THE FLAG MANIFOLD OF KAC-MOODY LIE ALGEBRA

By M. KASHIWARA

s 0. Introduction. In this paper, we shall construct the flag variety of
a Kac-Moody Lie algebra as an infinite-dimensional scheme. There are
several constructions by Kac-Peterson ([K-P]), Kazhdan-Lusztig ([K-L]),
S. Kumar ([Kul), O. Mathieu ([M]), P. Slodowy ([S]), J. Tits ([T]), but
there the flag variety is understood as a union of finite-dimensional
varieties.

We give here two methods of construction of the flag variety. For a
Kac-Moody Lie algebra g, let g be the completion of g. The first construc-
tion is to realize the flag variety as a subscheme of Grass(g), the Grass-
mann variety of §. More precisely, taking the Borel subalgebra b C g
and regarding this as a point of Grass(g), we define the flag variety as its
orbit by the infinitesimal action of g in Grass(g).

The other construction is to realize the flag variety as G/B_. Of
course, in the Kac-Moody Lie algebra case, we cannot expect that there is
a group scheme whose Lie algebra is g. But we can construct a scheme G
on which g acts infinitesimally from the left and the right. Then we define
the flag variety G/B _, where B__. is the Borel subgroup. More precisely, we
consider the ring of regular functions as in [K-P]. Then its spectrum
admits an infinitesimal action of g. But its action is not locally free.
Roughly speaking, G is the open subscheme where g acts locally freely
(Proposition 6.3.1).

The flag variety of a Kac-Moody algebra shares the mmllar properties
to the finite-dimensional ones, such as Bruhat decompositions.
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staffs in The Johns Hopkins University during my preparing this article.

Manuscript received S December 1988.

161



162 A M. KASHIWARA

1. Scheme of countable type.

1.1. In this paper, we treat infinite-dimensional schemes such as
A%, P>, etc.. We shall discuss their local properties briefly.
Let k£ be a commutative ring.

Definition 1.1.1. A k-algebra A is called of countable type over k, if
A is generated by k and countable numbers of elements.
* The following is easily proven just as in EGA.

LemmaA 1.1.2. Let X be a scheme over k. Assume that there is an
open affine covering X = U U, of X such that T'(U;; Ox) is of countable
type. Then, for any open affine subset U of X, T(U; Ox) is of countable
type.

Definition 1.1.3. A scheme X over k is called of countable type if for
any open affine subset U of X, I'(U; Oy) is a k-algebra of countable type.

LemMA 1.1.4. Let k be a noetherian ring. Then any ideal of a
k-algebra A of countable type is generated by countable elements.

Proof. Assume A is generated by x; ( = 1, 2, . . .). Then for any
ideal Tof A, I N k[xy, . . ., x,] is generated by finitely many elements.

LeMMA 1.1.5. Let k be an algebraically closed field such that k is
not a countable set, and let X be a k-scheme of countable type. If X has no
k-valued point, then X is empty.

Proof. We may assume X = Spec(4) and A = k[T,; n € NJ/I,
where T, are indeterminates. Then I is generated by countably many ele-
ments f;. Let k'’ be the subring of k generated by the coefficients of the f;.
Set A’ = k'[T,; n € Z)/I' where I’ is the ideal generated by f;. Then
A=k R A’ If A # 0, there is a homomorphism A’ = K’ from A’ toa
field K’. We may assume K’ is generated by the image of A’ as a field.
Then K’ has at most countable transcgndental dimension over the prime
field. Hence k' — k splits k’ — K’ — k for some ¢. Therefore X has a
k-valued point.

ProposITION 1.1.6.  Let k be a noetherian ring, and A = lim, A,,
where { A} en is an inductive system of k-algebra of finite type and A, —
A, 11 is flat. Then Ogpeqa) is a coherent ring.

Proof. Any homomorphism ¢ : A" — A comes from some ¢’ :
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A®m — A, . Then Ker ¢’ is finitely generated over A, and hence Ker ¢ =
A ®4, Ker ¢’ is also finitely generated over A.
Let us give an example.

Example 1.1.7. Infinite-dimensional affine space: AT =
Spec k[X;; i € N]. The set of k-valued points of A® is {(x;);en; Xx; € k}.
The structure ring is coherent by Proposition 1.1.6, since k[X;; i € N] =
U kX, ..o, X0

2. Grassmann variety.

2.1. Let k be a base field.

Definition 2.1.1. An Lc. k-vector space V is a k-vector space with a
topology satisfying

(i) The addition map V X V - Vis continuous.
(ii) Vis Hausdorff and complete.
(iii) The open k-vector subspaces form a neighborhood system of 0.

Let V; and V; be two [ c. vector spaces. We set

2.1.1) Vi®Vy = lim (Vi/U) @ (V2/U»)
UnU,

where U, rangs over open linear subspaces of 0in V; (j = 1, 2). We endow
V, & V, with the structure of /.c. vector space such that Ker(V; &V, —
(Vi/U,) @ (V,/U,)) form a neighborhood system of 0.

Definition 2.1.2. An l.c. k-vector space V is called a c.l.c. k-vector
space if Vis an l.c. k-vector space and it satisfies furthermore

(iv) There is a decreasing sequence { W, },z of open vector subspaces
forming a neighborhood system of 0 such that V = U,z W, and dim
W,/ W, < oforn < m.

Remark that in this case the family $(V') of open vector subspace W
of V which is contained by some W, is independent from the choice of
{W,}. In fact, (V) is the family of open vector subspaces W of V such
that dim(W/W'’) < oo for any open subspace W’ C W.
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2.2. For a c.l.c. vector space V, define the Grassmann variety as
follows.

For a k-scheme S, set 95 ® V = limwes(v) 05 ® (V/W) and consider
the functor

(2.2.1) Grass(V): S5 b {F; § is a sub-Og-module of Og ® V such that
locally in the Zariski topology there exists a W e
F(V) such that F — O, ® (V/W) is an isomor-
phism}.

For W e F(V), we set

(2.2.2) Grassy(V):8 b {F; F is a sub-Og-module of O & V such that
F - 05 ® (V/W) is an isomorphism}.

Hence Grass(V) = U Grassy(V) in the Zariski topology.

ProrositioNn 2.2.1. Grass(V) is represented by a separated
scheme. .

Proof. This proposition follows from the following two statements
(2.2.3) Grassy(V) is represented by an affine scheme of countable type.

(2.2.4) For W, W’ € §(V), there exists f € I'(Grass(V); O) and f’ €
I'(Grassy (V); O) such that Grassy (V) N Grassy (V) is repre-
sented by the open subscheme defined by f # 0 of Grassy (V) and
that we have ff’ = 1 on Grassy (V) N Grassy- (V).

