, where the last arrow is the character given by A.

Set

{(5.3.1) P, = {AeP; i<k,ha> z 0 for any ueA+}
and

(5.3.2) P = [} P;i<l,ha>> 0 for any ceb,}.

=

5.4 For J€P let us denote by Q_X(,\) the G-equivariant line
bundle corresponding to the character B3 b = b,

Let p: G + X be the projection g - gx- Then by the defini-
tion, for any open set U of X

(5.4.1)  T(U;0,(0)) = {£& r(p 10507 £(gb) = b e (g)

for (g,b)ep U x B}.

The following results are well-known.

Proposition 5.4.1 If 14P_, F(X;gx(l)) = 0 and if AEP_,I‘(X;QX(A))
is an irreducible representation of & with lowest weight A.

Proposition 5.4.2 If A€P__, then Q_X(J\) is ample.
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Proof We shall use the criterian of Definition-Theorem 1.2.1 (2).
Let V; be an irreducible representation of G with lowest weight
A and let v be a lowest weight vector and u € (V}\)* be a highest

weight vector, Then f =<v,gu> gives a section of 9-}{(“ . We
have £(1) = <v,u> ¥ 0 and £(w) = <v,wu> = 0 for any w#l, because
the weight ¢f wu is not -A. Hence the corresponding section s

of QX(J\) satisfies s(xo} # 0 and s(wxo) =0 for wfl, weW.

Since U G(wxo,xo) = X x X\{the diagonal set} , for =x#veG,
weWN{1l}

there is ge¢ & such that g_lx=x0, g"1y=wx0. Hence ({g¥*s){x) # 0,
{g¥s) (y) = 0. Hence Q_X(A) satisfies the condition (2) of
Definition-Theorem 1.2.1. Q.E.D.

5.5 Let U{g) be the universal enveloping algebra of g and let
Z{(g) be the center of g¢g. By Harish-Chandra's result, we have

(5.5.1) x: 2lg) * elex)¥

Let us recall how the isomorphism (5.5.1) is defined. For PEe Z(g),
@©[t*] such that P-fe
U(g)n. Then we set XA{P} = £{(A-p) for Aet*. Here p=

(ugﬁ }/2. ‘Then XA(P) is W-invariant polynomial in A€ t*, and

there exists a unique FfeU(L) = s{t)

il

gives the isomorphism {5.5.1).
If we dencote by * the anti-isomorphism of Ulg) given by g3
A »-~Acg, then we have

(5.5.2) X)(P*} = X_,(P) for Pez(g).
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86 Twisted rings of differential operators on the flag variety
6.0 The notations are as in §5.

6.1 We shall study G-equivariant twisted ring of differential
operators on the flag variety X. In order to do this, we shall
apply Theorem 4.9.2, 8ince b/[b,bl=t and B acts trivially on £,
the isomorphic classes of equivariant twisted ring of differential
operators are parametrized by t*. For A€t*, let us denote by EA
the twisted ring of differential operators gx(k+p) corresponding to
the character b - E-liﬁ>m. By Prop.4.1.5.,we have

op
(6.1.1) 0¥ =D _.

The shift 5 is added so that (6.1.1) holds. Hence the ring
of differential operators is D - For ueP, we have
(6.1.2) 0, (u)®D,80, (~u) =D, ..

6.2 By 4.6 and 4.10, we have a Lie algebra homomorphism

g - ETX;QA), which extends to a ring homomorphism:
(6.2.1) Ulg) = T(X; D,}.

Lemma 6.2 2 Ker X, is contained in the kernel of (6,2.1).

Proof Since (6.2.1) is G-eguivariant it is enough to show that

Ker xkﬁ-mx0®0 BA
X

is the zero map, where @X =0X /m(xo) with the maximal ideal m(x,}
0 %o 0

of O, . . Note that D, = Ug(g)/ ] {(A-<i+p,A>)U(g) where § is
0 - T Red - -
the kernel of gxﬁg - @X (5ee § 4.10 ). Hence we have

€, 8D, = U(g)/ ] (A-<x+p,A>)U(g).
] AEb -

For PeZ(g), we have
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P & nU(g)+f

with feU{t) and ¥, (P)=E(A+p}. Hence we obtain Pe ] {A~(x+p)A}U(g)

if x, (P)=0. AL k.p.

