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Canonical Resolution of Singularities in char.0
(Hironaka), (simplifications by Bierstone-Milman,
Villamayor and others)

Thm Let X be an algebraic variety (char 0).
There exists f: X — X such that

(1) X is smooth,

(2) f is projective

(3) f isomorphism over Xps,

(4) f~1(V(SingX)) is normal crossings,

(5) functorial on smooth morphisms

(6) functorial on field extensions.



Embedded Desingularization(Hironaka)

Let X be a subvariety on smooth M (char. 0).
There exists embed. desingular. of X C M:
seq. of blow-ups o; with smooth centers C;_1

—

M=My<t My e— ...M; «— ...My, =M

(i) The exc. divisors E; of has only SNC and
C; has SNC with E;.

(ii) The strict transform X = X, of X is
smooth and have SNC with the except. div.
(i) (M, X) «— (M, X) is a functor:
-commutes with smooth morphisms
-commutes with embeddings of ambient vari-
eties

-commutes with field extensions



Canonical Principalization(Hironaka)

Let 7 sheaf of ideals on smooth M (char. 0).
There exists a principalization of 7:

seq. of blow-ups o; with smooth centers C;_1

—

M=My<t My e— ...M; — ...My, =M

(i) The exc. divisors E; of has only SNC and
C; has SNC with E;.

(i) The total transform Z := (of...0%)(Z) is
the ideal of SNC divisor with comp. in E,

(iii) (M,Z) — (M,T) is a functor:

-commutes with smooth morphisms
-commutes with embeddings of ambient vari-
eties

-commutes with field extensions



Hironaka resolution principle
(used by Villamayor in his proof)

(1) (Canonical) Principalization of the sheaves
ZonM

U

(2) (Canonical) Embedded Desingularization
of subvarieties X C M

U

(3) (Canonical) Desingularization.



Let Z be a sheaf of ideals on smooth X.
Definition: orderof Z at x € M. :

ordz(Z) = maxz{k : m* > 1}

Definition: Let o : M’ — M be the blow-up at
smooth center. The weak transform of Z is

(D) Ho*(T)

where Z(D)* is a maximal power of the exc.
divisor which divides o*(2Z)

The main strategy of principalization :

Reduce the maximal order of the weak trans-
form Z' of

maxord(Z) := max{ord;(Z) : x € M}



The main tool marked ideal (idealisistic ex-
ponent, basic object):

(Z, 1)
"Part of Z where the order of Z is > u

The support of marked ideal

supp(Z,u) ={x € M | ord;(Z) > u}

Definition: Let ¢ : M/ — M be the blow-
up at smooth center C C supp(Z,u). The
controlled transform of (Z,u) is

(T, ) == I(D) o™ (T)

Rephrasing the main strategy:
Resolve marked ideal:

supp(Z, n) = 0.



Key observation
If C:72=0Csupp(Z,un),

then at any point p € C' the functions f € 7
can be written in the form

J = Z ca(y)z™

|| > 1
After the blow- up
T = (z1,...7) = (z = 27, 225, ... 22},),

where z is the exceptional divisor.

f= > c(mz®

|| > p

l
()= Y ca(@ze®

o[>



Hironaka resolution principle

(0) (Canonical) Resolution of marked ideals
(Z, )

U

(1) (Canonical) Principalization of the sheaves
Zon M

U

(2) (Canonical) Embedded Desingularization
of subvarieties X C M

U

(3) (Canonical) Desingularization.



p-order ordP in characteristic p.
Let a = ag + a1p + ... + app® be the (reverse
p-adic expansion of a € N.)
Set [CL] L= (ao, ai,.-.,ak,0,.. ) S N finate

1. Put ordP(z2%) = [a]

Example char. K = 2
ordP(z2) = (0,1,0,...) (2=0-141-2)

ordP(y3) =(1,1,0,0,...), (3=1-1+4+1-2)

ord?(z*) = (0,0,1,0,...) (4=0-14+0-2+
1-22)

2. Put ordP(zfl ... . aln) = ordP(al) 4 ... +
ordP(zln) = [b1] + ... + [bn] € NFinite

Example
ordP(z2%y32%) = (0,1,0,...)4+(1,1,0,...)+(0,0,1,0,...
(1,2,1,0,...)