We shall prove first (2.2.3). Let us take {e, };e; in V such that {e;} forms a
base of V/W. Take {u;};c,; in W such that u; tends to 0 and any element of
W is uniquely written as I a;u; (a; € k). Then for a scheme S and & €
Grassw(V)(S), there exist a; € O(S) such that § is generated by e, +
L;a;u;. Hence Grassy (V) is represented by Spec(k[T;; i e 1, j e J]).

Now, we shall prove (2.2.4).

For & € Grass(V)(S), let G be the cokernel of F —» O ® V/
(W N W’), and consider the diagram

te
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0 —O0sQW/WNW) = 0:;,QW/WNWwW)—0

b |

0—F —0sQV/(WNW) —gGg—0

Lo

F— 0, QV/W

Hence if F € Grassw(V)(S), G is isomorphic to Os ® W/(W N W’). The
similar diagram obtained by exchanging W and W’ shows that 05 ®
W /(W NW)—>GandF — 05 Q V/W’ has the same kernel and the
cokernel. Hence if we denote by f the determinantof ¢ : O3 @ W'/(W N
W) -G & 0y W/(W N W), then Grassy(V) N Grassy (V) is
defined by f # 0. On Grassy(V), we define f as the determinant of ¢’ :
Os QW/(WNW')—=>G&0,Q W /(WN W’). Then since ¢ and ¢’
are inverse to each other on Grassy (V) N Grassy/(V), we have ff’ = 1
there.

COROLLARY 2.2.2. Grassy(V) is open in Grass(V) and isomorphic
to A” (if dim V = o).

CoROLLARY 2.2.3. (i) For W, W' € F(V), Grassy(V) N
Grassy(V) = Bif dim W/(W N W’) = dim W/ /(W N W’).
(ii) Fix W € (V). Then

Grass(V) = dleJZ Grass?(V) and Grass?(V) = lug Grassy (V)

where W' rangs over $(V) with dim W/(W N W') — dim W' /(W N W')
=d.

2.3. Let G be an affine group scheme over a field k. We say that G
acts on a k-vector space (or V is a G-module) if V is an O(G)-comodule; i.e.
there is a comultiplication p : V = O(G) ® V such that

(2.3.1) V—0O0(G)®V and V— 0GRV
l 0G) %ul lm@v
EQV ARG RYV

commutes, where O(G) — k is the evaluation map at the identity and p¢ :
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O(G) — O(G) ® O(G) is the comultiplication. As well-known, in this case,
V is a union of finite-dimensional sub-G-modules.

Now, let V'be an l.c. k-vector space. We endow O(G) with the discrete
topology. We say that V'is a (I.c.) G-module if there is given a continuous
comultiplication V — O(GY & V such that

2.3.2) V—0G)®V and V— 0GRV
l O(G)%ullm@‘/
kQV 0GR VUG RV

commute. In this case, there exists a neighborhood system of 0 by linear
subspaces U; (i € I) such that V/U;is a G-module and V/U; = V/U{ isa
morphism of G-modules if U; C U;.

ProrositioN 2.3.1. If Vis a c.l.c. G-module, then G acts on
Grass(V).

Proof. It is enough to construct

G(S) X Grass(V)S) — Grass(V)(S)

functorially in §. An S-valued point of G gives O(G) 5 O(s).
Then we obtain

g:0sQVIEH . QOG)RV —> 0, V.

This is an isomorphism. Hence for F C O3 ® V, o(F) C Oy & Vand it
gives the map Grass(V)(S) — Grass(V)S).

3. Kac-Moody Lie algebra.

3.1. Following Kac, Moody, Mathieu, we start by the following
data: a free Z module P, at most countably generated, and o; e P and h; €
Homz(P, Z) indexed by an index set I.

Wesett® = C ®z P, t = Homc(t?, C) = Homgz(P, C) with the struc-
ture of Lc. vector space induced from the discrete topology of t°. We
assume the following conditions:
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(3.1.1) {<ay, k> };; is a generalized Cartan matrix, i.e. {a;, k;) € Z,
(o by = 2, (o, by < Ofori #jand Ca;, h;y = O iff <oy, ;)
= 0.

(3.1.2) Foranyi, thereis A € P such that (\, #;)> > 0 and {(\, k;) = O for
anyj + i.

(3.1.3) {ei}ier is linearly independent.
(3.1.4) For any A € P, {h;, \) = 0 except finitely many 7.

Let G be the Lie algebra generated by ¢ and symbols e, fi (i € I') with the
following recover relations:

(3.1.5) [h, e,~] = ai(h)ei and [h,f,] = -a,(h)f, forh et.
(3.1.6) [e,-,fj] - szhi-
(3.1.7) (ade;)!~%¥e; = 0 and (adf;)'~%"f, = 0 fori # j.

Let n (resp. n_) be the Lie subalgebra generated by e; (resp. f;), i € I.
Then we have (e.g. [K])

3.1.8) CS=n®t®n_.
Set
3.1.9) b=1t®n, b_=t®n_-

(3.1.10) G, =1t @ Ce; @ Cf,, p; =G +n, pi =G +tn".

Let A be the set of roots of G and A, and A_ the set of roots of n and
n_, respectively, and let G, be the root space with root « € A. We set

(3.1.11) nn= @ G, m = @ G,
acl aEA -
a#Eoy oaF —a;

Let W be the Weyl group, i.e. the subgroup of GL(¢°) generated by the
simple reflections s; (i € I), where
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(3.1.12) siN) =N = (ki Mo,

We also denote by W' the braid group generated by s/ (i € I) with the
fundamental relation

sis} = s}s! it <Ay, o) =0

sisjs; = sjsis; if (h;y ap) = (k) = —1
(3.1.13)

(S;SJ{ 2= (S{,{S,")Z if (h,', CXj}(hj, C{i> =2

(sisfy = (sfsi) if <hy, o)<hy, o) =3
Then as is well-known, W is isomorphic to the quotient of W’ by the sub-
group generated by ws/*w ™! (i e I).

Forw € W, we denote by /(w) the length of w, i.e. the smallest number

[ such that w is the product of a sequence of length [ in {s;}. Recall that
3.1.14) Iw) = #(A+ N wA_).

