THE FLAG MANIFOLD OF KAC-MOODY LIE ALGEBRA

Sy.

By M. Kashiwara

0. Introduction. In this paper, we shall construct the flag variety of a Kac-Moody Lie algebra as an infinite-dimensional scheme. There are several constructions by Kac-Peterson ([K-P]), Kazhdan-Lusztig ([K-L]), S. Kumar ([Ku]), O. Mathieu ([M]), P. Slodowy ([S]), J. Tits ([T]), but there the flag variety is understood as a union of finite-dimensional varieties.

We give here two methods of construction of the flag variety. For a Kac-Moody Lie algebra g, let \hat{g} be the completion of g. The first construction is to realize the flag variety as a subscheme of $Grass(\hat{g})$, the Grassmann variety of \hat{g} . More precisely, taking the Borel subalgebra $b_- \subset \hat{g}$ and regarding this as a point of $Grass(\hat{g})$, we define the flag variety as its orbit by the infinitesimal action of \hat{g} in $Grass(\hat{g})$.

The other construction is to realize the flag variety as G/B_- . Of course, in the Kac-Moody Lie algebra case, we cannot expect that there is a group scheme whose Lie algebra is g. But we can construct a scheme G on which g acts infinitesimally from the left and the right. Then we define the flag variety G/B_- , where B_- is the Borel subgroup. More precisely, we consider the ring of regular functions as in [K-P]. Then its spectrum admits an infinitesimal action of g. But its action is not locally free. Roughly speaking, G is the open subscheme where g acts locally freely (Proposition 6.3.1).

The flag variety of a Kac-Moody algebra shares the similar properties to the finite-dimensional ones, such as Bruhat decompositions.

I would like to acknowledge mathematicians I saw at Tata Institute, especially S. Kumar, Moody, Verma. I also thank for hospitalities of the staffs in The Johns Hopkins University during my preparing this article.

1. Scheme of countable type.

1.1. In this paper, we treat infinite-dimensional schemes such as A^{∞} , P^{∞} , etc.. We shall discuss their local properties briefly.

Let k be a commutative ring.

Definition 1.1.1. A k-algebra A is called of countable type over k, if A is generated by k and countable numbers of elements.

The following is easily proven just as in EGA.

- LEMMA 1.1.2. Let X be a scheme over k. Assume that there is an open affine covering $X = \bigcup U_j$ of X such that $\Gamma(U_j; \mathfrak{O}_X)$ is of countable type. Then, for any open affine subset U of X, $\Gamma(U; \mathfrak{O}_X)$ is of countable type.
- Definition 1.1.3. A scheme X over k is called of countable type if for any open affine subset U of X, $\Gamma(U; \mathcal{O}_X)$ is a k-algebra of countable type.
- LEMMA 1.1.4. Let k be a noetherian ring. Then any ideal of a k-algebra A of countable type is generated by countable elements.
- *Proof.* Assume A is generated by x_i (i = 1, 2, ...). Then for any ideal I of $A, I \cap k[x_1, ..., x_n]$ is generated by finitely many elements.
- Lemma 1.1.5. Let k be an algebraically closed field such that k is not a countable set, and let X be a k-scheme of countable type. If X has no k-valued point, then X is empty.
- **Proof.** We may assume $X = \operatorname{Spec}(A)$ and $A \cong k[T_n; n \in \mathbb{N}]/I$, where T_n are indeterminates. Then I is generated by countably many elements f_j . Let k' be the subring of k generated by the coefficients of the f_j . Set $A' = k'[T_n; n \in \mathbb{Z}]/I'$ where I' is the ideal generated by f_j . Then $A \cong k \otimes_{k'} A'$. If $A \neq 0$, there is a homomorphism $A' \to K'$ from A' to a field K'. We may assume K' is generated by the image of A' as a field. Then K' has at most countable transcendental dimension over the prime field. Hence $k' \to k$ splits $k' \to K' \xrightarrow{\varphi} k$ for some φ . Therefore X has a k-valued point.

PROPOSITION 1.1.6. Let k be a noetherian ring, and $A \cong \lim_{n \to \infty} A_n$, where $\{A_n\}_{n \in \mathbb{N}}$ is an inductive system of k-algebra of finite type and $A_n \to A_{n+1}$ is flat. Then $\mathfrak{O}_{\operatorname{Spec}(A)}$ is a coherent ring.

Proof. Any homomorphism $\varphi: A^{\oplus m} \to A$ comes from some φ' :

 $A^{\oplus m} \to A_n$. Then Ker φ' is finitely generated over A_n and hence Ker $\varphi \cong A \otimes_{A_n}$ Ker φ' is also finitely generated over A.

Let us give an example.

*

Example 1.1.7. Infinite-dimensional affine space: $A^{\infty} = \text{Spec } k[X_i; i \in \mathbb{N}]$. The set of k-valued points of A^{∞} is $\{(x_i)_{i \in \mathbb{N}}; x_i \in k\}$. The structure ring is coherent by Proposition 1.1.6, since $k[X_i; i \in \mathbb{N}] = \bigcup_{m_i} k[X_1, \ldots, X_m]$.

2. Grassmann variety.

2.1. Let k be a base field.

Definition 2.1.1. An l.c. k-vector space V is a k-vector space with a topology satisfying

- (i) The addition map $V \times V \rightarrow V$ is continuous.
- (ii) V is Hausdorff and complete.
- (iii) The open k-vector subspaces form a neighborhood system of 0.

Let V_1 and V_2 be two l.c. vector spaces. We set

(2.1.1)
$$V_1 \otimes V_2 = \lim_{U_1, U_2} (V_1/U_1) \otimes (V_2/U_2)$$

where U_j rangs over open linear subspaces of 0 in V_j (j = 1, 2). We endow $V_1 \otimes V_2$ with the structure of l.c. vector space such that $\operatorname{Ker}(V_1 \otimes V_2 \to (V_1/U_1) \otimes (V_2/U_2))$ form a neighborhood system of 0.

Definition 2.1.2. An l.c. k-vector space V is called a c.l.c. k-vector space if V is an l.c. k-vector space and it satisfies furthermore

(iv) There is a decreasing sequence $\{W_n\}_{n\in\mathbb{Z}}$ of open vector subspaces forming a neighborhood system of 0 such that $V=\bigcup_{n\in\mathbb{Z}}W_n$ and dim $W_n/W_m<\infty$ for $n\leq m$.

Remark that in this case the family $\mathfrak{F}(V)$ of open vector subspace W of V which is contained by some W_n is independent from the choice of $\{W_n\}$. In fact, $\mathfrak{F}(V)$ is the family of open vector subspaces W of V such that $\dim(W/W') < \infty$ for any open subspace $W' \subset W$.

7-

4

2.2. For a c.l.c. vector space V, define the Grassmann variety as follows.

For a k-scheme S, set $\mathcal{O}_S \otimes V = \lim_{W \in \mathfrak{F}(V)} \mathcal{O}_S \otimes (V/W)$ and consider the functor

(2.2.1) Grass(V): $S \mapsto \{\mathfrak{F}; \mathfrak{F} \text{ is a sub-}\mathfrak{O}_S\text{-module of }\mathfrak{O}_S \mathbin{\hat{\otimes}} V \text{ such that locally in the Zariski topology there exists a } W \in \mathfrak{F}(V) \text{ such that } \mathfrak{F} \to \mathfrak{O}_S \otimes (V/W) \text{ is an isomorphism} \}.$

For $W \in \mathfrak{F}(V)$, we set

(2.2.2) Grass_W(V): $S \mapsto \{\mathfrak{F}; \mathfrak{F} \text{ is a sub-} \mathfrak{O}_S\text{-module of } \mathfrak{O}_S \otimes V \text{ such that } \mathfrak{F} \to \mathfrak{O}_S \otimes (V/W) \text{ is an isomorphism} \}.$

Hence $Grass(V) = \bigcup_{W} Grass_{W}(V)$ in the Zariski topology.

Proposition 2.2.1. Grass(V) is represented by a separated scheme.

Proof. This proposition follows from the following two statements

- (2.2.3) Grass $_W(V)$ is represented by an affine scheme of countable type.
- (2.2.4) For $W, W' \in \mathfrak{F}(V)$, there exists $f \in \Gamma(\operatorname{Grass}_W(V); \mathfrak{O})$ and $f' \in \Gamma(\operatorname{Grass}_{W'}(V); \mathfrak{O})$ such that $\operatorname{Grass}_W(V) \cap \operatorname{Grass}_{W'}(V)$ is represented by the open subscheme defined by $f \neq 0$ of $\operatorname{Grass}_W(V)$ and that we have ff' = 1 on $\operatorname{Grass}_W(V) \cap \operatorname{Grass}_{W'}(V)$.

We shall prove first (2.2.3). Let us take $\{e_i\}_{i\in I}$ in V such that $\{e_i\}$ forms a base of V/W. Take $\{u_j\}_{j\in I}$ in W such that u_j tends to 0 and any element of W is uniquely written as Σ a_ju_j $(a_j \in k)$. Then for a scheme S and $\mathfrak{F} \in \operatorname{Grass}_W(V)(S)$, there exist $a_{ij} \in \mathcal{O}(S)$ such that \mathfrak{F} is generated by $e_i + \Sigma_j a_{ij}u_j$. Hence $\operatorname{Grass}_W(V)$ is represented by $\operatorname{Spec}(k[T_{ij}; i \in I, j \in J])$.

Now, we shall prove (2.2.4).

