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Canonical Resolution of Singularities in char.0

(Hironaka), (simplifications by Bierstone-Milman,

Villamayor and others)

Thm Let X be an algebraic variety (char 0).

There exists f : X̃ → X such that

(1) X̃ is smooth,

(2) f is projective

(3) f isomorphism over Xns,

(4) f−1(V (SingX)) is normal crossings,

(5) functorial on smooth morphisms

(6) functorial on field extensions.
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Embedded Desingularization(Hironaka)

Let X be a subvariety on smooth M (char. 0).

There exists embed. desingular. of X ⊂M :

seq. of blow-ups σi with smooth centers Ci−1

M = M0
σ1←−M1 ←− . . .Mi ←− . . .Mr = M̃

(i) The exc. divisors Ei of has only SNC and

Ci has SNC with Ei.

(ii) The strict transform X̃ := Xr of X is

smooth and have SNC with the except. div.

(iii) (M,X)← (M̃, X̃) is a functor:

-commutes with smooth morphisms

-commutes with embeddings of ambient vari-

eties

-commutes with field extensions
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Canonical Principalization(Hironaka)

Let I sheaf of ideals on smooth M (char. 0).

There exists a principalization of I:

seq. of blow-ups σi with smooth centers Ci−1

M = M0
σ1←−M1 ←− . . .Mi ←− . . .Mr = M̃

(i) The exc. divisors Ei of has only SNC and

Ci has SNC with Ei.

(ii) The total transform Ĩ := (σ∗r . . . σ
∗
1)(I) is

the ideal of SNC divisor with comp. in Er

(iii) (M, I)← (M̃, Ĩ) is a functor:

-commutes with smooth morphisms

-commutes with embeddings of ambient vari-

eties

-commutes with field extensions
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Hironaka resolution principle

(used by Villamayor in his proof)

(1) (Canonical) Principalization of the sheaves

I on M

⇓

(2) (Canonical) Embedded Desingularization

of subvarieties X ⊂M

⇓

(3) (Canonical) Desingularization.
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Let I be a sheaf of ideals on smooth X.

Definition: order of I at x ∈M . :

ordx(I) = max{k : mk
x ⊃ I}

Definition: Let σ : M ′ →M be the blow-up at

smooth center. The weak transform of I is

I(D)−µσ∗(I)

where I(D)µ is a maximal power of the exc.

divisor which divides σ∗(I)

The main strategy of principalization :

Reduce the maximal order of the weak trans-

form I′ of I

maxord(I) := max{ordx(I) : x ∈M}
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The main tool marked ideal (idealisistic ex-

ponent, basic object):

(I, µ)

”Part of I where the order of I is ≥ µ”

The support of marked ideal

supp(I, µ) = {x ∈M | ordx(I) ≥ µ}

Definition: Let σ : M ′ → M be the blow-

up at smooth center C ⊂ supp(I, µ). The

controlled transform of (I, µ) is

σc(I, µ) := I(D)−µσ∗(I)

Rephrasing the main strategy:

Resolve marked ideal:

supp(I, µ) = ∅.
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Key observation

If C : x = 0 ⊂ supp(I, µ),

then at any point p ∈ C the functions f ∈ I
can be written in the form

f =
∑
|α|≥µ

cα(y)xα

After the blow- up

x = (x1, . . . xk) = (z = x′1, zx
′
2, . . . zx

′
k),

where z is the exceptional divisor.

f =
∑
|α|≥µ

cα(y)xα

↓

σ∗(f) =
∑
|α|≥µ

cα(y)z|α|x′
α
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Hironaka resolution principle

(0) (Canonical) Resolution of marked ideals

(I, µ)

⇓

(1) (Canonical) Principalization of the sheaves

I on M

⇓

(2) (Canonical) Embedded Desingularization

of subvarieties X ⊂M

⇓

(3) (Canonical) Desingularization.
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p-order ordp in characteristic p.

Let a = a0 + a1p + . . . + akp
k be the (reverse

p-adic expansion of a ∈ N.)
Set [a] := (a0, a1, . . . , ak,0, . . .) ∈ Nfinite

1. Put ordp(xa) = [a]

Example char.K = 2
ordp(x2) = (0,1,0, . . .) (2 = 0 · 1 + 1 · 2)

ordp(y3) = (1,1,0,0, . . .), (3 = 1 · 1 + 1 · 2)

ordp(z4) = (0,0,1,0, . . .) (4 = 0 · 1 + 0 · 2 +
1 · 22)

2. Put ordp(xb11 · . . . · x
bn
n ) = ordp(xb11 ) + . . . +

ordp(xbnn ) = [b1] + . . .+ [bn] ∈ Nfinite

Example

ordp(x2y3z4) = (0,1,0, . . .)+(1,1,0, . . .)+(0,0,1,0, . . .) =
(1,2,1,0, . . .)