Also recall that I(s,w) < I(w) if and only if w™'a; € A_. Note also there
exists a unique injection ¢« : W — W’ such that

3.1.15) (1) =1, s;) =5/ and ww’) = wh(w’)
it Iww’) = Ilw) + Iw’).
By this, we sometimes embed W into W',
An element £ of ¢ is called regular if ¢4, ) # O for any o € A. Such
an element always exists. We set B
(3.1.16) P, ={NeP;{\ h;) = 0for anyi}.
For any finite set J of I, we set

(3.1.17) Py ={NePi;{\ k) =0foriel\}.

If weset Py = {A€P; (\, h;) = Oforiel}thenPyisafree Z-module
and P;+/Py is a finitely generated semigroup.
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3.2. Now, we shall define a completion of G. For a subset § of A,
we set

3.2.1) ns = @ G..
o, aES
We set
(3.22) S=1limG/mns=b_@® I g,
: (:S'— aeAt

where S ranges over the subsets of A such that A;\S is finite. We define
the subalgebras P;, 7i;, l;, A of Q, similarly. We set also

UAQ) = lim UKGY/U-1(§)ns
s
(3.2.3) ) )
U = LIJ U9
Then 17(9) is an algebra containing U(G) as a subalgebra.

3.3. Ingeneral, let G be a Lie algebra. A vector v of a G-module Vis
called G-finite if v is contained in a finite-dimensional sub-G-module of V.
We call a G-module V is locally finite if any element of V is G-finite.

Let us define a ring homomorphism

(3.3.1) 6: U(Q) — UG ® UG

by6(A) = A ®1+ 1 Q® A for A €G, and an anti-ring automorphism

(3.3.2) a: UG - UG

byA®* = —A for A € G. Then § defines U(G)* @ U(G)* — (U(G) ® U(G))*
— U(Q)* and this gives a commutative ring structure on U(G)*.

The right and left multiplication of G on U(G) induces the two
G-module structures on U(G)*:

(3.3.3) RA)HP) = f(PA),  LA)f)P) = f(a(A)P)
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forA € U(G), fe U(Q)* and P € U(Q). Then R(A) and L(A) are derivations
of the ring U(G)* for any A € G.

Now let @ be an abelian Lie algebra acting on the Lie algebra G semi-
simply, ¢ an abelian subalgebra of G stable by @, and P C ¢* a sub-Z-
module stable by @. We assume that ¢ acts semi-simply on G by the adjoint
action and its weights belong to P.

Then, we set

(3.3.5) A(G,t, P, @) = @er { f € U(Q)*; f satisfies the following condi-
tions (3.3.6), (3.3.7) and (3.3.8)}.

(3.3.6) fis G-finite with respect to L and R.

(3.3.7) fis a weight vector with weight A with respect to the left action
of ¢.

(3.3.8) fis G-finite.

Then f € U(G)* belongs to A(G, ¢, P, @) if and only if there exists a two-
sided ideal I of U(G) such that

3.3.9) fUGQYVI) =0,
(3.3.10) dim U(Q)/I < oo,
(3.3.11) Iis @-invariant,

(3.3.12) ¢ acts semi-simply on U(G)/I by the left multiplication and its
weights belong to P.

Then one can see easily that A(G, ¢, P, @) is a subring of U(G)* and the
multiplication map u : U(G) @ U(G) — U(G) induces the homomorphism

AG, 1, P, @) — AG, 1, P, @) ® AG, 1, P, @)

(3.3.13) N N
ugr — (g ® UG)*

With this, Spec(4(G, ¢, P, @)) becomes an affine group scheme (see [M}).

e
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We write
(3.3.14) G(G, t, P, @) = Spec(A(G, t, P, @)).

Remark that g — g~ !is given by a : U(G) — U(Q).
When @ = 0, we write G(G, ¢, P) for G(G, ¢, P, @) for short.

.3.4. Coming back to the situation in Section 3.1, we define the

affine group schemes B, B_, T, U, U_, G;, U;, U;, P;, P; as follows.
This construction is due to Mathieu [M].

B = G(b, t, P),

B_=G0b_,t, P),

T = G, ¢, P),
U=GHn,0,0,r),
U- =Gn-,0,0,79,
G; = G(G;, t, P),

U, =G#n;, 0,0, 0,

U~ =Gr;,0,0,01),

P, = G(p;, t, P),

P = G(p;,t, P),
G = Gt ® Ce;, t, P),
G =Gt ® Cf, t, P).

Then we have ([M])

B=TX U=Gi* XU,
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B_=TX U-=G; XU,
P,=G,X U;DBDT,
P =G X U7 DB_DOT,
T = Spec C[P],

U= SpecS(® G¥,

acd

U- = SpecS( @ G¥),

acA_

Gtr=G;:NB, G =G;NG._.

More generally, for a subset S of Ay such that(§ +§8) N A; C S, we set
ngs = @ G,and Ug = G(n,, 0, 0, 1).

Then for S D S’ such that S\S’ is a finite set and that (S +S') N A,
C §’,ng/ng is a finite-dimensional nilpotent Lie algebra and if we denote
by exp(ns/ns) the associated unipotent group, we have

Us = l%n exp(ns/ng).

3.5. The group P; acts on the c.l.c. space § by the adjoint action. In
fact, ad : p; = End(G) extends to ad : U(p;) — End(G). Moreover, for any
ideal @ of p; with codim p;/@ < o, G/Q is locally p;-finite. Hence, for any
A € G, there is a two-sided ideal I of U(p;) with dim U(p;)/I < o and
ad(I)A C @. Hence the morphism P — ad(P)A from U(p;) to G/Q splits
as U(p;)/I — G/Q. Hence this gives an element of (U(p;)/I)* ® G/Q@ C
U(p)* @ (G/@). This element clearly belongs to A(p;, ¢, P) ® (G/R).
Thus we obtained G/Q@ — A(p;, t, P) ® (G/@)*. Since lim G/@ = G, we
obtain § - O(P;) ® §. This gives an action of P; on G.

Clearly the action of B on § obtained from the action of P; does not
depend oni e 1.

Especially, P; acts on the Grassmann variety Grass(§) by Proposition
2.3.1. '
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4, The first construction of the flag variety.

4.1. Inthis section, for a Kac-Moody Lie algebra G, we construct its
flag variety as a subscheme of Grass(§). We keep the notations in Section
3. e

4.2. Since §isac.lc. vector space, Grass(Q) is a separated scheme.
Since Q =b _ @A, b_ gives a C-valued point of Grass(Q). We denote this
poirt by x,. By Section 3.5, P; and B act on Grass(8).

4.3. Sets/ = exp(—e,)exp(f;)exp(—e;) € G; C P;. Thens/* =1
and s/ acts on §. This extends to the group homomorphism:

4.3.1) W’ - Aut(§).