For any o := (ag,a1,...,a0,...) € Nfnite gat
| = ao—l—alp—l—...—l—akpk
Then ord(zP?) = | ordP(a?)|

The order on NJnite: o « of if

|C“| < |Oz’| or |a| — |O‘/| but o <lea:icograph. o

Example ord?(zy) = (2,0,...) < ordP(z?) =
(0,1,0...) <ordP(zyz) = (3,0,0,0,...)

3. For f =), caTa, PUt
ord?(f) = min{ord?(z%)) | @ # 0}

Example: char K=2

ordP(z2—y2) = (0,1,0,...) > ordP(zy) = (2,0,...)
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Properties of ord?

A. ord?(f1 + f2) = min{ordP(f1),ord?(f2)}
B. ordP(fy - fo) > ordP(f1) 4 ordP(f2)

C. ord?(f) > (ord(f),0,...,0,)
D. ord?((f7*) > (0,...,0,0rd(f),...)

Independence of coordinates. Let ¢ be an
automorphism defining the coordinate change

" x> 2, T

(1) Let a € N write a = ag + a1p+ ... + arp®
ord?(¢*(z%)) = ord?(¢*(z%0-(z"1)P .. .-(z“)P") >
ord?(¢*(2%0))-ord?(¢*(z1)P) . . A-ordP(¢*(z)P") >
(ap,0,...)4+(0,a1,0)+... = (ag, ..., ar) = ordP(z?).
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(2) Now

ord?P(¢* (231, . -zik)) = ordP(¢* (a31)-. . -¢* (xk)) >
ord?(¢* (221))+ord?(¢* (2)+. . .+ord?(¢*(z7F)) >

ord?((z31))+-. --I-Ordp((:vZ’“)) = ordP(z31-.. .-Q:Zk)

(3) In general for f = >, caxa,
ord?(¢*(f)) = min{ord?(¢*(z“)) | ca # 0)} >

min{ord?(z%)) | ca 7 0)} = ord?(f)

12



Derivations and support (in char. 0)
(Giraud, Villamayor)

Let 7 be a coh. sheaf of ideals on sm. var. M.
D(Z) locally gener. by fel,0f/0x.

D(Z,p) :=(D(I),p—1)

(i) If ordz(Z) = p and i < u — 1 then
ord,(DY(Z)) = p — 3.
In particular ord;(D+—1(7)) =1

(i) supp(Z, ) = supp(DY(Z),u—i)) (i < p—1,)

In particular supp(Z, 1) = supp(D*~1(2),1))

13



Hasse-Dieudonne derivations in positive char-
acteristic

Let x1,...,xn lOCal system of coordinates. Let
a=(a1,...,an). Then
0 0
DY :=1/a!

833%1 Ol

is defined in characteristic p. D (zP) = (g):cﬁ—o‘.

In general

ord,(D*(Z)) # ord.(Z) — i.

The order of derivation D% is equal to

ord(z®) =|a|=a1+ ...+ an

and its p-order is equal to

ord?(a) := ord?(z®) = p(x{t - ... %)
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Derivations and support in positive char-
acteristic

Let 7 be a coh. sheaf of ideals. « e N/finite
D(T) locally gener. by DY (f), where o/ < a.

Lemma 1 If ordb(Z) = pP and pP — o € N/Jinite
then

ord2(D*(2)) = P — a

ordz(DI*N(T)) = |pP| — |a

In particular let u» = (0,...,0,ar,ar + 1,...,).
Set 1 := (0,...,0,1,0,...,)

ord?(DH k) (T) = 1,
Thus
ord (DI 1=P")(7) = p*

15



Note that

Lemma 2

(i) supp(Z,a) C supp(DP°(Z),a —b)) (b <a,)
In particular

(i) supp(Z,a) C supp(D—P(T),p*))

16



Hironaka’s hypersurfaces of maximal con-
tact in char. O

-(i) contain support of marked ideal
-(ii) property (i) is persistent with resp. to any
mult. test blow-up

Idea of hypersurface of maximal contact:
Reduce the problem of resolution to lower di-
mensions.

Definition(Villamayor) We say that a marked
ideal is of maximal order if

max{ord;(Z) |x € M} = pu

17



EXistence of hypersurface of maximal con-
tact in char. O

A marked ideal of maximal order (M,Z,0,un)
admits locally hypersurfaces of maximal con-
tact.