9



For any α := (a0, a1, . . . , ak,0, . . .) ∈ Nfinite set

|α| := a0 + a1p+ . . .+ akp
k

Then ord(xβ) = |ordp(xβ)|

The order on Nfinite: α < α′ if

|α| < |α′| or |α| = |α′| but α <lexicograph. α
′

Example ordp(xy) = (2,0, . . .) < ordp(x2) =

(0,1,0 . . .) < ordp(xyz) = (3,0,0,0, . . .)

3. For f =
∑
α cαxα, put

ordp(f) = min{ordp(xα)) | α 6= 0}

Example: char K=2

ordp(x2−y2) = (0,1,0, . . .) > ordp(xy) = (2,0, . . .)
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Properties of ordp

A. ordp(f1 + f2) ≥ min{ordp(f1),ordp(f2)}

B. ordp(f1 · f2) ≥ ordp(f1) + ordp(f2)

C. ordp(f) ≥ (ord(f),0, . . . ,0, )

D. ordp((fp
k
) ≥ (0, . . . ,0,ord(f)k, . . .)

Independence of coordinates. Let φ be an

automorphism defining the coordinate change

φ∗ : x1, . . . , xk 7→ x′1, . . . , x
′
k

(1) Let a ∈ N write a = a0 + a1p+ . . .+ akp
k

ordp(φ∗(xa)) = ordp(φ∗(xa0·(xa1)p . . .·(xak)p
k
) ≥

ordp(φ∗(xa0))+ordp(φ∗(xa1)p) . . .+ordp(φ∗(xak)p
k
) ≥

(a0,0, . . .)+(0, a1,0)+... = (a0, . . . , ak) = ordp(xa).
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(2) Now

ordp(φ∗(xb11 ·. . .·x
bk
k )) = ordp(φ∗(xb11 )·. . .·φ∗(xbkk )) ≥

ordp(φ∗(xb11 ))+ordp(φ∗(xb22 )+. . .+ordp(φ∗(xbkk )) ≥

ordp((xb11 ))+. . .+ordp((x
bk
k )) = ordp(xb11 ·. . .·x

bk
k )

(3) In general for f =
∑
α cαxα,

ordp(φ∗(f)) ≥ min{ordp(φ∗(xα)) | cα 6= 0)} ≥

min{ordp(xα)) | cα 6= 0)} = ordp(f)
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Derivations and support (in char. 0)

(Giraud, Villamayor)

Let I be a coh. sheaf of ideals on sm. var. M .

D(I) locally gener. by f ∈ I, ∂f/∂x.

D(I, µ) := (D(I), µ− 1)

(i) If ordx(I) = µ and i ≤ µ− 1 then

ordx(Di(I)) = µ− i.

In particular ordx(Dµ−1(I)) = 1

(ii) supp(I, µ) = supp(Di(I), µ−i)) ( i ≤ µ−1,)

In particular supp(I, µ) = supp(Dµ−1(I),1))
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Hasse-Dieudonne derivations in positive char-

acteristic

Let x1, . . . , xn local system of coordinates. Let

α = (a1, . . . , an). Then

Dα
x := 1/α!

∂

∂x
a1
1
. . .

∂

∂xann

is defined in characteristic p. Dα
x(xβ) =

(
β
α

)
xβ−α.

In general

ordx(Di(I)) 6= ordx(I)− i.

The order of derivation Dα
x is equal to

ord(xα) = |α| = a1 + . . .+ an

and its p-order is equal to

ordp(α) := ordp(xα) = µ(xa1
1 · . . . · x

an
n )
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Derivations and support in positive char-

acteristic

Let I be a coh. sheaf of ideals. α ∈ Nfinite

Dα(I) locally gener. by Dα′(f), where α′ ≤ α.

Lemma 1 If ordpx(I) = µp and µp− α ∈ Nfinite

then

ordpx(Dα(I)) = µp − α

ordx(D|α|(I)) = |µp| − |α|

In particular let µp = (0, . . . ,0, ak, ak + 1, . . . , ).

Set 1k := (0, . . . ,0,1k,0, . . . , )

ordpx(Dµ−1k)(I) = 1k

Thus

ordx(D|µ
p|−pk)(I) = pk
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Note that

Lemma 2

(ii) supp(I, a) ⊆ supp(Db(I), a− b)) ( b < a,)

In particular

(ii) supp(I, a) ⊆ supp(Da−pk(I), pk))
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Hironaka’s hypersurfaces of maximal con-

tact in char. 0

-(i) contain support of marked ideal

-(ii) property (i) is persistent with resp. to any

mult. test blow-up

Idea of hypersurface of maximal contact:

Reduce the problem of resolution to lower di-

mensions.