For $\mathfrak{F} \in \operatorname{Grass}(V)(S)$, let \mathfrak{F} be the cokernel of $\mathfrak{F} \to \mathfrak{O}_S \otimes V/(W \cap W')$, and consider the diagram

$$0 \longrightarrow \mathfrak{O}_{S} \otimes W/(W \cap W') \Longrightarrow \mathfrak{O}_{S} \otimes W/(W \cap W') \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathfrak{F} \longrightarrow \mathfrak{O}_{S} \otimes V/(W \cap W') \longrightarrow \mathfrak{G} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad .$$

$$\mathfrak{F} \longrightarrow \mathfrak{O}_{S} \otimes V/W$$

Hence if $\mathfrak{F} \in \operatorname{Grass}_W(V)(S)$, \mathfrak{F} is isomorphic to $\mathfrak{O}_S \otimes W/(W \cap W')$. The similar diagram obtained by exchanging W and W' shows that $\mathfrak{O}_S \otimes W'/(W' \cap W') \to \mathfrak{F}$ and $\mathfrak{F} \to \mathfrak{O}_S \otimes V/W'$ has the same kernel and the cokernel. Hence if we denote by f the determinant of $\psi: \mathfrak{O}_S \otimes W'/(W \cap W') \to \mathfrak{F} \cong \mathfrak{O}_S \otimes W/(W \cap W')$, then $\operatorname{Grass}_W(V) \cap \operatorname{Grass}_{W'}(V)$ is defined by $f \neq 0$. On $\operatorname{Grass}_{W'}(V)$, we define f' as the determinant of $\psi': \mathfrak{O}_S \otimes W/(W \cap W') \to \mathfrak{F} \cong \mathfrak{O}_S \otimes W'/(W \cap W')$. Then since ψ and ψ' are inverse to each other on $\operatorname{Grass}_W(V) \cap \operatorname{Grass}_{W'}(V)$, we have ff' = 1 there.

COROLLARY 2.2.2. Grass_W(V) is open in Grass(V) and isomorphic to \mathbf{A}^{∞} (if dim $V = \infty$).

COROLLARY 2.2.3. (i) For W, $W' \in \mathfrak{F}(V)$, $\operatorname{Grass}_W(V) \cap \operatorname{Grass}_{W'}(V) = \emptyset$ if $\dim W/(W \cap W') \neq \dim W'/(W \cap W')$.

(ii) Fix $W \in \mathfrak{F}(V)$. Then

۳

j.

$$Grass(V) = \bigcup_{d \in \mathbb{Z}} Grass^d(V)$$
 and $Grass^d(V) = \bigcup_{W'} Grass_{W'}(V)$

where W' rangs over $\mathfrak{F}(V)$ with dim $W/(W \cap W') - \dim W'/(W \cap W') = d$.

2.3. Let G be an affine group scheme over a field k. We say that G acts on a k-vector space (or V is a G-module) if V is an O(G)-comodule; i.e. there is a comultiplication $\mu: V \to O(G) \otimes V$ such that

$$(2.3.1) \qquad V \longrightarrow \mathfrak{O}(G) \otimes V \quad \text{and} \quad V \longrightarrow \begin{array}{c} \mathfrak{O}(G) \otimes V \\ \circ (G) \times \mu \downarrow \downarrow \mu_G \otimes V \\ k \otimes V & \mathfrak{O}(G) \otimes \mathfrak{O}(G) \otimes V \end{array}$$

commutes, where $\mathfrak{O}(G) \to k$ is the evaluation map at the identity and μ_G :

 $\mathfrak{O}(G) \to \mathfrak{O}(G) \otimes \mathfrak{O}(G)$ is the comultiplication. As well-known, in this case, V is a union of finite-dimensional sub-G-modules.

Now, let V be an l.c. k-vector space. We endow O(G) with the discrete topology. We say that V is a (l.c.) G-module if there is given a continuous comultiplication $V \to O(G) \otimes V$ such that

commute. In this case, there exists a neighborhood system of 0 by linear subspaces U_i ($i \in I$) such that V/U_i is a G-module and $V/U_i \to V/U_i'$ is a morphism of G-modules if $U_i \subset U_i'$.

Proposition 2.3.1. If V is a c.l.c. G-module, then G acts on Grass(V).

Proof. It is enough to construct

$$G(S) \times Grass(V)(S) \rightarrow Grass(V)(S)$$

functorially in S. An S-valued point of G gives $\mathcal{O}(G) \stackrel{a}{\to} \mathcal{O}(S)$. Then we obtain

$$g: \mathcal{O}_S \, \hat{\otimes} \, V \xrightarrow{\mathcal{O}_S \, \hat{\otimes} \, \mu} \mathcal{O}_S \, \hat{\otimes} \, \mathcal{O}(G) \, \hat{\otimes} \, V \xrightarrow{a} \mathcal{O}_S \, \hat{\otimes} \, V.$$

This is an isomorphism. Hence for $F \subset \mathcal{O}_S \otimes V$, $\varphi(F) \subset \mathcal{O}_S \otimes V$ and it gives the map $Grass(V)(S) \to Grass(V)(S)$.

3. Kac-Moody Lie algebra.

3.1. Following Kac, Moody, Mathieu, we start by the following data: a free **Z** module P, at most countably generated, and $\alpha_i \in P$ and $h_i \in \text{Hom}_{\mathbf{Z}}(P, \mathbf{Z})$ indexed by an index set I.

We set $t^0 = \mathbb{C} \otimes_{\mathbb{Z}} P$, $t = \operatorname{Hom}_{\mathbb{C}}(t^0, \mathbb{C}) \cong \operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{C})$ with the structure of l.c. vector space induced from the discrete topology of t^0 . We assume the following conditions:

(3.1.1) $\{\langle \alpha_i, h_j \rangle\}_{i,j}$ is a generalized Cartan matrix, i.e. $\langle \alpha_i, h_j \rangle \in \mathbb{Z}$, $\langle \alpha_i, h_i \rangle = 2$, $\langle \alpha_i, h_j \rangle \leq 0$ for $i \neq j$ and $\langle \alpha_i, h_j \rangle = 0$ iff $\langle \alpha_j, h_i \rangle = 0$.

- (3.1.2) For any i, there is $\lambda \in P$ such that $\langle \lambda, h_i \rangle > 0$ and $\langle \lambda, h_j \rangle = 0$ for any $j \neq i$.
- (3.1.3) $\{\alpha_i\}_{i\in I}$ is linearly independent.
- (3.1.4) For any $\lambda \in P$, $\langle h_i, \lambda \rangle = 0$ except finitely many i.

Let G be the Lie algebra generated by t and symbols e_i , f_i $(i \in I)$ with the following recover relations:

(3.1.5)
$$[h, e_i] = \alpha_i(h)e_i$$
 and $[h, f_i] = -\alpha_i(h)f_i$ for $h \in t$.

$$(3.1.6) [e_i, f_i] = \delta_{ii}h_i.$$

$$(3.1.7) \quad (ade_i)^{1-\alpha_j(h_i)}e_i = 0 \text{ and } (adf_i)^{1-\alpha_j(h_i)}f_i = 0 \text{ for } i \neq j.$$

Let n (resp. n_-) be the Lie subalgebra generated by e_i (resp. f_i), $i \in I$. Then we have (e.g. [K])

Set

٠,

5

$$(3.1.9) b = t \oplus n, b_{-} = t \oplus n_{-}$$

$$(3.1.10) \quad \mathcal{G}_i = t \oplus \mathbf{C}e_i \oplus \mathbf{C}f_i, \qquad p_i = \mathcal{G}_i + n, \qquad p_i^- = \mathcal{G}_i + n^-.$$

Let Δ be the set of roots of G and Δ_+ and Δ_- the set of roots of n and n_- , respectively, and let G_{α} be the root space with root $\alpha \in \Delta$. We set

(3.1.11)
$$n_i = \bigoplus_{\substack{\alpha \in \Delta_+ \\ \alpha \neq \alpha_i}} \mathcal{G}_{\alpha}, \qquad n_i^- = \bigoplus_{\substack{\alpha \in \Delta_- \\ \alpha \neq -\alpha_i}} \mathcal{G}_{\alpha}.$$

Let W be the Weyl group, i.e. the subgroup of $GL(t^0)$ generated by the simple reflections s_i ($i \in I$), where

.

$$(3.1.12) s_i(\lambda) = \lambda - \langle h_i, \lambda \rangle \alpha_i.$$

We also denote by W' the braid group generated by s_i' $(i \in I)$ with the fundamental relation

$$s_i's_j' = s_j's_i' \quad \text{if} \quad \langle h_i, \alpha_j \rangle = 0$$

$$s_i's_j's_i' = s_j's_i's_j' \quad \text{if} \quad \langle h_i, \alpha_j \rangle = \langle h_j, \alpha_i \rangle = -1$$

$$(3.1.13)$$

$$(s_i's_j')^2 = (s_j's_i')^2 \quad \text{if} \quad \langle h_i, \alpha_j \rangle \langle h_j, \alpha_i \rangle = 2$$

$$(s_i's_j')^3 = (s_i's_i')^3 \quad \text{if} \quad \langle h_i, \alpha_i \rangle \langle h_i, \alpha_i \rangle = 3$$

Then as is well-known, W is isomorphic to the quotient of W' by the subgroup generated by $ws_i'^2w^{-1}$ $(i \in I)$.

For $w \in W$, we denote by l(w) the length of w, i.e. the smallest number l such that w is the product of a sequence of length l in $\{s_i\}$. Recall that

$$(3.1.14) l(w) = \#(\Delta_{+} \cap w\Delta_{-}).$$

Also recall that $l(s_i w) < l(w)$ if and only if $w^{-1}\alpha_i \in \Delta_-$. Note also there exists a unique injection $\iota : W \to W'$ such that

(3.1.15)
$$\iota(1) = 1$$
, $\iota(s_i) = s_i'$ and $\iota(ww') = \iota(w)\iota(w')$ if $\iota(ww') = \iota(w) + \iota(w')$.

By this, we sometimes embed W into W'.

An element h of t is called regular if $\langle h, \alpha \rangle \neq 0$ for any $\alpha \in \Delta$. Such an element always exists. We set

$$(3.1.16) P_+ = \{\lambda \in P; \langle \lambda, h_i \rangle \ge 0 \text{ for any } i\}.$$

For any finite set J of I, we set

$$(3.1.17) P_{J^+} = \{\lambda \in P_+; \langle \lambda, h_i \rangle = 0 \text{ for } i \in I \setminus J\}.$$

If we set $P_0 = \{\lambda \in P; \langle \lambda, h_i \rangle = 0 \text{ for } i \in I\}$ then P_0 is a free **Z**-module and P_{J^+}/P_0 is a finitely generated semigroup.

