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Notations

Let (M, ω) be a (closed) symplectic manifold and H : M → R be a
Hamiltonian function.

Hamiltonian vector field

The Hamiltonian vector field XH is defined by

ω(XH , ·) = −dH.

In the standard Eucledean space (R2n, ω0), XH is written as follows.

XH(x1, · · · , xn, y1, · · · , yn) =
n∑

i=1

{
− ∂H

∂yi

∂

∂xi
+
∂H

∂xi

∂

∂yi

}
This is a local model of Hamiltonian vector fields (Darboux theorem).
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We use S1-dependent (1-periodic) Hamiltonian functions and Hamiltonian
vector fields. Let {ϕtH} be a flow of a periodic Hamiltonian vector field.

H : S1 ×M → R
ϕ0H(x) = x

d

dt
ϕtH(x) = XHt (ϕ

t
H(x))

The Hamiltonian diffeomorphism group is the set of time 1 flow of such
vector fields.

Hamiltonian diffeomorphim group

Ham(M, ω) =
{
ϕ1H ∈ Symp0(M, ω)

∣∣∣ H : S1 ×M → R
}

Symp0(M, ω) is the identity component of the symplectic diffeomorphism
group Symp(M, ω) = {ϕ ∈ Diff(M) | ϕ∗ω = ω}.
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Periodic orbits

A l-periodic orbit (l ∈ N) of a Hamiltonian flow {ϕtH} is a loop which
satisfies the following conditions.

x : R/l · Z −→ M

d

dt
x(t) = XH(x(t)).

Note that any iteration of a periodic orbit is a periodic orbit.

y : R/kl · Z −→ M

y(t) = x(t)

is a kl-periodic orbit. We study the number of periodic orbits, so we have
to exclude iterated periodic orbits of lower periods.
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(simple) periodic orbits

A l-periodic orbit x(t) is called ”not simple” if there is another l ′-periodic
orbit y(t) such that l ′ is a divisor of l and

x(t) = y(t) (∀t ∈ R)

holds. In other words, x(t) is a iteration of y(t). Non-simple periodic
orbits are not essential.
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homotopy class of periodic “points”

Let H and G be periodic Hamiltonian functions so that their time one
flows coincide (ϕ1H = ϕ1G ). There is one to one correspondence between
periodic orbits of {ϕtH} and {ϕtG}. Assume that x(t) and y(t) be
l-periodic orbits of their flows such that x(0) = y(0) holds. Then a loop

γ(t) =

{
x(t) 0 ≤ t ≤ l

y(l − t) l ≤ t ≤ 2l

is contractible. So x(t) and y(t) are homotopic.This is a consequence of
the Arnold conjecture. If {ψt}0≤t≤1 is a loop of Hamiltonian
diffeomorphisms, then every loop {ψt(x)}0≤t≤1 (x ∈ M) is contactible.

Remark

A homotopy class of periodic points of a Hamiltonian diffeomorphim
ϕ ∈ Ham(M, ω) is well-defined. It does not depend on the choice of a
Hamiltonian function H and its flow such that ϕ = ϕ1H holds.
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Conley conjecture

Hamiltonian diffeomorphisms tend to have infinitely many simple
contractible periodic orbits.

Conley conjecture (Conley 1984)

Any Hamiltonian diffeomorphism on the standard torus (T2n, ω0) has
infinitely many simple contractible periodic orbits.

This original conjecture was already proved and it is known that this is
also true for weakly exact symplectic manifolds (ω|π2(M) = 0), symplectic
manifolds with vanishing c1 (c1|π2(M) = 0) and negatively monotone
symplectic manifolds. Today, it is believed that this theorem holds for
”almost all” (not ”all”) symplectic manifolds. This is today’s Conley
conjecture.
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Counterexample

An irrational rotation of the 2-sphere ϕθ only has 2 simple periodic orbits
(the North pole and the South pole). So Conley conjecture is false on S2.

For (x , y , z) ∈ S2 and θ ∈ R\Q, the irrational rotation is defined as
follows.