In order to see this, it is enough to prove the braid relation (3.1.13) when
the Lie algebra generated by e, e;, f;, f; is finite-dimensional. Then the
braid condition holds in the corresponding simply connected semi-simple
group.

The morphism (4.3.1) induces

4.3.2) W’ — Aut(Grass(8)).
We have also

(4.3.3) Theimage of Ker(W’ — W)in Aut(Q) belongs to the image of T
in Aut(Q).

In fact, Ker (W’ — W) is generated by the ws/?w ™!, which belongs to
T.
Since [¢, b_] C b—, we have

4.3.4) Txo = xo.

Hence for w € W, w’x, does not depend on the choice of a representative
w’ of win W’. We denote it by wx,.

4.4. Asin (2.2.2), we set

4.4.1) Grass;(§) = {We Grass(Q); WD A > Q}.
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This is an affine open subscheme of Grass(Q).

LEMMA 4.4.1.  The morphism U — Grass(§) given byU>sg — gxgis
an embedding.

Proof. First we shall show Ux, C Grass;(§). For this, it is enough
to show, for any g € U,

A

(4.4.2) gb_ @A =¢C.

But this is obvious because 7 is stable by U. Hence it is enough to show that
U — Y = Grass;(8) is a closed embedding. In order to see this, let us take
aregular element & of ¢ (i.e. (h, &) # 0 for any @ € A). Then for any F €
Grass,;(Q), F®n= Q, and hence there exists Y(F) e 2 with A — Y(F) e F.
This defines a morphism

v:Y —A.
¥
If we combine U — Y — #, this is given by
Usg~-h—g'hei.

Hence it is enough to show the following lemma.

LEmMA 4.4.2.  Let h be a regular element of t. Then, the morphism
U — h + 7i given by g — gh is an isomorphism.

Proof. Let S be a subset of Ay suchthat (S + A.) N Ay C S and
AL\S is finite. Then U — h + 7 induces U/Us = (h + n)/ng, and it is
enough to show that this is an isomorphism. Now U/Ujy acts on b/ng. For
A € n/ng, the isotropy group at & + A is the identity. In fact this follows
from

(4.4.3) {Een;[h + A, Elens} = ng.

Since dim(z + n)/ng = dim U/Us, (U/Us}h + A) is open in (2 +
n)/ns. Thus (U/Ug)h + A) and (U/Uj)h intersect. This shows U/Us >
(U/Ug)h = (h + n)/ng.
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4.5. We have
(451) BX() = UXO
because Txy = xg and B = UT. For w € W, let us denote

(4.5.2) BNYB=A@t® & Gar t, P)
acA NYAL

-

BN"B_=A¢® N G t, P).

aeA L NYA_

They are subgroups of B. Similarly, we define U N "U and U N "U-.
Then we have

45.3) U=UN"U)XWUNYU_)=UNU_) XU N™U).
We have also

(4.5.4) (B N ¥B_ )wxy = xy.

LemMma 4.5.1. Forw € W, Bs;Bwxy C Bwxy U Bs;wx,. .

Proof. Wehave Bs;Bwx, C P;wx,. Since P; = BG; C B(G; N "B_)
U Bs!(G; N ¥B_), Powxy C B(G; N *B_)wxy U Bs!{(G; N YB_)wxy C
Bwxy U Bs;wxg.

Note that for w, w, € W, w;Bw,x does not depend on the represen-
tatives in W’ of w,, w, € W. Hence we denote wBw,x, for it.

LEMMA 4.5.2. Letwe W.

(i) If Iw) > I(s;w), Bs;Bwxy = Bs;wx,.
(i) If Iw) < l(s;w), Bs;Bwxy = Pwxy = Bwxy U Bswx,.

Proof. I I(s;w) < I(w), then w 'a; € A_. Hence G;" = G; N B C
*B_ands;B C s;U;G;" C Bs;G;". Hence we have Bs;Bwx, = Bs;G wx,
= Bs;wxy.

If I(s;w) > I(w), then we have Bs;Bs;wxy, = Bwx, since l(s;s;w) <
I(s;w). Hence Bs;Bwxy = Bs;Bs;Bwx,. Since Bs;Bs;B = P;, Bs;Bwxy =
P;wx and it contains wxy and s,;wx,.
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Lemma 4.5.3. wBx, C U, <,.Bw'xq, where < is the Bruhat order
(the order generated by s; - - s, _, *8; =< s; for areduced expres-
sion s; *** s;).

Sipp

Proof. We shall prove by the induction of /(w). If lw) = 0, it is
trivial. Otherwise, set w = s;w’ with Iw) = 1 + lw’). Then by the
hypothesis of the induction, wBxq C U,,» <, $;Bw”xg C U~ <,  Bs;w"xq
UBw’xy C U,v<, Bw"xy.

LEMmMA 4.5.4.

(i) Bwxy N Grass;(§) = Bifw # 1.
(ii) wBxo N Grass;(8) C Bx,.

Proof. (i) Let g € B and assume that gwb_ = §/A. Then wb_ =
§/h. Hence wA_ = A_, which impliesw = 1.
(ii) follows from (i) and the preceding lemma.

COROLLARY 4.5.5. X = U,y wBxq is a subscheme of Grass(G)
and wBx is open in X for any w € W.
This easily follows from X N Grass;(§) = Bx,.

Definition 4.5.6. We call X the flag variety of G.

Since Grass(Q) is a separated scheme, X is also a separated scheme,
and {wBx,} is an open affine covering of X. Note that X is not quasi-
compact if W is an infinite group. I do not know whether X is a closed
subscheme of Grass (Q) or not.

LeEMMA 4.5.7. Bwxg is a closed subscheme of wBxy and we have a
commutative diagram:

Bwx, <— wBx,

(4.5.5) IT n

~ =1 .
ANY < §n

Proof. Wehave U = (U NYU) X (U N* U_). Since (U N* U_)x,
= xo, we have Uwxo = (U N” U)wxo = w(* 'U N U)x,. Then the lemma
follows from Lemma 4.4.1.

COROLLARY 4.5.8. Bwx is affine and codimension l(w) in X.

ProposITION 4.5.9. X(C) =L ,,cw Bwxy.
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Proof. ByLemma4.5.3, it is enough to show Bwx, = Bw'x, implies
w=w’,
We have wxy € Bw’xo C w’'Bxy. Hence w’ 'wxy C Bw’ twxgy N

Bxy. Then Lemma 4.5.4 implies w’ = w.

