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Abstract
The asymptotic expansions of (holonomic) microfunctions is neatly

dealt with by the second micro-localization.

§1. Introduction.

Several years ago, Jeanquartier [5] proved the following:

For a real-valued real analytic function f(x) defined on a real
analytic manifold of dimensions n, §(t-f(x)) has an asymptotic expan-
sion of the form

=N e AR
@y RO R g (log t)¥-
p=0 v=1 j=o “:M:J
for distributions a -(x), as t tends to zero. Here the meaning

V,H,] ©
of the asymptotic expansion is given through the pairing with a ¢ -

function @(x) with compact support.

Recently, by using a group-theoretic technique, Barbasch-Vogan
[1] proved that any eigendistribution on a real semi-simple group G
has an asymtpotic expansion and they studied some properties of the
initial term of the expansion. Here we note that an eigendistribution
satisfies, by definition, the following system of linear differential
equations :
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Pu =l x (P)u for each P in 3
(81557
LAU =.0 for each A in the Lie algebra of G,

where 2 is the ring of G-biinvariant differential operators on G,
X 1is the character of % and LA is the vector field on G corre-
sponding to the inner automorphism of G on G.

We can show that ¢&(t-f(x)) satisfies a holonomic system with
R.S.(*) and that (1.2) is also a holonomic system with R.S. As we show
later (§4.2) each microfunction solution of a holonomic system with
R.5. has an asymptotic expansion, whose meaning will be clarified in
subsequent sections. Hence the result of Jeanquartier and that of
Barbasch-Vogan are explained in a neat and unified manner by employing
the theory of holonomic systems with R.S.

We now introduce the following space M(r) so that we may con-
sider such asymptotic expansions of distributions mentioned above in
a more general situation .

Definition 1.1. A distribution u on R belongs to M(r) (reR)

if and only if there exist positive constants e, m and C such that
n

2

-5-T
(1.-3) |Ju(tx)¢(x)dxi Sl % sup | D%|
|of<m

holds for every @ in Cg ({xeR"; [x|<e}).

These spaces M(r) can be used as a scale in considering the
asymptotic expansion of a distribution u as follows:
We say that u has an asymptotic expansion N uj and we write
co i=0
1 sy u, if there exist a sequence {uj}j>0 of distributions which
j=0 =
satisfy the following condition:

No

(1.4) For any r€IR, there exists Ng€Z such that u- 0 ujeM(r).
J=0

In particular, this condition implies the following:

(1.5) For any ré&lR, there exists N.€&Z such that u.EM(r) for
0 J
R A T NO'

(x) See Kashiwara-Kawai [8], [9] for the theory of holonomic systems
with regular singularities.
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In what follows we exclusively consider the case where uj is homoge-

neous of degree A+j for some XA€C, or, a little more generally, the
n

case where ( § xVDU—A~j)pu. = 0 holds for some peN. In the latter

v=1

e
case, uy belongs to MG Ro%-J - =ie)

foriany e > 0k

In order to exemplify the notion introduced here, we give the
following example, where the j-th terms in the right hand side are
homogeneous of degree 2A+j and 3A+%+j, respectively.

% Ak
L A+2)

2 L5 Ji2 g 2
(1.6) Pxhia ] = —— x>l |y
00 AR RS ATS0,)
3io25, 33 g
X JDYJ(—x+ +sinmh x_ )8(y).

¥ E /T (A+1)
=0 47j1r(A+j+3)cosm

The asymptotic expansion done by using M(r) as the scale can be
regarded as an asymptotic expansion with respect to the origin {x=0}.
Hence it is natural to try to micro-localize the notion as follows:

Let A be the conormal bundle of the origin, i.e., v-1 Tfofﬁn =
{(x,/~Te)eR™/-T R"; x=0}. Let p = (O,JTTEO] be a point in A. In
this situation, we introduce the following spaces Mﬁf% (r€R).

Definition 1.2. A distribution u belongs to Mkrp if and only if
bl

the following condition is satisfied:
There exist y(x) € CgORn) with x(0) # 0, an open neighborhood
Ui of EO and constants C and m such that

T
(1.7) | [[exp(-v7Tex, 16>) xu) () dxv (£)dg | <Cx e Ldol

al<m
hoflidssefor i n > 1. 7 for every: § ECS(U).
The following lemma easily follows from the definition.

Lemma 1.3. (i) If (1.7) holds for some ¥x € CEGRH) with x(0) # 0,

then (1.7) holds for any i echRn) such that ¥X(0) # 0 and that
supp ¥ 1is contained in the domain of definition of wu. :
Essonal e pi s cenot Sin WF(u)E*) then u belongs to M(r) for every

A,p
185

(#) See H6rmander [3] for the definition of the wave front set.
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(i1 IE S thelongs to Mﬁr% and a(x) is a ¢ -function defined
2

in a neighborhood of the origin, then au belongs to Mﬁr;. If we
b

further suppose that a(0) = 0, then au belongs to Mﬁrél).

3
(iv) Let u be a tempered distribution and denote by v its Fourier
transform. If there exist an open neighborhood U of £ and

constants C, m such that

i n
(1.8) 1Jv{Tg)w(g)dm <ct™Z ] sup|D®y|
o|<m

1

holds. for ‘1 > 1 and for every ¢:€C;(U), then u belongs to Mﬁr%.
+1)

P
(vi) Let P be a classical pseudo-differential operator of order at

A

)" SIf ~u belongs to M(r), then 3u/dx belongs to M(T
& A,p k W

mesE 0L S TE s belongstto M(r}, then Pu belongs to M(r).
A,p A,p

(vii) The following three conditions are equivalent:
(a) uem®

(b) tl(‘:l‘vij,(\l:l}J for any peA

() ueM}:% for p = (0;0)

(viii) For each distribution u there exists r such that u

(r)
belongs to MA,p'

Remark. The converse of (ii) is not true, namely, the fact that u

belongs to M&T% for every r does not imply that WF(u) does not

contain p; For example, let n be 1 and consider the ¢”- function
f(x)dzf exp(—l/xzj and a continuous function g(x) which is not c®
ataiciiswhere {xj} is a sequence tending to 0. Then (iii) and (viii)
combined implies that u(x]dzf £ (x)i Aisin Mgf% for any p and r.
However WF(u) contains some p in A, because xj is contained in

sing supp u.
We can also prove the following result.
Theorem 1.4. Let a(x,0) be a ¢™ function defined in a neighborhood

of (x,8) = (0,8,) R xRY (N > n). Suppose that a(x,8) satisfies
the following conditions:

(1.9) a(0,8) =0

2
(1.10) [—%iigngl]i 3 has rank n at (0,80).
REEyT
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Denote by p the point (0, /-1d,a(0,8 })G/_T{U} Let u be a

compactly supported distribution which belongs to Mﬁr%. Define a
2

function w(6) by
Iexp(—/TTa(x,e))u(x)dx - Jexp(—/TT <grad _a(0,6),x>)u(x)dx.

Then there exist constants C, m and €(>0) such that

(1.11) ]er[ts)tpfe)dﬂ < cTr-T sup | Dg 9|
a|<m

holds for T > 1 and for every @ in C?({8;|9—90| < iell):

It immediately follows from this result that a Fourier integral
operator(*) A of order at most 0 such that the associated canonical

transformation ¢ preserves A sends M(r% to M(r%(P) In view of
?

this fact we can define Mﬁr% for every Lagrangian submanifold A of
]

Y=-IT*R" by using a suitable phase function a(x, 8), even though we

exclusively consider the case where Vil in this section.

{0}
: : 1l el T n-4% b iy e T
For example, if A = {(x',x"; /-I1(&',E") eR* R BT (RaxRer ) g =
£"=0}, then a distribution u belongs to Mﬁr% (p=(0;/7T(gé,0)} if
and only if there exist eczﬂRn) with x(0)#0 and constants C, m
and € > 0 such that

(A7) |I(Iexp(-/7T<T£',x'>)(Xu)(x',x”)dx‘)w(g',x")dg'dx"}
i
<THET Z SuplDa,DB"w]
la|+|8]<m :

holds ‘feri/ «>1 . and for every  Y(&',x") 'in CE{{[E‘,X")E]REﬂRn-Z;
ler-gg+|x"] < e}

Now we want to investigate how these scaling spaces are related
to micro-differential equations with regular singularities. Let us

denote by AE the complexification of A = /—_T{O} S Tae AE =
Tfo}mn. Then &,(m) 1is, by definition, { p;(x,D) € E; p;(x,8)
A
has the zero of degree (j-m) along AE}. We abbrev1ate E.E(O) to
A

& T It then follows from Lemma 1.3 (iii) that
A

(#) See Hormander [3] for the definition.
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Jerie g (r-1)
(123 ?}lm( I)MA’P c Mﬂ’p :

Note also that, if a micro-differential operator P belongs to é;m,

then it has the form A
(1.14) SRR E 1 S o
0<|o|<m &

where Aa(DJ is homogeneous of degree |o| and Q belongs to
a,m(—l). In order to see how gaﬁhu is related to the asymptotic
A A

expansions, we consider a simple case where a distribution solution

u(x) of the equation Pu = 0 has an asymptotic expansion of the form

o
) uA+j(X) where ul+j is homogeneous of degree A+j. It is clear
i=0 paian
that ul+j belongs to M( Bedd 2)‘ In this case, we find the
following relation:
n
(1.15) | Pw= o f AN®EPu ) ol m(-Rer-1-5)

0<|alzm

If we define a homogeneous differential operator L(P)(g,Dg) by

R
I AT (T 9%

0<jo|zm

then we obtain another equation
(1.16) L(P)4, (&) = 0,

where OA(E) = Jexp(—/7T<x,g>]ul(x)dx. If we denote the image of L
by )ﬁm, Ahm is isomorphic to EAE/ fim("lj. (CE 8] . chap L,
§5.) It follows from the definition that }LE consists of homo-
geneous linear differential operators of degrge 0 defined on AE.

The following Theorem 1.5 shows the importance of the associated
equation (1.16), especially because we will later prove that, if u

is a solution of holonomic &-Module with R.S., then its asymptotic
expansion is determined by its initial term. (See §4.2, Theorem 4.2.12
for the precise statement.)

Theorem 1.5. Let X be a complex manifold and A a Lagrangian sub-
manifold of T*X. Let } be a left Ideal of £X such that J%ﬁ;f

éiX/gL is a holonomic 5&~Module with R.S. Then
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Lo LE)vi=0 (peg,naﬁ)
is a holonomic system with R.S. on T¥*A.

Proof. By a quantized contact transformation, we may assume the
following:

(b ) X is an open subset of E1+n = filE,x) s el xet"}.
(1.18) A is the conormal bundle of ngf{(t,x) eX:t=0}s

(1:=1:9) Supp M is in a generic position (in the sense of [8] Chap.
I, §6).

Then we know ([8] Chap. V, §1) that there exists a holonomic a@x-
Module "‘}7 with R.S. and a section U of f} such that

GFon M NN Gs

X

(1520) " TE 8
X .18

and

(21 1 ® i corresponds to the section u = (1 mod g[) of /V( by

the above isomorphism.
We also know ([6]) the following:
(=22 o@[s][tsu) is a coherent subholonomic o@X-Module.

Here and in what follows, 98[5] denotes (C[s] ® aBX. By using the

same reasoning as in [6] we can also show that
(1.23) ﬁ[s](tsu)/a&[s](t5+lu) is a holonomic OSY-Module with' RIS:

Let us now denote by «J' the sub-Algebra of @X generated by G’X,
D and tD.. Then, for any P in ', t°Pt™° belongs to B[s].