Lemma (Giraud) Let (Z,ux) max. order. Let
we DFI(Z) ordz(u) =1. Then

V(u) = supp(u, 1) 2 supp(D*~1(Z),1) = supp(Z, 1)

(ii) Let o : M «— M’ be a blow-up at C

Set v := 0% u) = uoo/y. (y-exceptional div).
Then «' € o¢(D* (7)) ¢ D+ 1(o%(Z, 1)) and
ord,(u') = 1. Hence

V(u") D supp(a®(Z, 1))
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EXxistence of hypersurface of maximal con-
tact in char. p

Lemma Let (Z,u) max. order. Then

ord? = P = (0,...,0,ap,ar, +1,...,)
Let U € DFP°(T)  ordP () = 1,. Then

U=ul" + 1,
where ordz(f) > p*

ok
supp(U, p*) 2 supp(D* P (I),p") D supp(Z, p)

(ii) Let o : M «— M’ be a blow-up at C
SetU' .= o°(U) € UC(D“_pk(I)) C D“_pk(JC(I, ))
and p(U") = 1. Hence

suppU’,p*) D supp(c(Z, 1))

Remark. The scheme supp(U,p*) is a " hy-
persurface of maximal contact” for (Z,u) in
positive characteristic.

19



Restriction to the hypersurface of maximal
contact

1. char(K) = 0. Let V(u) be a hyp. of max.
contact. Let u,xq,...,x; be a local system of
coord. at p. Write a function g as a formal
power series at p.

g=co—|—clu—|—...—|—cz-ui—|—...,

where ¢; = ¢;(x1,...,xn) are formal power se-
ries in x1,...,x,. T hen

9v(w) = (€0) |y (u) < €0
is the restriction of g to V(u).

2. char(K) = p. Let U = wP" + f. Write
g=cot+cid+...+cU+...,
where deg,(¢;) < p*. Then

9jsupp(U,pk) - = €0
is the restriction of g to supp(U, p").
20



Partial restriction in positive characteristic

There are some minor disadvantages of the re-
striction.

In view of Example A2 we will be using more
natural partial restriction. Write g as a finite
sum

g=co—|—cll/{—|-...—I—cZ-Z/{i-I—...—I-cpk_lblp_l
where ¢; contains u!, where
I =j+ap*tT,
j<pf and a € NU{0} . Then

9||supp (U pk) -— €0

is the partial restriction of g to supp(U, p*).

21



A. Constraints for maximal contacts

A1l Consider hypersurface of maximal contact
in AP12

U= 14+ X)ul 4+ Xvq ... vp,

where X and X’ = 14+ X are both equations of
exceptional divisors (passing through different
points)

In the neighorhood U of u = vy = ... = vp =
X =0 it has a form

U=ul~+ Xvy ... vp.
In the neighorhood U’ of u = vy = ... = vp =

X’ =0 it has a form

X/up—l—vl-...-vp.

22



Possible centers for U and V:

u=vy=...=vp=0for U and V.
u=vy=...=vp=X =0 for U,
(u=vy=...=vp=X" =0 for V)

The second blow-up does not change singular-
ity.

To resolve the singularity one needs to perform
the blow-up at the center

u=v] =...=1vp=0.

The generic points of the first center has sin-
gularity

U=uP+vy-...-vp

23



T he singularities along the center are the same
from the point of view of the algorithm. That
is the algorithm considers the following singu-
larities to be the same.

U=uP+ Xvy-... vp.
U =v1-...-vp+ X'uP
U=uPF+v1-... v

24



Condition 1- Coherency of the algorithm.
The maximal contact f = uP + Xvy-...-vp at
the point O still remains a maximal contact in
the neighborhood of 0. That is

U=uPF+v1-... v

IS @ maximal contact in the neihgborhood. To
fullfill the condition for the maximal contact

U =P + XOf

we allow a weaker condititon ord;(X%f) > p*.
The stronger condition ord;(X%f) > p”* is valid
only at certain points and is not valid along
the centers of blow-ups.

25



Condition 2- Commutativity of maximal con-
tacts

The algorithm (and the invariant) does not dis-
tinguish between the maximal contact U, in U,
where

U=uP+ Xvy-... vp.
and the maximal contacts (v;,1) in U/,

U' =vy-...-vp+ X'l

In particular the order of maximal contact is
not a part of the invariant which is con-
stant along the center.

