Mirror symmetry of Fano manifolds via toric degenerations

Fumihiko Sanda

Gakushuin University

2022.08.02

August 9, 2022

1 / 20

Laurent mirror symmetry : Symplectic geometry

• X : a Fano manifold of dimension n (i.e., $-K_X$ is ample).

Laurent mirror symmetry : Symplectic geometry

- X : a Fano manifold of dimension n (i.e., $-K_X$ is ample).
- c_1 : the first Chern class of TX.

Laurent mirror symmetry : Symplectic geometry

- X : a Fano manifold of dimension n (i.e., $-K_X$ is ample).
- c_1 : the first Chern class of TX.

Definition (Regularized quantum period)

The regularized quantum period $\widehat{G}_X(t)$ is defined as follows :

$$\widehat{G}_X(t) := 1 + \sum_{2 \leq k} \sum_{\substack{d \in H_2(X;\mathbb{Z}) \ c_1(d) = k}} k! \langle \psi^{k-2}[ext{pt}]
angle_{0,1,d} t^k, ext{where}$$

$$\langle \psi^{k-2}[\mathrm{pt}] \rangle_{0,1,d} = \int_{[X_{0,1,d}]^{\mathrm{vir}}} \psi_1^{k-2} \cup \mathrm{ev}_1^*[\mathrm{pt}]$$

is the gravitational Gromov-Witten invariant which is defined by counting holoomorphic spheres with homology class d.

Remark

Let $J_X(z)$ be the J function of X which is a "solution" of the quantum D-module of X. Then, by setting t = 1/z, we have

$$egin{aligned} \mathcal{G}_{X}(t) &:= \langle J_{X}(z), [\mathrm{pt}]
angle = 1 + \sum_{2 \leq k} \sum_{\substack{d \in \mathcal{H}_{2}(X; \mathbb{Z}) \ c_{1}(d) = k}} \langle \psi^{k-2} [\mathrm{pt}]
angle_{0,1,d} t^{k}, \end{aligned}$$

which is called a quantum period.

J functions are calculated for many examples (e.g., complete intersections in toric Fano manifolds, Grassmannians).

Laurent mirror symmetry : Complex/Singularity theory

• $f \in \mathbb{C}[z_1^{\pm}, \dots, z_n^{\pm}]$: a Laurent polynomial of *n* variables.

Laurent mirror symmetry : Complex/Singularity theory

- $f \in \mathbb{C}[z_1^{\pm}, \ldots, z_n^{\pm}]$: a Laurent polynomial of *n* variables.
- $\Omega := \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$: a holomorphic volume form on $(\mathbb{C}^*)^n$.

Laurent mirror symmetry : Complex/Singularity theory

Definition (period)

The preiod $\pi_f(t)$ of f is defined as follows:

$$\pi_f(t) := \frac{1}{(2\pi\sqrt{-1})^n} \int_{|z_1|=\cdots|z_n|=\epsilon} \frac{1}{1-tf} \Omega$$
$$= \sum_{0 \le k} \operatorname{Const}(f^k) t^k,$$

where ϵ is a enough small positive real number and $Const(f^k)$ is the constant term of f^k

Laurent mirror symmetry : Definition

• $\Delta_f \subseteq \mathbb{R}^n$: the Newton polytope of f.

Laurent mirror symmetry : Definition

- $\Delta_f \subseteq \mathbb{R}^n$: the Newton polytope of f.
- f is called normal if coefficients of f corresponding to vertices of Δ_f are 1.

Laurent mirror symmetry : Definition

- $\Delta_f \subseteq \mathbb{R}^n$: the Newton polytope of f.
- f is called normal if coefficients of f corresponding to vertices of Δ_f are 1.

Definition (Laurent mirror)

Let X ba a n-dim Fano manifold.

A normal Laurent polynomial f of n variables is called a Laurent mirror of X if they satisfy

$$\widehat{G}_X(t) = \pi_f(t)$$

Remark

- If f is a Laurent mirror of X, then constant term of f is 0.
- A Laurent mirror of X is not unique.