We define
(6.2.2) UA(g) = U(g)/U(g)(Ker(xk= Z{g) - €)).

Proposition 6.2.3 Uk(g) -+ r(x;gk) is an isomorphism.

Proof Let F(U(g)) be the filtration given by Fm(U(g)) =
Fl(U(g))'Fm_l(U(g)), Fl(U(g)) = g 8cC, F,(U{g})=C. Then ngU(g):-S(g).
Let F(UA(E)) be the induced filtration. Then we have

F
gr U)\(g} = S(g)/s(g)1+

where I+=(gs(g))G. Now, we have the following lemma.

Lemma 6.2.4 T {1*x; QT*X) = S(g)/s(g)l+.

For xe¢X, the infinitesimal action of g on X gives g = TXX.
Taking the dual, we obtain T;X + g*, This gives p: T*X » g*.
If we identify g with its dual by G-invariant non~degenerate
symmetric form, p{T*X)} coincides with the set N of ailpotent
elements. Then N is normal and

F(N; gﬁ) ¥ 8(g)/s(g)I,.

Since p is bkirational and proper, I(T*X;0

Opwy) % F(§;9_).

Q.E.D.

It

F F
Hence TI(X;gr EA} = P(T*X;Onuy) = 85(g)/8(g)I, = gr UA'
Therefore we have a diagram

E
—__—)
0 — F_,(U) —— F (U,) ——— gr.U 0

o

0 — I(X;Fy 1 (B;)) — T{X;F, (D)) — F(X;grﬁ(gA))
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Therefore, if o ig bijective, . is bijective. Thus by the

induction, o is bijective for every m.

Remark 6.2.5 1In the course of the proof, we used the fact that
P{T*X) 4is normal. This is not true if X is a generalized flag
manifold (i.e. a projective homogeneous space of G), and

F(X;éx(l)) « U(g) 4is not necessarily surjective (See [BoB]).

6.3 We shall prove the following theorem.

Theorem 6.3.]1  Assume that 3 is_anti-dominant, Then for any D,-

module M gquasi-coherent over QX’ we have

B (x;M)=0  for  k#0.

Proof If uy is in P s then 0(u#) is ample. Hence by Theorem

1.4.1, it is enough to show that
{6.3.1) g)\agx(-u)@r(X:gx{u)) + Dy

splits. Set V = ?(X;gx(u)). Then (6.3.1) corresponds to a morphism
of twisted (g,B}-modules

.3.2 C ev .
(6.3.2)  Uloy(C_, 8V > Uigec ,
Hence it is enough to show (6.3.2) splits. Let us take a filtration

of Vu by B-medules:

(6.3.3) VU=VODV13--- DVNDVN-I-lzo
such that
(6.3.4) VD/V1=CU

(6.3.5) vj/vj+l = C”j for some Jj.

Hence Ho=Heligroee are weights of V¥

r U e

Hence we have
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{(6.3.6) uj—;16Q+
(6.3.7) Uj—UéQ_l_\{O} for J#0.

M.= ev.). Th h
Set 3 U(g)@bfm_h_u_p J) en we have

~A-p-utp.’

(6.3.8)  My/My ., = U(g)@C ;

and (6.3.2) is given by MO -+ MO/Ml‘ Hence Mj/Mj+l has an infini-

tesimal character Y .
~ APt
U uj

Lemma 6.3.2 #X., fox uj#u.

e p—pt s
AU IJJ
Admitting this lemma for a while, we shall complete the proof of
Theorem 6.3.1. We have
(X_y) .
My —— (MO/Ml}.
(X—A)
Here M, ={ueM0; Pu=x_A(P)u for any PeZ(g)}.
Hence, MO - MO/MI splits. Q.E.D,

Proof of Lemma 6.3.2 Assume y =X , Then there exists
AU+ uj TH
wE€W such that —A—u+uj=—wl. Hence p—uj=x—wA6Q+. Since } 1is

anti-dominant, u—uj=0. this is a contradiction.

