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i. Let X be a complex manifold and f a holomorphic function on 

X. Then, for a complex of sheaves F" on X, we can define a 

"vanishing cycle sheaf" ~F" (in Deligne's notation) on f-l(0) 

(See [3], [i]). The purpose of this paper is to give a corresponding 

holonomic system when F" is given as a de Rham complex of a 

regular holonomic system. 

2. Let X be a smooth complex manifold and Y a smooth submanifold 

of X. We denote by 0 X and ~y the sheaf of holomorphic 

functions on X and the defining Ideal of Y. We denote by A the 

graded 0x-Algebra @ ~ykt-k COx[t,t-l]. Here~ ~yk stands for 0 X 
k~g 

if k ~ 0. We denote by w:X ÷ X the space Specan A over X. 

Then X is smooth and t defines a hypersurface of X isomorphic 

to the normal bundle TyX of Y. 

Let ~ be the real manifold (C-(0))d S I with the boundary 

S I = cx/~ +, with the obvious projection @ + ~. For a complex of 

sheaves F', we define 

(2.1) Vy(F') = i-l~j,p-iF ". 
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Here p is the projection X - TyX = (C-{O}) x X ÷ X and j: 

X-TyX ~@ x X, which are given by t: X + ~. The map i is the 

inclusion TyX ~ SIxTyX ~@ x X given by (i mod R~ S I. 
C 

By using a local coordinate system (Xl,...,xz,...x n) of X 

such that Y is x' = (Xl,...,x E) = 0, the stalks of Vy(F') are 

described as follows. For (xo,v) c TyX (xo ~ cn-~,vcCZ), we have 

(2.2) = HJ(u;F" ) HJ(vY(['))(xo,v) ~ -- • 

Here, U runs over the set of open subsets of X which contain 

{x:(x',x")cC~×~n-~;Ix'l<~, Ix"-xoI<~ , x' ~ r} for some ~ > 0 and an 

open cone F ~v of ~. 

3. Let D X be the sheaf of differential operators on X and 

a regular holonomic Dx-MOdule. We shall then construct a regular 

holonomic DTyX-MOdule ~' such that 

Vy(~ Hom DX( m, ~X )) = R Hom DTyX( I', ®TyX ). 

If such an M' exists, it is unique up to an isomorphism. 

denote it by Vy(~). 

We shall 

4. Keeping X and Y as in the preceding section, we shall define 

the filtration F" = F'( D X) of D X by 

(4.1) Fk( D X) = {P E DX; P(~)cI$ +k for any j}. 

Then, one can show easily the following 

Proposition i~ (i) Fk( DX)/Fk+I( D X) is isomorphic to the sheaf of 
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differential operators o_nn TyX homogeneous o_~fdegree k. Hence its 

graduation gr F. (~X) is a subring of DTy X. 

(2) There exists (locally)_ a vector field 8 tangent t__oo Y acting 

on Iy/I$ as the identity. 

5. Now, let ~ be a coherent 9x-MOdule. A filtration F~ of 

m is called a good filtration of m with respect to F'( D X) 

if it satisfies 

(5.1) Fk( Dx)F ~ ~ _k+j ~I for any k and j 

(5.2) Fk( Dx)F ~ ~k+j = ~I if j >>0 and k ~ 0 

(5.3) 

or if j << 0 and k < 0. 

F~ is a coherent F0( Dx)-Module. 

(5.4) ~ = uF~. 

The following proposition is proved in [2]. 

Proposition 2. Let M be a regular holonomic system. Then there 

exist locall~ a coherent ~X sub-Module F of M and a non-zero 

polynomia ~ b(e ) such that 

(5.5) b( 8 )F < (Dx(deg b)~Fl( Dx))F 

(5.6) m = D x F 

Here Dx(m ) denotes the sheaf of differential operators of order 

m, and 8 is the one given in Proposition i. 
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6. Let R be the abelian category of coherent Dx-MOdules 

satisfying the conclusion in Proposition 2. Let @ be a subset of 

satisfying the following condition: 

(6.1) For any a~@, @ ~(a+Z) consists of a single point. 