 Let X := ℂP². Then, by Givental's mirror theorem, we have

$$\widehat{G}_X(t) = \sum_{d=0}^\infty rac{(3d)!}{(d!)^3} t^{3d}$$

Let X := CP².
 Then, by Givental's mirror theorem, we have

$$\widehat{G}_X(t) = \sum_{d=0}^\infty rac{(3d)!}{(d!)^3} t^{3d}$$

Set f = x + y + 1/xy, then we easily see that

$$\operatorname{Const}(f^k) = \begin{cases} \frac{(3d)!}{(d!)^3} & (k = 3d) \\ 0 & (k \neq 3d). \end{cases}$$

Thus f is a Laurent mirror of X.

Definition (monotone symplectic manifold)

Let X be a symplectic manifold with a symplectic form ω . X is called monotone if $[\omega] = kc_1$ for some positive real number k.

Definition (monotone symplectic manifold)

Let X be a symplectic manifold with a symplectic form ω . X is called monotone if $[\omega] = kc_1$ for some positive real number k.

Let *L* be a Lagrangian submanifold of *X* and $\mu_L \in H^2(X, L; \mathbb{Z})$ be the Maslov class of *L* (defined later).

Remark

The natural morphism $H^2(X, L; \mathbb{Z}) \to H^2(X; \mathbb{Z})$ takes the Maslov class μ_L to $2c_1$. Hence μ_L is a "relative version" of the first Chern class.

Definition (monotone symplectic manifold)

Let X be a symplectic manifold with a symplectic form ω . X is called monotone if $[\omega] = kc_1$ for some positive real number k.

Let L be a Lagrangian submanifold of X and $\mu_L \in H^2(X, L; \mathbb{Z})$ be the Maslov class of L (defined later).

Remark

The natural morphism $H^2(X, L; \mathbb{Z}) \to H^2(X; \mathbb{Z})$ takes the Maslov class μ_L to $2c_1$. Hence μ_L is a "relative version" of the first Chern class.

Since $\omega|_L = 0$, ω gives a cohomology class $[\omega] \in H^2(X, L; \mathbb{R})$.

Definition

L is called monotone if $[\omega] = k\mu_L$ for some positive real number k.

イロト イポト イヨト イヨト

- X : a compact monotone symplectic manifold with a symplectic form ω
- L : a compact monotone oriented spin Lagrangian torus in X.
- $N := H_1(L; \mathbb{Z}) \cong \mathbb{Z}^n$

- X : a compact monotone symplectic manifold with a symplectic form ω
- L : a compact monotone oriented spin Lagrangian torus in X.
- $N := H_1(L; \mathbb{Z}) \cong \mathbb{Z}^n$

Definition

Let $\beta \in H_2(X, L; \mathbb{Z})$ with $\mu_L(\beta) = 2$. Choose a point $p \in L$. We define $n_\beta \in \mathbb{Z}$ by counting holomorphic disks $f : (D, \partial D) \to (X, L)$ with homology class β which through the point p

- X : a compact monotone symplectic manifold with a symplectic form ω
- L : a compact monotone oriented spin Lagrangian torus in X.
- $N := H_1(L; \mathbb{Z}) \cong \mathbb{Z}^n$

Definition

Let $\beta \in H_2(X, L; \mathbb{Z})$ with $\mu_L(\beta) = 2$. Choose a point $p \in L$. We define $n_\beta \in \mathbb{Z}$ by counting holomorphic disks $f : (D, \partial D) \to (X, L)$ with homology class β which through the point p

Since $N \cong \mathbb{Z}^n$, the group ring $\mathbb{C}[N]$ is a ring of Laurent polynomials. The monomial corresponding to $v \in N$ is denoted by z^v .