ϕtθ(x , y , z) = (cos
θt

2π
x + sin

θt

2π
y ,− sin

θt

2π
x + cos

θt

2π
y , z)

The periodic points of ϕθ are N = (0, 0, 1) and S = (0, 0,−1).

Remark

In dimension two, the Conley conjecture holds for Σg≥1.
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Generic Conley conjecture

We also have another variant of the Conley conjecture. That is the
following generic Conley conjecture.

C∞-generic Conley conjecture

For any closed symplectic manifold (M, ω), C∞-generic Hamiltonian
diffeomorphisms have infinitely many simple contractible periodic orbits.

In dimension 2, the following strong results is known.

C∞-generic density theorem (Asaoka-Irie)

Periodic points are dense C∞-generically in dimension two.
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Main theorem 1

We proved C∞-generic Conley conjecture for ”almost all” symplectic
manifolds.

Main theorem 1

Let (M2n, ω) be a closed symplectic manifold which satisfies at least one
of the following three conditions.

1 n is odd

2 Hodd(M : R) ̸= 0

3 N ̸= 1 (N: minimum Chern number)

Then, there exists a C∞-generic subset U ⊂ Ham(M, ω) such that any
element of U has infinitely many simple contractible periodic orbits.
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The tangent bundle π : TM −→ M has (comtatible) complex structures.
Let c1(TM) ∈ H2(M : Z) be the uniquely determined first Chern class.
The minimum Chern number N ∈ N ∪ {+∞} is the positive generator of
the image of the following map.

c1 : π2(M) −→ Z
[u] 7→ ⟨c1(TM), [u]⟩

If this map is trivial, N is +∞.
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Sketch of the proof
We apply the following local theorem.

Theorem (Birkhoff, Moser)

Let ϕ be a symplectic map defined in an open neighborhood of the origin
in (R2n, ω0) and the origin is a fixed point. Let
{λ1, · · · , λm, λ−1

1 , · · · , λ−1
m } be the all engenvalues of the differential map

dϕ(0,··· ,0) : R2n −→ R2n

on the unit circle in C (|λi | = 1). Assume that ϕ satisfies the following
conditions.

1 m ≥ 1

2 Πm
k=1λ

jk
k ̸= 1 for 1 ≤

∑m
k=1 |jk | ≤ 4

3 The Taylor coefficient of ϕ up to order three satisfies a
”non-degenerate” condition.

Then ϕ possesses infinitely many periodic orbits in any neighborhood of 0.
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1 Let U ⊂ R2 and ϕ(x , y) = (u, v) be as follows.
u = x cosΦ− y cosΦ + f1

v = x sinΦ + y cosΦ + f2

Φ = α+ β(x2 + y2)

The orders of the error terms fi are ≥ 4. ”non-degenerate” means
β ̸= 0.

2 Let U ⊂ R2n and ϕ(x1, , xn, y1, · · · , yn) = (u1, · · · , un, v1 · · · , vn) be
as follows. 

uk = xk cosΦk − yk sinΦk + fk

vk = xk sinΦk − yk cosΦk + fn+k

Φk = αk +
∑n

l=1 βkl(x
2
l + y2l )

”Non-degenerate” means the matrix {βkl} is non-singular.
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Our proof is based on Birkhoff-Moser theorem and Hamiltonian Floer
homology. We divide Ham(M, ω) into three subsets.

H(1) =

{
ϕ ∈ Ham(M, ω)

∣∣∣∣∣ contractible periodic orbits are finite
all periodic orbits are hyperbolic

}

H(2) =

{
ϕ ∈ Ham(M, ω)

∣∣∣∣∣ contractible periodic orbits are finite
there is non-hyperbolic orbit

}

H(3) =

{
ϕ ∈ Ham(M, ω)

∣∣∣∣ contractible periodic orbits are infinite

}
We first use Floer theory to prove that H(1) is empty under our
assumptions. Next we apply Birkhoff-Moser theorem to construct a
generic subset U ⊂ Ham(M, ω).
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Further directions

Question 1

Let ϕ be a Hamiltonian diffeomorphism with finite contractible periodic
orbits. Is there at least non-hyperbolic orbit? Are all periodic orbits
elliptic?