Moreover, any section of OS'X can be written in the form

3 D:,Jctstt_S with PjeuS'. Here we note the following two lemmas.
j20

Lemma 1.6. Let P(s) be a section of ®[s] of the form
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) D%tSPjt_S. If P(s]tsu = 0 holds, then Pju =20° ‘holds! foxr any’ i
jz0

0 D%tSP.u = 0 holds.

> j20 .

It suffices to show that Pju =0 (j>r) entails Pru =0 Anthis

Proof. It follows from the assumption that

case for any integer r. If Pju =0 (j>r), then we have

T :
pii=2y DJttSP.u = i s(s-l)---(s—k+1)t5_kD%_kP.u.
j=0 e Lo <r 7
Looking at the coefficients of s’ 'in the right hand side, we find

ts-rPru = 0. Hence we have P u = 0. Q. E. Dk

Lemma 1.7. We have an injective DSY-linear homomorphism
'u/t B'u —> Js](t5u)/ B s] (> w)
by assigning t°Pu to Pu (Ped).

Proof. Let P be an element of &'. If t°Pu belongs to

,%[5][t5+1u), then we can find P|[5)=ZD1j_"c-SP:.lt5 (Pj € D) such that
J

Jiii=iine) | DIt PL b

s+1u
o t
j J

t°Pu = P(s)(t

Hence it follows from the preceding lemma that

Bu. =1B(tu] e B (tu) = td'u.
Q.E.D.

Now we resume the proof of Theorem 1.5. Let g—' denote the
Ideal of '%Y which annihilates t°u mod 3[5](t5+1u}. Then it
follows from (1.23) that ‘BY/.g' is a holonomic ﬁY-Module with R.S.
On the other hand, Lemma 1.7 implies

f’-u Gt s

Hence for any P in gf‘, weicans£ind BEElin: (th Y isuch ‘that

(P+Q)u. = 6. Since &' C EA and L(P+Q) = L(P), the system ) in
Theorem 1.5 is stronger than the system ,;%Y/dl'. This means that £
is a holonomic @@ -Module with R.S. Q.E.D.
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So far we have developed the theory of asymptotic expansions by
the aid of scaling spaces M(r) (or its micro-localization Mﬁr)).
However, it would be much more desirable if we could find a suitable
sheaf on which another suitable sheaf of rings of operators acts and
in which the asymptotic expansion of (a class of) microfunctions can
be considered. In the example (1.6), we can rewrite the right hand
side

(1.24) { N cjxstijJ[y|2A + [ ) c1x3ip?
=0 ;

j=0 ) ¥

00

3 5
il A+ 3hts
ol AR () DI (-x. % + sinm\ X 2} S(y),

F[A+%)coswk '

where cj=P[-A+%)/4jjIP(-A+%+j) and ¢} = P(A+%J/4jjlr(k+%+j).

In view of the growth order of c. and ci, it is easy to see that
the infinite series of operators appearing in (1.24) do not preserve

the local character but that it has 'propagation velocity'" of order
3

|x|2. (Cf. Kashiwara-Kawai [7]). Having this in mind, we will

introduce the sheaves JSX and EI in the next section. We note

that it has turned out that 8; coincides with the sheaf 8im
introduced by Laurent [14], [15] in different context.

§2. The second-microlocalization of operators.

As we mentioned at the end of the introduction, we want to find

a sheaf of operators which is suitable for the manipulation of the
asymptotic expansion of microfunctions. For this purpose we introduce
the sheaves ig: and §: starting from the sheaf M of simple
holonomic Ek-Module supported by a complex Lagrangian submanifold A
of T#*X. Our procedure for finding the desired sheaves is similar to
the way of constructing the sheaves of hyperfunctions and (micro-)
differential operators starting from the sheaf of holomorphic functions.

For example, the sheaf : of linear differential operators (of
[0}
infinite order) on " is, by definition 3{2( G’n ) an), where
C C

A = {(x,y) €CxC"; x=y} and an denotes the sheaf of holomorphic
(X
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n-forms. Note that an is a dual sheaf of Gn and locally iso-

C ()
morphic to (0 We will follow this procedure in defining the
C

sheaf g%i (Definition 2.2). We first prepare several notations.

n°

Let X be a complex manifold of dimension n and A a non-
singular Lagrangian submanifold of T#*X. We denote by <y the projec-
tion from T*X - Tix to P#*X. In what follows, we will c??gider the
problem locally in A, and hence we may assume that A =y “A with
A= y(A).

Let M be a simple holonomic &,-Module with support A and

let M#* denote &bfréx(%: 8—}()‘ Let A be oM 8 M* and Aadgf

TE(XXX) = {(x,y;E,n) € T*(XxX); x=y, E+n=0}. Here we note the follow-
ing

Lemma 2.1. The system J is independent of the choice of M.

Proof. Let oM' be another simple holonomic system with support A.
Then there exists a constant A such that ' is isomorphic to
ﬁd”dgf Etk] @&cj{, where ETA) denotes the sheaf of micro-differential
operators of fractional order A+j (jeZ). Furthermore the isomorphism
@ from M' to M" is unique up to constant factor. On the other
hand, AM"* = ET'A) @EJ%* and hence M" & M"* = ( E(}] @EJM) 8

( E(—)\} (’jaj/[*) = MeM* =N ThereforeA @ and CP*—I: _/P{”* M
give rise to an isomorphism ¢ from M' & M'* onto _M" 8 M"* =
M& M#. Since ((cq:')*)-1 = el Cp*_l for celC’, v does not
depend on . @.E:D.

After this observation we introduce the following

Definition: 2:2:" B0 w=c NP €2 8n A
A def A2 AxX EXXX

We can also consider the micro-localization of ‘gi by the same
procedure used in S-K-K [17] Chap. II to define the sheaf of micro

(=pseudo)-differential operators starting from Oﬁgin). In what
a %
follows, 2 Axp? denotes the comonoidal transform of AxA® with
center Aa, ey {AXAa—Aa) LlS*a(Aan). The projection from
A

a
A Aan

to S*a(AXAa) and the projection from S*a(AXAa) to
A

P*a(AXAa) are denoted by m and vy respectively.
A
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Definition 2.3.

: PR n =1

o €1 aie Ns* (sz\fi)(TT i
Aa

LR e R T

Here and in what follows Afw denotes £ 8& /Yﬁ. Since A is
independent of the choice of M , the definitions introduced above
are independent of the choice of A{. Hence we usually choose €

Y|X
as M when A has the form T%X for a non-singular submanifold of
X

We now begin to explain how to obtain the concrete expression of
the germ of .5:. The corresponding result for E: is obtained by
combining the results given below and the reasoning of S-K-K [17]
Chap. II, §1.4, so we will state the result (Theorem 2.12), leaving
the detailed arguments to the reader. See also Laurent [14].

We begin our discussion with proving several vanishing theorems
needed for the concrete calculation of the relative cohomology groups
introduced above.

Proposition 2.4. Let Y be a non-singular hypersurface of X = 1
and let A denote T#X. Let U be an open subset of A such that

Y
each fiber of U - y(U) 1is contractible and that <« (U) is a Stein

manifold. Then we have
! 3! ;
(2.1) WU CY0) =0 (5£0)
Proof.  Since V def y(U) 1is Stein, there exists a fundamental system
of Stein open neighborhoods Wk(:X of V. Then Wk n(X-Y) 1is also
tein. Denote by j the inclusion map from X-Y into X and let

P denote the sheaf j;,‘j_l Gx. Denote P/ OX by & . Then it
follows from the definition that

o -1 -1
(z.2) CYlX;Y FBy Oy
On the other hand, we have

(2.3) WPy - By 60 =0




32
for j>1. Hence we have
(z.4) W@;F) =0 Gz1.
Therefore we find
(2.5) Hj(U;C§IX) = _iw';_nLHj(wk;Sﬁe Gy =0
for | gz 1 QEBED:

By a quantized contact transformation we can easily deduce the
following corollary from Proposition 2.4.

Corollary 2.5. Let A be a Lagrangian submanifold of T#*X and M
a simple holonomic EX-Module with support A. Then for any p in
A—T§X, we can find a neighborhood W of p which satisfies the
following:

For each open subset U of W satisfying the conditions
(25,67 y(U) 1is a Stein manifold
and
(2=7) each fiber of U -+ y(U) 1is contractible,
we find

Hj(U;M"“) =0 For i F5£0),

Next we deduce the following vanishing theorem (Theorem 2.6)

from Corollary 2.5. In what follows, X denotes m“, V denotes
x 0 Bt 2n 2n
T20 * (T30 ) " & T3 8 a € and 4 denotes

We denote a point in Ezn by (x;¥)

& Qe A & 4
{0}|c™ To}|c™ T0}|c?™

Zn

and a point in T?O}E by (0508 End: SiEettus take a ‘point s tpl i

A T*XXX(XXX) = {(0,0; £,n); &-n#0}. By a linear transformation
we may assume that p is (0,0; go,ﬂgo) with go = (0,---,0,1).
Define Vl by 400,05 E,n) €V gg+n£ Faivefor e =1 o coiindiBard dilie R
be a sufficiently small neighborhood of p which satisfies conditions
(2.6) and (2.7). Then it follows from Corollary 2.5 that
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H (UaV, a-av 3 A7) =0
1 k

holds for j#0 and 1 < vy <=+*< v <n (0 <k <n). Since {UnV,}

1
is an open covering of U—(AarﬁV), we obtain by a theorem of Leray

(2.8) Hja(U;N“’) =0 for j>nm
A
and
n n
(2.9) R AT B T e R A I O a0
A 2=1 j=1 2#3

On the other hand, Theorem 1.2.2 of [8] Chap. I, §2 asserts that

ek e )
EXxx,A AV
holds ifori g o< codimT*(XxX)(AanV} - proj dim ATt easy to see
that

2 a A
codlmT*(Xxx}(A NnV) = 3n, proj dim N=2n
and

j T
waxxx,aanv“xw” ) )‘iAaU\f)

Thus we obtain the following
Theorem 2.6. NI (N™) =0  (ifn).
A

We next try to find a symbol sequence corresponding to an element
in J}A.p (peh).
First we note that

n n
BN D= Line NE (U v il v
Ny, L AR oy 1)/(3_21/( (Ul i)

holds by, (2.9). Let P Dbe intﬁz p* Let (Z pj(Dx,Dyjjﬁ(x,y} be a

n
corresponding element in Afw(Un r\VR) for sufficiently small U
=1
which satisfies conditions (2.6) and (2.7). Here and in what follows

we denote by &(x,y) the generator of AN. It foilows from the
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definition that pj(E,n) is homogeneous of degree j and satisfies
the following conditions (2.10) and (2.11):

n

(2.10) For each € > 0 and each compact subset K of Un( F\VR)
there exists a constant C_ . such that A
>

i :
S§P|Pj| 5 C, e /3! (G 20
holds.

n
(2.11) For each compact subset K of Un( r\vg}, there exists a
constant RK such that =1
sup|p;| <R (-3)! (G < 0)
¥k 4= K
holds.

By the Laurent expansion, we have

n -G‘.E-l
(2.12) ps(E,n) = ugz“ Pj,a(EJEEl(E£+ng) f

It is then easy to see that, if we define qfl)(g,n) by

) n -u£-1
p; L(E) T (E,+n,) )
j,a = L
al,...,ul_liﬂ 2 2=1
a2<0
then zq§£)ﬂna belongs to Afm(ur\(ﬁq Vi)). Hence we may assume from
] #4
the first that pj(g,n) has the form

E n -uR-I
2.13 . e TR .
(2.13) Pj,q8) T (5g*n,) ,

n
aez+

Here we note that pj,q(g) is homogeneous of degree j+|o|+n and
defined on a neighborhood of £, Furthermore Cauchy's integral
formula combined with (2.10) and (2.11) entails the following:
There exists a neighborhood W of EO = (0,...,0,1) on which
pj’s are defined and satisfy the following conditions:
(2.14) For each € >0 and k > 0 there exists a constant C
such that

E,K
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suplp, | <c edelelsr G0

W Eoks

ja
((2.1:5)" Forveach. & > 0 ‘there exists a constant R such that
_iyrelelp-i ;
s§p|pj,a| Sl ) el iR (3 < 0).