Then we have the following 

Theorem I. (i) For any M ~ R, there exists a good filtration 

F~(M) of M satisfying the following condition: there exists a 

p01ynomial b(0) such that b-l(0) CG and b( 0-k)F~(M) c-k+I(~G M) 

for any k. 

Moreover such a filtration is unique. 

(2) For M 6 R, grF~(M) does not depend on the choice of G a_{s 

(not graded) grF.( D)-Module, W~e shall denote it b__yy gr M. 

(3) M ~-~ gr ~ is an exact functor from R into the category of 

coherent grF. ( D )-Modules. 

(4) Vy(~ Hora DX ( M, 0X)) = ~ Holm ~TyX ( DTy X grDx@ gr M, ®TyX ) 

Vy(~ Hom @X' m)) = ~ Hom DTyX ( @ gr M). DX( 0TyX' DTyX grD X 

(5) If M i_~s regular holonomic, so is DTy X @ gr M 
grD 

We shall indicate the proof of the theorem. 

Proof of (I). By using Proposition 2, there exists a good filtration 

F~ of M and a non-zero polynomial b such that 

(6.2) b( e-k)F~ C _k+l ~I for any k. 

k Fk(D) F we apply the following lemma In fact, setting F I = 



Lemma i. For anF f( ~ )E@[ 8] and P ~Fk(D ), f(8)P - Pf(e+k)E 

Fk+I(D ). 

Now, assume that b(8) in (6.2) is a product of two 

k k+l -k)F~ polynomials bl( 8 ) and b2( 8 ) and we set FII = F I +bl( 8 

Then FII is a good filtration satisfying bl(8_k_l)b2(e_k)F~ I ~_k+l ~II " 

Repeating this procedure, we can show the existence of F~. 

The uniqueness of F~ is proved as follows. 

Let F I and FII be two good filtrations and bl( 8 ) and 

bll(8) two polynomials satisfying bj(e-k)F~ CF~ +I and b]l(0) CG 

k-N for any k. for J = I, II. There exists N ~ i such that F CFII 

-k+lc-k-N+l 8-k+N)F  Cbz(e-k+N)F  NC 
Then bl(8-k)F~ <~I ~II and bll( 

Fk-N+I Ii . Since bl(S-k) and bll(S-k+N) have no common root, 

k <F~I" (3) is Flk<~ii_k-N+l. Repeating this, we finally obtain F I 

proved by a similar discussion. 

Proof of (2). Let G and G' be two subsets of @ satisfying 

(6.1). We shall show gr F G ~ gr FG,. We may assume G ~ I and 

G' = (G-{I}) U {I+i). We write gr F G for grFG ~. 

Let b(8) be a polynomial such that b-l(0) C G and b(8-k)F~ 

Fk+l Set b( 8 ) = (8-l)ma( 8 ) with a(1) # 0. Then F~, = 
G " 
(8-l-k m k _k+l ) FG + FG " Let us take ~,¢ 6~[ 9 ] satisfying 

(6.3) - 0 rood ( e-l)m( 8 -i-i) m, 

~- i mod a(8), 

@ - 0 mod a( 8 )a( e -i), 

- I mod (8-I) m. 

We shall define f: gr F G ÷ gr FG, and g: gr FG, ÷ gr F G as 

follows. 



(6.4) 
k. k+l _k ._k+l 

f: gr F G = ~FG/F G 9 [u k ~-~ Iv k~ gr F G, = ~'G'/~G' 

v k = 9( e-k)u k + 4( e-k-1)uk+ 1 

(6.5) g: gr FG, 9 Iv k ~-~ [u k ~ gr F G 

by u k = v k + 4( 8 -k)Vk_ I. 

Then one can easily show that f and g are inverses to each 

other. 

(4) is shown by reducing the problem to the following special case, 

which is easy to prove. 

Proposition 2. Let b( 8 ) be a non-zero polynomial of degree m 

with b-l(0) CG and P an N × N matrix of differential operators 

in FI( D ) ~ D(m). 

Set m = D N/ DN(b( 8 )-P). Then (4) in Theorem i is true 

for M . 

