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l. Let X be a complex manifold and f a holomorphic function on
X. Then, for a complex of sheaves F' on X, we can define a
"vanishing cycle sheaf" RYF' (in Deligne's notation) on f-l(O)
(See [31, [1]). The purpose of this paper is to give a corresponding
holonomic system when F° is given as a de Rham complex of a

regular holonomic system.

2. Let X be a smooth complex manifold and Y & smooth submanifold

of X. We denote by 0X and £Y the sheaf of holomorphic

functions on X and the defining Ideal of Y. We denote by A the
k, -k -1 k

graded ®X~A1gebra ® Iy t COX[t,t 1. Here, lY stands for OX

kel

if k 0. We denote by ﬂ:i -+ X the space Specan A over X.

hS
Then X is smooth and t defines a hypersurface of % isomorphic
to the normal bundle TYX of Y.

Let € be the real manifold (C—{O})L!Sl with the boundary
S1 = CX/R+, with the obvious projection €+ C. For a complex of

sheaves F°, we define

(2.1) vy (F') = 17 MRy, E .
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Here p 1s the projection X - TYX = (¢-{0}) x X + X and J:
i

ﬁ—TYX < € x X, which are given by t: X - €. The map i is the

€

inclusion TyX qsleYx &€ x X given by (1 mod R%Ne st.
¢
By using a local coordinate system (xl,...,xl,...xn) of X
such that Y 1is x' = (xl,...,xg) = 0, the stalks of vY(E') are

L

described as follows. For (Xq,v) € TyX (xo e € ,Vecg), we have

(2.2) B (070 (x,,vy = Lim B9 (052

Here, U runs over the set of open subsets of X which contain

{x=(x‘,x")e€£xcn'2;}x'}<e,fx"—xo}<a, x' €T} for some e > 0 and an

open cone I av of CK.

3. Let DX be the sheaf of differential operators on X and R
a regular holonomic BX—MOdule. We shall then construct a regular

holonomic D -Module ®' such that
TYX

Car, Op 4.

TYX Y

vY(R Hom DX( o, OX)) = R Hom D

If such an W' exists, it is unique up to an isomorphism. We shall

denote it by vY( n.

4, ZKeeping X and Y as in the preceding section, we shall define

the filtration P’ = F'( DX) of DX by

(4.1) FEC D) = (P e Dy P c1d™ ror any ).

Then, one can show easily the following

Proposition 1, (1) FX( D.)/F** () 1s to the of
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differential operators on TyX homogeneous of degree k. Hence its

graduation grp.(P,) Is a subring of DTYX'
(2) There exists (locally) a vector field o tangent to Y acting

on I,/I5 as the identity.

5. DNow, let fi be a coherent P,-Module., A filtration F; of

X I
o is called a good filtration of % with respect to F°( DX)

if it satisfies

(5.1) K ( Dy)FT C—Flj’:"*j for any k and j
(5.2) 7X( DX)F% = F?j if 3 »0 and k >0

or if J «0 and k < 0.
(5.3) F% is a coherent FO( DX)—Module.
(5.4) n o= Url

The following proposition is proved in [2].

Propoesition 2. Let B be a regular holonomic system. Then there

exist locally a coherent ¢ sub-Module F of @ and a non-zero

X
polynomial b(® ) such that

(5.5) b( 8)F C ( Dy(deg D)NF( D))F
(5.6) m o= Dy F

Here DX(m) denotes the sheaf of differential operators of order

< m, and 8 1is the one given in Proposition 1.
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6. Let R be the abelian category of coherent nX-Modules

satisfying the conclusion in Proposition 2. Let G be a subset of

T satisfying the following condition:

(6.1) For any ael, GN(a+Z) consists of a single point.

Then we have the following

Theorem 1. (1) For any € R, there exists a good filtration

Fé( m) of M satisfying the following condition: there exists a

polynomial b( 8) such that b~ 2(0) ¢G and b( 6-k)FE( m <P m)
for any k.

Moreover such a filtration is unique.

(2) For M €R, ng.( M) does not depend on the choice of G as
G
a {(not graded) ng.( D)-Module. We shall denote it by gr #.

(3) @ +— gr is an exact functor from R into the category of

coherent ng.{ D )-Modules.

() Vv (R Hom ., {( W, 0.)) = R Hom (» & grmn, o )
T ==y X = Dp y TX —_ * ST X
v, (R Hom (0,, M) = R Hom (o s D ® gr m).
T = py X =2 DTYX T X* "TyX grD,

(5) If m 1s regular holonomic, 50 is Dpx 8 grm
YU gry

We shall indicate the proof of the theorem.

Proof of (1). By using Proposition 2, there exists a good filtration

Fi1 of M and a non-zero polynomial b such that

(6.2) b( Gnk)F? < F¥+1 for any k.

In fact, setting F? = Fk( D) F we apply the following lemma.
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Lemma 1. For any f(8)eC[ 6] and PeF (D), r(6)P - Pr(o+k)e

Fk+1(D y.

Now, assume that b{( 8) in (6.2) 1is a product of two

, kK _ k+l k
polynomials bl(e ) and b2( 8) and we set FII = FI +bl( emk)FI.

. . . k k+1
Then FII is a good filtration satisfying bl(e—k—l)bz(evk)letiFII

Repeating this procedure, we can show the existence of Fé.

.

The uniqueness of F is proved as follows.