LEmmMA 4.5.10. Let wq, w; € W and assume Iwisiwy) = lwy) +
l(Wz) + 1. Then Bwls,-wzxo C BWIWZxo.

_Proof. Since lws;) > lw,), we have wia; € Ay, and hence G; N
wr B C G; N B. Since I(s;w,) > l(w,), w; 'a; € A, and hence G; N *2B_
C G; N B_. Since (G; N B)-(G; N B_) is dense in G;, we obtain

BW1S,'0W2JC0 C BW1G,'W2JCO C BW1(G; N wl_lB)(Gi N W2B_)W2.7C0
= BwwyXxg.

ProrosiTioN 4.5.11. Bwxy, = U, 5, Bw'x,.

Proof. We shall prove first ETxo D Bw'xg if w = w by the
induction of I(w’). If (lw’) = 0, thenw = w’ == e and this is evident. If
Iw’) > 0, there is w;, w, € W and i such that w’ = ws;w2, wiws = w
and l(w’) = l(w;) + l(wy) + 1. Hence Bw’xy C Bw w,xy C Bwx,.

Now, we shall prove the converse inclusion.

In order to see this, we shall prove that Bwx, O Bw'x implies w <
w’ by the induction of {(w’). If l(w’) = 0, w # 1 implies Bwx, N Bxy = @.
Hence Bwxo N Bxo = 0. Assume that /(w’) > 0. Then there is i such that
I(s;w’) < lw’). Thus we have Bs;Bwxy D Bs;Bw’'xy = Bs;w’xy by
Lemma 4.5.2.

If I(s;w) < l(w), then by Lemma 4.5.2, Bs;wxo = Bs;Bwxo D Bs;w’x,
and hence s;w’ = s;w, which implies w’ = w.

If I(s;w) > I(w), then Bs;Bwxy = Bwxy D Bs;w’xy and hence w’ =
sw’ o= w,

ProrosiTION 4.5.12. BwBxo = U, -, Bw’'x,.

Proof. By Lemma 4.5.3, it is enough to show BwBx, D Bw’x,
implies w = w’, or equivalently

(4.5.8) wBxo N Bw'xy # @ implies w = w'.

We shall prove this by the induction on Iw). If I(w) = 0, this is
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already proven. Assume /(w) > 0. Then there exists i such that w” = s;w
satisfies /(w”) < I(w). Then wBxy N Bw’'xy, # @ implies w”Bx, N
Bs;Bw’'x, # 0.

If is;w”) < l(w’), Lemma 4.5.2 implies w”Bxy N Bs;w’xy + 0.
Hence the hypothesis of the induction impliesw” = s;w’, which givesw =
w . I ls;w’) > I(w’), then w”Bxo N (Bs;w’xq U Bw’xg) + 0.

Hencew’ = s;w’ orw” = w’. Hence in the both cases, we have w >

’

w .
COROLLARY 4.5.13. BwBxy = U,, ., w’ Bx,.

Proof. Ifw’ <=w,w'Bx¢g C U, <, Bw”xg C BwBx,. The inverse
inclusion follows from w’Bxy O Bw’x, (Lemma 4.5.7).

Remark 4.5.14. Forw, w’ € W, we have
Bwxo N w'Bxo = (UN™U) X Bwxe N w (BN ¥ 1B )xg)

because w’Bxo = (U N *'U) X w’(B N ¥ “'B_)x, and Bwx, is invariant
by U N *'U. Then Bwxy N w’(B N * 'B_)x, is a finite-dimensional
variety. Thus, Bwx, is locally finite-dimensional or the product of a finite-
dimensional variety and A*®. ‘

ProrosiTioN 4.5.15. X is irreducible.

Proof. Since X = U wBx, is an open covering by irreducible sub-
sets, it is enough to show wBx, N w’Bx, # @ for any w, w’. This follows
from Bw’ ~'wBx, D Bx, (Proposition 4.5.12).

5. The second construction of the flag variety.

5.1. Following Kac-Peterson [K-P], we shall first define the ring of
regular functions. Recall that U(G)* has the structure of two-sided G-
modules (Section 3.3).

Definition 5.1.1.  A(G, P) = @ ,cp { ¢ € U(G)*; ¢ satisfies the follow-
ing conditions (5.1.1) and (5.1.2)}.

(5.1.1) ¢ is finite with respect to the left action of p; and the right action
of p; for all i.

(5.1.2) ¢ is a weight vector of weight p with respect to the left action of ¢.
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LeEmMmaA 5.1.2.  A(G, P) is a subring of U(G)*.

This easily follows from the fact that 6 : U(G) — U(G) ® U(Q) is
pi-linear with respect to the left and right actions.

Definition 5.1.3. We define-G., as Spec(A(G, P)).
LemMMA 5.1.4. Let V be a p;-module, and v e V.

. (i) If v is b-finite, then f;v is also b-finite.
(i) If v is b-finite and f¥v = 0 for N > 0, then v is pfinite.

Proof. Since [b, f;] C p; = b + Cf;, we have
(5.1.3) Ub)f; C Ub) + f;UDb).

This shows (i). If /v = 0, then U(p;)v = Ly en U(b)ff‘v, which shows
(ii).

LemMA 5.1.5. Let V be a G-module. Then, for any i € I, the set of
pi-finite vectors is a sub-G-module.

Proof. It is enough to show that if v is a p;-finite vector then f;v is
also p;-finite vector for j # i. By the preceding lemma, f;v is b-finite.
Hence it is enough to show f¥f;v = 0 for N >> 0. But this follows from
3.1.7) and flfiw = e EXadf) ) .

LemMA 5.1.6. For any \ € t°, N 4+ Na; is not a weight of Un;)
except finitely many N € Z.

Proof. We may assume that A is a weight of U(n;) and I is finite. For
N = Im;a;€ @®;Za;, set |[\|" = L;.; m;. Then if o is a weight of n;, then
|a|’ > 0. Now assume A\ + Na; is a weight of U(n;). Then

A + Na; = 217"

where v, are weights of ;. Hence |\|’ = Z—; |v,|’. Hencer < |\|’ and
[v,1’ = |N\]’. Since for any root 3, there is only finitely many roots of the
form 8 + Na;, there are only finitely many possibilities for v,. Thus we
obtain the result.

LEMmMma S5.1.7.
(i) [n:, fi] C n,.
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(ii) (adf;) acts locally nilpotently on U(n;).
(iii) For any two-sided ideal I of U(n;) such that [t, I] C I and
dim(U(n;)/I) < 0, there exists N such that

(a) (adfi)"Un;) € I for m = N.
(®) fF¥T"UMm,) C IC[f:] + Um)CLfi)f for m = 0.