The finer invariant controlling the algorithm
may lead to the infinite loop in the algorithm.

26



Condition 3 -Restriction vs partial restric-
tion to maximal contact.

A2 Consider hypersurface of maximal contact
in Apt+1

U= (1+X)uP 4+ Xvp ... vy 1(u+vD)

where X and X’ = 14 X are both equations of
exceptional divisors passing through different
points.

It has two different forms along the center
U=uP + Xvq -...-vp_l(u—l—vg).

L{/zvl-...-vp_l(u—l—’vg)—l—X’up

It " follows” from commutativity of max. cont.

2
U,v1,...,0p_1,u F v}

that partial restrtriction shall be used. We do
not " Kkill'" ¢ by partial restricting to u+v§.

27



Normal form of the maximal contact

It follows from the previous Example that Gi-
raud form

k
U=yl + f, orde(f) >p"
IS not preserved along the center.

Instead we introduce: .
Definition. The maximal contact i = uP + f
in the normal form if ord.(f) > p®, and w is
transversal to exceptional divisors. Moreover
the following conditions are satisfied:

If U = uP” + f and ordy(f) > p* then U is in
the normal form.

-If D is the exceptional divisor then U = upk—l—f
s in normal form if U is in the normal form

If U = wP" + f, where ord.(f) = pF and V €
T (U) is maximal contact of U/ through x then
U is in the normal form if Uy, is in the normal
form.

28



Standard approach to the resolution of (U,pk)

Write,
U=u" + X

where a and ord(f) are maximal possible.

Natural invariant - classic approach

2,p(U) = ordy(f).

Gives a good control on the singularity.

Not well controlled under the blow-ups-
requires further modifications. There are
major problems to overcome.

29



B . Frobenius phenomenon.- Ambiguity of
order and jumping phenomen

BO. U = uP + v*Pw, where k >1
Automorphism acting on (U, p)
u— u -+ tok

w—w—tP, v—ow

The only possible center of blow-up: vw=v =20
(by canonicity)

What is the uo- order of U7
Bl. U = uP + v%Pw + t%OOOp_I_th.

We blow-up v = v = t1 = to = 0. After the
blow-up (X = t») it becomes

U = XPuP + X2Py2Pyy + X1000p+2t%000p+1.

po(U) = 2p7
30



B2. U = uP + v%Pw + w1000p+1t2.

We blow-up v = v = w = to, = 0. After the
blow-up (X = t») it becomes

o U = XPuP 4 X2P+H1yPy, 1 x1000p+2,,1000p+1
po(U) =2p+17

B3. Z/{zup—l—vfpwl —I—’ng’UJQ—I—HOT 7

B4. Increase of u»

U = uP’ + oP (wl—l—wz)—l—wzl9 “+1 + wj S+l

po =p? + 1.

Possible blow-up u = v = w1 = w3 = 0. (sSup-
port of /) . After blow-up

U = up” -I-vp (Zwy + wy) + A ] gy
7p3+1—p?

Uo = p? 4+ 2 increases after the blow-up.



C. Moh- Seidenberg phenomenon
U=u34+ X2Y3(Y?2+ X3)

After blow-up atthe u =X =Y =0
U=1u34+XY2(Y?+ X)
U=u3+XYH(X+Y) pu=1 (u drops by 1)
U=u3+Z(-1+ 12— 03+

u— u -+ 7302

U=u3+ Z°%w? —v3 +v°) (u increases by 1)

31



Virtual marked ideals

Introducing new invariant leads to the new objects-
virtual marked ideals considered from the per-
spective of this invariant. For a maximal con-
tact U = upk + X%f we introduce

Ul = (X1 = U+ OF
to be the class of the element
U+ or'
in the quotient (’)pk— module (’)/(’)pk.

Virtual marked ideals have form ([g]pk,,u), where
@ 1s "virtual marking”. They are controlled by
"the virtual order -vord’ .

32



The virtual objects behave nicely with respect
to the logarithmic derivations XDx, Dy. In
particular

DY [X%f] = DV (X°f),for, 1 <k

DP[XOf] ) = [DP (XOf)) 1, for, 1> k

33



In view of Examples B, C the definition of
order of the virtual element [U] requires im-
portant adjustments.

Let U = uP" + XOF.

1. "Pure case” [ = fo+ HOT , where fq is
the initial form of f and fp & (X1,...,X}).