On the other hand, we have the following formula:

n —l-aﬁ & I 1
(2.16) I (DD i) Syt Yl e Il (Dl s D) e oty )
2=1 %1 7y gy Ry
n
Hence, as a section of A (Un( V1),
=1
) n -aﬁ-l
pE s (DL (DS e T ) 8(x,y)
Glez: Al Xy Iy SRy ey
aGZ?
is equal to
n
ik o =i
— P. D T i6Da 3D Silx v )%
jéz = PJ,G( X 2=1( %, Yg) (x,¥)
n
ueZ+

Furthermore we have

n
T (D,*D, ) T80k, y)= T (D, +D )7 6CoYIEN U QW)

el e ]
Xy T R k#L - ko Yk

)
Yo'k

and we find

n
o)
T s T 0 Ml VAR ey e W 1
Sl S e

Hence, as an element of HU(U;éﬁz),
n

DL ) Leeey

W I (D
T

def
satisfies the system of differential equations

| D ) =0 =i Shcnn
(D, *Dy v ( n)
(xz-yl]w =0 Rl b rnih

Hence w can be identified with &(x-y). Therefore w can be

identified with the identity operator, and hence, ; pj(DX,Dy)G(x,y)
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can be identified with ( J — p. (D )x%).
jez of Ti.atx
aEZn

FS

Now, if we define q; ;(£,x) by ) (£)x%*, then

= P o

la|=i ol Ij-lvn,a

&3

ED and a polynomial in x, where § 1is independent of i and j.
poly P

i{g,x) is a holomorphic function defined on a neighborhood & of
2

It is homogeneous of degree i in x and of degree j in £.
Further, they satisfy the following growth conditionms:

(2.19) For each e > 0 and each compact set K of @ x EE, there

exists a constant CE K such that
?
1+
; Cs K&
5up|qj il = _, g
K B £ (i)l

holds if j > i.

(2.20) For each € > 0 and each compact set K in @ x Eg, there

exists a constant R€ K such that
’
(1233 Ayni=j
S§P|qj,i! £oETF Bk

holds £ 1 > j.

Now we introduce the following

Definition 2.7. The symbol sequence of P E.si(ﬂ) (eech = TTO}En)
is, by definition, the doubly indexed sequence {qj i{E,x)}iGZ which
4 +
jeZ
satisfies the following conditions:
s N
Js

is homogeneous of -degree j in & and a polynomial of degree

i(E,x) is a holomorphic function defined on @ x E; which

i in x and which satisfies the growth conditions (2.19) and
(22004

Using this definition, we can summalize our result in the
following form:
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Theorem 2.8. An operator P 1in

D)

determines a symbol sequence

{qj i[E,x)}ieZ which satisfies conditions (2.19) and (2.20) in a
’ +

jeZ
unique manner and each symbol sequence

the above conditions determine an operator

by defining it by _Z_qj ; (D,»X) . Here
1 b

multiplication by x, should be applied

Dx is considered.

Remark 2.9.

{pl,j(x’g)}iéz_'_’ where pi j

L ]

We often express the symbol sequence of P Egﬁz(ﬂ)

is homogeneous of degree

{qj,i(g,x)}iez+ satisfying the
JjeL ks
P belonging to JDA(RJ

(ofie (D ,X) means that the

it
first and next the action by

as

in-0E i and

JEL
a homogeneous polynomial of degree i in x. When the symbol sequence
is given in this form, we assign P Giﬁm(ﬂ) to it by setting P =

o

and next comes the multiplicaiton by x.

is related to {ql,j{i,x)}

1 g
ol

Bi slx.8) = E % <3+ |

and

1

JII
a3 (8:%) Z o— D
the

is

satisfies

D

Furthermore

fq; ;(E.x)}
taklng the formal adjoint.

i,j X E)}

E)
satisfies. Hence

Remark 2.10. Let =7 pj(x,D) be in

N p; j(x,D) in 'BA to P, by defining
R

2,
pj(x,E) that is homogeneous of degree
consistent with the embedding

3

EXIA
Ring structure of

restricted to this subsheaf, namely, the composition

|,i+]|al

£Px i+|a|,

>

X coincides with that of

D }, namely, the (micro-)differentiation is applied first

In this case {pl,jtx,i}}

in Theorem 2.8 by

(E,x)

il

same growth conditions that

closed under the operation of

CXIA' Then we can assign
Pl’j (x,€)

g TG

to be the part of
This assignment is
égz Note also that the
when it is

Yoix
m,n sl

Exla
(x,D.)
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of two operators iszi,j(x’Dx) and kEEqk’l{x,Dx) in ﬁﬂi is given
2 3
by the following:
- 1 o o
(z.22) 1, (x,8) = m=i§k-|cx|m Dpp; 5 (,E)D a4y o (x,E)
n=j+&-|o|

Remark 2.11. Theorem 2.8 establishes the correspondence between an
operator in Jﬂz and a suitable symbol sequence, when A = Tfo}m .
An analogous result can be obtained in the case where A = T?En with
an affine variety Y of ¢? in the following manner:
1 n, = = =
Let Y be given by {xel; x'déf (xl,...,xd) 0} and A

T?En. Denote (Ed+l""’gn] by £'". Then there exists a one-to-omne

correspondence between ;5?;(52) (@ € A) and the set of doubly-indexed
sequences {qi j{x,sj}iez which satisfy the following condition
’ +
jeZ
(2.23) and growth conditions (2.19) and (2.20).

(2.23) qi’j(x,a) is a holomorphic function defined on § x m?x|’€n)

which is homogeneous of degree j in & and a homogeneous
polynomial of degree i in (x',&").

In a similar way we can find the characterization of operators
oo

in €. (Cf. S-K-K [17] Chap. II, §1.4.)
Theorem 2.12. Let A be T?O}En and let P be an operator in
EI(U), where U is an open subset of T*A n m; % EE . Then there

exists a symbol sequence {p. .(x,&)}. - which satisfies the
i,] i,j€Z

following conditions (2.24) ~ (2.28) so that P «can be expressed as

i?jpi’j(x,Dx). Conversely, if {pi,j(x’g)}i,jez satisfies the

conditions (2.24) ~ (2.28), then 7 P j(x,Dx) defines an operator
o

P i1
in EA(Q).

(2.24) P; j(x,E) is a holomorphic function defined on U and it is
homogeneous of degree i in x and of degree j 1in E.

(2.25) For each ¢ > 0 and each compact subset K of WU; there
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ex1sts a constant Ce K such that
3

G A

€y K ]

sup|p. .| < = e
K Asd It

heolds For: Sg- >4 5008

(2.26) For each e > 0 and each compact subset K of U, there

exlists a constant Re e such that
3
sup|p.: .| < ol L
K i,j! = 1! g,K

hoild s fers teit > i0idiand & i < il

(2.27) For each compact subset K of U, there exists a constant

RK such that

A

SUp |p- s (-3) IR
K 1457 K

holids:ifor. 5 < i < 0

(2.28) For each compact subset K of U, there exists a constant R

K
such that for each e > 0 we can find another constant Ce X
2
so that
-i) ! j-ig-i
TR S e G

holds for i < 0 and j > i.

Remaxk  2i:1i3. L IE A sis T;En with, ¥ = {x emn; x1=~--=xd=0}, then

by replacing the condition (2.24) with the following condition (2..29)
we obtain the same result.

(2.29) By j(x,gj is a holomorphic function defined on U and it is
2

homogeneous of degree i in (xl,...,xd,gd+1,...,gn) and of

depree sl an E,
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e

§3. Construction of the sheaves on which .SX andi e Taety

©
A
5 In thi’i section we construct sheaves %A and a}l on which
vsi and E',I act respectively. The first subsection is devoted to
the proof of two theorems which relate the cohomology groups on
tangential sphere bundles and those on cotangential sphere bundles.
The results obtained there are effectively used in the second subsec-
tion to study basic properties of éﬁ and &}‘

§3.1. Correspondence between sheaves on sphere bundles and co-sphere
bundles.

Let M be a topological space and V a real vector bundle over
M with fiber dimension d. Let V* be the dual bundle of V.
Denote by S (resp., S*) the sphere bundle associated with V (resp.,
V#*), namely, S = {V—M)ﬂR+ and S* = (V*—M)[R+. Denote by vy (resp.,
Y*) the projection from V-M (resp., V*-M) to S (resp, S*). Let
D denote {(x,ﬁx,ﬁx) = (x,ﬁx;x,ﬁXJ €85 % S*; <vi,n,> 2 0}, where
[ix,ﬁx) is the equivalence class of [x,vx,nx) e (V-M) ﬁ (V*¥-M). We
denote by * 1T "(resp., w) f‘the projection from & onte Mui(respi,
from S* onto M). ' The projection from D onto 8S* (resp., onto. §5)
is also denoted by Tt (resp., m).

Theorem 3.1.1. Let F be a complex of sheaves on S and let ‘5’?,
denote the complex of sheaves IRT*Tr"l . Let K be a closed and

properly convex(*) set of S*. Let K° be the polar of K. Then we have

(3.1:.1) ]RI‘K(S*;Q) = RT -1 (K°; FH[1-4d].
T miK)

Proof. Set M' = w(K). Then we have

RT,(S*; 2) = RI(S*;RT (g))
(5% ) “RISHRT (g

(#) Convexity means that each fiber K Knn_l(x) is convex,

1 x def il
hrent (Kx) is convex. Proper convexity means that vy (Kx)

does not contain a line.
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and

RT (k°; %F) = RT(K°; RT 'l(M' CF)i.

i) T

Since IRRT (@) =]R‘I*TT_]]RT (%) holds, by replacing M
)

o LMy
with M', we may assume from the first that

(L2 (k) = M.

Furthermore, by considering a flabby resolution of ?, we can reduce

the problem to the case where & is a flabby sheaf.

Let f denote TT| Then we have

r l(sex)

(3.1.3) RT(S*-K; &)

RT (S#-K; Rrym * F)

mr(T'l(s*~K); nl

F)

RI (S; ]Rf*f_lj’r').
On the other hand, we also have
(3:1-4) “RE(S*: G)

= ]RT(T-lS*; w-197)

]Rl"[n—lS; 'n_lfﬁ)

]

RT(S; F).

Hence, by combining (3.1.3) and (3.1.4) with the long exact sequence
of relative cohomology groups, we obtain the following triangle:

RT, (S5*:2)

/ \
(3.1.5) / 41

RL(8 gl naiis S0 Al pe gelig
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On the other hand, the following triangle follows from the definition
of ﬂléngk[ﬁF] (cf. S-K-X [17] p.270 Remark):

RT(S; R Bintc (F))

(3 167 N\\\ +1

RI(S; F) —— >RI(S; RELE LF).
Therefore we find
(3.1.7) RI(S*;¢) = RI(S; R Dol (F)) -

Thus the problem is reduced to the calculation of R:Sédf(jF). In
order to calculate it, we appeal to a limitting procedure. For this
purpose we choose a decreasing family of open and properly convex

subset Un of S* so that K = mn Un holds. Let fn denote
n>0

m Note that

=1

T (S*—Un)
=1 = & - c

(3:3.8) E C(aGw,) & UL, ] €8% 8% (x,n,) €U and <v, ,n >>0},

where U- = S*-1] .
First suppose that (x,vxj is not contained in U;, the polar
set of i Then fgl{x,vxj is a non-empty contractible set. In

2 . A 0 :
fact, it follows from the assumption that there exists (x,n’) 1in

0 -1 . 0
Un such that <We,n > < 0. Hence fn (x,vx) contains (X,Vx,-n ).