Theorem 6.3.3 If s 1is regular and anti-dominant, then for any D,-

module M quasi-coherent over gx, M is generated by global sections.

Proof By Theorem 1.3.1, it is enough to show that EAQQX(—E) is
generated by global sections for uwe€éP_. In order to see this, it

is encugh to show the morphism

Dy\®I (X; 0, ()] * «— D, 80, (-]

X

splits. Consider the corresponding morphism of twisted (g,B)-modules

(6.3.9)  U(g)®, (€, 8V)+— U)ol \ .

Here V=T(X; gx(u))* is an irreducible representation with highest
weight -u., Take a filtration of V by B-modules:
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0=V_j €V €V Crre CV=V

such that

(6.3.10) Vg = C_

. . = C ..
(6.3.11) ijv;—l =T

Then Wp="Wrlyre** by are weights on V. Then Mj=U(g}®E§_A_p®Vj
gives a filtration of M=U(g)®EF_x_Q®V and Mj/Mj"l;U(i)QQF-A~p+uj'

The last module has an infinitesimal character If we have

) T
X uj
(6.3.12) X-K+Uj#x-l"u for any 3j#0,

(x_4..)
then we have M —~A7H
{6.3.9) splits.

Finally, we shall prove (6.3,12). If X‘l+u-£ X pmp”

exists we&W such that W(“l+uj)=“k‘u- Hence weJhave —ﬂ-Wuj=A—Wl-

=M0 and M0 is a direct summand of M. Thus

there

Since wy. is a weight of V, -y~wy. €0Q,. Since is regular and
Hy g Wy + A

anti~-dominant A=w) anéd w=l. Hence Uj=‘u°

Remark 6.3.4 In the situation of Theorem 6.3.3, M 1is generated by

global sections not only as a Ql—module but as an gx—module because

so is D..
=X

6.4 Thus we can apply the result of 1.5.

Theorem 6.4.1 If A 1is anti-dominant and regular, then the category

of QAHmodules quasi-coherent over 9X is eguivalent to the category

of Uk(g)—modules.

Theorem 6,4,2 If » 1is anti-dominant, the category of Ul(g)—
modules are equivalent to the category of Qx—modules M guasi-coherent
over O, satisfying the following properties
{a) M is generated by global sections.

(b) 1If a Qk—submodule N of M which is quasi-coherent over O

—X
satisfies r1(X;N)=0, then N=0.

Remark that finitely generated Ul(g)—modules corresponds to
coherent gk—modules.
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§7 SL,=-case

2

7.1 We shall exhibit the results in the preceding section in the

case of SL,. Set G=SL

2 g#slz. Take a base of g

2’

1 0 0

(7.0.1) h=(t ), o= o, =8 D

The flag manifoldéd X can be identified with Pl. Set U0=El\{m},
Ulaml\{O} and take coordinates x of U0 and y of Ul related
by =xy=1l. The action of G on X is given by

ax+h dy+c
ox+a ' ¥ by+a °

a

(7.1.2) §=(c

b
a:
Take x,= « (i.e. y=0 in U;). Then B={(g g)} and b=choéce.

Take t=Ch. Then A={a,-a} with of{h)=2. We have p=a/2 and
p(h)=1. The center of U(g) is generated by

A =(h=1) 2+def=(h+1) *+4fe.

7.2 The infinitesimal action g - Oy is given by

h r— —2xax=2y3y

and hence the kernel g of 0,89y — GX ig generated by h-2xe and

= ):4
f+xh~x2e (on UO) and p:g -+ O is given by p(f+xh-x2e)=0,

X
p(h=2xe)=-1.

7.3 For xret* , set c=xafh). Hence i=¢p. If c is an integer
QX(A)SQX(—CW) where Qx{ncm) is the sheaf of meromorphic functions
with pole of degree -c at «.