G
Let FI and FII be two good filtrations and bI( 6) and
bII( §) two polynomials satisfying bJ(e—k)Fg CF§+1 and b}l(O) <G

for J = I, II. There exists N > 1 such that FrcF<TN

T TT for any k.

k k+1 K-N+1 k k-N
Then bI(G—k)FICFI CFII and bII(S-kH\I)FI cbn(e-km)?ﬂ C
F¥5N+l. Since bI(s—k) and bII(s-k+N) have no common root,
F}I(CF?EI\HI. Repeating this, we finally obtain Fi CFi,. (3) is

proved by a similar discussion.
Proof of (2). Let G and G' be two subsets of € satisfying

(6.1)., We shall show gr FoegrF We may assume G ® A and

G'"
G' = (G-{A})V {A+1}. We write gr Fo for gr, .
G
Let b(8) be a polynomial such that b'l(O) CG and b(e—k)FgCL

Pt Set p(8) = (6-1)™a(6) with a()) # 0. Then Fi, =
(e-k-k)mFg + Fg+l Let us take @,9 €¢[ 61 satisfying
(6.3) P=z=0 mod (6-A)"(8-r-1)",

®=1 mod al8),

Y EO mod a( 6 Ya{ 6 -1),

¥ 21 mod (6-1)".

We shall define f£: gr FG - gr FG’ and g: gr FG, > gr FG as

follows.
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+ +
(6.4) £: gr Fy = ®F§/Fg 1 BZuk — kae gr Py = $F§,/Fg,l

Vi = P o —k)uk + (e —k—l)ukJrl
(6.5) g: gr Fo, 3 ka — Zuk e sr Fy
by w, = vy y(8 -k)vk_l.
Then one can easily show that f and g are inverses to each
other.
(4) 1s shown by reducing the problem to the following special case,

which is easy to prove.

Proposition 2. Let b(68) be a non-zero polynomial of degree m

with b—l(O) CG and P an N x N matrix of differential operators

in FH(D) N D(m).

set @ =2/ oN(b(e )-P). Then (4) in Theorem 1 is true

for m.
(5) is proved in [2].

7. Suppose that Y 1s a smooth hypersurface of X given by £ = 0.
Then, for a complex of sheaves F° whose cohomology groups are
constructible, one can define Ry and RQ and can: R® - RY and
Var: RY » R? (See [3]). If we take a vector field 3 such that

3f =1 mod I,, then 6 = £2 and gr9.(®) is isomorphic to D .
Suppose F° = R Hom DX( n, ®X) for a regular holonomic DX—Module

. Then we have the following

Theorem 2. Assume GCC satisfies (6.1) and contains O.
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(0) grg B is a regular holonomic D -Module.
-1
(1) RY = R Hom DY(grgm, OY) and R® = R Hom DY(ng m, 0Y).

(2) can 1is given by f: gralm — gr'gm and Var is given by

2mio
B% : grgm - gr(-}l n
J2mie_y G2mie_y
Remark 1. We can replace in (2), f and g with ———(a-——uf
and 9.

Remark 2. If we replace R Hom (¥, 0,) with R Hom (8_,%),

[emarx o e X =D, X

then (1) holds by replacing R Hom (¥, 0_) with R Hom (0,,%),
ww_,DX Y ___.DY Y

Accordingly, (2) holds by exchanging Var and can.

Sketch of proof. The theorem 1s essentially equivalent to the

following cone-dimensional case. Let X =€ and Y = {0}. Let VO

and V_ be two vector spaces and let A: VO - V_l and B: V~1 -+ VO

1
be two homomorphisms. Let  bve a DX—Module generated by VOGBV_:L

with the fundamental relation:

xu = Bu for u ev_y

v = Av for vev,.

If we assume the eigen-values of AB are contained in G, then
kg = =
ngﬂI = Vk for k = 0, -1,
Let U be a non~empty convex cone in € such that U $0.

Then we have
RY = Hom DX( o, ®X(U)) and

R? = Hom DX( m, OX(U)/ ")X(ﬂ)).
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The homomorphism can is given by GIJX(U)‘+ OX(U)/'0X(®). The
homomorphism Var 1s given as follows: for @€ Homgx( ™, 0(U)/0(X))
and s €W, let us choose a representative u € 0{(U) of @(s).

Then u can be continued to a multi-valued holomorphic function on
¢-{0}, so that we can obtain the holomorphic function Tu defined
on U by the analytic continuation of u along a path around

the origin. Then Tu-u does not depend on the choice of a
representative u and s +»Tu-u gives a homomorphism from m

to OX(U). This is the homomorphism Var.

Now, RY and R® are isomorphic to V¥ and V¥

b as follows:

1
VE™ Homy (M, 0,(U)), V& ssHomy (M, 0 (U)/0,(¢€))

by V% 30— § and Vfla B +— ¢ , where @P(u) = <a,xBA“lBu>,

BA AB-1

P(v) = <a,x v> and YP(u) = <B,x [(1-AB)u>, ¢(v) =

—<6,AXBAT(-—BA)V> for ue€v_ and vevV..

1 0

Remark that XAT{}\) defines well an element of 0(U)/ 0(C)
by the analytic continuation on i {(e.g. x)‘l‘(}\) = log x at A =20
and x}\l’(l) = log x + ((log x)2/2 - Ylog x)N + ((log x)3/6 -
Y (log X)2/2 + (ﬂ2/3 + Y2/2)log x)N2 at A =N with N3 = 0; v is
the Euler constant).

Thus with these identification, can is given by araaB(T(l-AB))_l
and Var is given by B8 v 8(2miae™*PA/T(14BA)). Finally it is
enough to note that x, 3, & correspond to B, A and BA (or AB-1)
and (T(l-AB))—l is invertible under the condition on the eigenvalues

of AB.
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