3.2. Now, we shall define a completion of G. For a subset S of Δ_+ , we set

$$(3.2.1) n_S = \bigoplus_{\alpha \in S} \, \mathfrak{S}_{\alpha}.$$

We set

Ľ

$$\hat{g} = \lim_{\stackrel{\longleftarrow}{\varsigma}} g/n_{\varsigma} = b_{-} \oplus \prod_{\alpha \in \Delta_{+}} g_{\alpha}$$

where S ranges over the subsets of Δ_+ such that $\Delta_+ \setminus S$ is finite. We define the subalgebras \hat{P}_i , \hat{n}_i , \hat{b} , \hat{n} of \hat{G} , similarly. We set also

$$\hat{U}_{l}(\S) = \lim_{\stackrel{\longleftarrow}{\S}} U_{l}(\S)/U_{l-1}(\S)n_{S}$$

$$\hat{U}(\S) = \bigcup_{l} \hat{U}_{l}(\S)$$

Then $\hat{U}(S)$ is an algebra containing U(S) as a subalgebra.

3.3. In general, let G be a Lie algebra. A vector v of a G-module V is called G-finite if v is contained in a finite-dimensional sub-G-module of V. We call a G-module V is locally finite if any element of V is G-finite.

Let us define a ring homomorphism

$$\delta: U(\S) \to U(\S) \otimes U(\S)$$

by $\delta(A) = A \otimes 1 + 1 \otimes A$ for $A \in \mathcal{G}$, and an anti-ring automorphism

$$(3.3.2) a: U(\S) \to U(\S)$$

by $A^a = -A$ for $A \in G$. Then δ defines $U(G)^* \otimes U(G)^* \to (U(G) \otimes U(G))^* \to U(G)^*$ and this gives a commutative ring structure on $U(G)^*$.

The right and left multiplication of G on U(G) induces the two G-module structures on U(G)*:

(3.3.3)
$$(R(A)f)(P) = f(PA), \quad (L(A)f)(P) = f(a(A)P)$$

7

for $A \in U(\mathcal{G})$, $f \in U(\mathcal{G})$ * and $P \in U(\mathcal{G})$. Then R(A) and L(A) are derivations of the ring $U(\mathcal{G})$ * for any $A \in \mathcal{G}$.

Now let α be an abelian Lie algebra acting on the Lie algebra β semisimply, t an abelian subalgebra of β stable by α , and $P \subset t^*$ a sub-Z-module stable by α . We assume that t acts semi-simply on β by the adjoint action and its weights belong to P.

Then, we set

- (3.3.5) $A(G, t, P, \Omega) = \bigoplus_{\lambda \in P} \{ f \in U(G)^*; f \text{ satisfies the following conditions (3.3.6), (3.3.7) and (3.3.8)} \}.$
- (3.3.6) f is G-finite with respect to L and R.
- (3.3.7) f is a weight vector with weight λ with respect to the left action of t.
- (3.3.8) f is α -finite.

Then $f \in U(\mathfrak{G})^*$ belongs to $A(\mathfrak{G}, t, P, \mathfrak{G})$ if and only if there exists a two-sided ideal I of $U(\mathfrak{G})$ such that

- (3.3.9) f(U(g)/I) = 0,
- $(3.3.10) \quad \dim U(\mathfrak{G})/I < \infty,$
- (3.3.11) I is α -invariant,
- (3.3.12) t acts semi-simply on U(G)/I by the left multiplication and its weights belong to P.

Then one can see easily that $A(G, t, P, \Omega)$ is a subring of $U(G)^*$ and the multiplication map $\mu: U(G) \otimes U(G) \to U(G)$ induces the homomorphism

$$(3.3.13) \qquad \bigcap \qquad A(\S, t, P, \mathfrak{A}) \otimes A(\S, t, P, \mathfrak{A})$$

$$(U(\S)^* \longrightarrow (U(\S) \otimes U(\S))^*$$

With this, $Spec(A(G, t, P, \Omega))$ becomes an affine group scheme (see [M]).

We write

-

$$(3.3.14) G(\mathfrak{G}, t, P, \mathfrak{A}) = \operatorname{Spec}(A(\mathfrak{G}, t, P, \mathfrak{A})).$$

Remark that $g \mapsto g^{-1}$ is given by $a : U(\mathfrak{G}) \to U(\mathfrak{G})$. When $\mathfrak{C} = 0$, we write $G(\mathfrak{G}, t, P)$ for $G(\mathfrak{G}, t, P, \mathfrak{C})$ for short.

3.4. Coming back to the situation in Section 3.1, we define the affine group schemes B, B_- , T, U, U_- , G_i , U_i , U_i^- , P_i , P_i^- as follows. This construction is due to Mathieu [M].

$$B = G(b, t, P),$$
 $B_{-} = G(b_{-}, t, P),$
 $T = G(t, t, P),$
 $U = G(n, 0, 0, t),$
 $U_{-} = G(n_{-}, 0, 0, t),$
 $G_{i} = G(g_{i}, t, P),$
 $U_{i} = G(n_{i}, 0, 0, t),$
 $P_{i} = G(p_{i}, t, P),$
 $P_{i}^{-} = G(p_{i}^{-}, t, P),$
 $G_{i}^{+} = G(t \oplus \mathbf{C}e_{i}, t, P).$

Then we have ([M])

$$B = T \bowtie U = G_i^+ \times U_i$$

$$B_{-} = T \bowtie U_{-} = G_{i}^{-} \times U_{i}^{-},$$
 $P_{i} = G_{i} \bowtie U_{i} \supset B \supset T,$
 $P_{i}^{-} = G_{i} \bowtie U_{i}^{-} \supset B_{-} \supset T,$
 $T = \operatorname{Spec} \mathbb{C}[P],$
 $U \cong \operatorname{Spec} S(\bigoplus_{\alpha \in \Delta_{+}} G_{\alpha}^{*}),$
 $U_{-} \cong \operatorname{Spec} S(\bigoplus_{\alpha \in \Delta_{-}} G_{\alpha}^{*}),$
 $G_{i}^{+} = G_{i} \cap B, \qquad G_{i}^{-} = G_{i} \cap G_{-}.$

More generally, for a subset S of Δ_+ such that $(S + S) \cap \Delta_+ \subset S$, we set $n_S = \bigoplus G_{\alpha}$ and $U_S = G(n_s, 0, 0, t)$.

Then for $S \supset S'$ such that $S \setminus S'$ is a finite set and that $(S + S') \cap \Delta_+$ $\subset S'$, $n_S/n_{S'}$ is a finite-dimensional nilpotent Lie algebra and if we denote by $\exp(n_S/n_{S'})$ the associated unipotent group, we have

$$U_S \cong \lim_{\stackrel{\longleftarrow}{S'}} \exp(n_S/n_{S'}).$$

3.5. The group P_i acts on the c.l.c. space $\hat{\mathbb{G}}$ by the adjoint action. In fact, $ad: p_i \to \operatorname{End}(\mathbb{G})$ extends to $ad: U(p_i) \to \operatorname{End}(\mathbb{G})$. Moreover, for any ideal \mathbb{G} of p_i with codim $p_i/\mathbb{G} < \infty$, \mathbb{G}/\mathbb{G} is locally p_i -finite. Hence, for any $A \in \mathbb{G}$, there is a two-sided ideal I of $U(p_i)$ with dim $U(p_i)/I < \infty$ and $ad(I)A \subset \mathbb{G}$. Hence the morphism $P \mapsto ad(P)A$ from $U(p_i)$ to \mathbb{G}/\mathbb{G} splits as $U(p_i)/I \to \mathbb{G}/\mathbb{G}$. Hence this gives an element of $(U(p_i)/I)^* \otimes \mathbb{G}/\mathbb{G} \subset U(p_i)^* \otimes (\mathbb{G}/\mathbb{G})$. This element clearly belongs to $A(p_i, t, P) \otimes (\mathbb{G}/\mathbb{G})$. Thus we obtained $\mathbb{G}/\mathbb{G} \to A(p_i, t, P) \otimes (\mathbb{G}/\mathbb{G})^*$. Since $\lim_{t \to \infty} \mathbb{G}/\mathbb{G} = \hat{\mathbb{G}}$, we obtain $\hat{\mathbb{G}} \to \mathbb{O}(P_i) \otimes \hat{\mathbb{G}}$. This gives an action of P_i on $\hat{\mathbb{G}}$.

Clearly the action of B on \hat{G} obtained from the action of P_i does not depend on $i \in I$.

Especially, P_i acts on the Grassmann variety Grass($\hat{\mathcal{G}}$) by Proposition 2.3.1.

4. The first construction of the flag variety.

- **4.1.** In this section, for a Kac-Moody Lie algebra G, we construct its flag variety as a subscheme of Grass(\hat{G}). We keep the notations in Section 3.
- **4.2.** Since $\hat{\mathcal{G}}$ is a c.l.c. vector space, Grass $(\hat{\mathcal{G}})$ is a separated scheme. Since $\hat{\mathcal{G}} = b \oplus \hat{n}$, b_- gives a C-valued point of Grass $(\hat{\mathcal{G}})$. We denote this point by x_0 . By Section 3.5, P_i and B act on Grass $(\hat{\mathcal{G}})$.
- **4.3.** Set $s_i' = \exp(-e_i)\exp(f_i)\exp(-e_i) \in G_i \subset P_i$. Then $s_i'^4 = 1$ and s_i' acts on \hat{G} . This extends to the group homomorphism:

$$(4.3.1) W' \to \operatorname{Aut}(\hat{\mathcal{G}}).$$

In order to see this, it is enough to prove the braid relation (3.1.13) when the Lie algebra generated by e_i , e_j , f_i , f_j is finite-dimensional. Then the braid condition holds in the corresponding simply connected semi-simple group.

The morphism (4.3.1) induces

$$(4.3.2) W' \to \operatorname{Aut}(\operatorname{Grass}(\hat{\S})).$$

We have also

(4.3.3) The image of $Ker(W' \to W)$ in $Aut(\hat{\S})$ belongs to the image of T in $Aut(\hat{\S})$.

In fact, $Ker(W' \to W)$ is generated by the $ws_i^{\prime 2}w^{-1}$, which belongs to T.

Since $[t, b_-] \subset b_-$, we have

$$(4.3.4) Tx_0 = x_0.$$

Hence for $w \in W$, $w'x_0$ does not depend on the choice of a representative w' of w in W'. We denote it by wx_0 .

4.4. As in (2.2.2), we set

$$(4.4.1) Grass_{\hat{n}}(\hat{\mathcal{G}}) = \{ W \in Grass(\hat{\mathcal{G}}); W \oplus \hat{n} \stackrel{\sim}{\to} \hat{\mathcal{G}} \}.$$

This is an affine open subscheme of $Grass(\hat{\mathcal{G}})$.