Then, for any n in f;l{x,vxj and any t such that 0 <t <1,
0 -1
tn - (1-t)n’ e £ 10,y ).

In fact, if (xi tn—(l—tJnUJ were in U, then (x,tn)

= 0 0 .

=(x,tn= (I=t)n " +(L-t)n") should be in U because of its convexity.
Thus we have seen that f;l(x,vx) is contractible to the point

(x,vx,—ng) in this case. Hence we have

(3:1:9) R.Omfn(?j =05 if (x,vx)éug.

(x,v,)
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Next we consider the case where (x,vx) is contained in U;.
In this case, Un is contained in {(x,vx)}°. On the other hand, it
follows from the definition that (x,v,,n) 1is contained in fﬁl(x,vx)
if and only if (x,n,) 1is contained in {(x,vx)}°r1U;. Since LS

is open, f;l(x,vx) is a closed annulus, namely, homotopic to Sdﬁz.

Therefore we have
; b d-2 ; :
(3.1.10) Rﬁmtfn(\?){x’vxj = RI(S" ° > {point}; 3’(X’Vx)J
“?(x,vx)[l_d]’ ith {X’Vx) e US,

Thus we find
([(3ailicilaly) m&mf (F) = 3[1—d]|

n ue

n
and hence
(3.1.12)  RT(S; RBat, (F)) = RI(US; F)[1-d].
n

Since {Un}n>0 is a decreasing family of proper convex sets whose

limit set K is a closed and proper convex set each of whose fiber is
not void, {U;}n>0 is an increasing family of properly convex sets
whose limit set is K°. On the other hand, we have assumed that F

is flably. Therefore {HJ(US§SF}}H>0 satisfies the (ML)-condition.
Hence we have 7

(3-1.15) - 1in w1 Yo, gy - pdtlodige dony
n

Combining (3.1.7), (3.1.12) and (3.1.13), we finally obtain

RT(8*5 @) = RI(S; RBLat(F))

RT(K°; F) [1-d]. Q.E.D.

In application, we usually use Theorem 3.1.1 when % has a
special structure. It enables us to obtain more concrete expression
of the cohomology groups in question, as we show below. In what
follows, we consider the problem in the following geometric situation:
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Let N be a subman%ﬁe}d of codimension d of a real analytic

manifold M. Denote by N\ the (real) monoidal transform of M with
e

center N, i.e., Ny = (M-N)LJSNM. We denote by 1 the projection

N
from NM to M. In what follows, the triplet (SNM, SﬁM,N) corre-

sponds to (S,5*%,M) in Theorem 3.1.1.

Theorem 3.1.2. Let X be a sheaf on M and define F by
RTg y(t'K). Let ¢ be Rr,s 'F and let K be a closed and
N

properly convex subset of S#%* = S§M. Then we have

(3-1.14)  Hy(s% @) = Lim #0700 K0,

where U ranges over a system of open neighborhood of w(K) and 2

ranges over the set of closed subset of U such that ZnNcm(K) and
CN(Z)11K° = ¢. Here CN(Z) denotes the normal cone of Z along N.

Proof. Theorem 3.1.1 asserts

j+1-d

Ky .
T_l-ﬁ(K)( ,?}

HY(S*;9) = H
Hence it suffices to show that

B (K°; F) = Lim H (U; K).

T inK) 70 Z

On the other hand, it follows from the definition of & that

RT (K°; F) = RT wstix,

T lﬂ(K) T lﬂ(K)nK°

oy
where W 1is an open subset of NM such that W nSNM = K°. Hence we
obtain the following triangle:

Rr _; (K5
T “w(K)

(3.1.15) / \+1

%mr(w;{lj{) S, }_}i%]RI‘(W—{K"nT_lﬂ(K));T_IK) )

AN
where W ranges over the set of neighborhoods of X°® in NM such
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that W;\SNM = K°. Then we have
(3.1.16) LlimRI(W; t 1K) = Rr(k®;  1x).
W
Now we note that a fiber of X° over a point x in N is
contractible or (SNM)X according.as - dis dink (n(K) mer net. Hence
we obtain the following triangle:
RT(N; K)
(Balsdn) / \1

RU(K®;1 1)) — SRI(N-m(K); ) [1-4].

Next let us define a subset W of M-N by T(W-SNM). Then we have
W-k°n ot in)) = tTIWU (N-T(K)), because K°-t lm(k) = r lN-m(K)).

On the other hand, we easily see
R (K) = K|N[-d].

Therefore we obtain the following triangle:

RT (W U(N-7(K)) ; &)

(3.1.18) / '\1

RT (W- (K° At 2w (K)) 3 ) —>RT(N-71(K) 3 ) [1-d] .

Gomparing..(3.-1.15), (3:1.16)4, (5.1.17)and (3:1.18), we £ind the

following triangle:
RIS e (K85 F)
T CK)
z{///// Fk\\<:i\

RT (N; K) L%EURF((W'SNM)U(N'F(K));K)-

Here we note that RIT(N;XK) = lim RT'(U; A2) holds when U ranges over
i}

the set of neighborhoods of N. Hence, by setting W‘=(W-SﬁmLKNﬂﬂK)),

we obtain
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Ry 50 (055

/N

lim RT (U; 1im RT(UnW'; K
T1}3 ( KJ—“%{} (Un )

Thus we finally obtain
(5l a19) ]er'ln(ic) (x°; F) = %]1% BRI o (B )

Since U-W' ranges over the set of closed subsgt Z of U such that
ZnN = K and that CN(Z] CX®, (3.1.19) is the required result.

Q.E.D.
§3.2. Definition and basic properties of sheaves @A and 5A.

In §2 we introduced sheaves 3: and 8: for a Lagrangian

submanifold A of T*X. As we observed there, gi deserves the name
of second-microlocalization of operators. Hence it is natural to try
to find sheaves EA and Crl on which ﬁi and EX act
respectively, as in the case of (micro-)differential operators. In
order to do this job, we hereafter assume that X is a complexifica-
tion of a real analytic manifold M of dimension n and that the
purely imaginary locus AR of A, i.e., AnV/-1IT*M, is also a (purely
imaginary) Lagrangian submanifold of /-IT*M. Throughout this sub-
section we choose and fix a simple holononmic -Module M with

support A. We denote 6% @EXM by ME. In parallel with the

~

~
discussion in §2, we will introduce sheaves ﬁ}\ and CA by using

the same procedure employed in defining the sheaf 43M of hyper-

functions and the sheaf CM of microfunctions. In defining new

sheaves B and 8, we start with /%]R instead of (. 1In what
% 4 R~ X

follows, we denote by w the projection from & A¥* to A.

Definition 3.2.1. (i) defﬁ MB
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by s N TS,
A def
T*]RA
. A
Since we can easily prove that J&E{ 1457 I é}I-Module, Ea is also

a é§:—Module. Using the same reasoning as in S-K-K [17] Chap. III,
§1, we can also verify that Ch is an E:—Module.

In order to study basic properties of Bﬂ and Ei, we need
several cohomology vanishing theorems.

We first show that A% is purely n-codimensional with respect to

jim, namely, we prove the following
Theorem 3.2.2. )i%R(ﬂ@R) = 0 for j # n.
K

Proof.  Let p+ be a point in KR. Since the problem is local in
T*X, we can find a real contact transformation which brings (ﬂm,p)
to (/TTT§M, pO) for a non-singular hypersurface N of M. We may
choose a local coordinate system z = (zl,...,zn) = (x1+/TTyl,...,
xn+/TTyn) around w(po) €X so that M = {y1=---=yn=0}, N = {x1=yl=

--=yn=G} and pD = (O;JTdel) hold. We denote by Y the complex
hypersurface {zl=0}. By a quantized contact transformation, we can
bring M to a simple holonomic system whose support is T?X. Hence
we may assume without loss of generality that ﬂdm is C% X' (S-X-K
[17] Chaps II, Definition 1.1.4 and Theorem 4.2.5.) Then Theorem
3.1.2 implies the following:

; - T
(3201.) NhTﬁM(CYlX)pO = %}%Hf}nzw, )

n

where U ranges over the set of open neighborhoods of 0 in € and

Z ranges over the set of closed subsets of C" which satisfy the
following two conditions:

(3:2.2) INYcN
(3.2.3)  Cy(2) nlz=x+/"TIy €t; y; > 0} = .
Here we have identified TYX with X by using the linear coordinate

system on X. Furthermore, by shrinking U and replacing Z with
UnZ if necessary, we may assume without loss of generality

(3.2.4) Z 1is compact
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(3.8.5). 2 € let": ¥ S| =

In what follows, for compact subset ZI° of En, 7 denotes
{z €t™; |£(z)| < max|f| for each entire function f}. We say that a
y/

compact set Z 1is holomorphically convex, if Z =7 holds.
We now recall the following result ([10]).

Proposition’ 3.2.3. Let 1Z be compact subsets of g,

Assume that both 1Z

have

1 and Z2

and Z are holomorphically convex. - Then we

1 2

it (25 00" 0 for j # n.

- )
2172y c®

We will prove the vanishing of (3.2.1) by using this result.

Let % denote the family of compact subsets Z of "
sdtisfyifng conditions (3.2.2), (3.2.3), (3-2.4) and (3.2.5). 'We shall
show tbat Z belongs to % if I belongs to %. First we show
that Z satisfies the condition (3.2.2). Note that the condition
(3.2.2) is equivalent to

(3.2.6)  (Z-M)NY = ¢.

This condition implies the following:

For each € > 0, there exists BE # 0 such that
(BaZ2eT) Zn{zet™; |y'| 2 e, |zl| E8ET g
Here and in what follows, z', x' and y' denote {zz,...,zn),
(xz,...,xn) and (yz,...,yn), respectively.

Let. =z be a point in Y-M. Define an open subset RC (e =00
of € by C-{w=u+/-Ive€C; v > c}. We will show that there exists
an entire function f£(z) (z eEn) which satisfies

0
(3:2.8) £z & RC
and

(32491 . E(B)ER

Since RC is a simply connected open subset of [, RC is a Runge
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domain. Hence there exists an entire function P(w) (welC) which
satisfies

(3.2.10) Re @(£(z%)) > 0
and
(3.2.11) Re Q(£(z)) < 0 if zez.

Therefore the existence of such £f(z) will entail that 7 satisfies
the condition (3.2.2).

Now we try to find such £f(z). We may assume without loss of
generality that

Tzl = G0 DA0 oo O - A4 0D

Define f(z) by z; - /TTa(zz—xg)z, where a 1is a positive constant
which we shall specify later. Choose 65 asdn (3..20 70 fox: e s b2
First let us consider the case where |y'| < e = b/2. Let g and h

denote Re(-/TTa(zz-xg)Z) and Im(-/TTa(zz-xg)z), respectively. Then
we have

022

B g 2
g” = 4da (xz xz) Y5

[ES

202 0
4a”e (xz-xz)
and

2 052 2 042
h = a(yz-(xz-xzj )< .ake —a(xz-xz) A

It then follows that
2 2
(3.2.12) h+ £ < ae
dace

If: there were .z “in- 'Z- ‘such that. £(z) & RC, then we should have

=
+
09
[l

o

(3:2.15)

]
t

U il

with t > c. 1In view of (3.2.5), we should then conclude
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(3-2.14) |2} + b 28

Combining (3.2.12) and (3.2.14), we should obtain

2
lg| - —3—7-; G = B

?

and hence

(3:2.15] g2—4aszlg|+4acez—4aze4 = {\g[—2a52)2+4aa2(c~2a52J 2 0

2

If we choose c¢ = ab™, f(zo) é Rc‘ On the other hand, we have

2
c-2ae? = ab?-2a(B? = 2L 5 g

This implies that (3.2.15) is not satisfied. Hence, for this choice

of c, f(Zn{]y'| < e}) is contained in R.. Note that we need not

have fixed a so far. Next let us consider the case where |y'| > €

(= b/2). Since Z 1is compact, there exists a constant « such that

zc{zet";|z| < «}.