If this is correct, H(1)is empty and generic Conley conjectre holds for all
symplectic manifolds.

Question 2 (generic density theorem?)

Is there C∞-generic subset U ⊂ Ham(M, ω) such that periodic points of
∀ϕ ∈ U are dense in M?

This is a generalization of Asaoka-Irie’s theorem for higher dimensions.
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Non-contractible periodic orbits

There is a big difference between contractible periodic orbits and
non-contractible periodic orbits.

Remark

The set of contractible periodic orbits of a Hamiltonian diffeomorphism is
never empty. This is a consequence of the Arnold conjecture. However,
the set of non-contractible periodic orbits may be empty.

For example, there is no non-contractible periodic orbits if M is simply
connected. If the Hamiltonian function H is C 2-small, every one peroidic
orbits of ϕ1H are contractible. However, it seems that there are infinitely
many simple non-contractible periodic orbits if there is at least one
non-contractible periodic orbits.
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Hofer-Zehnder conjecture

Theorem (Frank)

Any area preserving homeomorphism on the 2-sphere S2 with more than
two fixed points has infinitely many periodic points.

Hofer-Zehnder conjecture is a generalization of Frank’s theorem.

Hofer-Zehnder conjecture

Every Hamiltonian map on a compact symplectic manifold (M, ω)
possessing more fixed points than necessarily required by the V. Arnold
conjecture possesses always infinitely many periodic orbits.

This conjecture was stated in their famous book ”Symplectic invariants
and Hamiltonian dynamics”.
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Hofer-Zehnder conjecture implies that a Hamiltonian diffeomorphism
possesses infinitely many contractible periodic orbits if it possesses more
than the sum of the Betti numbers. Non-contractible version of
Hofer-Zehnder conjecture can be written as follows.

Conjecture

Any Hamiltonian diffeomorphism possesses infinitely many non-contractible
periodic orbits if it possesses at least one non-contractible periodic orbit.

Note that the required number of non-contractible periodic orbits is zero
because the Floer homology of non-contractible orbits is trivial. So the
sum of the Betti numbers is replaced by zero.
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Previous research

1 A symplectic manifold (M, ω) is called symplectically atoroidal if∫
T2

u∗ω = 0 ( ∀u : T2 → M )

holds. Gurel proved the conjecture for atoroidal symplectic manifolds.

2 Orita proved the conjecture for the standard torus (T2n, ω0). Note
that (T2n, ω0) is not symplectically atoroidal. (T2n, ω0) is the simplest
example of non-atoroidal and non simply connected symplectic
manifold.
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Weakly monotone symplectic manifold

A symplectic manifold is called weakly monotone if it satisfies one of the
following conditions.

1 (M, ω) is a monotone symplectic manifold. There is a constant λ ≥ 0
such that ∫

S2

u∗ω = λ

∫
S2

u∗c1 ( ∀u : S2 → M )

holds.

2 c1(A) = 0 holds for ∀A ∈ π2(M)

3 N ≥ n − 2
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Every symplectic manifold (M2n, ω) (2n ≤ 6) is a weakly monotone
symplectic manifold.

Remark

If (M, ω) is weakly monotone, We can define the Floer homology without
using so-called virtual technique. We can avoid ”bubbling phenomena”. In
particular, Floer homology can be defined over Z-coefficient. The virtual
technique works over Q-coefficient.
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Main theorem 2

Main theorem 2

Let (M, ω) be a closed weakly monotone symplectic manifold. Let
ϕ ∈ Ham(M, ω) be a Hamiltonian diffeomorphism such that 1-periodic
orbits in the class γ ̸= 0 ∈ H1(M : Z)/Tor is finite, not empty and the
local Floer homology HF loc(ϕ, x) of at least one of them is not zero. Then,
for sufficiently large prime p, ϕ possesses p-periodic or p′-periodic orbit in
the class p · γ. Here, p′ is the first prime number greater than p. In
particular, there are infinitely many simple non-contractible periodic orbits.