LEMMA 4.4.1. The morphism $U \to \text{Grass}(\hat{S})$ given by $U \ni g \mapsto gx_0$ is an embedding.

Proof. First we shall show $Ux_0 \subset \operatorname{Grass}_{\hat{n}}(\hat{\mathbb{G}})$. For this, it is enough to show, for any $g \in U$,

$$\mathbf{g}\mathbf{b}_{-}\oplus\hat{\mathbf{n}}=\mathbf{\hat{G}}.$$

But this is obvious because \hat{n} is stable by U. Hence it is enough to show that $U \to Y = \operatorname{Grass}_{\hat{n}}(\hat{\mathbb{G}})$ is a closed embedding. In order to see this, let us take a regular element h of t (i.e. $\langle h, \alpha \rangle \neq 0$ for any $\alpha \in \Delta$). Then for any $F \in \operatorname{Grass}_{\hat{n}}(\hat{\mathbb{G}})$, $F \oplus \hat{n} = \hat{\mathbb{G}}$, and hence there exists $\psi(F) \in \hat{n}$ with $h - \psi(F) \in F$. This defines a morphism

$$\psi: Y \to \hat{n}.$$

If we combine $U \to Y \stackrel{\psi}{\to} \hat{n}$, this is given by

$$U \ni g \mapsto h - g^{-1}h \in \hat{n}.$$

Hence it is enough to show the following lemma.

LEMMA 4.4.2. Let h be a regular element of t. Then, the morphism $U \to h + \hat{n}$ given by $g \mapsto gh$ is an isomorphism.

Proof. Let S be a subset of Δ_+ such that $(S + \Delta_+) \cap \Delta_+ \subset S$ and $\Delta_+ \setminus S$ is finite. Then $U \to h + \hat{n}$ induces $U/U_S \to (h + n)/n_S$, and it is enough to show that this is an isomorphism. Now U/U_S acts on b/n_S . For $A \in n/n_S$, the isotropy group at h + A is the identity. In fact this follows from

$$\{E \in n; [h + A, E] \in n_S\} = n_S.$$

Since dim $(h + n)/n_S = \dim U/U_S$, $(U/U_S)(h + A)$ is open in $(h + n)/n_S$. Thus $(U/U_S)(h + A)$ and $(U/U_S)h$ intersect. This shows $U/U_S \cong (U/U_S)h = (h + n)/n_S$.

4.5. We have

÷

$$(4.5.1) Bx_0 = Ux_0$$

because $Tx_0 = x_0$ and B = UT. For $w \in W$, let us denote

$$(4.5.2) B \cap {}^{\mathsf{w}}B = A(t \oplus \bigoplus_{\alpha \in \Delta_+} \bigcap_{\alpha \in \Delta_+} G_{\alpha}, t, P)$$

$$B \cap {}^{w}B_{-} = A(t \oplus \bigcap_{\alpha \in \Delta_{+} \cap {}^{w}\Delta_{-}} \mathcal{G}_{\alpha}, t, P).$$

They are subgroups of B. Similarly, we define $U \cap {}^{w}U$ and $U \cap {}^{w}U_{-}$. Then we have

$$(4.5.3) \quad U \simeq (U \cap {}^{\mathsf{w}}U) \times (U \cap {}^{\mathsf{w}}U_{-}) \simeq (U \cap {}^{\mathsf{w}}U_{-}) \times (U \cap {}^{\mathsf{w}}U).$$

We have also

2-

$$(4.5.4) (B \cap {}^{\mathsf{w}}B_{-})wx_{0} = x_{0}.$$

LEMMA 4.5.1. For $w \in W$, $Bs_i'Bwx_0 \subset Bwx_0 \cup Bs_iwx_0$.

Proof. We have $Bs_i'Bwx_0 \subset P_iwx_0$. Since $P_i = BG_i \subset B(G_i \cap {}^wB_-) \cup Bs_i'(G_i \cap {}^wB_-), P_iwx_0 \subset B(G_i \cap {}^wB_-)wx_0 \cup Bs_i'(G_i \cap {}^wB_-)wx_0 \subset Bwx_0 \cup Bs_iwx_0$.

Note that for $w_1, w_2 \in W$, $w_1 B w_2 x_0$ does not depend on the representatives in W' of $w_1, w_2 \in W$. Hence we denote $w_1 B w_2 x_0$ for it.

LEMMA 4.5.2. Let $w \in W$.

- (i) If $l(w) > l(s_i w)$, $Bs_i Bwx_0 = Bs_i wx_0$.
- (ii) If $l(w) < l(s_i w)$, $Bs_i Bwx_0 = P_i wx_0 = Bwx_0 \cup Bs_i wx_0$.

Proof. If $l(s_iw) < l(w)$, then $w^{-1}\alpha_i \in \Delta_-$. Hence $G_i^+ = G_i \cap B \subset {}^wB_-$ and $s_iB \subset s_iU_iG_i^+ \subset Bs_iG_i^+$. Hence we have $Bs_iBwx_0 = Bs_iG_i^+wx_0 = Bs_iwx_0$.

If $l(s_iw) > l(w)$, then we have $Bs_iBs_iwx_0 = Bwx_0$ since $l(s_is_iw) < l(s_iw)$. Hence $Bs_iBwx_0 = Bs_iBs_iBwx_0$. Since $Bs_iBs_iB = P_i$, $Bs_iBwx_0 = P_iwx_0$ and it contains wx_0 and s_iwx_0 .

LEMMA 4.5.3. $wBx_0 \subset U_{w' \leq w}Bw'x_0$, where \leq is the Bruhat order (the order generated by $s_{i_1} \cdots s_{i_{k-1}}s_{i_{k+1}} \cdots s_{i_1} \leq s_{i_r}$ for a reduced expression $s_{i_1} \cdots s_{i_r}$).

Proof. We shall prove by the induction of l(w). If l(w) = 0, it is trivial. Otherwise, set $w = s_i w'$ with l(w) = 1 + l(w'). Then by the hypothesis of the induction, $wBx_0 \subset \bigcup_{w'' \leq w'} s_i Bw''x_0 \subset \bigcup_{w'' \leq w'} Bs_i w''x_0$.

LEMMA 4.5.4.

- (i) $Bwx_0 \cap Grass_{\hat{n}}(\hat{S}) = \emptyset \text{ if } w \neq 1.$
- (ii) $wBx_0 \cap Grass_{\hat{n}}(\hat{\mathcal{G}}) \subset Bx_0$.

Proof. (i) Let $g \in B$ and assume that $gwb_{-} \cong \hat{\mathbb{G}}/\hat{n}$. Then $wb_{-} \cong \hat{\mathbb{G}}/\hat{n}$. Hence $w\Delta_{-} = \Delta_{-}$, which implies w = 1.

(ii) follows from (i) and the preceding lemma.

COROLLARY 4.5.5. $X = \bigcup_{w \in W} wBx_0$ is a subscheme of Grass($\hat{\S}$) and wBx_0 is open in X for any $w \in W$.

This easily follows from $X \cap \operatorname{Grass}_{\hat{n}}(\hat{\S}) = Bx_0$.

Definition 4.5.6. We call X the flag variety of G.

Since $Grass(\hat{G})$ is a separated scheme, X is also a separated scheme, and $\{wBx_0\}$ is an open affine covering of X. Note that X is not quasicompact if W is an infinite group. I do not know whether X is a closed subscheme of $Grass(\hat{G})$ or not.

LEMMA 4.5.7. Bwx₀ is a closed subscheme of wBx₀ and we have a commutative diagram:

$$(4.5.5) \qquad \begin{array}{ccc} Bwx_0 & \longleftrightarrow wBx_0 \\ & & \uparrow \\ \hat{n} & \bigcap^{w^{-1}} \hat{n} & \longleftrightarrow & \hat{n} \end{array}$$

Proof. We have $U = (U \cap^w U) \times (U \cap^w U_-)$. Since $(U \cap^w U_-)x_0 = x_0$, we have $Uwx_0 = (U \cap^w U)wx_0 = w(^{w^{-1}}U \cap U)x_0$. Then the lemma follows from Lemma 4.4.1.

COROLLARY 4.5.8. Bwx₀ is affine and codimension l(w) in X.

Proposition 4.5.9. $X(\mathbb{C}) = \bigsqcup_{w \in W} Bwx_0$.

Proof. By Lemma 4.5.3, it is enough to show $Bwx_0 = Bw'x_0$ implies w = w'.

We have $wx_0 \in Bw'x_0 \subset w'Bx_0$. Hence $w'^{-1}wx_0 \subset Bw'^{-1}wx_0 \cap Bx_0$. Then Lemma 4.5.4 implies w' = w.

LEMMA 4.5.10. Let w_1 , $w_2 \in W$ and assume $l(w_1s_iw_2) = l(w_1) + l(w_2) + 1$. Then $Bw_1s_iw_2x_0 \subset \overline{Bw_1w_2x_0}$.

Proof. Since $l(w_1s_i) > l(w_1)$, we have $w_1\alpha_i \in \Delta_+$, and hence $G_i \cap w_1^{-1}B \subset G_i \cap B$. Since $l(s_iw_2) > l(w_2)$, $w_2^{-1}\alpha_i \in \Delta_+$ and hence $G_i \cap w_2B_- \subset G_i \cap B_-$. Since $(G_i \cap B) \cdot (G_i \cap B_-)$ is dense in G_i , we obtain

$$Bw_1s_{io}w_2x_0 \subset Bw_1G_iw_2x_0 \subset \overline{Bw_1(G_i \cap w_1^{-1}B)(G_i \cap w_2B_-)w_2x_0}$$

 $=\overline{Bw_1w_2x_0}.$

Proposition 4.5.11. $\overline{Bwx_0} = \bigcup_{w'>w} Bw'x_0$.

Proof. We shall prove first $\overline{Bwx_0} \supset Bw'x_0$ if $w' \geq w$ by the induction of l(w'). If l(w') = 0, then w = w' = e and this is evident. If l(w') > 0, there is $w_1, w_2 \in W$ and i such that $w' = w_1 s_i w_2, w_1 w_2 \geq w$ and $l(w') = l(w_1) + l(w_2) + 1$. Hence $Bw'x_0 \subset \overline{Bw_1w_2x_0} \subset \overline{Bwx_0}$.

Now, we shall prove the converse inclusion.