Definition(Villamayor) We say that a marked

ideal is of maximal order if

max{ordx(I) | x ∈M} = µ
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Existence of hypersurface of maximal con-

tact in char. 0

A marked ideal of maximal order (M, I, ∅, µ)

admits locally hypersurfaces of maximal con-

tact.

Lemma (Giraud) Let (I, µ) max. order. Let

u ∈ Dµ−1(I) ordx(u) = 1. Then

V (u) = supp(u,1) ⊇ supp(Dµ−1(I),1) = supp(I, µ)

(ii) Let σ : M ←M ′ be a blow-up at C

Set u′ := σc(u) = u ◦ σ/y. (y-exceptional div).

Then u′ ∈ σc(Dµ−1(I)) ⊂ Dµ−1(σc(I, µ)) and

ordx′(u
′) = 1. Hence

V (u′) ⊇ supp(σc(I, µ))
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Existence of hypersurface of maximal con-

tact in char. p

Lemma Let (I, µ) max. order. Then

ordpx = µp = (0, . . . ,0, ak, ak + 1, . . . , )

Let U ∈ Dµ−pk(I) ordpx(U) = 1k. Then

U = up
k

+ f,

where ordx(f) > pk

supp(U , pk) ⊇ supp(Dµ−p
k
(I), pk) ⊇ supp(I, µ)

(ii) Let σ : M ←M ′ be a blow-up at C

Set U ′ := σc(U) ∈ σc(Dµ−pk(I)) ⊂ Dµ−pk(σc(I, µ))

and µx′(U ′) = 1. Hence

supp(U ′, pk) ⊇ supp(σc(I, µ))

Remark. The scheme supp(U , pk) is a ”hy-

persurface of maximal contact” for (I, µ) in

positive characteristic.

19



Restriction to the hypersurface of maximal

contact

1. char(K) = 0. Let V (u) be a hyp. of max.

contact. Let u, x1, . . . , xk be a local system of

coord. at p. Write a function g as a formal

power series at p.

g = c0 + c1u+ . . .+ ciu
i + . . . ,

where ci = ci(x1, . . . , xn) are formal power se-

ries in x1, . . . , xk. Then

g|V (u) = (c0)|V (u) ↔ c0

is the restriction of g to V (u).

2. char(K) = p. Let U = up
k

+ f . Write

g = c0 + c1U + . . .+ ciU i + . . . ,

where degu(ci) < pk. Then

g|supp(U ,pk) := c0

is the restriction of g to supp(U , pk).
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Partial restriction in positive characteristic

There are some minor disadvantages of the re-

striction.

In view of Example A2 we will be using more

natural partial restriction. Write g as a finite

sum

g = c0 + c1U + . . .+ ciU i + . . .+ cpk−1U
p−1

where ci contains ul, where

l = j + apk+1,

j < pk, and a ∈ N ∪ {0} . Then

g||supp(U ,pk) := c0

is the partial restriction of g to supp(U , pk).
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A. Constraints for maximal contacts

A1 Consider hypersurface of maximal contact

in Ap+2

U = (1 +X)up +Xv1 · . . . · vp,

where X and X ′ = 1+X are both equations of

exceptional divisors (passing through different

points)

In the neighorhood U of u = v1 = . . . = vp =

X = 0 it has a form

U = up +Xv1 · . . . · vp.

In the neighorhood U ′ of u = v1 = . . . = vp =

X ′ = 0 it has a form

X ′up + v1 · . . . · vp.
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Possible centers for U and V :

u = v1 = . . . = vp = 0 for U and V .

u = v1 = . . . = vp = X = 0 for U ,

(u = v1 = . . . = vp = X ′ = 0 for V )

The second blow-up does not change singular-

ity.

To resolve the singularity one needs to perform

the blow-up at the center

u = v1 = . . . = vp = 0.

The generic points of the first center has sin-

gularity

U = up + v1 · . . . · vp
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The singularities along the center are the same

from the point of view of the algorithm. That

is the algorithm considers the following singu-

larities to be the same.

U = up +Xv1 · . . . · vp.

U ′ = v1 · . . . · vp +X ′up

U = up + v1 · . . . · vp
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Condition 1- Coherency of the algorithm.