Proof.

(i) follows from (A} — a;) N A C A \{«;}.
(ii) follows from the fact that weights of U(n;) belong to £ Zc;.
(iii) In order to see (a), it is enough to show, for any weight 8 of U(n;),
B + Ne; is not a weight of U(n;) if N > 0. This follows from Lemma
5.1.6. (b) follows from (a) and f¥*" Un;) C T((adf:)* Un;) fN+m k.

LEmMA 5.1.8.  If ¢ € U(Q)* is left b-finite and right p; -finite, then
¢ is left p;-finite.

Proof. By Lemma 5.1.4, it is enough to show

(5.1.5) L(f)"¢ =0 for N> 0.

There exists a two-sided ideal I of U(b) such that o(JU(GQ)) = 0 and
dim U(b)/I < oo. Then by the preceding lemma, there exists N such that

FmUmy) C IUQ) + Um) frU(p7) for m = 0.
Since U(G) = Un;)U(p; ), we have
o(fmU(R) C IU(S) + Um)frU(p7))

CA{R(f)"RWU(p: Ne JU(S)) = 0

form > 0.

ProrosrTioN 5.1.9. O(G.) is a two-sided sub-G-module of U(G)*.
This follows immediately from Lemma 5.1.5.
Let e € G, be the point given by U(G) — U(G)/U(G)G = C.

TaeEOREM 5.1.10.

(i) P; acts on G, from the left and P; acts on G, from the right.
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(ii) The action of B on G, induced from the one of P; does not
depend on i.
(iii) For g € G;, ge = eg.

Proof. The multiplication homomorphism pu; : U(p;) ® U(G) —
U(Q) gives a ¢ : U(Q)* = (U(p;) ® U(Q))*. We shall show that

(5.1.6) 2(0(G)) C O(P) ® O(G o).

Then ¢ is a ring homomorphism and defines P; X G, = G,. It is easy to
check this is an action of P;. Similarly U(G) ® U(p;) — U(Q) defines
G, X P; = G and it gives the right action of P; on G,. The rest is easy
to check. Now, we shall show (5.1.6).

Let f € O(G ). Then by the definition, there exists a two-sided ideal I
of U(p;) such that f(JU(G)) = 0, U(p;)/I is finite-dimensional and that ¢
acts semisimply and the weights belong to P.

Hence fo p;: U(p;) Q@ U(G) — Csplits to U(p;) @ U(G) — (U(p;)/I)
® U(G). Hence f belongs to (U(p;)/I)* ® U(G)* C O(P;) ® U(G)*. Write
f = L ¢r R ¢ with ¢ € O(P;) and ¢, € U(G)*, such that {¢,} is linearly
independent. Then there are R, € U(p;) such that ¢;(R;/) = 64 . Then
Vi (P) = f(RP) for any P € U(GQ). Hence y; € O(G ) by Proposition 5.1.9.

5.2. For A €1 let us denote K, € U(Q)* given by
' —A
5.21) Kp:UQ) == Un) QU QUn-) — Uir) — C
where the middle arrow is given by Un) — Un)/Un)n & C and U(n_-)
- Un_)/Un_-)n- & C and the last arrow is given by & —» —A(h). We
have in the ring U(G)*
(5.2.2) KA,'KAZ =KA,+AZ for A], Azeto.

(5.2.3) LMWK, = (A, YK, and RMK)K, = —(A, B)K,

for het, A et

LemMma 5.2.1. Let ¢ € U(Q)* be a left b-finite and right b_-finite
element, a, b nonnegative integers. Assume that

(5.2.4) R(f)'TR(Um-)p = 0.
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(5.2.5) Either R(e;)'"*(R(UMn-)¢ | uwy) = 0 or L(e;)' "°L(U(n))¢ = 0.

(5.2.6) Assume that t acts, by R, semisimply on (R(U(b-))¢)|ys C
U(b)* and its weight A satisfies A(h;) < —a — b and A(h;) € Z.

Then ¢ is p;-finite.

Proof. Let N be an integer such that N = 1 — A(k;) for any weight
A of R(U(b-))¢| ypy. By Lemma 5.1.4, it is enough to show

5.2.7) L(f)" ™™ =0 if m> 0.

Let I be the ideal of U(b) given by { P € U(b); L(P)¢ = 0}. Then by Lemma
5.1.7 we have f¥*™"U(Q) C U(n;) fYCle;JU(b-) + IU(G). We have

Nk!
ek
N =ik — !

(5.2.8) flef = L (—hi = N = k + 20 0) £~

where (x;n) =x(x — 1) -+ (x — n + 1)/n!.
We obtain

(5.2.9) o(f¥ " UQ)

c X . eUmef "(—h; — N — k + 2v; v) {1 U(b-)).

O<v=k,

Hence it is enough to show
(5.2.10) o(Un)ef"(—h; — N — k + 2»; v)U(t)ffv_"U(n_)) =0

for 0 <=»=<k,N.
IfEN—»=1+4,(5.2.10) holds by (5.2.4). If k — v = 1 + b, (5.2.10)
holds by (5.2.5). Hence we may assume 0 < N —y <gand0 <k —» <
b. Then in this case, it is enough to show
(5.2.11) (R((—h; = N — k — 2»; »RWDB-)N@) | vy = 0.

This is true, if for any weight A of R(U(b-))e| v satisfies

0< —Ah)) - N—k+2r=p—1.
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Thisistrue f N =1 — Ah;)),0 < N—v<agand0 <k — v < b.

COROLLARY 5.2.2. K, € O(G,)if AeP,.
In fact, we can apply the preceding lemma witha = b = 0.

5.3. For a subsetJ of I, wehsét

(5.3.1) Ay =AN (ZJ) Zoj) and AT = A* N A,
e 7€
(532) g] =t @ @ gcz; n.:It = @ ga'
acl, aeA\ 4,

Then § = nf @ G; @ ny and U(G) & Un}) @ U(G)) ® Uny).
We have

(5.3.3) Qs + v}, nf] C ni.

Since G is also a Kac-Moody algebra, we set G, the corresponding vari-
ety Spec(A(G;, P)). We also set Uy, UJ the subgroups of U and U~ with
the Lie algebra 7if and 747 . Set
5.34) A;= C—éBP { o € U(Q)*; ¢ is a weight vector of weight u with respect
m
to the left action of ¢ and ¢ is left p;-finite and right p; -finite for
anyj € J and ¢ is left b-finite and right b _-finite}.