7.4 For A=cpet*, El is given as follows

(7.4.1) ig: D = QUO, i 3 Dy

: D |
1° =x Ul 1

|
A U0
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l+c, —1-c

i . .
and i,1i : D D is given by P » X Px . The
170 |UoﬂUl —Uonul UO Ul
homomorphism a: g - T(X;EA) is given by
iooa: h +— —2xax—(c+l) ilo a: h+— 2y3y+(c+l)
& —= -3 e s y%5 +(c+l)y
X Yy
f— Xza +{c+l)x f— =3
X Ve

7.5 For example, let M be a D,-module given by

A

Uly = Dy/Dyy  and M|y =0.

Then supp M = {xo}, and if we denote by § the generator 1
mod BAY' then

e = My = Clayls = €Ll

with the relation ha=(2ayy+c-l)6=(c~l)5, e5=(yay+c)y5=0. Thus we have
I'(x;M) is isomorphic to the Verma module Ulg) /U(g)et+tU(g) (h-(c~1)}.

7.6 If A 1is not anti-dominant (i.e. ¢=1,2,3,-++} then
QX(A+9}§9X(“(C+1)W) is a gl—module. Since Hl(x;gx{—(c+1)w));cc,
the vanishing theorem for b, modules does not hold in this case.

7.7 We shall investigate the case where ) is anti-dominant and not
regular, i,e. A=0. In this case, for a non-zero Rkumodule M,

I(X;M) may vanish. In fact QX(A+p);9X(—m) gives such an example.
The following proposition asserts that essentially this is the only
case.

Lemma 7.7.1 Let M be a coherent ge—module. Then the following

conditions are eguivalent

(i) As a Qo—module, M is isomorphic to the direct sum of copies
of O, (p).

(i1) T (x;M)=0

and in this case, g acts trivially on I (X;0,(-p)8M) and
Oy (£) @ (X;0,(-p)8M) 3 M.
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Proof The last statement follows from {i).
(i) = (ii)} +trivial.

(ii) = (i) Since gx(-p)ﬁg is a D _p—module, it is generated by
global sections.

Hence we have

b m

b _, — Ogl-p)em.

Tensoring Qx(p) from the left we have
m
(§0®9X{p)) + M+ 0.
Since [ {X;M)=0, we have

(D804 (p) /DT (X;D480, (0)})" —> M.

Hence it is enough to show

(7.7.1) D80, (p) /DT (X; D480, (p)) = Oy (p).

In fact, any submodule of Q_X(p)m has also the same type. We have

an exact segquence

2
V(gL @ € > UGBy > €+ 0

of twisted ({(g,B)-modules with twist p. Here Ez is the
fundamental representation of G. Correspondingly, we have

2
Dy8C” + D480, (p) + O, (p) - O.

0

This shows the existence of (7.7.1).

Corgllary 7.7.2 For any coherent Qo—module, the kernel and the

cokernel of
Dy@r(X;M) » M

are isomorphic te a direct product of copies of gx(p).
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§8. Singular case

8.1 For a simple root o, let Pa be the parabolic subgroup such

that Lie(P,) =t &g _, @ sga 9g- Let Xu be the set of conjugate
+

subgroups of Pm' Then Xu zlG/Pa. Let pu r X Xa be the
projection. Then Py is a P -bundle. For X €t* with <A,ha>=0,
A defines a character Lie(Pa) + £t + €, and this defines a G-
equivariant twisted ring of differential operators A, (i) on Xa'

X
By Proposition 4.14.1, we have &

Proposition 8.1.1 pj&x () =
o

EA" p'

Corollary 8.1.2 If A-p is apti-dominant, then for any coherent

EX {A}-module M, we have Hj(x;g) = 0 for J#0.
o

=XA-p
module. The relations Rkpa*pég =M for k=0 and =0 for k#0

imply

Proof We have HJ(X;Q:M) = 0 for Jj#0 since p*M is a D -
rool = =

I ixemtmy = 13 (x -
o = 1 ()

Remark 8.1.3 Corollary is true for any parabolic subgroup other
than P .
a

8.2 Let A€t* be such that <i,h > = 0. We assume

(8.2.1) pEP,

This is not a strict condition because we can replace G with a
covering group of it. The flag varieties X and £, do not change

after this replacement.