In order to see this, we shall prove that $\overline{Bwx_0} \supset Bw'x_0$ implies $w \le w'$ by the induction of l(w'). If l(w') = 0, $w \ne 1$ implies $Bwx_0 \cap Bx_0 = \emptyset$. Hence $\overline{Bwx_0} \cap Bx_0 = \emptyset$. Assume that l(w') > 0. Then there is i such that $l(s_iw') < l(w')$. Thus we have $\overline{Bs_iBwx_0} \supset Bs_iBw'x_0 = Bs_iw'x_0$ by Lemma 4.5.2.

If $l(s_i w) < l(w)$, then by Lemma 4.5.2, $\overline{Bs_i w x_0} = \overline{Bs_i Bw x_0} \supset Bs_i w' x_0$ and hence $s_i w' \ge s_i w$, which implies $w' \ge w$.

If $l(s_i w) > l(w)$, then $\overline{Bs_i Bwx_0} = \overline{Bwx_0} \supset Bs_i w'x_0$ and hence $w' \ge s_i w' \ge w$.

Proposition 4.5.12. $BwBx_0 = \bigcup_{w' \leq w} Bw'x_0$.

Proof. By Lemma 4.5.3, it is enough to show $BwBx_0 \supset Bw'x_0$ implies $w \ge w'$, or equivalently

$$(4.5.8) wBx_0 \cap Bw'x_0 \neq \emptyset implies w \geq w'.$$

We shall prove this by the induction on l(w). If l(w) = 0, this is

.2-

already proven. Assume l(w) > 0. Then there exists i such that $w'' = s_i w$ satisfies l(w'') < l(w). Then $wBx_0 \cap Bw'x_0 \neq \emptyset$ implies $w''Bx_0 \cap Bs_i Bw'x_0 \neq \emptyset$.

If $l(s_iw') < l(w')$, Lemma 4.5.2 implies $w''Bx_0 \cap Bs_iw'x_0 \neq \emptyset$. Hence the hypothesis of the induction implies $w'' \geq s_iw'$, which gives $w \geq w'$. If $l(s_iw') > l(w')$, then $w''Bx_0 \cap (Bs_iw'x_0 \cup Bw'x_0) \neq \emptyset$.

Hence $w' \ge s_i w'$ or $w'' \ge w'$. Hence in the both cases, we have $w \ge w'$.

Corollary 4.5.13. $BwBx_0 = \bigcup_{w' \leq w} w'Bx_0$.

Proof. If $w' \le w$, $w'Bx_0 \subset \bigcup_{w'' \le w'} Bw''x_0 \subset BwBx_0$. The inverse inclusion follows from $w'Bx_0 \supset Bw'x_0$ (Lemma 4.5.7).

Remark 4.5.14. For $w, w' \in W$, we have

$$\overline{Bwx_0} \cap w'Bx_0 \cong (U \cap w'U) \times (\overline{Bwx_0} \cap w'(B \cap w'^{-1}B_-)x_0)$$

because $w'Bx_0 = (U \cap w'U) \times w'(B \cap w'^{-1}B_-)x_0$ and $\overline{Bwx_0}$ is invariant by $U \cap w'U$. Then $\overline{Bwx_0} \cap w'(B \cap w'^{-1}B_-)x_0$ is a finite-dimensional variety. Thus, $\overline{Bwx_0}$ is locally finite-dimensional or the product of a finite-dimensional variety and A^{∞} .

Proposition 4.5.15. X is irreducible.

Proof. Since $X = \bigcup wBx_0$ is an open covering by irreducible subsets, it is enough to show $wBx_0 \cap w'Bx_0 \neq \emptyset$ for any w, w'. This follows from $Bw'^{-1}wBx_0 \supset Bx_0$ (Proposition 4.5.12).

5. The second construction of the flag variety.

5.1. Following Kac-Peterson [K-P], we shall first define the ring of regular functions. Recall that $U(g)^*$ has the structure of two-sided g-modules (Section 3.3).

Definition 5.1.1. $A(G, P) = \bigoplus_{\mu \in P} \{ \varphi \in U(G)^*; \varphi \text{ satisfies the following conditions } (5.1.1) \text{ and } (5.1.2) \}.$

- (5.1.1) φ is finite with respect to the left action of p_i and the right action of p_i for all i.
- (5.1.2) φ is a weight vector of weight μ with respect to the left action of t.

LEMMA 5.1.2. A(G, P) is a subring of $U(G)^*$.

-

This easily follows from the fact that $\delta: U(\mathfrak{C}) \to U(\mathfrak{C}) \otimes U(\mathfrak{C})$ is p_i -linear with respect to the left and right actions.

Definition 5.1.3. We define G_{∞} as Spec $(A(\mathfrak{C}, P))$.

LEMMA 5.1.4. Let V be a p_i -module, and $v \in V$.

- (i) If v is b-finite, then $f_i v$ is also b-finite. (ii) If v is b-finite and $f_i^N v = 0$ for $N \gg 0$, then v is p_i -finite.

Proof. Since $[b, f_i] \subset p_i = b + \mathbb{C} f_i$, we have

$$(5.1.3) U(b)f_i \subset U(b) + f_iU(b).$$

This shows (i). If $f_i^N v = 0$, then $U(p_i)v = \sum_{k \le N} U(k) f_i^k v$, which shows (ii).

Lemma 5.1.5. Let V be a G-module. Then, for any $i \in I$, the set of p_i -finite vectors is a sub-G-module.

It is enough to show that if v is a p_i -finite vector then $f_i v$ is also p_i -finite vector for $j \neq i$. By the preceding lemma, $f_i v$ is b-finite. Hence it is enough to show $f_i^N f_i v = 0$ for $N \gg 0$. But this follows from (3.1.7) and $f_i^N f_i v = \sum_k {N \choose k} ((adf_i)^k f_i) f_i^{N-k} v$.

LEMMA 5.1.6. For any $\lambda \in t^0$, $\lambda + N\alpha_i$ is not a weight of $U(n_i)$ except finitely many $N \in \mathbb{Z}$.

We may assume that λ is a weight of $U(n_i)$ and I is finite. For $\lambda = \sum m_j \alpha_j \in \bigoplus_j \mathbf{Z} \alpha_j$, set $|\lambda|' = \sum_{j \neq i} m_j$. Then if α is a weight of n_i , then $|\alpha|' > 0$. Now assume $\lambda + N\alpha_i$ is a weight of $U(n_i)$. Then

$$\lambda + N\alpha_i = \sum_{\nu=1}^r \gamma_{\nu}$$

where γ_{ν} are weights of n_i . Hence $|\lambda|' = \sum_{\nu=1}^r |\gamma_{\nu}|'$. Hence $r \leq |\lambda|'$ and $|\gamma_{\nu}|' \leq |\lambda|'$. Since for any root β , there is only finitely many roots of the form $\beta + N\alpha_i$, there are only finitely many possibilities for γ_ν . Thus we obtain the result.

LEMMA 5.1.7.

(i) $[n_i, f_i] \subset n_i$.

2-

- (ii) (adf_i) acts locally nilpotently on $U(n_i)$.
- (iii) For any two-sided ideal I of $U(n_i)$ such that $[t, I] \subset I$ and $\dim(U(n_i)/I) < 0$, there exists N such that
 - (a) $(adf_i)^m U(n_i) \in I$ for $m \ge N$.
 - (b) $f_i^{N+m}U(n_i) \subset IC[f_i] + U(n_i)C[f_i]f_i^m$ for $m \ge 0$.

Proof.

- (i) follows from $(\Delta_+ \alpha_i) \cap \Delta \subset \Delta_+ \setminus \{\alpha_i\}$.
- (ii) follows from the fact that weights of $U(n_i)$ belong to $\sum \mathbf{Z}_{>0}\alpha_i$.
- (iii) In order to see (a), it is enough to show, for any weight β of $U(n_i)$, $\beta + N\alpha_i$ is not a weight of $U(n_i)$ if $N \gg 0$. This follows from Lemma 5.1.6. (b) follows from (a) and $f_i^{N+m}U(n_i) \subset \Sigma((adf_i)^kU(n_i))f_i^{N+m-k}$.

Lemma 5.1.8. If $\varphi \in U(G)^*$ is left b-finite and right p_i^- -finite, then φ is left p_i -finite.

Proof. By Lemma 5.1.4, it is enough to show

$$(5.1.5) L(f_i)^N \varphi = 0 for N \gg 0.$$

There exists a two-sided ideal I of U(b) such that $\varphi(IU(G)) = 0$ and dim $U(b)/I < \infty$. Then by the preceding lemma, there exists N such that

$$f_i^{N+m}U(n_i) \subset IU(\mathcal{G}) + U(n_i)f_i^mU(p_i^-)$$
 for $m \ge 0$.

Since $U(g) = U(n_i)U(p_i^-)$, we have

$$\varphi(f_i^{N+m}U(\S))\subset \varphi(IU(\S)+U(n_i)f_i^mU(p_i^-))$$

$$\subset \{R(f_i)^m R(U(p_i^-))\varphi\}(U(\mathcal{G})) = 0$$

for $m \gg 0$.

Proposition 5.1.9. $O(G_{\infty})$ is a two-sided sub-G-module of $U(G)^*$. This follows immediately from Lemma 5.1.5.

Let $e \in G_{\infty}$ be the point given by $U(\mathfrak{P}) \to U(\mathfrak{P})/U(\mathfrak{P})\mathfrak{P} \cong \mathbb{C}$.

THEOREM 5.1.10.

(i) P_i acts on G_{∞} from the left and P_i^- acts on G_{∞} from the right.

(ii) The action of B on G_{∞} induced from the one of P_i does not depend on i.

(iii) For
$$g \in G_i$$
, $ge = eg$.

.

7-

Proof. The multiplication homomorphism $\mu_i: U(p_i) \otimes U(g) \rightarrow U(g)$ gives a $\varphi: U(g)^* \rightarrow (U(p_i) \otimes U(g))^*$. We shall show that

$$(5.1.6) \varphi(\mathcal{O}(G_{\infty})) \subset \mathcal{O}(P_i) \otimes \mathcal{O}(G_{\infty}).$$

Then φ is a ring homomorphism and defines $P_i \times G_\infty \to G_\infty$. It is easy to check this is an action of P_i . Similarly $U(\mathfrak{P}) \otimes U(p_i^-) \to U(\mathfrak{P})$ defines $G_\infty \times P_i^- \to G_\infty$ and it gives the right action of P_i^- on G_∞ . The rest is easy to check. Now, we shall show (5.1.6).