In this case it follows from (3.2.5) and (3.2.7) that

8

£

VZa

!
(3525160 [ = welel &

holds for every positive t. Hence if we choose « (>0) so that

o & 4 (K+|xgl)2 < bZ
v2a
and
)
—& - (e XID% >0
vZa
hold, then f(z)/a is contained in R 2 Then it is obvious that for
b
sufficiently small a« > 0, f(z)/a is contained in R - Hence £ z)

S
is contained in Rc‘ Thus we have verified that Z satisfies the

condition (3.2.2).
Next we show that 2 satisfies the condition (3.2.3). The
condition (3.2.3) is equivalent to the following:
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For any & > 0, there exists GE such that

(Ba2sly) i & clzeX; "y le e e [} Yiaed: (e =18 b

1[ €

Then it is easy to see that 7 satisfies the condition (3.2 Lyhseand
hencey (552 3)y Ftds falsojcleariithat 7 satisfies conditions (3.2.4)
and (3.2.5), if Z satisfies them. Therefore we may replace ¥

with %, ac¢ (2 € %; Z =1} when we consider the inductive limit

in (3.2.1). Next we shall show that, for each ¢ > 0 and each Z1

in 30, we can find a compact and holomorphically convex set Z
such that

2

(3:2:18)" 0 €7,

and

I‘z. —
Gzedeyi 7 - Ziclaet’y 2] saek = U

If this is the case, we have
(3:2:.20) 13 HJZ e 5
Zl,%l 1 i

T i oy 2 L
Zl’ Zann(Zz] 2 P

[}

lim B . WnazS; 6 ).
ZI,EU Liits &5 o
C

Here Z2 denotes mn-zz. Then it follows from Proposition 3.2.3 and
the excision theorem that

J c. -yl c b
Hewhies Silim 7 G imaHes a6y Sl Y=g
Z1 ZZ 2 c” Z1 Z2 2 e
holds for j # n.
Now we embark on the construction of required 22. Let K denote
the set {wu+/~Ivel; v < |u|-B} and let @(z) denote zl-/TTa(z§+-'
-+zi). Here a and B are sufficiently small positive constants

which we will specify later under the constraint

657000y plie an®




52

We now define 22 by q:'l(}c)nzl. Since 1Z is compact and since we

1
may assume that Z, is contained in {z = x+/Ty e T"; 2y, 2 |xl|},

Z;n {|zl|;e} - U 1is contained in Z, if we choose o and B8
sufficiently small. In view of (3.2.7) we can also conclude that

Zln{ly' |;s}-U€ is contained in Z,. Hence it suffices to show that

2] a5 Zln{|xf[;35, l¥* |2e, Izl|;e} - U_ is contained in Z,. In
order to see this, we have only to verify that Im @(z) < |[Req(z)|-B

holds on Z!

1» namely,

(3-2.22)  yp+a(ly'|%-|x' %) < [x +2a<xt,y'>|-8
holds on Zj. Since Y1 & Ixzi/z holds on Zy» (3.2.22) is satisfied
1if

(3.2.23)  a(ly'|%-|x'[2e2]<xt,y"5]) < -8

holds. Since |x'| > 3e and |y'| < ¢ hold on Zy, (3.2.23) follows
from the constraint (3.2.21). (. B .0,

Corollary 3.2.4. The sheaf E’A is: £Labby:

Proof. Since the flabby dimension of M]R is equal to or at most n,
this immediately follows from the theorem.

By a reasoning similar to the proof of Theorem 3.2.2, we can prove

Theorem 3.2.5. There exists an injective ﬁ;-homomorphism from
CM'A to EA' More precisely, if we choose an 8X-linear injective
homomorphism ¢ from M into CM’ then there exists y such that
the composition yeo@: M~ {gA coincides with the composition of the

~

canonical homomorphism from _i{ to ,{/L]R and that from M]R to  ®&,.

Probably the same argument will work for the proof of the
following conjecture. However, so far, we have been unable to prove
the conjecture completely. (The point which we cannot prove at the
moment is the vanishing of ]i%*IRA(w_lMR)P (j # n) ‘at p where

w = Zgjdxj vanishes.) 4
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Conjecture. 3.2.6. (1) %* A(vth]R) =0 (i#n)
R
K
]R Ld ‘L':;-PS ~
(A1) o > M" ——= B, —>7, €, —>0
istexact.
In what follows, for a section f of the sheaf EA’ we denote

supp SP(f) by S5,f.




§4. Asymptotic expansion of solutions of holonomic systems with regular

singularities.

In this section we clarify the meaning of the asymptotic expansion
of a microfunction solution of a holonomic system with R.S.E*) by the
aid of sheaves é;i and déA. Our procedure is as follows:

First, for a (microfunction) solution of a holonomic system with
R.S., we find a micro-differential equation of a special type which it
satisfies. (Theorem 4.1.1 and Proposition 4.1.6 in §4.1.) Next we
employ é}i to bring each~equation of that type to the simple and
canonical equation whose ﬁA-solution is easy to describe. Using this
result we clarify the meaning of the asymptotic expansion of a micro-
function solution of the equation in question with respect to a
Lagrangian manifold A, namely, we grasp the notion of the asymptotic
expansion of a microfunction by regarding it as a section of the sheaf

B -

§4.1. Holonomic systems with R.S. and indicial polynomials.

The purpose of this subsection is to prove Theorem 4.1.1 stated
below. The structure of the equation (b(g)-P)Ju=10 appearing there
will be investigated in the next sybsection by the aid of the sheaf
é§x. Before stating the theorem, we prepare some notations.

Let A be a Lagrangian submanifold of T#*X. Denote by IA the
defining Ideal of A and by }h the Ideal {P € Ex(l):cl{P)|A= 0,
Let EA denote the sub-Ring of £X generated by ﬂA and define

E,m) by €,Eym) (= Ey(m) £,). As we noted in 51, &,/ €, (-1)
is locally isomorphic to }fA, which is a sub-Ring of the sheaf of
linear differential operators on A.

Now let us consider a micro-differential operator & = &1+ &0+-~
which satisfies the conditions below. Here ¥, and ¥, are respec-
tively the first order and the zeroth order term of &,

(4.1.1) p € Jh

= = 1.
(4.1.2) d 8, = wy (= JZgjdxj) mod I,Q
(*) R.S. 1is the abbreviation of '"regular singularities'. See

Kashiwara-Kawai [8], [9] for the definition.
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Fiplie ey Gl i A
(1.9 9 3 [gpgee =0 on

Here Ql denotes the sheaf of holomorphic 1-forms on T#*X. It is then
easy to verify that such & always exists and it is unique modulo

2 A ] = TaCD : - o e e
}'A Ex(-1). , For examplg, IE g TEDEL i thy Y {xeC FX=. .. =Xy 0},

then we may choose %( ¥ (ijj+Djxj)] as #. In what follows, we
Ji=l

always use the letter § to denote such an operator. Now we have the

following

Theorem 4.1.1. Let u be a section of a holonomic EX-Module with
R.S. and let A be an arbitrary Lagrangian submanifold of T#*X. Then
there exist a non-zero polynomial b(s) and a micro-differential oper-
ator P € EA(-I) which satisfy the following conditions:

(4:1.4) degb2 order P
(4.1.5) (b(#)-PJu = 0.

In order to prove Theorem 4.1.1, we prepare several lemmas. In
what follows € (m) denotes the sheaf of micro-differential operators
of order at most m. For an £E(0)-Module Jﬁ,.ﬁ(m) denotes Em)L .
The symbols T*X and T denote respectively T*X—T%X and the projec-

o
tion ‘from “TIX! “onto’ X.
Lenma. 4.1.2. Let X be @itl - {Gtix)st €, x,EGn}, Ve =ol(tx o, 8)ie
TEXst=0F and A= Wt 0 T,E) ETAN: £=E=0LeT A0} Let (8l s denote
tDt' Let M be a holonomic Ex—Module with R.S. which is defined
on a neighborhood of a point p of A, and let Z be a coherent
8(0)-sub-MOdu1e oF AR B SuppeM. is contained in V, then there
exists a non-zero polynomial b(s) such that b(e)L C £(-1).

Proof. First we note that it suffices to show the existence of a co-
herent E£(0)-sub-Module X£' of M and a non-zero polynomial b(8)
such: that e tiicM - De)l Y (CRA (1) vand k0l iic 2% hold & n
fact, if it is the case, then there exists an integer 7r such that
L nl(-r)c L(-1) holds. On the other hand,

b(0-5)L'(-3) = b(e-1)D3.L" = DIb(O) L' € 2'(-i-1)

holds. Hence, by setting b(0-r+1}---b(@) to be E(@), we obtain
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Im)(@)of,' C L'(-T). Therefore b(@)L C LlEoapil e 2 1)y ‘holdss
Now we shall prove the existence of such £' and b. Since M
is with R.S. and since Supp/“f is contained in V, M has regular
singularities along VOTEX, ([8] Chap.Vs, '§1, CGorollary 5.1.7.)"% Let
M be the monodromy of M in the sense of [11]. Then, by the defini-
tion, M is an endomorphism of M. Since End(M) is finite-dimen-
sional, M is a direct sum of sub-Modules Mj such that (M-Aj)NjW_
= 0 for some A, €C” and some integer Nj‘ Hence we may assume from
the first that tgere exist A €C and Ne€Z, such that
(M—exp(Zw/-_ll))NM = 0 holds. Since M has regular singularities
along V, there exists a coherent £ (0)-sub-Module L. Visuch that M
= ££ and that odcl. Let u,...,u; be a system of generators
of & as an E€(0)-Module. Then there exist Pij €. E (0D t(Lis 1,50 m)
such that ei\li = Epijuj' If we denote by u the column vector t(ul,
...,umJ and by - P the matrix (Pij), we have ©Ou = Pu. We know ([11])
that there exists U€GL(m; £(0)) and a matrix A(x) of functions in
x such that ©6-P = U(@-A(X))U-l. Hence, by replacing u with U-lu,
we may assume that Ou A(x)u holds. Then it follows from the defi-
nition.of« M thati My exp(2n/-IA(x))u holds. Since
(M-exp(Z‘mel))ru = 0 holds, we have (exp(2m/-IA(x)) - exp(ZwFTA))ru
= 0. Considering the problem on a neighborhood of X;, We can find an

i

integer ¢ so that all the eigenvalues of A(x) are contained in
{teC; |t-A] <c} for any x in the neighborhood. Let us now define

a1
c bg(t) (t-A
bD(s) and G(x) by I (s-v) and L 0(0) (E-AR)) dt,
V=-¢ 2nv-T !t_)\!=C+£(exp(2ﬁ\/-_l_t)—exp(2w’-_1'>\)
2

Then G(x) (exp(27/-TA(x))-exp(2m/-1A)) = by(A(x)) holds, and, moreover,

G(x) and A(x) are commutative. Hence we obtain
by (8)u=by(A(x)) u=G6(x)" (exp(2n/=TA(x))-exp(2n/-11)) u = 0.
This entails by(9)'L ¢ L(-1). Q.E.D.

Lemma 4.1.3. Let M be a coherent &X-I\dodule and let }?’ be a co-
herent @X—Sub—Module of M such that &7F =M holds. Let L ibe
a coherent £(0)-sub-Module of & @ M which is generated by .
Then we have the following: &

(i) Fo(L(K)/L(k-1)) = B, F/B F holds for k>>0. Here and in
what follows o@k denotes the sheaf of linear differential oper-
ators of order at most k.