Proposition 8.2.1 Let M be a coherent Qx—module,

(1)  Ep M =0 for kf.

{(ii) The following conditions are eguivalent.

(@)  p,uit = 0.

(b) There exists a coherent éX {A)-module N such that
o

= * -
M = 0, (p)®p(N as an D,-modute.
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() M o+ 0. (p)epEp 4 (0 (-p)6M)
Proof If (k) is satisfied, then
Pox Oy (-p)8M) = p ,piN = N.

Hence N is uniquely determined. Thus, these properties are local

in X. Loeally in Xa’ we have

(8.2.2) X = Pl b Xa

(8.2.3) D, =D, @D

A 0 =X
o

Hence we can reduce them to Lemma 7.7.1.

8.3 Let )} be the set of simple roots. For iet*, we set

(8.3.1) b, = {a&A; <hu,l> =0},

WA = {WE W; wiA = A}r

I, = INa,.
Then Al is also a root system and WA is the Weyl group for Ax;
i.e. W)\ is generated by the s, (ae AA) .

Let us consider the conditions

(8.3.2} oy

is the set of simple roots for 4

is the lattice generated by ZA’ or eguivalently ZA
A

Then (8.3.2) implies that

(8.3.3) W, is generated by s (o sz)'

Theorem 8.3.1 We assume that A is anti-dominant and satisfies

{8.3.2). Then there exists a sequence Opreews Gy in EA such
that for any coherent gl—module M the following conditions are
equivalent.

(8.3.4) r{X;M) = 0.

(8.3.5) There exists a filtration M = M DM, 5...DM, =0 by

coherent D _-module such that p M. /M.}=0 for J=1,2,...,N.
=X aj* =1-1"=j I
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Proof (8.3.5) implies (8.3.4) because
?(XF Ej_l/ﬂj) - I‘(Xaj 'Paj*(b—ﬁj—l/%])) = 0.
We shall prove the inverse implications. Since iA-p is anti-

dominant and regular, gx(—p)eg is generated by global sections.
Hence there exists a segquence

n

D)., — Oyl-p) @M.
Tensoring gx(p) we obtain

n

{D 5@ QX(D)) —> M.
Hence, setting

M =D, 0,(p)/D,I(X;D,80, (p))
we have @? —3»» M. Since for a coherent Qk—module N, the relation

paj*(ﬁ) = § 1is invariant by taking coherent gquotients of N, it is
enough to show (8.3.5) for M for some Opreeerly EZX'

Note that
EAQQX(P)= !X(q:)ri-p ?‘, U(g) g € "(A+p)+p) )
Set M, = Uu(g} ﬁ C oy

Since p 1is regular and integral with respect to AA' there

exists ay,..., 2y € Zl such that, setting g, =, Saj(“j-l)

=LH' My is anti-dominant with respect to ZA’ and <Haj'”j—l> -
1,2,3,... The last property implies MjC Mj—l’ where Mj =
Ulg) @ C_, _ -

b A ,0+]r1:‘|

It is easy to see that Mjwl/Mj is a twisted (g,Pa }-module
J

with twist X. Hence if wet set N. = V C\& (M. M. it is
N5 _XG'( A ( 3_1/ j))

an AX (3)-module. J
“a

J
Set M, = Vy(€,, © Mj).
Then g'wl/ﬂj = gx(p) ® pz (gj}. Hence it is enough to show that
3
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gN is generated by global sections. In fact, then there is a
surjective morphism Mg/M, - D,80y (p)/D, T (X;D,80,(p)).

Let V be an irreducible representation with highest weight
p. In order to see that My is generated by global sections, it

is encugh to construct a surjective morphism

U(g) i qunp® vV - Uf{g) @ E‘A‘D+UN'

1o

For E£€P, let VE be the weight space of V with weight ¢.

Set V' = & VE. *hen, V' is a B-module. Set V"sV/V'.
My $ETQ,
Then the weight & of V" satisfies Uy EEQ+. Moreover VL
N

is a sub~B-module of V".