The maximal contact U = up +Xv1 · . . . · vp at

the point 0 still remains a maximal contact in

the neighborhood of 0. That is

U = up + v1 · . . . · vp

is a maximal contact in the neihgborhood. To

fullfill the condition for the maximal contact

U = up
k

+Xaf

we allow a weaker condititon ordx(Xaf) ≥ pk.

The stronger condition ordx(Xaf) > pk is valid

only at certain points and is not valid along

the centers of blow-ups.

25



Condition 2- Commutativity of maximal con-

tacts

The algorithm (and the invariant) does not dis-

tinguish between the maximal contact U, in U ,

where

U = up +Xv1 · . . . · vp.

and the maximal contacts (vi,1) in U ′,

U ′ = v1 · . . . · vp +X ′up.

In particular the order of maximal contact is

not a part of the invariant which is con-

stant along the center.

The finer invariant controlling the algorithm

may lead to the infinite loop in the algorithm.

26



Condition 3 -Restriction vs partial restric-

tion to maximal contact.

A2 Consider hypersurface of maximal contact

in Ap+1

U = (1 +X)up +Xv1 · . . . · vp−1(u+ v2
p)

where X and X ′ = 1+X are both equations of

exceptional divisors passing through different

points.

It has two different forms along the center

U = up +Xv1 · . . . · vp−1(u+ v2
p).

U ′ = v1 · . . . · vp−1(u+ v2
p) +X ′up

It ”follows” from commutativity of max. cont.

U , v1, . . . , vp−1, u+ v2
p

that partial restrtriction shall be used. We do

not ”kill” U by partial restricting to u+ v2
p .
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Normal form of the maximal contact

It follows from the previous Example that Gi-
raud form

U = up
k

+ f, ordx(f) > pk

is not preserved along the center.

Instead we introduce:
Definition. The maximal contact U = up

k
+ f

in the normal form if ordx(f) ≥ pk, and u is
transversal to exceptional divisors. Moreover
the following conditions are satisfied:

-If U = up
k

+ f and ordx(f) > pk then U is in
the normal form.

-If D is the exceptional divisor then U = up
k
+f

is in normal form if U|D is in the normal form

-If U = up
k

+ f , where ordx(f) = pk and V ∈
T (U) is maximal contact of U through x then
U is in the normal form if U||V is in the normal
form.
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Standard approach to the resolution of (U , pk)

Write,

U = up
k

+Xaf

where a and ord(f) are maximal possible.

Natural invariant - classic approach

µ2,p(U) = ordp(f).

Gives a good control on the singularity.

Not well controlled under the blow-ups-

requires further modifications. There are

major problems to overcome.
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B . Frobenius phenomenon.- Ambiguity of

order and jumping phenomen

B0. U = up + vkpw, where k ≥ 1

Automorphism acting on (U , p)

u→ u+ tvk

w → w − tp, v → v

The only possible center of blow-up: u = v = 0

(by canonicity)

What is the µ2- order of U?

B1. U = up + v2pw + t
1000p+1
1 t2.

We blow-up u = v = t1 = t2 = 0. After the

blow-up (X = t2) it becomes

σ∗U = Xpup +X2pv2pw +X1000p+2t
1000p+1
1 .

µ2(U) = 2p ?
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B2. U = up + v2pw + w1000p+1t2.

We blow-up u = v = w = t2 = 0. After the
blow-up (X = t2) it becomes

σ∗U = Xpup +X2p+1vpw+X1000p+2w1000p+1.

µ2(U) = 2p+ 1 ?

B3. U = up + v
2p
1 w1 + v

2p
2 w2 +HOT ?

B4. Increase of µ2

U = up
2

+ vp
2
(w1 + w

p
2) + w

p3+1
1 + w

p3+1
3

µ2 = p2 + 1.

Possible blow-up u = v = w1 = w3 = 0. (sup-
port of U) . After blow-up

U = up
2

+ vp
2
(Zw1 + w

p
2) + Zp

3+1−p2
w
p3+1
1 +

Zp
3+1−p2

µ2 = p2 + 2 increases after the blow-up.



C. Moh- Seidenberg phenomenon

U = u3 +X2Y 3(Y 2 +X3)

After blow-up at the u = X = Y = 0

U = u3 +X4Y 2(Y 2 +X)

U = u3 +X4Y 4(X + Y ) µ = 1 (µ drops by 1)

U = u3 + Z6(−1 + v2 − v3 + v5)

u 7→ u+ Z3v2

U = u3 + Z6(v2 − v3 + v5) (µ increases by 1)
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Virtual marked ideals

Introducing new invariant leads to the new objects-

virtual marked ideals considered from the per-

spective of this invariant. For a maximal con-

tact U = up
k

+Xaf we introduce

[U]pk = [Xaf ]pk := U +Op
k

to be the class of the element

U +Op
k

in the quotient Opk- module O/Opk.

