Semisimple holonomic \mathcal{D} -modules

Masaki KASHIWARA

Research Institute for Mathematical Sciences Kyoto University, Kyoto 606, Japan

August 8, 1997

1 Conjecture

There are a theory of Weil sheaves of Pierre Deligne (and BBG [1]) in characteristic p and a theory of mixed Hodge modules of Morihiko Saito ([3]) in characteristic 0. Weil sheaves or Hodge modules satisfy the following properties. In the statements, we write a pure perverse sheaf instead of a pure perverse Weil sheaf or a Hodge module.

- (1) Let $f: X \to Y$ be a projective morphism and F a pure perverse sheaf on X. Then $Rf_*(F)$ is a direct sum of the $R^kf_*(F)[-k]$'s, and $R^kf_*(F)[-k]$ is pure.
- (2) The graduation of the near-by cycle (or vanishing) sheaf of a pure perverse sheaf with respect to the weight monodromy filtration is again pure.
- (3) The hard Lefschetz theorem holds for pure perverse sheaves.

etc., etc..

I conjecture that (1), (2) and (3) should hold even if we replace "pure sheaves" with "semisimple perverse sheaves", or more generally with "semisimple holonomic D-modules". Here the varieties are complex quasi-projective varieties.

I would like to thank A. Gyoja, A. Beilinson, S.-T. Yau and K. Vilonen for stimulating discussions.

2 Precise statement

In this note, we mean by an algebraic manifold a separated quasi-compact smooth scheme over the complex number field C. For an algebraic manifold X let us denote by \mathcal{D}_X the sheaf of rings of differential operators on X. Let $D^b(\mathcal{D}_X)$ denote the derived category of bounded complexes of left \mathcal{D}_X -modules and let $D_h^b(\mathcal{D}_X)$ denote the full subcategory of $D(\mathcal{D}_X)$ consisting of bounded complexes of \mathcal{D}_X -modules with holonomic cohomologies. The left derived functor of $\otimes_{\mathcal{O}_X}$ gives the bifunctor

$$\cdot \overset{\mathbf{D}}{\otimes} \cdot : \mathrm{D}_h^b(\mathcal{D}_X) \times \mathrm{D}_h^b(\mathcal{D}_X) \to \mathrm{D}_h^b(\mathcal{D}_X).$$

Let $f: X \to Y$ be a morphism of algebraic manifolds. Then $\mathcal{D}_{X \to Y} = \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}\mathcal{D}_Y$ has a structure of a $(\mathcal{D}_X, f^{-1}\mathcal{D}_Y)$ -bimodule. Then the left derived functor of $\mathcal{M} \mapsto \mathcal{D}_{X \to Y} \otimes_{f^{-1}\mathcal{D}_Y} f^{-1}\mathcal{M}$ defines the pull-back functor

$$\mathbf{D}f^*: \mathrm{D}_h^b(\mathcal{D}_Y) \to \mathrm{D}_h^b(\mathcal{D}_X).$$

Set $\mathcal{D}_{Y \leftarrow X} = f^{-1}\mathcal{D}_Y \otimes_{f^{-1}\mathcal{O}_Y} \Omega_{X/Y}$, where Ω_X is the sheaf of the highest degree forms and $\Omega_{X/Y} = \Omega_X \otimes_{\mathcal{O}_Y} \Omega_Y^{\otimes -1}$. Then it is a $(f^{-1}\mathcal{D}_Y, \mathcal{D}_X)$ -module. Then the functor $\mathcal{M} \mapsto \mathrm{R} f_*(\mathcal{D}_{Y \leftarrow X} \otimes_{\mathcal{D}_X} \mathcal{M})$ defines the push-forward functor

$$\mathbf{D}f_*: \mathrm{D}_h^b(\mathcal{D}_X) \to \mathrm{D}_h^b(\mathcal{D}_Y).$$

Let us denote by t the coordinate of C. We set $\tilde{X} = X \times C$. Let us define

$$V^k(\mathcal{D}_{\tilde{X}}) = \{P \in \mathcal{D}_{\tilde{X}}; P(t^i\mathcal{O}_{\tilde{X}}) \subset t^{i+k}\mathcal{O}_{\tilde{X}} \quad \text{for any i such that $i,i+k \geq 0$} \}.$$