(ii) o@k? ={ueM; 18u is contained in JL (k) on T*X} holds
for Sk s 0L
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(mi) ¢ If'a section vu vsof M Dbelongs to d&(k) at a point p of %*X,
then there exists a linear differential operator P of order m

such that Iﬁ1€£9m+k_l and o (P)(p) # 0.

Proof. There exist integers ,rl,rz,NU,Nl,N2 [rlzirz) and an exact

sequence
N, P Nz P N
ey e O B P

N N N N N
2
such ‘that - GG ) = F ;P08 ey 129 pe8 2 ocl . for
1 2 1
k > 0 and that

& F B \N, (oakrl N, (ﬂk-rz )N2
0 A o (_( ) o gl S iad
D17 1 Fr-r,-1 Bk-r,-1

isexact, for 'k > » Then the following sequence

5
N P NP N
ey Vi igeryt L Eprp

is also exact. Since M is the cokernel of P we obtain the exact

0’
sequence

Ll No
0« LK) < EX) O« Elk-ry)

for each k. Hence its symbol sequence

0

N N
0« LK)/ L(k-1) « (E(K)/ Ek-1)) * « (E(k-1))/ € (k-ry-1)) !

is also exact. Here we recall that E(k)/‘g(k~1) 2 (+(k), the sheaf
of holomorphic functions on f*X which are homogeneous of degree k
with respect to the fiber coordinate. Then the following sequence
(4.1.7) is exact for k>>0 by Serre's theorem on the vanishing of

cohomology groups of coherent sheaves on a projective space.

Nl

o ° N o
(1.7 0 M LK)/ (k-1)) + T (B E) 1) E T 00 G- gd )

Since T,((k)) 2 °‘91</"@'k-1 holds for k > 0, by comparing (4.1.6)
and (4.1.7), we obtain

(4.1.8) T (L (KX)/L (k1)) = &, F/B, | F

fori > kU with a sufficiently large kO' This proves (i). Next we
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shall prove (ii) for k > ](0. Let  u be a section of A such that
18u belongs to oi(k)J%*X for some k > kO.
such that a&J}T containsg w. - If 4§ ds-larger thaii.. k; 18u is zZero
in T,(L(j)/L(i-1)). Hence (4.1.8) implies that ¢9j_1;r contains
u. Thus the induction on j porves that ’&k # contains wu. This

Then there exists j

proves (ii).

Finally let us prove (iif). Let S denote the set of points where
1®u does not belong to (k). Then there exists a homogeneous poly-
nomial « on T*X such that a(p) # 0 and aIS = 0. Let r be the
homogeneous degree of a and let P be a linear differential operator
of order r whose principal symbol is a. Then it follows from
Hilbert's Nullstellensatz that P u belongs to oi(k+r\)-l) for w>>0.
Hence (ii) implies P\)ue‘gkﬂwvl;' This proves (iii). Q.E.D.

Lemma 4.1.4. Let X, V and A be the same as in Lemma 4.1.2 and let
M be a holonomic oa‘X-Module with R.S. Assume that Supp(EgM)

is contained in V on a neighborhood of A. Let u be a section of
M . Then there exist a non-zero polynomial b(s) and a linear differ-

ential operator P which satisfy the following:
(4.1.9) b(tDt)u = tPu,
where orderP <degb and PE€ €.

Proof. We may assume without loss of generality that M = Hu. Let
4 be the section 18u of E®M]|g,y. Then Lemma 4.1.2 guarantees
that there exists a non-zero polynomial b(s) such that b(0)i€g(-1)i
holds on a neighborhood of p €A, where © =tD .. Hence it follows from
Lemma 4.1.3 that there exists a linear differential operator P of

order m such that

(4.1.10) o, (P)(p) £ 0
(4.1.11) Pb(@)u = Qu with Qeaé}m_l.

By the condition (4.1.10) we may assume that P has the form

- m-1 :
D = Z Aj(t,x,Dx)Dt,
j=0
where Aj is of order at most m-j. Let Q be written in the form



m-1 :

o (8, 2,0

j=0"7

where Q. 1is of order at most

+++(s+m-1), we obtain from (4.1
= i m-1

b(®)u = t"D¥b(OJu = t( ] (Asb

j=0

This proves the required result

Lemma 4.1.5. Let X and A b
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m=1-j. Then, setting b(s) =b(s)s(s+1)
STy

(®—m+1)+Qj)tm_lDi]u.
. Q.E.D.

e the same as in Lemma 4.1.2. Let M

be an arbitrary holonomic d?X—Module with R.S. and u a section of

M. Then there exists a non-ze

ferential operator P which s

(4.1.12) b(tD)u = tPu,

where order P <degb and P €¢

Proof. For each positive integ
X to X, defined by fN(t,x) =
is an isomorphism on T*X - {t=0
(tN,x;t/NtN-l,E). Let W be
subvariety of T#*X, and hence
Therefore there exist an intege

NN < oeler)e1enV,

or equivalently,

()N <

ce(lee|+g)HN,
Therefore we have
(4.1.13)  (to/MY < ctNeleo/n|+

on W' = (fN.*)_l(Wn{t#O}).
def

The inequality (4.1.13) implies

W'np = ¢.

In the sequel, we fix such an

ro polynomial b(s) and a linear dif-
atisfy the following:

A

er N we denote by fN the map from

(tN,x). Then the associated map fN*
}, because fN*[t,X;T,E) '
Supp( £ @ M). Then W is a Lagrangian
Cymc {t=0}C’TA{T*X). ([12]), Chap.X.)
r N and a constant C such that

leHN

that

N “and set " £'=f Let M' be f*M)

N®



60

and let U be the section 18u of M'. Then M' is also with
R.S. Further Supp( € ® M') is contained in VAW'. Hence M’
satisfies all the conditions in the preceding lemma. Therefore there
exist a polynomial b(s) and PELN €A such that b(tDt}ﬁ =
tP(t,x,tDt,DX)ﬁ holds with degb>orderP. Hence, if we denote by ¢

the primitive N-th root of 1, we obtain

N-1 -
v 3] ot £
(i N B M iZOE tP(et,x,tD,,D )u.
I s
It is easy to see that N T tP{et,x,tDt,Dx) can be written in the
i=0

form tNQ(tN,x,tDt,DX), because it is invariant under the transforma-
tion t & et. Therefore (4.1.14) implies that

b(NtD,)u = tQ(t,x,NtD.,D Ju
holds outside {t=0}. Here we note that order Q= order P <.deg'b .
Hence it follows from Hilbert's Nullstellensatz that there exists r
such that
(4.1.15) t'bNo)u = tT*q(t,x,Ne,D )u.

By multiplying the both sides of (4.1.15) b Dr, we finally obtain
¥ Tt

b(@)u

t(@+2)---(O+r+1]Q(t,x,Ne,DX)u

with 5(5) G+1)+-+(s*r)b(Ns). This completes the proof. OB
Now let us prove Theorem 4.1.1. By a suitable contact transfor-
mation, we can bring Supp M to a generic position and A to T?X
for a hypersurface Y of X. ([8] Chap. I, §6, Corollary WA )|
Then we may assume that M 1is a holonomic a9x~Modu1e With: SRSk,
because Supp M is in a generic position. ([8] Chap. V, §1, Theorem
B L dic) Therefore Theorem 4.1.1 follows from Lemma 4.1.5. Q:E: D

The following proposition easily follows from Theorem 4.1.1.

Proposition 4.1.6. Let M be a holonomic EX-Module with' R:S: iand

let A be an arbitrary Lagrangian submanifold of T#*X. Then there

exist a system of generators Upseeesll of M, a non-zero polynomial

m

b(s) and micro-differential operators Pij € EA E=1) fli=ia 5 s m)

which satisfy the following three conditions:
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(4.1.16) b(#)u; = § Pijuj
(4.1.17) degb > order Py

(4.1.18) The difference of any two different roots of b(s) = 0 is

not an integer.

Proof. It follows from Theorem 4.1.1 that there exist a coherent
£ (0)-sub-Module Q£ of AM and a non-zero polynomial b(s) of degree,
say, r which satisfy

(4.1.19) b(#).L C }i”,fi(-l)

and

(4.1.20) M= e.L.

We now show that we can choose gﬁ, and b so that they satisfy the
additional condition (4.1.18). For this purpose, we prove the follow-
ing:

If b(s) has the form b(s)(s-A) and satisfies (.25 100 and
(4.1.20), then there exists a coherent €(0)-sub-Module £ ' which
satisfies

(. .20 Pl 0ECe -1 e ST .
We will prove this fact by showing that
P s LA B0 (1))
1ist alrequired one. This &£V is clearly coherent E(0)-Module.

Furthermore we see by an easy computation that b(# -1)(L (1)) is
contained in ﬁQK+1gi. Hence we have

(Rl e L1010

Therefore we obtain
BEs 19 teBrs-10 ) £ +bip-M (L) e S5 1L

This implies
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(#-0b(8-1)L" C(3-Ak)éiﬂ.fac3‘;+2(-l}£+4;+1(5 ~n,,tcgt§*1,z‘:'(-1).

Thus we obtain the required result. Q.E.D:.

§4.2. Transforming equations to the canonical one.

The purpose of this section is to find the canonical form of the
micro-differential equations of the form (4.1.5) by using éa Need-
less to say, ﬁaA does not act as a sheaf homomorphism on the sheaf of
microfunctions, and hence the nature of the reduction to the canonical
form discussed in this subsection is different from that of the classi-
cal one (e.g. S-K-K [17] Chap. II, §5). Actually the reduction dis-
cussed here changes the characteristic variety of the equation in
question. Still ‘59: acts on B

A
-solutions can be investigated by our reduc-

as a sheaf homomorphism. There-
fore the structure of E%
tion and it enables us to clarify the meaning of the asymptotic expan-
sion of a microfunction solution. Before stating our main theorem, we
re-examine the example (1.6) discussed in §1 from the view point of the
transformation of the equations.

We first consider the following system of equations which admits

(yz—xs)i as its solution:

(%XDX+%yDy-s)u =0
(4. 217
2 o
(Zny+3x Dy)u =0

Choosing xDx+yDy+1 as &, we obtain the following equation from
(4.2.1).

(8:2.2) [ 4-35-3/2) (§-25-170 = X3D§U/4.

For simplicity we assume that s+1/2 1is not an integer. Then u

admits an asymptotic expansion of the following form:
(4.2.3) u~ jJu.+yv
j=0 I ==

where u. and v. are homogeneous of degree 2s+j and 3s+l1/2+j,
respectively. By (1.6) in §l1, we find

. Tl 1.8 %5
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L r(s+3/2) 13 j
) g B N T

namely,

342 s+1/2

(4.2.6) u~(x D /2) r(-s+1/2)I_s_l/z(xs/sz)uD

+(x3/2Dy/2)'5“1/2p(5+3/2)IS+1/2(X3/2ny)v0,

where Iv(z) is the v-th modified Bessel function. Further, if we
define v by (§ -5s/2-5/4)u, then we obtain

e e S0

MR A = f2) 0 PTi-s 1YYy R

B = G2t s T g el

€= (/253 2p(-s+1/2)T 14, (2)

snd | D (an) T Ao leant BT e
32

where z = X Dy‘ Then Lommel's formula for Bessel functions entails

wzn (-2 0)

Hence this transformation reduces the equation (4.2.2) to

(& —Zs-l)u0 =0
(4.2.93
(&—SS-S/Z)VG = 0.

This example shows that, essentially speaking, the asymptotic expansion
in our sense is nothing but the transformation of the equation by S?i.
Hence we want to have a general result on the transformation of euqa-
tions. The following theorem gives us a satisfactory result in this
direction.