Let $f \in \mathcal{O}(G_{\infty})$. Then by the definition, there exists a two-sided ideal I of $U(p_i)$ such that f(IU(g)) = 0, $U(p_i)/I$ is finite-dimensional and that t acts semisimply and the weights belong to P.

Hence $f \circ \mu_i : U(p_i) \otimes U(\mathcal{G}) \to \mathbf{C}$ splits to $U(p_i) \otimes U(\mathcal{G}) \to (U(p_i)/I)$ $\otimes U(\mathcal{G})$. Hence f belongs to $(U(p_i)/I)^* \otimes U(\mathcal{G})^* \subset \mathcal{O}(P_i) \otimes U(\mathcal{G})^*$. Write $f = \Sigma \varphi_k \otimes \psi_k$ with $\varphi_k \in \mathcal{O}(P_i)$ and $\psi_k \in U(\mathcal{G})^*$, such that $\{\varphi_k\}$ is linearly independent. Then there are $R_k \in U(p_i)$ such that $\varphi_k(R_{k'}) = \delta_{kk'}$. Then $\psi_k(P) = f(R_k P)$ for any $P \in U(\mathcal{G})$. Hence $\psi_k \in \mathcal{O}(G_\infty)$ by Proposition 5.1.9.

5.2. For $\Lambda \in t^0$, let us denote $K_{\Lambda} \in U(\mathbb{S})^*$ given by

$$(5.2.1) K_{\Lambda}: U(\mathfrak{G}) \longleftarrow U(n) \otimes U(t) \otimes U(n_{-}) \longrightarrow U(t) \stackrel{-\Lambda}{\longrightarrow} \mathbf{C}$$

where the middle arrow is given by $U(n) \to U(n)/U(n)n \subset \mathbb{C}$ and $U(n_{-}) \to U(n_{-})/U(n_{-})n_{-} \subset \mathbb{C}$ and the last arrow is given by $h \mapsto -\Lambda(h)$. We have in the ring $U(\mathfrak{G})^*$

(5.2.2)
$$K_{\Lambda_1} \cdot K_{\Lambda_2} = K_{\Lambda_1 + \Lambda_2} \quad \text{for} \quad \Lambda_1, \, \Lambda_2 \in t^0.$$

(5.2.3)
$$L(h)K_{\Lambda} = \langle \Lambda, h \rangle K_{\Lambda}$$
 and $R(h)K_{\Lambda} = -\langle \Lambda, h \rangle K_{\Lambda}$

for $h \in t$, $\Lambda \in t^0$.

Lemma 5.2.1. Let $\varphi \in U(G)^*$ be a left b-finite and right b_-finite element, a, b nonnegative integers. Assume that

$$(5.2.4) R(f_i)^{1+a}R(U(n_-))\varphi = 0.$$

(5.2.5) Either
$$R(e_i)^{1+b}(R(U(n_-))\varphi|_{U(b)}) = 0$$
 or $L(e_i)^{1+b}L(U(n))\varphi = 0$.

(5.2.6) Assume that t acts, by R, semisimply on $(R(U(b_-))\varphi)|_{U(b)} \subset U(b)^*$ and its weight Λ satisfies $\Lambda(h_i) \leq -a - b$ and $\Lambda(h_i) \in \mathbb{Z}$.

Then φ is p_i -finite.

Proof. Let N be an integer such that $N \ge 1 - \Lambda(h_i)$ for any weight Λ of $R(U(b_-))\varphi|_{U(b)}$. By Lemma 5.1.4, it is enough to show

(5.2.7)
$$L(f_i)^{N+m} \varphi = 0 \text{ if } m \gg 0.$$

Let *I* be the ideal of U(b) given by $\{P \in U(b); L(P)\varphi = 0\}$. Then by Lemma 5.1.7 we have $f_i^{N+m}U(G) \subset U(n_i) f_i^N \mathbb{C}[e_i]U(b_-) + IU(G)$. We have

$$(5.2.8) f_i^N e_i^k = \sum \frac{N!k!}{(N-\nu)!(k-\nu)!} e_i^{k-\nu} (-h_i - N - k + 2\nu; \nu) f_i^{N-\nu}$$

where $(x; n) = x(x - 1) \cdot \cdot \cdot (x - n + 1)/n!$. We obtain

(5.2.9) $\varphi(f_i^{N+m}U(\mathcal{G}))$

$$\subset \sum_{0 \le \nu \le k,N} \varphi(U(n_i)e_i^{k-\nu}(-h_i-N-k+2\nu;\nu)f_i^{N-\nu}U(b_-)).$$

Hence it is enough to show

(5.2.10)
$$\varphi(U(n_i)e_i^{k-\nu}(-h_i-N-k+2\nu;\nu)U(t)f_i^{N-\nu}U(n_-))=0$$

for $0 \le \nu \le k$, N.

If $N - \nu \ge 1 + a$, (5.2.10) holds by (5.2.4). If $k - \nu \ge 1 + b$, (5.2.10) holds by (5.2.5). Hence we may assume $0 \le N - \nu \le a$ and $0 \le k - \nu \le b$. Then in this case, it is enough to show

$$(5.2.11) (R((-h_i - N - k - 2\nu; \nu))R(U(b_-))\varphi)|_{U(b)} = 0.$$

This is true, if for any weight Λ of $R(U(b_{-}))\varphi|_{U(b)}$ satisfies

$$0 \leq -\Lambda(h_i) - N - k + 2\nu \leq \nu - 1.$$

This is true if $N \ge 1 - \Lambda(h_i)$, $0 \le N - \nu \le a$ and $0 \le k - \nu \le b$.

Corollary 5.2.2. $K_{\Lambda} \in \mathcal{O}(G_{\infty})$ if $\Lambda \in P_{+}$.

In fact, we can apply the preceding lemma with a = b = 0.

5.3. For a subset J of I, we set

(5.3.1)
$$\Delta_J = \Delta \cap \left(\sum_{j \in J} \mathbf{Z} \alpha_j \right) \text{ and } \Delta_J^{\pm} = \Delta^{\pm} \cap \Delta_J,$$

$$(5.3.2) g_J = t \oplus \bigoplus_{\alpha \in \Delta_J} G_{\alpha}; n_J^{\pm} = \bigoplus_{\alpha \in \Delta_{\pm} \setminus \Delta_J} G_{\alpha}.$$

Then $\mathfrak{G} = n_J^+ \oplus \mathfrak{G}_J \oplus n_J^-$ and $U(\mathfrak{G}) \approx U(n_J^+) \otimes U(\mathfrak{G}_J) \otimes U(n_J^-)$. We have

$$[S_J + n_J^+, n_J^+] \subset n_J^+.$$

Since G_J is also a Kac-Moody algebra, we set $G_{J\infty}$ the corresponding variety Spec $(A(G_J, P))$. We also set U_J , U_J^+ the subgroups of U and U^- with the Lie algebra \hat{n}_J^+ and \hat{n}_J^- . Set

(5.3.4) $A_J = \bigoplus_{\mu \in P} \{ \varphi \in U(\mathcal{G})^*; \varphi \text{ is a weight vector of weight } \mu \text{ with respect}$ to the left action of t and φ is left p_j -finite and right p_j^- -finite for any $j \in J$ and φ is left b-finite and right b_- -finite $\}$.

Then we can easily show that

(5.3.5) A_J is a subring of $U(G)^*$ and a two-sided sub-G-module of $U(G)^*$.

Lemma 5.3.4.
$$A_I \cong \mathcal{O}(U_I) \otimes \mathcal{O}(G_I) \otimes \mathcal{O}(U_I^-)$$
.

Proof. We have

 $(5.3.6) \quad \mathfrak{O}(U_J) \otimes \mathfrak{O}(G_J) \otimes \mathfrak{O}(U_J^-)$

$$\subset (U(n_J^+) \otimes U(\mathcal{G}_J) \otimes U(n_J^-))^* \cong (U(\mathcal{G}))^*.$$

We shall show first $A_J \subset \mathfrak{O}(U_J) \otimes \mathfrak{O}(G_J) \otimes \mathfrak{O}(U_J^-)$. For $f \in A_J$, let \mathfrak{A} be the annihilator in U(b) of L(U(b))f. Then $f: U(\mathfrak{A}) \to \mathbb{C}$ splits into $U(\mathfrak{A}) \subset U(n_J) \otimes U(\mathfrak{A}_J) \otimes U(n_J^-) \to (U(n_J)/(\mathfrak{A} \cap U(n_J))) \otimes U(\mathfrak{A}_J) \otimes U(n_J^-)$. Hence f belongs to $\mathfrak{O}(U_J) \otimes (U(\mathfrak{A}_J) \otimes U(n_J^-))^*$. Similarly f belongs to

 $(U(n_J)\otimes U(\mathcal{G}_J))\otimes \mathfrak{O}(U_J)$, and hence to the intersection $\mathfrak{O}(U_J)\otimes U(\mathcal{G}_J)^*$ $\otimes \mathfrak{O}(U_J^-)$. Write $f=\Sigma_{k=1}^N \varphi_k\otimes \psi_k\otimes \xi_k$ with $\varphi_k\in \mathfrak{O}(U_J), \psi_k\in U(\mathcal{G}_J)^*, \xi_k\in \mathfrak{O}(U_J^-)$. We take an expression such that N is minimal among them. Then there are $S_k^\nu\in U(n_J)$ and $R_k^\nu\in U(n_J^-)$ such that $\varphi_k(S_k^\nu)\psi_k(R_k^\nu)=\delta_{kk'}$. Hence $\psi_k(P)=f(S_k^\nu P R_k^\nu)$. Since A_J is a two-sided \mathfrak{G} -module, ψ_k belongs to $\mathfrak{O}(G_J)$.