Then we can easily show that

(5.3.5) Aj,is asubring of U(G)* and a two-sided sub-G-module of U(G)*.
LemmMa 5.3.4. A; = O(U;) ® O(G,) ® O(Uy).
Proof. We have

(58.3.6) O(U);) ® UG, ® O(U7y)

C (U@} ® UGy ® Umy)* = (UQ))*.
We shall show first A; C O(U;) @ O(G;) Q O(U7). Forfe Ay, let G be the
annihilator in U(b) of L(U(b))f. Then f : U(G) — C splits into U(G) &

Uny) ® UG)) ® Ulny) = (Uny))/(@ N Ury)) UG, ® Uny).
Hence f belongs to O(U;) ® (U(G,) ® U(ny))*. Similarly f belongs to
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(Uny) ® U(G,)) ® O(U,), and hence to the intersection O(U;) ® U(G,)*
® O(U7). Writef = Z{_; 04 @ Y1 ® &x with o € O(U)), ¥ € UGD*, £
€ O(U;). We take an expression such that N is minimal among them.
Then there are S € U(n;) and R} € U(nj ) such that ¢, (Si )y (R}) =
0. Hence ¢, (P) = f(SEPR}). Since A, is a two-sided G-module, ; be-
longs to O(G)).

We shall prove the converse inclusion A; D O(U;) ® O(G,) ® O(U;).
In order to see this, it is enough to show that any element in O(U;) ®
O0(G,)) C (U(n; @ G,))* is b-finite and p;-finite for anyj € J. For any ¢ €
O(U,), there exists a two-sided ideal @ of U(n;) such that [b, Q] C @,
dim U(rn,;)/@ and ¢(@) = 0. For any ¢ € O(G)), there exists an ideal k of
U(G, N b) such that dim(U(G; N b)/k) < oo and (k) = 0. Since bU(n;,)
C Uy + Uy )b NG, Uny) k + @ ® U(G,) is a left b-module.
Since ¢ ® ¥ decomposes into

Uny) ® U(G)) = Uy + G)/(Uny) @ kUG, + G ® U(G)
= (Uny)/@) @ (U(G)/KU(S))),

¢ ® ¢ is b-finite.
We have

(adf)NUm;)) c @ for N> 0 for iel.

In fact, this follows from the fact that for any A € 2%, N + ma; is a weight of
Ul(n,) except finitely many integer m (Lemma 5.1.6). Hence ¢ ®  is f;-
finite. Thus, ¢ @ y is p;-finite for any i € J. Since ¢ ® v is b_-finite, we
obtain ¢ Q Yy € 4;.

Prorosition 5.3.5. ([K-P]). A;= O(G)IKy';AePy,h(A)=0
forjelJl.

Proof. Since K, is invertible in O(Gs.) if h;(A) = 0 forj € A, we
have

A; D OGLIK:'; AePy, hj(A) = 0forjeldl.

Now, we shall show the converse inclusion.
Let ¢ € A;. Then there exists a > 0 such that R(n_)' "¢ = L(n)' %
= 0. Let § be the set of weights of R(U(b-))¢ with respect to the right
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action of ¢. Taking a sufficiently large, we may assume that (A, z;) < a for
any i € I and \ € S. Moreover, there exists a finite set X of I such that
R(e;))p = Le;))p = 0, {\, h;) = Oforanyie I\K and A € S.

Now, let A € P, be such that 2;(A) = OforjeJand h;(A) = aforje
K\J. Then ¢ - K , is p;-finite forj. € J and p;-finite for j € I\J by Lemma
5.2.1. Hence ¢K 4 € O(G ).

.5.4. By Proposition 5.3.5, for finite subsets J and J* withJ C J’,
Spec(A;) is an open subscheme of Spec(A;). We set Gy = U; U; X Gy
X Uy where J ranges through finite subsets of I. Then G is an irreduci-
ble separated scheme, and U X T X U_ is an open subscheme of G .
The groups P; and P;” act on G .,; from the left and the right, respectively.

Definition 5.4.1. Let G be the smallest open subset of G s contain-
ing U X T X U_ closed by the left and right actions of G, (i € I).

5.5. Hence G is invariant by the left action of P;, and the right
action of P,_. Since G« is irreducible, G is also irreducible. In Section 6,
we shall study more precisely the structure of G, in the symmetrisable
case.

5.6. Since G; acts on G, Gy and G, s/ € G; acts on them. Then
we have the braid condition (3.1.13). In fact, if i, j € I satisfies
(hi, 0;){hj, ;) < 3, then the semisimple part of Gy; ; is a finite-dimen-
sional group. Thus we can apply the braid condition for finite-dimensional
Lie group and hence s/ and s; satisfy the braid condition in Gy, ;;. Since
we can check easily that Gy; j; acts on G, Gwyand G, we obtain (3.1.13).
Thus the braid group W’ acts on G, Gy and G..

Let us embed Winto W’ byw — s/ *+* s/ wherew =s; - s;isa
reduced expression of w.

LEMMA 5.6.1. G = U, .ywwU X T XU-)
= U,ew (U X T X U-)w.

Infact,wehave P, = G; U_,and(U X T X U_)P; =Ue P; =
UGe-U_ = Pie-U-. Since P; C s;BG; U BG; , we have P,e - U_- C
s;BeU_ U Be-U-. Thus U,y w(U X T X U_-) is invariant by P;_.
Hence if A (resp. A’) is the smallest open subset containing U X T' X U—-
and invariant by P; (resp. P;—) for any i, we have A D U,y w(U X T X
U_)DA’. SimilariyA C A’.HenceA = A’ = U ,cww(U X T X U_).
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5.7. In general, let X be a scheme and G a group scheme acting on
X. We say that G acts locally freely on X if any point has a G-stable open
neighborhood which is isomorphic to G X U for some scheme U. In this
case, the quotient X/G in the Zariski topology is representable by a
scheme. Note that X/G is npt necessarily separated even if X is separated.

5.8. Now, B_ acts on G locally freely. Hence G/B_ is a scheme and
covered by open affine subsets wU X B_/B_. Note that we have not yet
shown that G/B_ is a separated scheme.

ProrosrTion 5.8.1. X = G/B_. Here X is the flag variety defined
in Section 4.

Proof. Wehave G/B_ = U,y wUB_/B_ and X = U, wUx,.
We define for w € W’, the morphism

¢y :wUB_ = wUxy, by wgb_ - wg.
We shall show

(5.8.1) 0y =¢, on wUB_ Nw UB_.