Theorem 4.2.1. Let A be T§E1+n, where Y ={(t,x)=(t,xl,".,xn)e C1+n;
t=0}. Assume that A = (auv(x)}léu,vgN and Q:=(qu(x’Dx’DtD1;u,v;N
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satisfy the follwoing conditions (4.2.10) ~ (4.2.14) for some integers
m, (li=W = N)=

(4.2.10) -a x) 1is holomorphic on a neighborhood of the origin.

uv €

(4.2.11) a,, =0 if m -m +1<0,

(4.2.12) 1If we denote by Xu(x) (L<u<N) the eigenvalues of the
matrix A, then XU[x) is holomorphic on a neighborhood of
zero and )\u(O)-A\)(O)éZ—{U} (1su, v<N).

m Amv+2
(1.2.13) que A G=1)

Then on a neighborhood of {(t,x;T,£); t=x=0, £=0} there exists an
invertible matrix R(X’Dx’Dt) each of whose entry belongs to ﬁai and

which satisfies
(4.2.14) (tDt~A(x)+Q(x,Dx,Dt))R(x,Dx,Dt) =R(x,DX,Dt)(tDt-A(x)}.

Furthermore R(x,Dx,Dt) can be expressed in the form ERP{X,DX]D;p,
where Rp(x,Dx) =0 for p<o0, R0 = I, the identity ma%rix and
order RP <ap holds for p>0 with a = 2+max(mu-mv}.

U,V

Corollary 4.2.2. Let b(s) be a polynomial of degree m and A a

Lagrangian submanifold of T#*X. Assume further that the difference of
any two different roots of b(s) = 0 is not an integer. Let P be a
micro-differential operator of order at most m which belongs to
EA(—I). Then we have

(4.2.15) S/ Fws)-pz 7 Fh(s).

Proof of Corollary 4.2.2. By a suitable quantized contact transforma-
tion we may assume that A = T§E1+n with Y = {(t,x) € E1+n; t=0} and
= tDt+1/2. Furthermore, by the division theorem for micro-differ-
ential ‘operators (S-K-K [17] Chap. TI, §2, Theorem 2.2.2), we may

assume without loss of generality that P 1is a polynomial of degree

m-1 z
(m-1) in t, i.e., P = § Pj(x,DX,Dt)ﬂ-J. Then rewriting the equation
3=0

(b(# )-P)u = 0 in the matrix form, we can apply Theorem 4.2.1 to
obtain the required result. 0 EoD:
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Proof of Theorem 4.2.1. We try to find an invertible matrix R in the

following form:

(4.2.16); R = 3 BP(x,n.)D.P,
B
p=0
where Rp(x,Dx) is a matrix of linear differential operators of finite
order and RV = I, the identity matrix. If we can construct R in
this form, then its inverse can be constructed in a similar manner.

We expand Q also in this form, namely,
kim0 = ) ol D D,
j21 .

where QJ = (Qﬂv) is a matrix of linear differential operators. Note
that (4.2.13) implies

(4.2.18) order Qﬂ\“; mu~mv+j+1.

In order to satisfy (4.2.14) it suffices to define rP (p21) succes-

sively by the following recursion formula:

(4522099 s pRPAqRE A = 3 0dRK (p21).
j*k=p
g2
Here we note that orderlﬁ); ap (p>0) holds with a = 2+max(mv-mu)
in wview of (4.2.18) and (4.2.19), if RP  exists. Ha ¥
Let us now define an NXxN matrix A*(y) and a column vector

= 2 t
RP of length N° by (avu(Y)Jlév,u;N and (r?l(x,y,DX],...,

fI;N(X,Y,DX) » fgl(X’Y’Dx}s SR 3f§1(xsy,Dx) 35%iiee ’.I"‘EN{X’Y’DX)) ’ TESPeCtiVEJ-Y-
Then, instead of solving (4.2.19), we solve the following equation.

(4.2.20)  (p-(Iy@A*(y)-A(x) @ \))RP(x,y,D.)

= ) el DY B IR ey, 1 )
JtkED
izl
where A(x) ®IN etc. denote the Kronecker product of the matrices.
In fact, rewriting %Ev(x,y,ijd(x-y) in the form rﬁv(x,DX)S(x—y),
we can find the required RP = (rEU] which satisfies (4.2.19) from the
solution RP of (4.2.20). If we denote I, @A*(y)-A(x)®I, by OL,

N % N
then the assumption (4.2.12) guarantees that (p-0O0) - exists for
p=1,2,++- . In order to facilitate the argument, we introduce a
2 2

dummy variable x and define an N~ xN matrix € by

ToEAL
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Then 'C is invertible on & = {(t,X,¥,X_  1:T:EsN, € 1 1)€ T*T1+2n+1;

£ +170}. Hence B () Vet C"l(p- Ol)"*Cc 1is well-defined there. Fur-
thermore, by using the assumption (4.2.11), we can prove that Z?{p)
has the form

b
(i ety Yiekip)
220

where each entry Civ(p) of Ci{p) is ‘of order 'at most & and it
satisfies

L : 2+1
N (€% (P)i6) < A/P*T.

Here Ng denotes the formal norm introduced in Boutet de Monvel and
Krée [2]. See Tahara [18] Lemma 1.2.8 for the proof of this assertion.
Defining SP by ol
form:

ﬁp, we can rewrite (4.2.20) into the following

sf.= By L € a1 ISk,

Thus we can write down SP in terms of H(p) and C_l(Qj 2] IN)C
explicitly. Then, using the assumption (4.2.13) and the decomposition
(4.2.21), we can verify that the i-th homogeneous part SE(X’Y’E’£n+l)
of the symbol sequence of sP satisfies the following:

(4.2.22) For each € >0 and each compact subset K of &, there
exist constants C and M such that

e,K ek
sEp|s€| < ME,KCE’KsipI/i!
holds.
Note also that

(2 s lCatin S £ Ve Wb 20 p.

From the estimate (4.2.22), we easily find that R

1}
e 8

Rp(x,DX)D;p
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belongs to MN{éaA)‘ QL ELDS

Remark 4.2.3. Let A be the same as in Theorem 4.2.1. Then in view
of (4.2.23), the operator R (and Rgl also) acts on CYIX (S-K-K
[17] Chap. 11, §3), where X = C1+n. On the other hand, it is easy to

verify that

J = J s 5
E/X/t (MU’ Y]X) i % ('Mus Cylx) (J 5 Oal)
holds for 'A{O = SIQ/ E§(tDt-A(x)). Hence the comparison theorem of
this type also holds for A= 5?/E§(tDt-A(x)+Q(x,Dx,Dt]).

Remark 4.2.4. Because of the form (4.2.16) of the intertwining operator
R constructed above, we find that R and its inverse S actually
belong to a smaller class of operators introduced by Laurent [14],
namely, R and S belong to MN(ElémM), where V =0{(t,x;Tt,E) € T*El+n;
£=0}.

In order to apply Theorem 4.2.1 to the study of microfunction
solution of the equation in question, we prepare the following Lemma

4250 \In what' followss; R denotes the purely imaginary locus of A,
which is supposed to be Lagrangian.

Lemma 4.2.5. Let A be the same as in Theorem 4.2.1. Let u be a
E&-Solution of the following equation:

{2 2) (tDt—A[x))u =0
Then we have

LA () (4 10) ) @(x)

[=]
[}

-A(x)-1

u

2mexp (-m/=TA (x)/2) (D /V-1) §(t)p(x) with @(x)eB s
R

Proof. By applying (Dt/JTT)_A(X)_l = exp(-(A(x]+1)10g(Dt//7T)) to
(4.2.24), we may replace (4.2.24) by

@2 25)" tui= 0

On the other hand, we have the following exact sequence:

(4.2.26) 0+n'1(§“Y+CR ek

Y|X vix %
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where m 1is the projection from T?X to Y. BSince

J -1 H i-1

/1o gt O ;!RP : CZ“)’
R

(4.2.26) implies

0‘*23 +BAE a\+0,
This means that u = §(t) @(x) holds with @(x)e€ B n QB+ D
R

The following theorem is an immediate consequence of Theorem 4.2.1

and Lemma 4.2.5.

Theorem 4.2.6. Assume the same conditions as in Theorem 4.2.1. For
simplicity, assume further that A(x) is a constant matrix A. Let
U be a microfunction solution of (tDt-A+Q(x,DX,Dt))U = 0. Then U
has the following expression as a section of E%:

A
1
r(-xp) (t+/=T0) Ly ¢, (x) i
U=R ] 5
; M :
F('?\d] (t""/-'TOJ Ld (PN(X) 3
where RGEMN(Séz), Al,...,ld are the mutually different eigenvalues of
A, Lj has the form
- 2 m. =1
1 log(t+/-10)  (log(t+/-10))“/2! ... (log(t+/-10)) 7 / (ms -1t
m.-2
1 log(t+/-10) ... (log(t+/-10)) 3 /(mj—Zﬁ
1
d.

with m; being the multiplicity of Aj and ?i(x) is a hyperfunc-
tion in .

Remark 4.2.7. 1If A(x) 1is not supposed to be a constant matrix, U
has the form

RT (-A(x)) (t+/=T0) A (X g ()




with &(x)e za”n.
R

Corollary 4.2.8. Assume the same conditions as in Corollary 4.2.2.

Then for each microfunction solution u of the equation (b(#)-P)u

= 0, there exist RUE.E§I (= 15...;N) ~‘and hyperfunctions wu
G = 1560 9N) 1 which satisfy b(&)wu =210 sioy that
)
w= R
u=1UU

holds as section of E}. In particolar, if pA = T?E ¥ with Y =

LGt x)iE E1+n;t=0}, then u has the form
d: jv'l A ¢
T i Y s Bk (e Do, Dl (6= T0: il og (e 2105
SR e Vv, ] 5 G T
v=1 j=0
where Rv j = £jx, b{xu) =0 and jv is the multiplicity of the root
Av.
These results show that the sheaf ﬁh is fitted for the study of
the asymptotic expansion of a microfunction which satisfies a suitable
micro-differential equation. Note that R(X,Dx,Dt)(g9(X)(t+/jTDJA)
can be formally rewritten in the form

§ . (x) (t+/-T0) 23,
§=0."7

if A=T§m1+“

and R 1is the operator constructﬁd in Theorem 4.2.1.

In what follows, we call the expression z Ruwu(leeiéz) given
in Corollary 4.2.8 to be the asymptotic expans¥5% with respect to A
of the microfunction solution u of the equation (b(s)-P)u = 0. Note

that Proposition 4.1.6 guarantees that such an equation always exists
if u satisfies a holonomic system with R.S.

Now, as far as we start from a single equation (b(#)-P)u = 0,
Corollary 4.2.8 is the best possible one of the sort. However, in
practical problems equations of this type usually appear in connection
with holonomic systems. In such circumstances, as we mentioned in §1,
the top term of the asymptotic expansion is controlled again by
holonomic systems on A. For example, in the case of the example
(4.2.1) discussed at the beginning of this subsection, u
satisfy the following equations beside (4.2.9):

and Vv

0 0

[xDx/3+yDy/2-s)w = yDXw = 0.
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This situation is best formulated by regarding the original holonomic
system as oéj.:—Module. In connection with such a formulation we first
prepare some notions related to the Levi condition of the system. (Cf.
Monteiro-Fernandes [16].) In what follows, A 1is a Lagrangian sub-
manifold of T#*X and n and J,(1) denote {P€ fx(l);cl(P) |A=0}
and {fe GT*X(E); f|A= 0}, respectively.

ol . _ b ke, ol |
Definition 4.2.9. (i) A 43¢ E(jA/(fA A el
(= 913 G0 SAT S O (170

(a9 sliet M be a coherent EX—Module and £ its coherent 5(0)—sub—

Module such that M = 6X,L holds. Then ChA(/I/() is, by defi-
nition, a subvariety of TA(T*X], the normal bundle along A,
which is given by

k o - k+1
supp(ﬁ‘TA(T*X) s (E(fﬂ"c/fﬁ L engn.