We shall prove the converse inclusion $A_J \supset \mathfrak{O}(U_J) \otimes \mathfrak{O}(G_J) \otimes \mathfrak{O}(U_J)$. In order to see this, it is enough to show that any element in $\mathfrak{O}(U_J) \otimes \mathfrak{O}(G_J) \subset (U(n_J \oplus \mathcal{G}_J))^*$ is b-finite and p_j -finite for any $j \in J$. For any $\varphi \in \mathfrak{O}(U_J)$, there exists a two-sided ideal \mathfrak{A} of $U(n_J)$ such that $[b, \mathfrak{A}] \subset \mathfrak{A}$, dim $U(n_J)/\mathfrak{A}$ and $\varphi(\mathfrak{A}) = 0$. For any $\psi \in \mathfrak{O}(G_J)$, there exists an ideal k of $U(\mathcal{G}_J \cap b)$ such that dim $(U(\mathcal{G}_J \cap b)/k) < \infty$ and $\psi(k) = 0$. Since $bU(n_J) \subset U(n_J) + U(n_J)(b \cap \mathcal{G}_J)$, $U(n_J) \otimes k + \mathfrak{A} \otimes U(\mathcal{G}_J)$ is a left b-module. Since $\varphi \otimes \psi$ decomposes into

$$U(n_J) \otimes U(\mathcal{G}_J) \rightarrow U(n_J + \mathcal{G}_J)/(U(n_J) \otimes kU(\mathcal{G}_J) + \mathcal{C} \otimes U(\mathcal{G}_J))$$

$$\cong (U(n_J)/\Omega) \otimes (U(\mathcal{G}_J)/kU(\mathcal{G}_J)),$$

 $\varphi \otimes \psi$ is b-finite.

We have

$$(adf_i)^N U(n_J) \subset \mathfrak{A}$$
 for $N \gg 0$ for $i \in J$.

In fact, this follows from the fact that for any $\lambda \in t^0$, $\lambda + m\alpha_i$ is a weight of $U(n_J)$ except finitely many integer m (Lemma 5.1.6). Hence $\varphi \otimes \psi$ is f_i -finite. Thus, $\varphi \otimes \psi$ is p_i -finite for any $i \in J$. Since $\varphi \otimes \psi$ is b_- -finite, we obtain $\varphi \otimes \psi \in A_J$.

Proposition 5.3.5. ([K-P]). $A_J = \mathcal{O}(G_\infty)[K_\Lambda^{-1}; \Lambda \in P_+, h_j(\Lambda) = 0$ for $j \in J$].

Proof. Since K_{Λ} is invertible in $\mathcal{O}(G_{J_{\infty}})$ if $h_{j}(\Lambda)=0$ for $j\in\Lambda,$ we have

$$A_J \supset \mathfrak{O}(G_{\infty})[K_{\Lambda}^{-1}; \Lambda \in P_+, h_j(\Lambda) = 0 \text{ for } j \in J].$$

Now, we shall show the converse inclusion.

Let $\varphi \in A_J$. Then there exists a > 0 such that $R(n_-)^{1+a}\varphi = L(n)^{1+a}\varphi = 0$. Let S be the set of weights of $R(U(b_-))\varphi$ with respect to the right

action of t. Taking a sufficiently large, we may assume that $\langle \lambda, h_i \rangle \leq a$ for any $i \in I$ and $\lambda \in S$. Moreover, there exists a finite set K of I such that $R(e_i)\varphi = L(e_i)\varphi = 0$, $\langle \lambda, h_i \rangle = 0$ for any $i \in I \setminus K$ and $\lambda \in S$.

Now, let $\Lambda \in P_+$ be such that $h_j(\Lambda) = 0$ for $j \in J$ and $h_j(\Lambda) \ge a$ for $j \in K \setminus J$. Then $\varphi \cdot K_{\Lambda}$ is p_j -finite for $j \in J$ and p_j -finite for $j \in I \setminus J$ by Lemma 5.2.1. Hence $\varphi K_{\Lambda} \in \mathcal{O}(G_{\infty})$.

5.4. By Proposition 5.3.5, for finite subsets J and J' with $J \subset J'$, $\operatorname{Spec}(A_J)$ is an open subscheme of $\operatorname{Spec}(A_{J'})$. We set $G_{\infty f} = \bigcup_J U_J \times G_J \times U_J^-$ where J ranges through finite subsets of I. Then $G_{\infty f}$ is an irreducible separated scheme, and $U \times T \times U_-$ is an open subscheme of $G_{\infty f}$. The groups P_i and P_i^- act on $G_{\infty f}$ from the left and the right, respectively.

Definition 5.4.1. Let G be the smallest open subset of $G_{\infty f}$ containing $U \times T \times U_{-}$ closed by the left and right actions of G_{i} $(i \in I)$.

- **5.5.** Hence G is invariant by the left action of P_i , and the right action of P_{i-} . Since $G_{\infty f}$ is irreducible, G is also irreducible. In Section 6, we shall study more precisely the structure of $G_{\infty f}$ in the symmetrisable case.
- **5.6.** Since G_i acts on G_{∞} , $G_{\infty f}$ and G, $s_i' \in G_i$ acts on them. Then we have the braid condition (3.1.13). In fact, if $i, j \in I$ satisfies $\langle h_i, \alpha_j \rangle \langle h_j, \alpha_i \rangle \leq 3$, then the semisimple part of $G_{\{i,j\}}$ is a finite-dimensional group. Thus we can apply the braid condition for finite-dimensional Lie group and hence s_i' and s_j' satisfy the braid condition in $G_{\{i,j\}}$. Since we can check easily that $G_{\{i,j\}}$ acts on G_{∞} , $G_{\infty f}$ and G, we obtain (3.1.13). Thus the braid group W' acts on G, $G_{\infty f}$ and G_{∞} .

Let us embed W into W' by $w \mapsto s'_{i_1} \cdots s'_{i_l}$ where $w = s_{i_1} \cdots s_{i_l}$ is a reduced expression of w.

Lemma 5.6.1.
$$G = \bigcup_{w \in W} w(U \times T \times U_{-})$$

= $\bigcup_{w \in W} (U \times T \times U_{-})w$.

In fact, we have $P_i^- = G_i$ U_- , and $(U \times T \times U_-)P_i^- = Ue \cdot P_i^- = UG_ie \cdot U_- = P_ie \cdot U_-$. Since $P_i \subset s_iBG_i^- \cup BG_i^-$, we have $P_ie \cdot U_- \subset s_iBeU_- \cup Be \cdot U_-$. Thus $\bigcup_{w \in W} w(U \times T \times U_-)$ is invariant by P_{i-} . Hence if A (resp. A') is the smallest open subset containing $U \times T \times U_-$ and invariant by P_i (resp. P_{i-}) for any i, we have $A \supset \bigcup_{w \in W} w(U \times T \times U_-) \supset A'$. Similarly $A \subset A'$. Hence $A = A' = \bigcup_{w \in W} w(U \times T \times U_-)$.

- **5.7.** In general, let X be a scheme and G a group scheme acting on X. We say that G acts locally freely on X if any point has a G-stable open neighborhood which is isomorphic to $G \times U$ for some scheme U. In this case, the quotient X/G in the Zariski topology is representable by a scheme. Note that X/G is not necessarily separated even if X is separated.
- **5.8.** Now, B_- acts on G locally freely. Hence G/B_- is a scheme and covered by open affine subsets $wU \times B_-/B_-$. Note that we have not yet shown that G/B_- is a separated scheme.

Proposition 5.8.1. $X \cong G/B_-$. Here X is the flag variety defined in Section 4.

Proof. We have $G/B_- = \bigcup_{w \in W} wUB_-/B_-$ and $X = \bigcup_{w \in W} wUx_0$. We define for $w \in W'$, the morphism

$$\varphi_w: wUB_- \to wUx_0$$
 by $wgb_- \mapsto wg$.

We shall show

$$\varphi_w = \varphi_{w'} \quad \text{on} \quad wUB_- \cap w'UB_-.$$

This follows from the case where w'=1. If w=1, this is trivial. If $w=s_i'^{\pm 1}$, then this is trivial because φ_w and φ_1 are the restrictions of $P_i e U_i^- \to X$ given by $geg' \mapsto gx_0 (g \in P_i, g' \in U_i^-)$.

Arguing by induction on the length of w, we may assume $w = s_i^{\prime \pm 1} w''$ and

$$\varphi_{w''}|_{w''UeB_-\cap UeB_-}=\varphi_1|_{w''UeB_-\cap UeB_-}$$

and hence

$$\varphi_w|_{wUeB_-\cap s_i'^{\pm 1}UeB_-} = \varphi_{s_i'^{\pm 1}}|_{wUeB_-\cap s_i'^{\pm 1}UeB_-}.$$

Hence φ_w and φ_1 coincide on $wUeB_- \cap s_i'^{\pm 1}UeB_- \cap UeB_-$. Since $wUeB_- \cap s_i'^{\pm 1}UeB_- \cap UeB_-$ is open dense in $wUB_- \cap w'UB_-$ and X is separated, we have (5.8.1).

Thus, we can construct $\varphi: G \to X$ such that $\varphi|_{wUeB_{-}} = \varphi_{w}$. Taking the quotient, we obtain $\tilde{\varphi}: G/B_{-} \to X$.

By the definition, $\tilde{\varphi}$ is W'-equivariant. Also, $\tilde{\varphi}$ is B-equivariant. This is because $\varphi|_{BeB_{-}}$ is B-equivariant and BeB_{-} is open dense in G.

Since $\tilde{\varphi}$ is clearly a local isomorphism and surjective, it is enough to show that $\tilde{\varphi}$ is injective. In order to see this, we shall prove that, for two C-valued points g, g' of G/B_- , $\varphi(g)=\varphi(g')$ implies g=g'. Since φ is W'-equivariant, we may assume $g\in BeB_-/B_-$. Since φ is B-equivariant, we may assume $g=e \bmod B_-$. Assume $g'\in wUeb_-/B_-$ for $w\in W$. Write $g'=wuB_-/B_-$ for $u\in U$. Then $\varphi(g)=\varphi(g')$ implies $x_0=wux_0$. Hence Proposition 4.5.9 implies w=1 and Lemma 4.4.1 implies u=1. Hence g=g'.

6. Symmetrisable case.

4

6.1. In Section 6, we shall assume that the set I of simple roots is finite and the Kac-Moody Lie algebra is symmetrisable. Then by Gabber-Kac [G-K], any integrable $U(\mathfrak{G})$ -module generated by a highest weight vector is semisimple. For $\Lambda \in P_+$, let L_Λ be the irreducible \mathfrak{G} -module with highest weight Λ . Then we have

LEMMA 6.1.1. ([K-P]).
$$A(G, P) = O(G_{\infty}) \cong \bigoplus_{\Lambda \in P_{\perp}} L_{\Lambda} \otimes L_{\Lambda}^*$$
.