Lemma 8.3.2 If ¢ is a weight of V" different from ., then

X_l+g ?5 X"A+UN.

If this lemma is shown, then U(g)@(@ﬂk_pQCu ) is a direct
b N
summand of U(g)@(m_l_pev"). Hence we obtain a surjective homo-
b
morphism -
Ulg) @ C_,  @©@V>U{g) e (C_,_ec ).
“p A-p =B A-p By

This completes the proof of Theorem 8.3.1.

Proof of Lemma 8.3.2 Assume that X—A+£ = X—A+p for a weight §
N
of V", Then
A= EeWhimpy) = Wlr-p).
Therefore there exists w such that w{A-E} = A-p, 0or X-wW)A = p-WE.

Since wg 1is a weight of Vv, pWEEQ,. Since ) 1is anti-dominant,

we have w)A = ). This implies WEW)\' Thus we have EEWA;) =W

is regular anti-dominant with respect to zl’ we have

Ll

Since My

E~ug € | %,0cQ,. Since -k €Q,, we have £ = yp. Q.E.D.
aeA+A

Remark 8.3.3 For any )€ t*, there exists we€W such that wy is

anti-dominant and satisfies (8.3.2). Hence these two conditions

are not severe.
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§9 Harish-Chandra modules

9.1 Let G, t, &, X,--+ be as in §5. Let H be an affine algebraic
grbup with a group morphism £: H+ G. Let h be the Lie algebra
of H.

Proposition 9.1.1 If M is a {g,H)-module, then EAQQM is an

H-equivariant Qh—module. Conversely, if M is an H-eguivariant

Qx-module, then T (X:M) is a (g,H)-module.

This follows from §4.7.

9.2 Hence if A 1is regular and anti-dominant, the category of
finitely generated {g,H)-modules with infinitesimal character X, is
equivalent to that of H-equivariant D,-modules. When ) 1s not
reqular, we need the modification as in Theorem 6.4.2, that we discuss

later more precisely.
9.3 Let us assume further

(9.3.1) The flag variety X of G has finitely many H-orbits.

Theorem 9.3.1 Under the condition (9.3.1), for any Xr€t*, any

H-equivariant coherent D.-medule is regular holoncomic.

A

Remark 9.3.2 The following statement is false: let X be a
projective algebraic smooth variety and G an affine algebraic
group acting on X. If X has finitely many G-orbits, then any
G-equivariant coherent module over any G-equivariant twisted ring of
differential operators is reqular holonomic.

When G 1is reductive, I have no counterexample.

9.4 Proof of Theorem 9.3.1 ILet %Z=G/U and let p:%Z + X=G/B be the
cancnical projection. Then p 1is the principal fiber bundle with the

structure group T. Then p#gl kS EZ as G-equivariant twisted ring of
differential operators. Let M be an H-equivariant coherent D,-module.
Then N=p*M is (HxT)}-equivariant. It is enough to show that N is
regular holonomic by Proposition 3.8.2. We shall prove by the induction
of the number of (HxT)-orbits in Supp N. Let & be an open (HXT)-
orbits of Supp N. Let J: S «rZ be an embedding. Then there
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exists an (HxT)-equivariant Dg-module L such that N|g =

j*(DZeJS bg L)|S Let g:HxT-»S be an HxT-equivariant map. Then g

is surjectlve and smooth. Since g*L is HxT-eguivariant, it is

isomorphic to the direct sum of finite copies of QHQ]Q / T D (A—
AEL
<xtp,A»). Hence q*L is completely regular, Therefore & is

L)g
zo8% Dg

Hg(ﬁ) is regular holonomic. Thus we obtain an (H T)-eguivariant

completely regular by Proposition 3,B8.2. Hence N"=], (D

gzmmodules

0 — N' — N — N".