This follows from the case where w’ = 1. If w = 1, this is trivial. f w =
s/*1, then this is trivial because ¢, and ¢, are the restrictions of P,eU; —
X givenby geg’ ~ gxo(geP;,, g’ €U).

Arguing by induction on the length of w, we may assume w =

N
s!*'w” and

Pw” lw"UeB_ﬁUeB_ = @1 lw"UeB_ﬁUeB,

and hence
‘pwleeB_ﬂs,-’i'UeB_ = Pt IerB_ﬂs,—'ierB_'

Hence ¢, and ¢, coincide on wlUeB_ N s/T'UeB_ N UeB_. Since
wUeB_ N s/*'UeB_ N UeB_ is open dense in wUB_ N w’UB_ and X is
separated, we have (5.8.1).

Thus, we can construct ¢ : G — X such that ¢|,p.5_ = ¢,,. Taking
the quotient, we obtain & : G/B_ — X.
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By the definition, ¢ is W'’-equivariant. Also, ¢ is B-equivariant. This
is because ¢ | p.p_ is B-equivariant and BeB_ is open dense in G.

Since ¢ is clearly a local isomorphism and surjective, it is enough to
show that ¢ is injective. In order to see this, we shall prove that, for two
C-valued points g, g’ of G/B_, ¢(g) = ¢(g’) implies g = g’. Since ¢ is
W' -equivariant, we may assume g € BeB_/B_. Since ¢ is B-equivariant,
we may assume g = e mod B_. Assume g’ ewUeb_/B_ forw € W. Write
g’ =wuB_/B_foru e U. Then ¢o(g) = ¢(g’) implies xo = wuxy. Hence
Propiosition 4.5.9 implies w = 1 and Lemma 4.4.1 implies # = 1. Hence
g=g.

6. Symmetrisable case.

6.1. In Section 6, we shall assume that the set I of simple roots is
finite and the Kac-Moody Lie algebra is symmetrisable. Then by Gabber-
Kac [G-K], any integrable U(G)-module generated by a highest weight
vector is semisimple. For A € P, let L, be the irreducible G-module with
highest weight A. Then we have

LemMa 6.1.1. ([K-P]). A(G, P) = O(Gw) = @per, Ly ® LE.

6.2. We shall assume further that any irreducible finite-
dimensiona! representation of G is one-dimensional. This is equivalent to
saying that any connected component of the Dynkin diagram of G is not
finite-dimensional. In this case, letting P, = {A € P; (A, k;> = 0 for any
7}, any irreducible finite-dimensional representation is C with weight A €
Py.

LEMMA 6.2.1. @pep,\p, Ly ® L¥)is an ideal of A(G, P).
Proof. For Ab A2 € P+\P0,

(La, ®LE)-Lp, QLY C %LA ® LY

where A ranges over the set AwithL, C Ly ®L,,. HAePyandL, C
L, ® L,,, then we have a homomorphism Lfl ® Ly = L,,. Therefore
L,, has a lowest weight vector, which implies L,, is finite-dimensional.
Hence A, € Py, which is a contradiction.

Definition 6.2.2. Let us define o € G, by
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A(G, P) ~ A(S, P)/(AG}Z\P Ly, ®L}) & @P CKr—~> C

where the last arrow is given by K, ~ 1.

Note that
6.2.1) T-o = Spec(C[K »; A € Py))
(6.2.2) P;o0o = oP; = T-o foranyi.

6.3. ProposiTION 6.3.1.

weW’ weW’
J+I J+I

Proof. The last identity can be proven as in the proof of Lemma
5.6.1. For v € L,, w € L¥, let us denote by (v, gw) the corresponding
function on g € G.. Now, let g be an element of G, \T - o. Let us denote
by G, the subgroup of Aut(L ) generated by the G;. By the assumption,
thereis A e P.\Pyandv € Ly, w € L} such that (v, gw) # 0. Then {v’ €
Ly, {(Gyv', gw) = 0} is a G-module. Hence, it is zero. Therefore, if we
denote by v, the highest weight vector of L, then (G,v,, gw) # 0. Hence
there exists go € G, such that (v,, gg'gw) # 0. Since Uw(U; X G, X
U; ) is invariant by G, we may assume from the beginning {v,, gw) # 0.

Similarly, {w’; {v,, gGw’) = 0} is G-invariant and hence it is zero.
Therefore if v_, is the lowest weight vector of L such that (v, v_,) =1,
then (v,, gGv—,) # 0. Hence replacing g with an element in gG;, we
may assume {v, gv—_,)> #* 0. Since K 5(g) = (v, gv-,) # 0, g belongs to
Uiy X Gy X Unyjy for j e I with <h;, A) # 0, by Proposition
5.3.5.

7. Example.

7.1. We shall give here one example A, Let Ibe Z, P = @, ZA,,
a; = 2A; — Ajyy — A~y and h; € ¢ is given by {h;, A;) = §;;.

Let V' =CZ=1I,;Cv;, Vo, =I;,Cv;C V' forgeZand V= U
V.,. Let us define g = End(V) by

to>h: Z a;y; — Z (A,(h) - Ai—l(h))aivi
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e;: Zajvj - AV
fi: 2 ajv; = a;vitq.
For p =< g, let GL, ,() be the subgroup of GL(V) given by

{g€End(V);glv_, C Vo fork <pork =gandgly_,v_,_, isinvertible
fork < pork > gandgly_,v_,_, isinvertible}.

e

This is an affine group scheme. With matrix expression, GL, (o) =
{(g;);g;=0forj <iandj < p,j <iandi = gq, g;invertible fori < p or
i > q and det((g;),<i j <4) is invertible}. We define the affine group
scheme GL,, ,(o°) by

GL, () = GL, ,(%) X C*.
We define forp’ < p < q < q’ GL, (%) = GL, (%) by

(g,c)~ (g, c det(g|vsq//vs,,))-
Thenforp” <p’' =p=<g=<gq =gq’,

GLp,q(m) It G“']'-4p’,q’(m)

GLP,,'q»(oo)

commutes. We set

C?I.,(oo) = li_I}l GLp,q(W), GL(o) = li_)m GL, 4().
(p.q) (p,q)

Then C?L(OO) and GL(o0) ar%nd-objects in the category of schemes with
group structure. The group GL, ,(o) coincides with U; X G; where J =
{ieZ;p <i < q}. Note that we have an exact sequence

1 = C* > GL(%) = GL() — 1,

which does not split.
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In this case, the flag variety is, under the notation in Corollary 2.2.3,
{(W))iez; W, € Grass'(V), W, C W},

R.I.M.S., KYOTO UNIVERSITY
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