6.2. We shall assume further that any irreducible finite-dimensional representation of G is one-dimensional. This is equivalent to saying that any connected component of the Dynkin diagram of G is not finite-dimensional. In this case, letting $P_0 = \{\Lambda \in P; \langle \Lambda, h_j \rangle = 0 \text{ for any } j\}$, any irreducible finite-dimensional representation is G with weight G with weight G is G.

LEMMA 6.2.1.
$$\bigoplus_{\Lambda \in P_+ \setminus P_0} (L_{\Lambda} \otimes L_{\Lambda}^*)$$
 is an ideal of $A(\S, P)$.

Proof. For Λ_1 , $\Lambda_2 \in P_+ \backslash P_0$,

$$(L_{\Lambda_1} \otimes L_{\Lambda_1}^*) \cdot (L_{\Lambda_2} \otimes L_{\Lambda_2}^*) \subset \underset{\Lambda}{\sum} L_{\Lambda} \otimes L_{\Lambda}^*$$

where Λ ranges over the set Λ with $L_{\Lambda} \subset L_{\Lambda_1} \otimes L_{\Lambda_2}$. If $\Lambda \in P_0$ and $L_{\Lambda} \subset L_{\Lambda_1} \otimes L_{\Lambda_2}$, then we have a homomorphism $L_{\Lambda_1}^* \otimes L_{\Lambda} \to L_{\Lambda_2}$. Therefore L_{Λ_2} has a lowest weight vector, which implies L_{Λ_2} is finite-dimensional. Hence $\Lambda_2 \in P_0$, which is a contradiction.

Definition 6.2.2. Let us define $\infty \in G_{\infty}$ by

$$A(\S,P) \to A(\S,P)/\bigl(\textstyle\sum_{\Lambda \in P_+ \backslash P_0} L_\Lambda \otimes L_\Lambda^*\bigr) \approx \bigoplus_{\Lambda \in P_0} \mathbf{C} K_\Gamma \to \mathbf{C}$$

where the last arrow is given by $K_{\Lambda} \mapsto 1$.

Note that

$$(6.2.1) T \cdot \infty \cong \operatorname{Spec}(\mathbb{C}[K_{\Lambda}; \Lambda \in P_0])$$

$$(6.2.2) P_i \infty = \infty P_i^- = T \cdot \infty for any i.$$

6.3. Proposition 6.3.1.

$$G_{\infty} \backslash T \cdot \infty = \bigcup_{\substack{w \in W' \ J \neq I}} w(U_J \times G_J \times U_J^-) = \bigcup_{\substack{w \in W' \ J \neq I}} (U_J \times G_J \times U_J^-)w.$$

Proof. The last identity can be proven as in the proof of Lemma 5.6.1. For $v \in L_{\Lambda}$, $w \in L_{\Lambda}^*$, let us denote by $\langle v, gw \rangle$ the corresponding function on $g \in G_{\infty}$. Now, let g be an element of $G_{\infty} \setminus T \cdot \infty$. Let us denote by G_f the subgroup of $\operatorname{Aut}(L_+)$ generated by the G_i . By the assumption, there is $\Lambda \in P_+ \setminus P_0$ and $v \in L_{\Lambda}$, $w \in L_{\Lambda}^*$ such that $\langle v, gw \rangle \neq 0$. Then $\{v' \in L_{\Lambda}, \langle G_f v', gw \rangle = 0\}$ is a G-module. Hence, it is zero. Therefore, if we denote by v_{Λ} the highest weight vector of L_{Λ} , then $\langle G_f v_{\Lambda}, gw \rangle \neq 0$. Hence there exists $g_0 \in G_f$ such that $\langle v_{\Lambda}, g_0^{-1} gw \rangle \neq 0$. Since $\bigcup w(U_J \times G_J \times U_J^-)$ is invariant by G_f , we may assume from the beginning $\langle v_{\Lambda}, gw \rangle \neq 0$.

Similarly, $\{w'; \langle v_{\Lambda}, gG_{f}w' \rangle = 0\}$ is G-invariant and hence it is zero. Therefore if $v_{-\Lambda}$ is the lowest weight vector of L_{Λ}^* such that $\langle v_{\Lambda}, v_{-\Lambda} \rangle = 1$, then $\langle v_{\Lambda}, gG_{f}v_{-\Lambda} \rangle \neq 0$. Hence replacing g with an element in gG_{f} , we may assume $\langle v_{\Lambda}, gv_{-\Lambda} \rangle \neq 0$. Since $K_{\Lambda}(g) = \langle v_{\Lambda}, gv_{-\Lambda} \rangle \neq 0$, g belongs to $U_{I \setminus \{j\}} \times G_{I \setminus \{j\}} \times U_{I \setminus \{j\}}^{-}$ for $j \in I$ with $\langle h_{j}, \Lambda \rangle \neq 0$, by Proposition 5.3.5.

7. Example.

7.1. We shall give here one example $A_{\infty}^{(1)}$. Let I be \mathbb{Z} , $P=\bigoplus_{i\in I}\mathbb{Z}\Lambda_i$, $\alpha_i=2\Lambda_i-\Lambda_{i+1}-\Lambda_{i-1}$ and $h_i\in t$ is given by $\langle h_i,\Lambda_j\rangle=\delta_{i,j}$. Let $V'=\mathbb{C}^{\mathbb{Z}}=\prod_{i\in \mathbb{Z}}\mathbb{C}\nu_i,\,V_{\leq q}=\prod_{i\leq q}\mathbb{C}\nu_i\subset V'$ for $q\in\mathbb{Z}$ and $V=\bigcup V_{\leq q}$. Let us define $g\to \mathrm{End}(V)$ by

$$t \ni h : \sum a_i v_i \mapsto \sum (\Lambda_i(h) - \Lambda_{i-1}(h)) a_i v_i$$

$$e_i: \sum a_j v_j \mapsto a_{i+1} v_i$$

$$f_i: \sum a_i v_i \mapsto a_i v_{i+1}.$$

For $p \leq q$, let $GL_{p,q}(\infty)$ be the subgroup of GL(V) given by

 $\{g \in \operatorname{End}(V); g \,|_{\,V_{\leq k}} \subset V_{\leq k} \text{ for } k q \text{ and } g \,|_{\,V_{\leq q}/V_{\leq p-1}} \text{ is invertible} \}.$

This is an affine group scheme. With matrix expression, $GL_{p,q}(\infty) = \{(g_{ij}); g_{ij} = 0 \text{ for } j < i \text{ and } j < p, j < i \text{ and } i \geq q, g_{ii} \text{ invertible for } i < p \text{ or } i > q \text{ and } \det((g_{ij})_{p \leq i,j} \leq q) \text{ is invertible} \}$. We define the affine group scheme $GL_{p,q}(\infty)$ by

$$\operatorname{\mathsf{GL}}_{p,q}(\infty) = \operatorname{\mathsf{GL}}_{p,q}(\infty) \times \mathbf{C}^*.$$

We define for $p' \le p \le q \le q'$ $\widetilde{\mathrm{GL}}_{p,q}(\infty) \to \widetilde{\mathrm{GL}}_{p',q'}(\infty)$ by

$$(g, c) \mapsto (g, c \det(g|_{V_{\leq q'}/V_{\leq q}})).$$

Then for $p'' \le p' \le p \le q \le q' \le q''$,

$$\widetilde{\operatorname{GL}}_{p,q}(\infty) \longrightarrow \widetilde{\operatorname{GL}}_{p',q'}(\infty)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widetilde{\operatorname{GL}}_{p'',q''}(\infty)$$

commutes. We set

2

$$\widetilde{\mathrm{GL}}(\infty) = \lim_{\substack{\longrightarrow \\ (p,q)}} \widetilde{\mathrm{GL}}_{p,q}(\infty), \qquad \mathrm{GL}(\infty) = \lim_{\substack{\longrightarrow \\ (p,q)}} \mathrm{GL}_{p,q}(\infty).$$

Then $\widetilde{GL}(\infty)$ and $GL(\infty)$ are ind-objects in the category of schemes with group structure. The group $\widetilde{GL}_{p,q}(\infty)$ coincides with $U_J \times G_J$ where $J = \{i \in \mathbb{Z}; p \leq i \leq q\}$. Note that we have an exact sequence

$$1 \to \mathbb{C}^* \to \operatorname{GL}(\infty) \to \operatorname{GL}(\infty) \to 1,$$

which does not split.

74-

In this case, the flag variety is, under the notation in Corollary 2.2.3, $\{(W_i)_{i\in\mathbb{Z}}; W_i \in \operatorname{Grass}^i(V), W_i \subset W_{i+1}\}.$

R.I.M.S., KYOTO UNIVERSITY

REFERENCES

- [EGA] A. Grothendieck and J. Diendouné, Éléments de géométrie algébrique, Publ. Math. IHES, 4 (1960), 8 (1961).
- [G-K] O. Gabber and V. G. Kac, On defining relations of certain infinite dimensional Lie algebras, Bull. Amer. Math. Soc. 5 (1981), 185-189.
- [K] V. G. Kac, Infinite Dimensional Lie Algebras, Second ed., Cambridge Univ. Press, 1985.
- [K-L] D. A. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Proc. Symp. in Pure Math. of AMS, 36 (1980), 185-203.
- [K-P] V. G. Kac and D. H. Peterson, ¹Regular functions on certain infinite dimensional groups, in Arithmetic and Geometry (ed. M. Artin and J. Tate), *Progress in Math.* 36, Birkhäuser, Boston (1983), 141-166. ²Infinite flag varieties and conjugacy theorems, *Proc. Nat'l Acad. Sci. USA*, 80 (1983), 1778-1782.
- [Ku] S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, *Inventiones Math.* 89 (1987), 395-423.
- [M] O. Mathieu, Formule de Weyl et de Demazure et Théorème de Borel-Weil-Bott pour les algèbres de Kac-Moody générales (preprint).
- [S] P. Slodowy, A character approach to Looijenga's invariant theory for generalized root systems, *Compositio Mat.* (1984).
- [T] J. Tits, Groups and group functors attached to Kac-Moody data, in Lecture Notes in Math. 1111, Springer-Verlag, 1985.