Since Supp N'C Supp N\S, N' 1is regular holonomic by the hypothesis

of the induction. Hence N is also regular holonomic,

9.5 Let M be an irreducible H-equivariant coherent Ql—module
(i.e. there is no proper H-eguivariant coherent sub—gk—godule). Then
Supp M is the closure of an H-orbit 8. In fact, M - ES(M) must be
injective. Furthermore M must be the minimal extension of g|x\aS'
Here 25=8\S8. Let Jj: St3 X be the embedding. Then there exists an
H-equivariant j#g

A
F3uDy s @ u N ly\s.
"D,

Since N 1is an H-eguivariant module, it is described as in §4.11.
Namely, take an x€8 and let Hx be the isotropy subgroup. Then

-module N such that §|X\as

we obtain H - B(x) - T and corresponding map Lie(HX) + £. Then
N is described by Hx-module such that its infinitesimal representa-
tion is At+p.

Let S'(H,A) be the set of isomorphic classes of the triplets
(s,x,M), where 8 is an H-orbit of X, x€S and M is an
irreducible H —module such that its infinitesimal representation
Lle(HX) -+ End(M) coincides with Lle(H } o+t ———E» ¢ CEnd(M). Here,
(S,%x,M) > (S‘,x' M'y 4if 8=8T', x' hox for some hee;H and there
exists ¢:M = M' such that ¢(hu)= (hohhal)u for h&€H, and u€M.

Remark 9.5.1 If H<G, then M must be one-dimensional representa-
tion. In fact, if we denote by U{x) the unipotent part of B(x),
then HNU(x) is connected and its infinitesimal action on M 1is

trivial. Hence M is a representation of Hx/HnU(x)LB(x)/U(X)&T.

Theoxrem 9.5.2 The set of the isomorphic classes of irreducible H-
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equivariant coherent Qﬁ—modules is isomorphic to S"{H,A).

9.6 As the Corollary of Theorem 9.5.2 and §9.2, we obtain the
following theocrem.

Theorem 9.6.1 Assume that X has finitely many H-orbits and let

Aet* be regular anti-dominant. Then the set of the isomoxphic

classes of irreducible (g,H)-modules is isomorphic to S'{H,A}.

Remark 9.6.2 As seen in §3, the category of regular holcnomic EA—
modules is equivalent to the category of twisted perverse sheaves
3" Incidentally, S'(H,A) is
isomorphic to the category of the pairs (S,F) of H-orbits S

with the twist T corresponding to D
and irreducible H-equivariant twisted sheaves F on & with twist T.

9.7 Wow, we shall investigate the case when ) 1is anti-dominant
and satisfies the condition (8.3.2), We shall use the notations
EA' P,: X = Xa as in §8. 1In this case, irreducible (g,H)-module is
obtained as the glcbal sections of a unique irreducible H-equivariant
Qk—module M such that T(X;M)#0.

We shall interpret the condition T(X;M)=0 in terms of
(s,x,M) €s8"(H,A). If TI(¥;M)=0, then by Theorem B.3.1, there exists
uEEA
The largest N among such N's must be H-equivariant and hence

and non-gero coherent submodule N of M such that pa*(E)=0‘

M=N. Thus pa*géo. Let us take a conngcted covering group G+ G
such that p is a weight of G. Let H be the fiber product of

& and H over G. By Proposition 8.2.1, pu*g==0 is eguivalent to
the existence of éxa(l}-module N such that gsox(p)@pég. Hence N

is an H-equivariant Ay (A)-module. Let S be an open H-orbit of
a
Supp M. Then Supp M = §, Supp N = pa(g) and § = p;lpa(g). Take

x¢5 and set y = p_(x). Then Snp;l(y) = pt(y). since p;l(y)EPl,

a
Snp;l(y), which is an orbit of Hy, must be either Pl, ¢ or
C*, Moreover the condition gzgx(p)apgg is equivalent to saying

that M|

_ is isomorphic to Ox(ﬂ)em for some m. When
snp =
o

Liy)

Srlp;l(y)zm or Pl, this is simply connected and hence it is true.
The remaining case is the case Sfﬁp;l(y)gc*. Let (S,x,M)eS'(H,})
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correspond to M. Let ¢: H - Aut{M) bDe the action of H, on M.
Similarly let (pb(S), v,N} corresponds to N. Then N 1is a
representation of Hy whose infinitesimal action is by A. Here the
suffix signifies the isotropy subgroup at that point and

At Lie(ﬁy) » © is given by

Lie{ﬁy) - Lie(éy) + Lie{the reductive part of éy) -+ E/Chu ~£¢ C.