Definition (potential function of L)

We define a potential function $W_L \in \mathbb{C}[N]$ as follows:

$$W_L = \sum_{\mu_L(\beta)=2} n_{\beta} z^{\partial \beta}$$

Theorem (Tonkonog)

Let X be a monotone symplectic manifold and L be a monotone oriented spin Lagrangian torus. Then they satisfy

$$\widehat{G}_X(t) = \pi_{W_L}(t).$$

Theorem (Tonkonog)

Let X be a monotone symplectic manifold and L be a monotone oriented spin Lagrangian torus. Then they satisfy

$$\widehat{G}_X(t) = \pi_{W_L}(t).$$

Remark

- If $L_t \ (0 \le t \le 1)$ is a monotone Lagrangian isotopy, then $W_{L_0} = W_{L_1}$.
- Floer cohomology is determined by W_L .

Theorem (Tonkonog)

Let X be a monotone symplectic manifold and L be a monotone oriented spin Lagrangian torus. Then they satisfy

$$\widehat{G}_X(t) = \pi_{W_L}(t).$$

Remark

- If L_t $(0 \le t \le 1)$ is a monotone Lagrangian isotopy, then $W_{L_0} = W_{L_1}$.
- Floer cohomology is determined by W_L .

Some previous results on computation of W_L

- Toric Fano manifolds (Cho-Oh, Fukaya-Oh-Ohta-Ono)
- Flag varieties (Nisninou-Nohara-Ueda)
- Del Pezzo surfaces (Vianna, Tonkonog-Pascareff)
- Quadrics (Kim)

- X_{Σ} : a compact toric variety associated with a complete fan Σ .
- Δ_{Σ} : the fan polytope of Σ , i.e. the convex hull of primitive ray generators of Σ .

- X_{Σ} : a compact toric variety associated with a complete fan Σ .
- Δ_{Σ} : the fan polytope of Σ , i.e. the convex hull of primitive ray generators of Σ .

Note that

- X_{Σ} is Fano \Leftrightarrow all primitive ray generators are vertices of Δ_{Σ} .
- X_{Σ} has at worst canonical singularities $\Leftrightarrow \operatorname{int}(\Delta_{\Sigma}) \cap N = \{0\}.$
- X_{Σ} has at worst terminal singularities $\Leftrightarrow \Delta_{\Sigma} \cap N = \{0\} \cup \{\text{vertices of } \Delta_{\Sigma}\}.$
- X_{Σ} is Gorenstein $\Leftrightarrow \Delta_{\Sigma}$ is reflexive \Rightarrow canonical

- *X* : an *n* + 1-dim reduced irreducible Cohen-Macaulay ℚ-Gorenstein complex analytic space
- $\pi: \mathcal{X} \to D^2_{\epsilon} = \{z \in \mathbb{C} \mid |z| < \epsilon\}$: a proper flat morphism.
- $X_t := \pi^{-1}(t)$

- X : an n + 1-dim reduced irreducible Cohen-Macaulay ℚ-Gorenstein complex analytic space
- $\pi: \mathcal{X} \to D^2_\epsilon = \{z \in \mathbb{C} \mid |z| < \epsilon\}$: a proper flat morphism.

•
$$X_t := \pi^{-1}(t)$$

Suppose that

- X_t is smooth for $t \neq 0$
- X₀ is isomorphic to a normal toric Fano variety X_Σ.
 (⇒ X_t is Fano for small t.)

In this talk, we call (\mathcal{X},π) toric degeneration.

- X : an n + 1-dim reduced irreducible Cohen-Macaulay ℚ-Gorenstein complex analytic space
- $\pi: \mathcal{X} \to D^2_\epsilon = \{z \in \mathbb{C} \mid |z| < \epsilon\}$: a proper flat morphism.

•
$$X_t := \pi^{-1}(t)$$

Suppose that

- X_t is smooth for $t \neq 0$
- X_0 is isomorphic to a normal toric Fano variety X_{Σ} . ($\Rightarrow X_t$ is Fano for small t.)