Remark 4.2.10. The variety ChA(M) is independent of the choice of
TR conjecture that it is an involutory subvariety of T*A=T,(T*X).

Remark 4.2.11. Denote by 5k the map from f]f\ to

JA(ljlz/JA(lJ -IO’T*X(U’ which is induced from the isomorphism between
fﬁf(%]}(\kl*'ffd(‘l)) and JA(l)k/JAfljkAIO'T*X(l). Then, for a system
M of the form gx/f :

! k
= @A 3
Ch, () E/(ok(fAnf))

Now we begin the discussion on the structure of a holonomic system
with R.S. regarded as a apéz-Module. In order to simplify the descrip-
tion, we will consider the case where X = 031+n =it et ixe (i
and A = {(t,x;7,E) e T*X; t=0, £=0, t#0}. Let M be a holonomic
EX-MDdule with R.S. Take a coherent €&,-sub-Module N of M such
that EX/V=.A«£. If we set AN (-1) = E(-1)N, then N/ H(-1) is a
coherent AA-Module. Here &, = ‘EA/ é‘f\(fl). By identifying J¢A
with the sheaf of homogeneous linear differential operators on A, we
can regard NI N(-1) as a system of differential equations on A,
i.e., x-space. If N = E)u  for a'section u of M, then N /H¥(-1)
is nothing but the following equations:

L(P) =0 for . P.€ £ ysuch that Pu="0.
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As we have shown in §1 (Theorem 1.5), A/ A(-1) 1is a holonomic system
with RS,

Now it follows from Propositin 4.1.6 that there exist a coherent
€(0)-sub-Module & of A and a non-zero polynomial b(s) of degree,
say, r which satisfy the following two conditions:

(4.2:27) “ben L € fﬁ“l(-luﬁ

(4.2.28) The difference of any roots of b(s)=0 is not a non-zero integer.

Take a system of generators Ugseeesly of o£ and denote by u the
oy %q ay
column, vector having . (£D.) ¥D.5...D Su.- ‘asicomponents, where .o, /i,
t Xy X Ein] 0

a, range over all non-negative integers satisfying the constraint

n

zoau<r and l<js<m. Let N be the length of the vecter wu. Then
v= R

it is easy to see that u satisfies the equation

tDtu = Au + Qu,

where A 1is a constant matrix and Q is a matrix of linear differen-
tial operators satisfying the conditions in Theorem 4.2.1. Here we note
that the eigenvalues of A are the roots of b(s) = 0. Let us now
consider the system M= &Ny EN(tDt-A-Q) and let U be the corre-
sponding vector whose components generate M. Let £ be the homo-
morphism from 4L onto M defined by assigning u to 1. Let M
denote the kernel of f and let oJ be the E(O)-Modumle generated by
components of U. Thenitis easy to see Ehat };(tDt)LC fANJ'l,Z (—{)
holds for the characteristic polynomial b(s) of A. Note that degb

is at most N. The Artin-Rees theorem can be modified to show that

S f gL

holds for k = k if we take kg sufficiently large. We can easily
prove that b(tDt)jffszC fiﬂNﬂaZﬁ (-1), and hence we obtain

£ k # k+N+1 2 N+1 k
B(e,) ( {52 n 4 Al Alls £ ST g
CRIG AV DI I ACSIVIEY SAS SIS PV D
Then, by the same reasoning used above, we can find a system of gener-

ators vy,...,Vy of fAk‘inM' such that the row vector v = (vl,
.,Vﬁ) satisfies
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tDtv = Av + Qv,

where A is a constant matrix whose eigenvalues are the roots of E{s)
= 0 (and hence those of b(s) = 0) and 5 satisfies the conditions
in Theorem 4.2.1. Then, if we write v = P(x,Dx,Dt)u with

P€ M(N,N; £€) which doeg not contain t, then we have (tDt-A—ﬁ)P =
p'(tDt_A-Q) with P'e€M(N,N; £). By comparing the coefficients of t,
we can easily verify that P' = P. Hence we obtain

(tD,-A-Q)P = P(tD -A-Q)

It follows from Theorem 4.2.1 that there exist U(X,DX,DtJE GL(N;J}K)
and U(x,D,,D,) €GL(N;&)) which satisfy

1
tD, -A-Q

U(tDt-A)U'
and

tD, -A-Q

U(tn,-A)0L,

Hence we have

il

(td -A) (I 'PU) = (ﬁ_lPU](tBt~A).

Set T = ﬁ_lPU=XTj(x,Dx]D£j. Then
]

(4.2.29) 3T = Arl-TIA

holds. Note that the difference of any eigenvalues of A and that of
A are not a non-zero integer by (4.2.28). Hence (4.2.29) implies T/
=0 for j # 0. Therefore T 1is a linear differential operator in
X. .0n‘the other hand, U_1 and U have respectively the form
o - . o - . -
Yl (x,00)07d Yana s 'Y HY(x DDV with ¢ = H® = 1. and ‘order &7 ,
320 Dot j=q X O
order HJ < aj for some a. Hence, if we write P = J PJ(x,DX)Déj,

then we have 3=

(4.2.30) P =T and order P < aj.

Since M is an EX-Module generated by u with the relation Pu =
(tD -A-Q)u = 0, 492 g M is generated by 18u with the same relation.
X

Hence, if we take another generator WisE U_l(l Qu) of JF: g ﬂf, we
X
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find
(4 2si [tDt-A)w = Tw = 0.

Hence a@ig M has the form O&X)S_? , where ?' is the ﬂAvModule

X A
generated by a generator w with the relation (4.2.31). Here we

identify '#A with a sub-Module of u9i. Let us take as 4 the
EA-Module generated by u. Then by using the fact that EAVfﬁ/W'

= &EPU and (4.2.30) we can easily verify that A/47(-1) = F holds.
Furthermore, by using Remark 4.2.11 and an invertibility theorem for
operators in 8: (Laurent [14]), we can easily show the characteristic
variety of ¥ 1is contained in ChA(A4). Thus we obtain the following

Theorem 4.2.12. Let M be a holonomic &-Module with R.S. and let
A& be a coherent € (0)-sub-Module of M such that there exists a
non-zero polynomial b(s) which satisfies the condition (4.2.28) and
b(#) X C A (-1). Then we have

(i) /4 (-1) 1is a holonomic ‘#A—Module with R.S. whose character-

istic variety is contained in ChA(A{).
(i) o0 aM - o‘aig (W w(-1))

A A

This theorem implies that operators in J?i enable us to trans-
form a holonomic system of micro-differential equations with R.S5. to
a differential equation in (t,x)-variables. It also asserts that any
microfunction solution of such a system is determined by its initial

terms in its asymptotic expansions.

§5, Discussion on the analyticity of the S-matrix.

It is now commonly accepted that the analyticity properties of
the S-matrix is most neatly expressed in terms of microfunctions and/or
essential support theory. However, in order to study the structure of
the S-matrix, we sometimes need more precise information than the
microanalyticity of the S-matrix. For example, Iagolnitzer-Stapp [4]
makes essential use of '"no sprout assumption' in the study of pole-
factorization theorem. This condition cannot be described in terms of
the micro-analyticity.

The purpose of this section is to discuss how such a delicate
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analyticity problem is related to the theory expounded so far, and how
it is related to the holonomic character of the S-matrix. (See Kawai-
Stapp [13] for the discussion on the holonomic character of the §-
matrix.) The theory of double-microlocalization with respect to an
involutory manifold, which Laurent [14],[15] is now developing, is also
very useful for this purpose.

Now let A be T{‘{Ert with Y = {(zl,z‘)é En; zl=0} and let V
be {(z,0) € T*En; g2=...=;n=0}. Let L and W denote their purely
imagiqfry Togi /" For armicrofuncticon:. “£. SS%f (Kashiwara-Laurent [10])
and SSLf are, by definition, subsets of Tw(/TTT#Rn] and TL(/TTT*RH,
respectively. (Cf. the end of §3.2. Note that /fTTﬁRn and
TL(/TTT*RH} can be identified by the Hamiltonian map H, because L
is Lagrangian. Actually H (/Tdej) = -/TTB/BEj and H(/?Tdij] =
vY-13/38x. hold.) Using the coordinate system we denote a point in
Tw(/TTT*Rn) and a point in TL(/TTTfRn) respectively by (x, /fTil;

n
VL
j=2
and Cj are real. Note that the subset of TL(/fTTﬂRn) defined by
© = 0 "is identified with T, (V-IT*R™)][,.

Let us now consider a microfunction f supported by L dEE
{(x,/——fg)eﬁT(T*JRn-TI;nmn); K=l Eg>0, E1 = (Egyii,yB2)i= 0}, Then

n
cja/BEj) and (x',/TTil;/TT(clB/Bxl+j£2cja/agj), where x,&;

CELT ssﬁ,(f)c{(x,ﬂgl; ') € T, (/- ITR™) ; c'=0}

is equivant to the assertion that the defining function F(z) of the
microfunction f is holomorphic on {z€C"; |z|<e, Imz,>0}, namely,
f satisfies the no sprout assumption. (In the condition (5.1) <c' =
(cz,...,cn) is identified with ZCja/agj.) Next consider the follow-

ing condition
(52 /88, (£) €rf(x",/=Td, ; "eye T, (VTTMREJ: fe=0).

Then, on the supposition that Conjecture 3.2.6 (ii) in §3.2 is valid,
(5.2) is equivalent to the assertion that f belongs to A4R(= EHQQ/H}
for a simple holonomic system A! supported by A. In particular, the
defining function F(z) of f can be analytically continued to the
universal covering space of Q-Y, where @ 1is a neighborhood of

0€C™. Hence the condition (5.2) is close to the holonomic character
of f. However, if £ is holonomic, we find another important prop-
erty of f, namely, the finite determination property. This property
is not implied by (5.2). The simplest example of f that satisfies
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condition (5.2) but that is not holonomic is given by (x1+f-10)X2.
Thus the sheaf éﬂ supplies us with a link between the no sprout
assumption and the holonomic character of the function in question.
Note also that

2 S
[{54:80) 1455 w(f) = SSL(f)
holds for a microfunction £ which satisfies an equation dealt with
in Corollary 4.2.2. (See Remark 4.2.4.) It is also noteworthy that
(5.3) is valid for an arbitrary holonomic microfunction £ (i.e., not
necessarily supported by L+). In fact, we know that, for each

holonomic £X~Module M, we can find a holonomic EX-Module M
withe SRS sieiEhat

reg

e

® @
E o M= E"0 M,

holds. ([8] Chap. V, §2, Theorem 5.2.1. See also our report [9] in
this colloquium.) Since EzlA is a subsheaf of 4}: and E%?\A,this
fact implies (5.3).

We end this report by mentioning a fact which is a generalization
of the no sprout assumption and will probably turn out to be useful in
application.

Let f be a hyperfunction defined on R™ whose singularity spec-
trum is contained in a properly convex cone C={/-1£&/-1 R"; @(£)>0}
with % being a real-calued real analytic homogeneous function such that
d® never vanishes on V dog {EEJRH-{U};?(g)=UL Let T be the dual
cone of |26, ey {yeIRn; <y,g>>0 (g€C)}. Suppose that SSéf c

n
i, v LE C}ETV(V-lT*]Rn); Pey=0, ) c}.SSo/BEj;O}. Then the defining
j=1

function F(z) of f is holomorphic on {ze(fﬂ |Im z | <e (Re z),

Imz €T}, where € 1is a positive-valued function on R
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