The assumption ”weakly monotone” is a purely technical assumption. If
we can define Floer theory over Z-coefficient, we can remove this
assumption.
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We use the local Floer homology of periodic orbits to define ”reasonable
homological count of periodic orbits”. If a periodic orbit x is
”non-degenerate” (generic case),

dimHF loc(ϕ, x) = 1

This suggests that the reasonable homological count of periodic orbit x is
dimHF loc(ϕ, x) (not 1 in general). So the condition ”the local Floer
homology HF loc(ϕ, x) of at least one of them is not zero” means that
”there is at least one non-contractible periodic orbit”. If the local Floer
homology of all periodic orbits are trivial, they should be regarded as
empty.
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Sketch of the proof

We fix ϕ ∈ Ham(M, ω) and γ ̸= 0 ∈ H1(M : Z)/Tor. Let P(ϕ, γ) be the
set of 1-periodic orbits in γ.

P(ϕ, γ) =
{
x ∈ P(ϕ)

∣∣ [x ] = γ
}

We define the Floer homology for such periodic orbits. We use so-called
Novikov ring Λ and its subring Λ0 over the ground field Zp.

Λ =
{ l∑

i=1

aiT
λi

∣∣∣ ai ∈ Zp, λi ∈ R, λi ↗ ∞ (if l = ∞)
}

Λ0 =
{ l∑

i=1

aiT
λi ∈ Λ

∣∣∣ λi ≥ 0
}
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The Floer chain complex is a module generated by periodic orbits P(ϕ, γ).

CF (ϕ, γ : Λ0) =
⊕

x∈P(ϕ,γ)

Λ0 · x

There is a boundary operator dFloer and the Floer homology is the
homology of this chain complex.

HF (ϕ, γ : Λ0) = H(CF (ϕ, γ : Λ0), dFloer )

Remark

We use the Floer homology over Λ0 (not over Λ). HF (ϕ, γ : Λ) is always
trivial and not interesting. However, HF (ϕ, γ : Λ0) is not necessarily
trivial. In general, HF (ϕ, γ : Λ0) has a torsion.

Yoshihiro Sugimoto (Tokyo Metropolitan University)On the number of periodic orbits in Hamiltonian dynamics 26 / 29



There is a sequence 0 < β1 ≤ · · · ≤ βm so that

HF (ϕ, γ : Λ0) ∼=
m⊕
i=1

Λ0/T
βiΛ0

holds. The behavior of β1 under iterations is important for our purpose. β1
stands for the ”minimum energy” of the Floer boundary operator dFloer .
We also fix a prime number p and a sequence 0 < δ1 ≤ · · · ≤ δm′ so that

HF (ϕp, pγ : Λ0) ∼=
m′⊕
i=1

Λ0/T
δiΛ0

holds. Our next purpose is to compare p · β1 and δ1.
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Assume that there is no simple p-periodic orbits in pγ. This means every
element of P(ϕp, pγ) is an iteration of an element of P(ϕ, γ). Then we
can prove the following proposition.

Proposition

Under this assumption, p · β1 ≤ δ1 holds.

Combining this proposition with ”filtered” Floer homology, we can prove
that P(ϕp

′
, pγ) is not empty. Note that any element of P(ϕp

′
, pγ) is

simple.

Remark

In the proof of this proposition, we used the Zp-equivariant Floer
homology. Here we used the Floer theory over Zp-coefficient.
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Furhter directions

We assumed that (M, ω) is a weakly monotone symplectic manifold. This
was a purely technical assumption. In general, Floer homology is defined
over Q. If we can define the Floer thoery over Z for every closed
symplectic manifold, we can remove this assumption.

Question

Can we construct Z or Zp-coefficient Floer homology and Zp-equivariant
Floer homology for every closed symplectic manifold?

Constructions of such theories could be very important for other problems
(e.g. Hofer-Zehnder conjecture).
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