In this talk, we call (\mathcal{X}, π) toric degeneration. Take a enough small *t*. Then we have the following:

Main result 2

Theorem

- There exists a symplectic form ω_t on X_t with $[\omega_t] = c_1$
- There exists a oriented spin monotone Lagrangian torus $L_t \subset X_t$

such that

- $N_{W_L} = \Delta_{\Sigma}$ where N_{W_L} is the Newton polytope and Δ_{Σ} is the fan polytope
- W_L is normal, i.e. coefficients corresponding to vertices are 1

Main result 2

Theorem

- There exists a symplectic form ω_t on X_t with $[\omega_t] = c_1$
- There exists a oriented spin monotone Lagrangian torus $L_t \subset X_t$

such that

- $N_{W_L} = \Delta_{\Sigma}$ where N_{W_L} is the Newton polytope and Δ_{Σ} is the fan polytope
- W_L is normal, i.e. coefficients corresponding to vertices are 1

Remark

- Recently Galkin-Mikhalkin showed a similar statement for "QC-deformations".(Arxiv:2203.10043).
- If X_Σ has at worst terminal singularity, then coefficients of non-constant term are 1.
- Nishinou-Nohara-Ueda showed the theorem under the condition that X_{Σ} has a small toric resolution.

Examples of computation : Quadrics

Let Qⁿ be an n-dim quadric (2 ≤ n). Then Qⁿ admits a toric degeneration. Using the theorem, a potential function is given by

$$W_L = \frac{1}{z_1} + \frac{z_1}{z_2} + \dots + \frac{z_{n-1}}{z_n} + az_{n-1} + z_{n-1}z_n$$

where $a \in \mathbb{Q}$ is some constant.

- We know that critical value of W_L is an eigenvalue of the quantum multiplication by $c_1 = nH$.
- By using Givental's mirror theorem, quantum cohomology ring of Qⁿ is C[H]/⟨H(Hⁿ − 4)⟩ and the eigenvalues are

$$\{n\eta \mid \eta^n = 4\} \cup \{0\}.$$

• By direct calcuration, critical values of W_L are

$$\{n\eta \mid \eta^n = a \pm 2, \ \eta \neq 0\}.$$

• Hence we have a = 2.

Examples of comuputation : cubic surface

Let Q = CP³ ∩ (3) be a cubic surface. Then Q admits a toric degeneration. Using the theorem and Z/3Z-symmetry, a potential function is given by

$$\frac{z_1^2}{z_2} + \frac{z_2^2}{z_1} + \frac{1}{z_1 z_2} + a(z_2 + \frac{1}{z_1} + \frac{z_1}{z_2}) + b(z_1 + \frac{1}{z_2} + \frac{z_2}{z_1}),$$

where a, b are some rational numbers.

• The period of W_L is

$$1 + (6ab)t^2 + (6 + 18ab + 6a^3 + 6b^3)t^3 + \cdots$$

• By Givental's mirror theorem, quantum period is given by

$$G_Q(t) = e^{-6t} \sum_{d=0}^{\infty} \frac{(3d)!}{(d!)^3} t^d$$

and $\widehat{G}_Q(t) = 1 + 54t^2 + 492t^3 + \cdots$ • By Tonkonog's theorem, we have $ab = 9, a^3 + b^3 = 54$, which implies a = b = 3 (Since a, b are rational).

Strategy of proof

- **()** Generalize Maslov class to (singular) Q-Gorenstein complex spaces
- Ocunting holomorphic disks with maslov number two in singular toric Fano varieties.
- Show "adjunction formula" for Maslov class (Maslov class is a "relative anticanonical class").
- Show "Gromov compactnes" for singular spaces by using embedded resolution of singularities.
- Onstruct a monotone Lagrangian torus in general fibers of a toric degeneration by using the gradient Hamiltonian flow.
- Compare a general fiber and a central fiber of the toric degeneration using adjunction formula and Gromov compactness (Similar to Nishinou-Nohara-Ueda).