(5) is proved in [2]. 

7. Suppose that Y is a smooth hypersurface of X given by f = 0. 

Then, for a complex of sheaves F" whose cohomology groups are 

constructible, one can define ~4 and R~ and can: ~¢ ÷ ~Y and 

Var: RY + R@ (See [3]). If we take a vector field ~ such that 

0 
~f ~ i mod Iy, then 0 = f~ and grF.(D ) is isomorphic to D y. 

Suppose F" = R Hom D ( M, 0X) for a regular holonomic Dx-MOdule 
X 

M . Then we have the following 

Theorem 2. Assume G C@ satisfies (6.1) and contains 0. 



k M is a regular holonomic Dy-Module. (o) gr  a 

(1) ~ = ~ Hom D (gr~ m, @y) and Re = ~ iom D (grG 1 m, @y). 
Y Y 

(2) can i ss ~iven b~ f: gr~l~ 0 ~-~ grG~ and Var i ss given b~ 

~e2Wie_ I 0 I 
: gr G~ -~ gr~ m e 

2wi6_i 
Remark I. We can replace in (2), f and ~e 

0 

and ~. 

2wi 
with e e - i f  

8 

Remark 2. If we replace ~ Hom D X(* , 0 X) with ~ Hom DX(@X,*), 

then (i) holds by replacing ~ Hom D X(* , ®y) with R Hom D y(0y,*). 

Accordingly, (2) holds by exchanging Var and can. 

Sketch of proof. The theorem is essentially equivalent to the 

following one-dimensional case. Let X = @ and Y = (0). Let V 0 

and V_I be two vector spaces and let A: V 0 ÷ V_I and B: V i ÷ V 0 

be two homomorphisms. Let M be a D x-MOdule generated by V0~V_I 

with the fundamental relation: 

xu = Bu for u ~V_I 

~v = Av for vEV 0. 

If we assume the eigen-values of AB are contained in G, then 

k M = V k for k = 0, -i. gr G 

Let U be a non-empty convex cone in @ such that U ~0. 

Then we have 

~ = Horn DX( M, 0x(U)) and 

R¢ = Horn DX( M, Ox(U)/  OX(C)). 
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The homomorphism can is given by 0x(U ) ÷ 0 x(U)/ ®X({). The 

homomorphism Var is given as follows: for ~HOmDx( M, ® (U)/0(X)) 

and s £M, let us choose a representative u ~ ®(U) of ~(s). 

Then u can be continued to a multi-valued holomorphic function on 

~-{0}, so that we can obtain the holomorphic function Tu defined 

on U by the analytic continuation of u along a path around 

the origin. Then Tu-u does not depend on the choice of a 

representative u and s ~-~Tu-u gives a homomorphism from M 

to 0x(U). This is the homomorphism Vat. 

Now, R~ and ~¢ are isomorphic to V~ and V*I as follows: 

V$ ~ HomD (M, Ox(U)), V~ -~HOmD( M, @x(U)/OX(¢)) 

by V$ 9~ ~-~ ~ and V*19 B ~-~ @ , where ~(u) = <~,xBA'IBu>, 

~(v) = <~,xBAv > and @(u) = <B,xAB-IF(I-AB)u>, @(v) = 

-<B,AxBAF(-BA)v > for u 6V_I and v ~V O. 

Remark that xlF(1) defines well an element of 0 (U)/ @ (@) 

by the analytic continuation on k (e.g. xlF(k) = log x at I = 0 

and xkr(k) = log x + ((log x)2/2 - ylog x)N + ((log x)3/6 - 

¥(log X)2/2 + (w2/3 + ¥2/2)iog x)N 2 at k = N with N 3 = 0; y is 

the Euler constant). 

Thus with these identification, can is given by ~aB(F(I-AB)) -I 

and Var is given by B ~-~B(2wiAeWiBA/F(I+BA)). Finally it is 

enough to note that x, 2, 8 correspond to B, A and BA (or AB-I) 

and (F(I-AB)) -I is invertible under the condition on the eigenvalues 

of AB. 
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