Virtual marked ideals have form ([g]pk, µ), where

µ is ”virtual marking”. They are controlled by

”the virtual order -vord”.
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The virtual objects behave nicely with respect

to the logarithmic derivations XDX , Du. In

particular

Dpl[Xaf ]pk = Dpl(Xaf), for, l < k

Dpl[Xaf ]pk = [Dpl(Xaf)]pk, for, l ≥ k
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In view of Examples B, C the definition of
order of the virtual element [U] requires im-
portant adjustments.

Let U = up
k

+Xaf .

1. ”Pure case” f = f0 + HOT , where f0 is
the initial form of f and f0 6∈ (X1, . . . , Xl).

1.1 ”Pure irregular case”

ordx([U]pk) = ordx([Xaf ]) := lpk + δr,

where δr = 0, pr

if - vordx(f0) = lpk and f0 ∈ Op
k
, and Xa ∈ Opr

or

- vordx(f0) = lpk and f0 contains (vb)p
k
up

r
,

where v, u are local coordinates.

1.2. ”Pure regular case” .

vordx([U]) = vordx([Xaf ]) := ordx f0 = ordx f
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What is a virtual order ”vord” ?

Conceptual definition: Two possible defini-

tions of order for an ideal I: Standard order

ordx(I) = max{k : mk
x ⊃ I}

Effective order along center.

Let σ : M ′ →M be the blow-up at smooth cen-

ter C and exceptional divisor. Then vordx,C, I
is the maximal power of the exc. divisor which

divides σ∗(I)

I(D)µ ⊃ σ∗(I)

Definition. vordx([U]) is a function defined

on the permissible centers of blow-ups.
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What is a monomial mod Opk ?

According to our definition of virtual order

vord[Xa]pk = δr,

where Xa ∈ Opr \ Opr+1
. The monomial [Xa]pk

behave as if its relative order is 0. However

-passing to a neighborhood or blow-up may

easily transform to

[X(bpk)up
r
]pk

and then to

[X(bpk)Zp
r
up

r
]pk

and more generally to [Xaprup
r
]pk.
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Conceptual definition of monomial

Monomial [Xa]pk is a coherent object stable

under permissible blow-ups.

In particular

[Xa]pk , [X(bpk)up
r
]pk [X(bpk)Zp

r
up

r
]pk [Xaprup

r
]pk.

are different incarnations of monomial.
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Instability of monomial forms .

Key Observation: The monomial form [Xa]pk
is unstable.

To assure stability of the

([x(bpk)up
r
]pk, δr)

we introduce the condition of SNC of the mono-

mial with the center. We say that

([x(bpk)up
r
]pk, δr)

has SNC with the center of blow-up C if either

-[up
r
]pk ∈ I

pr

C +Opk. We write δr(C) = pr

or

[up
r
]pk is transversal to C i.e. for every x ∈ C,

vordx([up
r
]pk|C

) = δr.

We write δr(C) = 0.
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If

[x(bpk)up
r
]pk

does not have SNC with C then after a single

blow-up we may loose a monomial form

[x(bpk)up
r
]pk

Example. Suppose u has a form u = u′+ v2,

where u′ ∈ IC and v transversal to C. Then

[x(bpk)(u′+ v2)p
r
]pk

transforms to

[x(bpk)(Zu′+ v2)p
r
]pk

Since [xa]pk [x(bpk)(u)p
r
]pk and [x(apr)(u)p

r
]pk

are not distinguished the notion of the SNC

can be considered with respect to all three

forms. It can be generalized to a set of mono-

mials.
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Permissibilty of centers.

In the resolution procedure we shall use the
following objects:

-marked ideals (Ii, µ)
-virtual marked ideals ([fj]pk, µ)
-virtual monomial marked ideals ([xαl ]pk, δ∗)

The center C will be called permissible if

1. C ⊂
⋂

supp(Ii, µ) ∩⋂
supp([fj]pk, µ) ∩

⋂
supp([xαl ]pk, δ∗)

2. C has SNC with ([xαl ]pk, δ∗)

3. C has SNC with the exceptional divisors E.

In the virtual monomial ([xαl ]pk, δr) the function
δr is defined on the set of permissible centers
of blow-ups, and has values 0, pr.
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Homogenized derivations Let (I, µ) be of

maximal order, such that

ordlog,x(I) = ordx(I) for x ∈ supp(I, µ).