Maslov index

- X: a reduced normal Q-Gorenstein complex space such that K_X^{-2r} is Cartier.
- L: a totally real submanifold in the smooth part X^{sm} . $\Rightarrow (\det_{\mathbb{R}} TL)^{\otimes 2r} \otimes \mathbb{C} \cong K_X^{-2r}|_L.$
- $s_L := \operatorname{vol}_L^{\otimes 2r}$: a section of $(\det_{\mathbb{R}} TL)^{\otimes 2r}$

Maslov index

- X: a reduced normal Q-Gorenstein complex space such that K_X^{-2r} is Cartier.
- L: a totally real submanifold in the smooth part X^{sm} . $\Rightarrow (\det_{\mathbb{R}} TL)^{\otimes 2r} \otimes \mathbb{C} \cong K_X^{-2r}|_L.$
- $s_L := \operatorname{vol}_L^{\otimes 2r}$: a section of $(\det_{\mathbb{R}} TL)^{\otimes 2r}$

Let $\beta \in \pi_2(X, L)$ and take a continuous map $f : (D, \partial D) \to (X, L)$ which represents β . Then the pull back $f^* K_X^{-2r}$ is a trivial complex line bundle and fix a trivialization $f^* K_X^{-2r} \cong D \times \mathbb{C}$.

The section s_L gives a continuous map $\tilde{s}_L : \partial D \cong S^1 \to \mathbb{C}$.

Maslov index

- X: a reduced normal Q-Gorenstein complex space such that K_X^{-2r} is Cartier.
- L: a totally real submanifold in the smooth part X^{sm} . $\Rightarrow (\det_{\mathbb{R}} TL)^{\otimes 2r} \otimes \mathbb{C} \cong K_X^{-2r}|_L.$
- $s_L := \operatorname{vol}_L^{\otimes 2r}$: a section of $(\det_{\mathbb{R}} TL)^{\otimes 2r}$

Let $\beta \in \pi_2(X, L)$ and take a continuous map $f : (D, \partial D) \to (X, L)$ which represents β . Then the pull back $f^* K_X^{-2r}$ is a trivial complex line bundle and fix a trivialization $f^* K_X^{-2r} \cong D \times \mathbb{C}$. The section s_I gives a continuous map $\tilde{s}_I : \partial D \cong S^1 \to \mathbb{C}$.

Definition (Maslov class)

The Maslov class $\mu_L : \pi_2(X, L) \to \mathbb{Q}$ is defined by $\mu_L(\beta) = \frac{1}{r}$ (the rotation number of \tilde{s}_L) $\in \mathbb{Q}$.

If X is a closed analytic subspace of a complex manifold, then $\mu_L \in H^2(X, L; \mathbb{Q}).$

Adjunction formula

Moreover we assume that X is Cohen-Macaulay. Let $\pi : X \to D_{\epsilon}^2$ be a flat holomorphic map. Set $Y := \pi^{-1}(t)$ and $L_t := Y \cap L$.

Adjunction formula

Moreover we assume that X is Cohen-Macaulay. Let $\pi: X \to D_{\epsilon}^2$ be a flat holomorphic map. Set $Y := \pi^{-1}(t)$ and $L_t := Y \cap L$.

Suppose that

•
$$\pi(L) \subseteq \mathbb{R}$$

- $L_t \subset Y^{sm}$. $\Rightarrow L_t$ is also a totally real submanifold.
- Y is also a reduced normal Cohen-Macaulay Q-Gorenstein complex space.

Proposition (Adjunction formula)

Let $i_*: \pi_2(Y, L_t) \to \pi_2(X, L)$ be the natural map. Then

$$\mu_L \circ i_* = \mu_{L_t}.$$

Let X be a reduced complex space.

- X is called kahler if there exists an embedding to a Kahler manifold \widetilde{X} .
- A kahler form on X is defined by the restriction of a Kahler form on \widetilde{X} .

Let X be a reduced complex space.

- X is called kahler if there exists an embedding to a Kahler manifold \widetilde{X} .
- A kahler form on X is defined by the restriction of a Kahler form on \widetilde{X} .

Let X be kahler and $L\subset X^{\mathrm{sm}}$ be a Lagrangian submanifold.

By iterated blow ups of \widetilde{X} along smooth centers, we obtain a resolution of singularity \widehat{X} of X which is also kahler.

Let X be a reduced complex space.