Then it defines a filtration of $\mathcal{D}_{\tilde{X}}$. Let us choose a total ordering of C such that a < b implies a < a + n < b + n for any positive rational number n. Then for any holonomic $\mathcal{D}_{\tilde{X}}$ -module \mathcal{M} , there exists a unique family of submodules $\{V^a(\mathcal{M})\}_{a \in \mathbb{C}}$ satisfying the following properties (see [2]):

(a) The filtration $V(\mathcal{M})$ is locally finitely generated. Namely, there exist locally finitely many $u_i \in V^{a_i}(\mathcal{M})$ such that

$$V^{a}(\mathcal{D}_{\tilde{X}}) = \sum_{n \in \mathbf{Z}, n+a_{j} > a} V^{n}(\mathcal{D}_{\tilde{X}}) V^{a_{j}}(\mathcal{M})$$

for any $a \in C$.

(b) Set $V^{>a}(\mathcal{M}) = \bigcup_{b>a} V^b(\mathcal{M})$ and $\operatorname{Gr}_V^a(\mathcal{M}) = V^a(\mathcal{M})/V^{>a}(\mathcal{M})$. Then the action of $t\partial/\partial t - a$ on $\operatorname{Gr}_V^a(\mathcal{M})$ is nilpotent.

The graduation $\operatorname{Gr}_V^a(\mathcal{M})$ does not depend on the choice of the total order of C. Moreover $\operatorname{Gr}_V^a(\mathcal{M})$ is a holonomic \mathcal{D}_X -module. The homomorphisms $t:\operatorname{Gr}_V^{a-1}\mathcal{M}\to\operatorname{Gr}_V^a\mathcal{M}$ and $\partial/\partial t:\operatorname{Gr}_V^a\mathcal{M}\to\operatorname{Gr}_V^{a-1}\mathcal{M}$ are isomorphisms unless a=0. Let $j:X\hookrightarrow \tilde{X}$ be the embedding by t=0. Then $\mathbf{D}j^*\mathcal{M}$ is isomorphic to the complex $\operatorname{Gr}_V^{-1}\mathcal{M}\stackrel{t}{\longrightarrow}\operatorname{Gr}_V^0\mathcal{M}$.

Let f be a regular function on X. Let $i: X \hookrightarrow \tilde{X}$ be the embedding $x \mapsto (x, f(x))$. For a holonomic \mathcal{D}_X -module \mathcal{M} , we set

$$\Psi_f(\mathcal{M}) = \bigoplus_{-1 < a < 0} \operatorname{Gr}_V^a(\mathbf{D}i_*\mathcal{M})$$

and call it the nearby-cycle of \mathcal{M} . This is a holonomic \mathcal{D}_X -module supported in $f^{-1}(0)$. Then $t\partial/\partial t - a$ gives a nilpotent endomorphism of $\Psi_f(\mathcal{M})$. We call it the nilpotent part of the monodromy.

A holonomic \mathcal{D}_X -module \mathcal{M} is called semisimple if it is semisimple in the abelian category of coherent \mathcal{D}_X -module.

It is easy to see that it is a Zariski local property.

Lemma 2.1 Let \mathcal{M} be a \mathcal{D}_X -module. Let $X = \bigcup_j U_j$ be an open covering. Then \mathcal{M} is a semisimple holonomic \mathcal{D}_X -module if and only if $\mathcal{M}|_{U_j}$ is a semisimple holonomic \mathcal{D}_{U_j} -module for any j.

In fact it is an etale local property.

Lemma 2.2 Let $X \to Y$ be a smooth surjective morphism, and let \mathcal{M} be a \mathcal{D}_Y -module. Then \mathcal{M} is a semisimple holonomic \mathcal{D}_Y -module if and only if $\mathbf{D}f^*\mathcal{M}$ is a semisimple holonomic \mathcal{D}_X -module.

Now the conjecture is as follows.