There exists

(T (I) = Dµ−p
r
(I), pr),

where pr|µ is of maximal order. By the ho-

mogenizing derivations we mean

HT := T (I)Dp
r
∩ Dp

r

log

Note that

ordx(f) ≤ ordx(H(f)),

where H ∈ HT .
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Homogenized ideals and tangent directions

By the homogenized ideal we mean the ideal

(HT (I), µ) generated by functions f ∈ I and

all its homogenized derivatives.

Then (HT (I), µ) is equivalent to (I, µ). (Have

the same supports and the same resolutions.)

Moreover for any two maximal contacts U1,U2 ∈
T (I), µ), the restrictions (HT (I||Ui), µ) are equiv-

alent. In fact we have

Lemma

HT (HT (I)||U1
), µ) = HT (HT (I)||U2

), µ)
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If

Coefficient ideals in positive characteristic

Let (I, µ) be an ideal of maximal order. Let

U = up
k

+ f

be a maximal contact of (I, µ), where pk|µ.

Denote r := min(p, µ/pk).

Assume the coordinate u can be chosen transver-

sal to exceptional divisors.

By the coefficient ideal of (I, µ) at U = up
k
+f

we mean

C(I, µ)||U =
r∑

i=0

((HT (Dp
k

log)iHT (I))||U), µ−ipk)+

([U]pk, p
k)
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If

g = c0 + c1U + . . .+ ciU i + . . .+ cpk−1U
p−1 ∈ I

then

ci = ci||U ∈ HT (Dp
k

log)i(HT (I))||U

Conceptual definition Coefficient ideal can

be characterized by 4 conditions.

1. supp((U , pk) + (C(I, µ)||U)) = supp(I, µ)

2. Condition 1. persistent with respect to

blow-ups C ⊂ supp(I, µ).

3. If σc(C(I, µ)||U) is monomial then σc(I, µ) is

easily resolvable- ( reduces to (u,1)+(xα, µα))

4. If σc(C(I, µ)||U) is 0 then (I, µ) = up
k
)
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Coefficient ideals defined for the excep-

tional divisors. Let (I, µ) be an ideal of max-

imal order. Let

X := {Xi}i∈I
be a coordinates of some exceptional divisors

maximal contact. Consider

TX = (Xi)i∈I

HT = (Xi)i∈ID ∩ ·Dlog

By the coefficient ideal of (I, µ) at X = 0 we

mean

C(I, µ)|X =
µ∑
i=0

∑
|α|=i

(Cα,X , µ− i)

where

Cα,X = 1/Xα(f|X | f ∈ HT (I), Xa|f}
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Derivations compatible with centers

Let u1, . . . , un local coordinates at x ∈ C such

that

C : u1 = . . . = um = 0.

The local coordinates at x′ ∈ σ−1(x) are of the

form

u′i =
ui
um

for i < m

and u′i = ui for i ≥ m, where um = u′m = Y is

exc. divisor. Then

σ∗( ∂
∂ui

) = 1
Y

∂
∂u′i
, 1 ≤ i < m;

σ∗( ∂
∂um

) = −1
Y (u′1

∂
∂u′1

+ . . .+ u′m−1
∂

∂u′m−1
− Y ∂

∂Y ),

∂
∂u′i

= ∂
∂ui
, m < i ≤ n.
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Two kinds of compatible derivations

∂
∂ui

, for 1 ≤ i ≤ m,

compatible with C of order -1

The derivations ∂
∂ui

for m+ 1 ≤ i ≤ n.,

compatible with C of order 0

for m+ 1 ≤ i ≤ n.

Similarly Xi
∂
∂Xi

are compatible with C of or-

der 0
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”Pure regular case”

vord[U]pk = [Xaf ] = [Xa(f0 +HOT )] = µ ∈ N.

Let ordpx(f0) = µp = (0, . . . ,0, ar, . . . , am,0, . . .).

Then, since we are in regular case.

µp < (0, . . . ,1r,0, . . . , ap = µ− pr,0,0, . . .)

µp − 1r < (0, . . . ,0, ak = µ− pr,0, . . .)

Then Dµ
p−1r

log (O)p
k

= 0. Set

Dµ−p
r

log := {D ∈ Dµ−p
r

log | D(O)p
k

= 0} 3 Dµ
p−1r

log

Dµ−p
r

log ([U]pk, p
r) = Dµ−p

r

log (Xaf)
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By the above

(T ([U]pk, p
r) := (1/Xa ·Dµ−pr

log (Xaf), pr)

is the real (i.e non-virtual) marked ideal of

maximal order. There exists a maximal con-

tact

V ∈ T ([U]pk, p
r)

Set

HT = T ([U]) ·Dpr

log

Note HT (Opr) = 0 and HT ([U]) = [U]⊕HT (Xaf)

Consider the coefficient ideal

(C([U])||V) = [V]⊕ [U]||V⊕

1/Xa
r∑

i=0

(HT (Dp
k

log)iHT [U])||V)

If U = c0 + c1V + . . . + ciVi + . . . + cpk−1V
p−1

then ci = ci||V ∈ HT (Dp
k

log)i(HT (I))||V .
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We can write

[U] = [c0] + c1V + . . . + ciVi + . . . + cpk−1V
p−1,

where

[c0] = c0||V = [U||V] is the ”virtual part”.

ci = ciVi are elements of ”real” marked ideals.