- X is called kahler if there exists an embedding to a Kahler manifold X.
- A kahler form on X is defined by the restriction of a Kahler form on \widetilde{X} .

Let X be kahler and $L \subset X^{sm}$ be a Lagrangian submanifold.

By iterated blow ups of \widetilde{X} along smooth centers, we obtain a resolution of singularity \widehat{X} of X which is also kahler.

Moreover we can assume \widehat{X} is isomorphic to X away from a small neighborhood of X^{sing} and there is a lift $\widehat{L} \subset \widehat{X}$ of L.

Applying Gromov's compactness theorem to (\hat{X}, \hat{L}) , we obtain some compactness result for (X, L).

Let X be a reduced complex space.

- X is called kahler if there exists an embedding to a Kahler manifold X.
- A kahler form on X is defined by the restriction of a Kahler form on \widetilde{X} .

Let X be kahler and $L \subset X^{sm}$ be a Lagrangian submanifold.

By iterated blow ups of \widetilde{X} along smooth centers, we obtain a resolution of singularity \widehat{X} of X which is also kahler.

Moreover we can assume \widehat{X} is isomorphic to X away from a small neighborhood of X^{sing} and there is a lift $\widehat{L} \subset \widehat{X}$ of L.

Applying Gromov's compactness theorem to (\hat{X}, \hat{L}) , we obtain some compactness result for (X, L).

Remark

Since sphere bubbles may be contained in the exceptional set, a precise statement may be not obvious.

Let $X \cong X_{\Sigma}$ be a toric Fano variety and L be the monotone torus orbit. For $v \in N$, $\chi_v : \mathbb{C}^* \to T_N$ be the corresponding cocharacter. Take a point $p \in L$ and define a holomorphic disk $f_{v,p} : (D, \partial D) \to (X, L)$ by $f_{v,p}(z) = \chi_v(z)p$. Then we have the following: Let $X \cong X_{\Sigma}$ be a toric Fano variety and L be the monotone torus orbit. For $v \in N$, $\chi_v : \mathbb{C}^* \to T_N$ be the corresponding cocharacter. Take a point $p \in L$ and define a holomorphic disk $f_{v,p} : (D, \partial D) \to (X, L)$ by $f_{v,p}(z) = \chi_v(z)p$. Then we have the following:

Proposition

Let $\beta \in H_2(X, L; \mathbb{Z})$ be a homology class with $\mu_L(\beta) = 2$ which is realized by a stable disk f. Then

- $\partial \beta \in \Delta_{\Sigma} \subset N \cong H_1(L; \mathbb{Z})$
- If $\partial\beta$ is a vertex of Δ_{Σ} , then the image of f is contained in X_{Σ}^{sm} .
- Moreover if $\partial \beta$ is a vertex v and f through p, then $f = f_{v,p}$

イロト イ理ト イヨト イヨト

Construction of Lagrangian and skecth of proof

 Let (X, π) be a toric degeneration and L₀ ⊂ X₀ ≅ X_Σ be the monotone torus orbit. For simplicity, suppose X is kahler.

Construction of Lagrangian and skecth of proof

- Let (X, π) be a toric degeneration and L₀ ⊂ X₀ ≅ X_Σ be the monotone torus orbit. For simplicity, suppose X is kahler.
- Let φ_t be the flow of the vector field gradReπ/[gradReπ]². Then φ_t(X₀sm) ⊂ X_t and set L_t := φ_t(L₀) ⊂ X_t, L = ∪L_t ⊂ X. Moreover L_t and L are Lagrangian submanifolds with π(L) ⊂ ℝ. ⇒ we can apply adjunction formula.

Construction of Lagrangian and skecth of proof

- Let (X, π) be a toric degeneration and L₀ ⊂ X₀ ≅ X_Σ be the monotone torus orbit. For simplicity, suppose X is kahler.
- Using this and a compactness theorem for (X, L), we can compare disk counting of (X_t, L_t) and (X₀, L₀). Hence the theorem follows from the disk counting for the toric Fano variety X₀ ≅ X_Σ.