- (C1) Let $f: X \to Y$ be a projective morphism and \mathcal{M} a semisimple holonomic $\mathcal{D}_{X^{-}}$ module. Then $\mathbf{D}f_{*}(\mathcal{M})$ is isomorphic to $\bigoplus_{k} H^{k}(\mathbf{D}f_{*}(\mathcal{M}))[-k]$, and $H^{k}(\mathbf{D}f_{*}(\mathcal{M}))$ is a semisimple holonomic \mathcal{D}_{Y} -module.
- (C2) Let f be a regular function on X, and let \mathcal{M} be a semisimple holonomic \mathcal{D}_{X} module. Let W be the weight filtration of the nilpotent part of the monodromy of $\Psi_f(\mathcal{M})$. Then $\operatorname{Gr}^W(\Psi_f(\mathcal{M}))$ is a semisimple holonomic \mathcal{D}_X -module.
- (C3) The hard Lefschetz theorem holds for a semisimple holonomic \mathcal{D}_X -module.

The precise meaning of (C3) is as follows. Let $f: X \to Y$ be a projective morphism of algebraic manifolds, and L a relatively ample invertible \mathcal{O}_X -module. Its first Chern class $c_1(L)$ defines a morphism $\mathcal{O}_X \to \mathcal{O}_X[2]$ in $\mathcal{D}_h^b(\mathcal{D}_X)$. Then for any semisimple holonomic \mathcal{D}_X -module \mathcal{M} , it induces

$$\mathbf{D}f_*(\mathcal{M}) \cong \mathbf{D}f_*(\mathcal{M} \overset{\mathbf{D}}{\otimes} \mathcal{O}_X) \overset{c_1(L)}{\longrightarrow} \mathbf{D}f_*(\mathcal{M} \overset{\mathbf{D}}{\otimes} \mathcal{O}_X[2]) \cong \mathbf{D}f_*(\mathcal{M})[2].$$

The conjecture is that for any positive integer n,

$$c_1(L)^n: H^{-n}(\mathbf{D}f_*(\mathcal{M})) \to H^n(\mathbf{D}f_*(\mathcal{M}))$$

is an isomorphism.

The above conjecture implies the following.

- (C4) Let $f: X \to Y$ be a morphism of algebraic manifolds. Let \mathcal{M} be a semisimple holonomic \mathcal{D}_Y -module. Assume that f is non-characteristic to \mathcal{M} . Then $\mathbf{D}f^*\mathcal{M}$, which is concentrated in degree 0 by the non-characteristic condition, is a semisimple holonomic \mathcal{D}_X -module.
- (C5) Let \mathcal{M} and \mathcal{M}' be semisimple holonomic \mathcal{D}_X -modules. Assume that they are non-characteristic. Then $\mathcal{M} \overset{\mathbf{D}}{\otimes} \mathcal{M}'$, which is concentrated in degree 0 by the non-characteristic condition, is a semisimple holonomic \mathcal{D}_X -module.

Note that, by the Riemann-Hilbert correspondence, the conjecture implies the corresponding statements for semisimple perverse sheaves.

3 Evidences

Besides the theory of Hodge modules, we have now a considerable amount of evidences. Namely some of the consequences of Conjecture are already known. One is by the theory of Tannaka category. This theory asserts the following proposition. We call a holonomic \mathcal{D}_X -module is lisse if it is a locally free \mathcal{O}_X -module of finite rank.

Proposition 3.1 The tensor product of two semisimple holonomic lisse \mathcal{D}_X -modules is again semisimple.

The other is by works on Higgs bundle by N.J. Hitchin, C.T. Simpson, K. Corlette, and others (see [4]). For example, the hard Lefschetz theorem (C3) is already known for a semisimple local system on a smooth projective variety. Also the following proposition (a consequence of (C4)) is known

Proposition 3.2 ([4]) Let X be a projective algebraic manifold and F a semisimple local system on X. Then the restriction of F to any closed smooth subvariety Z is again a semisimple local system on Z.

References

- [1] A. Beilinson, J. Bernstein and P. Deligne, "Faisceaux pervers" in Analysis and Topology on Singular Spaces I, Astérisque, Soc. Math. France, Paris, 100 (1982), 5–171.
- [2] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry, Proceedings of the Japan-France Conference, Lecture Notes in Mathematics **1016**, Springer-Verlag (1983), 134–142.
- [3] M. Saito, Modules de Hodge polarisables, Publ. RIMS 26 (1990), 221–333.
- [4] C. T. Simpson, Higgs bundles and local systems, Publications mathémathiques, IHES, **75** (1992), 5–95.