Example Let

U = up +Xa(u1 · . . . · ur +G(ur+1, . . . , un),

where ordx(G) > r. Then

(T ([U]p, p) := (1/Xa·Dµ−pr
log (Xaf), pr) = (u1, . . . , ur)

Thus u1 is a maximal contact.

(C([U])||u1
) = [up+G]⊕

p∑
i=1

((u2, . . . , ur, HOT ))p−i



Pure irregular case

Consider the case

vordx([U]pk) = lpk + δ1

for simpler notations. Assume for simplicity
that

[U] = [Xa(F p
k

1 v1 + . . . F p
k

s vs +Gpk+1 +HOT )],

where Fi are forms of degree l and Gpk+1 is a

regular form of degree pk + 1. Then

Dlp
k

log[U] = ([Xav1], . . . [Xavs], X
avs+1, . . . , X

a·HOT )])

Suppose the center C has SNC with

[Xav1] + . . .+ [Xavs]

That is after possible rearrangements and mod-
ifications
vord([Xa[vi], C) = 0 for i ≤ s0 ≤ s
vord([Xa[vi], C) = 1 for s0 < i ≤ s.

There are compatible derivations ∂
∂vi

of order
0 for i ≤ s0 and order −1 for s0 < i ≤ s.
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After the blow-up at C. (Y -exc. divisor)

σc([U]) = [Y lp
k
Xa′(F ′p

k

1 v′1 + . . . F
pk
s0 v
′
s0

) +

Y (F ′p
k

1 v′s0+1 + . . . F
′pk
s ] +G′

pk+1
+HOT ))].

After a sequence of blow-ups with permissible
centers we will keep the following form: there
exist exponents a0 ≤ a1 ≤ . . . ≤ am, and corre-
sponding indices s0 ≤ s1 ≤ s2 . . . ≤ sm ≤ sm+1
such that

σc[U] = [Xa0(F p
k

1 v1 + . . .+ F
pk
s0 vs0 +

Xa1−a0(F p
k

s0+1vs0+1+. . .+F
pk
s1 vs1+Xa2−a1(. . .+

Xam−am−1(F p
k

sm−1+1vsm−1+1 +F
pk
smvsm+Gpk+1 +

HOT ))))]

Dlp
k

log(σc[U]) = [Xa0v1], . . . , [Xa0vs0)], [Xa1vs0+1)], . . .,
[Xa1vs1], . . . , [Xamvsm−1+1], . . . [Xamvsm],
Xamvsm+1, . . . , X

amvsm+1, X
am ·HOT, . . .))))],

where vsm+1, . . . , vsm+1 ∈ Dlp
k
(log(Gpk+1+HOT )
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The permissibilty of the center means that af-

ter possible rearrangements and modifications

there exist

0 ≤ s′0 ≤ s0 ≤ s′1 ≤ s1 . . . ≤ s′m ≤ sm ≤ sm+1

vord([Xa
i [vj], C) = 0 for si−1 < j ≤ s′i

vord([Xa[vi], C) = 1 for s′i < j ≤ si.

Moreover we assume that along the center

ord(Xai−ai−1) + min
si<j≤si+1

vord([Xa
i [vj], C) ≥

maxsi−1<j′≤si δ1([Xa
i [vj′], C)

The latter condition is to assure linear order

on the set

{a0, a1, . . . , am}

Roughly, along the center

” ord ”(Xai−ai−1)vj ≥ ” ord ”(vj′)
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Tilted Derivations

Define

D̃([U]) = (
1

xai
·
∂([U])

∂vj
| 0 < i ≤ m, si−1 < j < si)+

1

xam
(D[U ] | D ∈ Dlog, D([Xa

i [vj]) = 0)0<i≤m,si−1<j<si

Observe: there are compatible derivations ∂
∂vi

- of order 0 for si−1 < j ≤ s′i and

- order −1 for s′i < j ≤ si. After blow-up these

transform

σc(
∂

∂vi
,−δ1) = (1/Y δ1 · σ∗(

∂

∂vi
),−δ1)

Thus

D̃(σc[U]) = σc(D̃([U]))

Consider the maximal contact U ′ ∈ T (D̃([U])).