Note that <ha,x>= 0 because o €3,. Moreover M=€_p®N as an

ﬁx—module. Hence the condition p M=0 is interpreted to the

condition: C_p@?: ﬁx :>Aut(€_OBM} extends to q;:ﬁy — Aut(@_p@M)

such that dy=i. Now, we have, as ﬁyx=(ﬁyf X,

(9.7.1) Hy=(ﬂy)°'Hx.

Here ° signifies the connected component containing 1. Since
w(ﬁy) is in the center of Aut(C_QGM), in order to extend C_ 08¢

onto Hy’ it is enough to extend ¢ to Y°: (éy)° - Aut(CquM) with
dy®=x., Let xq be one of the points in p;l(y)\s. Then (H )°=(ﬁ ye.
EN N'g

Since ¢ is a representation of (ﬁx 1°, it is enough to extend
1

p
ﬁx -+ Aut (M) to (ﬁx }® =+ Aut M. Since Ker(H»H) acts identically on
1
M, (éx 1° + Aut M factors through (Hx y° -+ Aut M., Summing up, we
1 1

obtain the folleowing.
Let S5(H,x) be the subset of S'(H,X) such that (5,x,M) €
S{H,A}\8'{H,n) if and only if (S,x,M) satisfies the following &wo

conditions for some g EEA'

-1 .
7.2 = i i
(9.7.2) ShPcl pu(x) Hpa(x)/Hx is not a finite set.

-1

(9.7.3) If Sr\pu pa(x) z €*¥, then
Hxn Hpu(x) -+ Aut (M)
extends to y: H, (x)° T Aut(M) such that dd=1x+p.
&7

. Ak . - . : -1
Here Lle(Hpu(X}) 270, ¢ is given as follows: taking xiezpa pa(x}\s,

. T4 I At
Lle(Hpa(x}) Lle(Hxl) Lle(B(xl}) + t _—Q C.
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Remark similarly to the case of ﬁpa(x), if Hxn(Hxl)ea-Aut(M)
extends onto (Hxl)°=Hpa(x)° as in (9.7.3), then Hanxl + Aut (M)
extends to w-Hx + Aut({M) with dy=xr+p.

1

Theorem 9.7.1 Assume that X has finitely many H-orbits and that

A is anti-dominant and satisfies (8.3.2). Then the set of the

iscmorphic classes of irreducible (g,H#)-modules is equal to S{(H,A).

Example 9.7.2 Let us take G=SL2 as in §7. Let us take as H the
torus { (% a—l); aeC*}, Then the isomorphic classes of (g, H)~-
modules corresponds to the irreducible representations of SLz(m).
Now X has three H-orbits, namely, {0}, {«=} and SO=X\{0,w}.
Then the isotropy subgroups are given by, HG=Hm=H and le{tl}.
If ) ¢ &p, then the infinitesimal representation Atp of

Lie{H) cannot extend to representation of H. Hence
(9.7.4)  s(H,A) = {(5,,1,M),(5,,1,M )} for aéZp.

Here M, is the trivial representation of H; and M_ is the other
one-~dimentional representation of Hy. If j=-mp with a positive

integer m, then
(9.7.5)  S(H,}) = (Sy,1,M), (55,1, ({0},0,%) ({=},=,%} .

Here * corresponds to the representation of H corresponding
to  Atp.
If x=0, then (So,l,M_)¢iS(H,A) because M_ extends to the
representation of H with infinitesimal representation of H with
infinitesimal character p. Hence

(9.7.6) S(H, A = {(8;,1,M), {0}, {=}} for A=0.
This coincides with the well-known classification of irreducible
representation of SLZ(R). The date (So,l,M+) correspond to the

principal series (when A€%Zp), and ({0},0,*), ({=},0,*) correspond

to discrete series.
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