C([U])||U ′ := [U]||U ′ + C(D̃[U])||U ′
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”Logarithmic order”. By the logarithmic or-

der

ordlogx(I) = µ

we mean is the smallest natural number µ such

that Dµlog(I) is monomial (generated by mono-

mials).

Lemma If F is a form of degree µ then

ordlogx(Xaf) = ordlogx(f) ≤ µ

. If F is a form of degree in the ”pure case”

then

ordlogx(Xaf) = ordlogx(f) = µ

Corollary If F is the form of degree µ, and

Xaf ∈ Opr then

ordlogx([Xaf)]
pk
≤ µ+ pr
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2. ”Logarithmic case”

Let

U = up
k

+Xaf,

Write f = f0 + HOT , where f0 is the initial
form of f . Then f0 ∈ (X1, . . . , Xl).

2.1 ”Logarithmic regular case”.

vordx([U]) := ordx(f0) ≥ ordlogx[Xaf0]

Maximal contact- ”old” exceptional divisors X.
Consider coefficient ideal

C([U])|X := [U]|X ⊕ 1/Xa
r∑

i=1

∑
|α|=r

Cα,X

Cα,X = 1/Xα(f|X | f ∈ HX([U]), Xa|f}

After removing old divisors.

vordx(U) = ordx(f0) ≥ ordlogx[Xaf0] ≥

ordlogx[σc(Xaf0)] = ordx(σc(f0)) = vordx(σc([U])
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2.2 ”Logarithmic Moh-Seidenberg (kanga-
roo) case”.

ordx(f0) < ordlogx[Xaf0] = ord(f0) + pr

Lemma. ∂

∂uip
j [X

af0]pk = 0, where j ≤ k. Thus

f0 =
∑
i

ciX
aiF

pk

i

We define

vordx([U]) := ordlog(f0))− δr,

where δr = pr when U in ”M-S” case , and
δr = 0 when U in the ”pure case”

”M-S” Jumping phenomenon corresponds to
passing from logarithmic case to the pure case
and vice versa (in case a new initial M-S form
is created). Solution is similar as for ”pure
irregular case”

58



The virtual order remains constant while the

order along center varies as δr changes its value

from 0 to pr. ”Tilted initial form” is stable and

improves

Set for simplicity

vordx([U]) = µ− δ1

Suppose

[U] = [Xa(F1 +HOT )],

where F1 is in ”pure” form transforms to

[Xa(G1 + F1 +HOT )],

where G1 in M-S form, as in the Lemma.
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Then

Dµ−1
log ([U]) = (gi, fi, hi),

where fi, gi are functions whose initial forms

are of logarithmic order 1 such that

gi = XbDXb([U]) = Xa(XbDXb(G1+HOT ) = Xag′i

fi = Dubα
([U]) = Xa(Dubα

(F1 +HOT )) = Xavi,

where vi is a parameter, |b| = µ− 1

There exists compatible derivations of order 0:

Di = Xi
∂

∂Xi
,

where Xi are coordinates of ”old divisors” ,

There exists compatible derivations of order

−1 of the form :

∂

∂vi
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After the blow-up we keep the following form

[U] = [Xa0(G1+F1+Xa1−a0(G2+F2+Xa2−a1(G3+. . .

Xam−am−1(Fm+1 +HOT ))))]

”Two way traffic”- new Gi may form and ”move

down”. Then they transform into Fi. Tilted

initial form expands.

Dlp
k

log([U]) = ((Xa0g′1, . . . , X
a0g′s1

, Xa0v1, . . . , X
a0vt1

Xa1g′t1+1, . . . , X
a1g′t2, X

a1vs1+1, . . . , X
a1vs2

, . . . , Xamvsm−1+1, . . . , X
amvsm, X

am ·HOT, . . .)
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Define

D̃([U]) =
1

xai
(Dj[U ] | 0 < i ≤ m, si−1 < j < si)

(
1

xai
·
∂([U])

∂vj
| 0 < i ≤ m, si−1 < j < si)+

1

xam
(D[U ] | D ∈ Dlog, D(Xa0g′i) = 0, D(Xa

i (vj)) = 0)

Then since there are compatible derivations

Dj,
∂
∂vj

we have

D̃(σc[U]) = σc(D̃([U]))

If the form Gi exists in the above tilted initial

form the maximal contact is defined by ”old

divisors”. We consider a coefficient ideal

C([U])|X := [U]|X + C(D̃[U])|X

Otherwise consider a maximal contact V ∈ T (D̃([U]))
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