1.1 ” Pure irregular case”

orde([U] 1) = ordz([X*f]) := Ip" + 6,
where 6, = 0, p"

if - vords(fo) = IpF and fo € OP", and X% € O
or

. k
- vordz(fo) = IpF and fy contains (v?)P P,
where v,u are local coordinates.

1.2. " Pure regular case” .
vord;([U]) = vord([X?f]) := ordy fo = ordy f

34



What is a virtual order "vord” 7

Conceptual definition: Two possible defini-
tions of order for an ideal Z: Standard order

ord.(Z) = maz{k : m* > 1}
Effective order along center.
Let o0 : M’ — M be the blow-up at smooth cen-
ter ¢' and exceptional divisor. Then vord, o 7

iIs the maximal power of the exc. divisor which
divides o*(7)

Z(D)* D o™ (7)

Definition. vord;([U]) is a function defined
on the permissible centers of blow-ups.

35



What is a monomial mod OPI“C ?

According to our definition of virtual order
vord [X“]pk = dr,

where X@ ¢ OP"\ ©P""" The monomial (X
behave as if its relative order is 0. However
-passing to a neighborhood or blow-up may
easily transform to

k r
[X(bp )P ]pk
and then to
[X(bpk)Zprup"’“]pk

and more generally to [Xaprupr]pk.

37



Conceptual definition of monomial

Monomial [Xa]pk iIs a coherent object stable
under permissible blow-ups.

In particular
(X [XOPup] (XD 207 u"] (X "]

are different incarnations of monomial.
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Instability of monomial forms .

Key Observation: The monomial form [Xa]pk
IS unstable.

To assure stability of the
k r
(EXRT A Ny

we introduce the condition of SNC of the mono-
mial with the center. We say that

([P ), 6)

has SNC with the center of blow-up C' if either

-[uP'] € TZ + OP". We write 6,(C) = p’
or
[upr]pk is transversal to C i.e. for every =z € C,

vordm([uﬂ"]pk ) = 6.

|C
We write 6,(C) = 0.

39



If
[m(bp’“)upr]plC
does not have SNC with C then after a single

blow-up we may loose a monomial form

[x(bp’“)upr]pk

Example. Suppose u has a form v = v’ + v2,
where v’ € I and v transversal to C. Then

)+ v2)7']
transforms to

2P (Zu! + 2]

Since [¢9] [2®P) ()P ] and [l ()],
are not distinguished the notion of the SNC
can be considered with respect to all three
forms. It can be generalized to a set of mono-

mials.
40



Permissibilty of centers.

In the resolution procedure we shall use the
following objects:

-marked ideals (Z;, i)
-virtual marked ideals ([fj]pk,u)
-virtual monomial marked ideals ([:cf‘]pk,é*)

The center C' will be called permissible if

1. C C Nsupp(Z;, 1) N
Nsupp(Lfjlk ) N Nsupp([zf]x; 0x)

2. C' has SNC with ([:I:f‘]pk,(S*)

3. C has SNC with the exceptional divisors E.

In the virtual monomial ([a;lo‘]pk, dr) the function
Or IS defined on the set of permissible centers
of blow-ups, and has values 0, p".
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Homogenized derivations Let (Z,u) be of
maximal order, such that

Ord|og »(Z) = ordx(Z) for x € supp(Z, u).
T here exists
(T(Z) =D* P (T),p"),

where p"|u is of maximal order. By the ho-
mogdgenizing derivations we mean

Hr = T(I)D" NDy,

Note that

ord:(f) <ordz(H(f)),
where H € Hr.

43



Homogenized ideals and tangent directions

By the homogenized ideal we mean the ideal
(H+(Z),un) generated by functions f € 7 and
all its homogenized derivatives.

Then (H7(Z), ) is equivalent to (Z, ). (Have
the same supports and the same resolutions.)

Moreover for any two maximal contacts Uq,U> €
T(ZI), 1), the restrictions (HT(ZHUz')’ () are equiv-

alent. In fact we have

Lemma

Hr(Hr (D)), ) = Hr (R (Z)|ju4,) 5 1)

44



If

Coefficient ideals in positive characteristic
Let (Z,u) be an ideal of maximal order. Let

k
U=u" +f
be a maximal contact of (Z,u), where p*|u.

Denote r := min(p, u/p").

Assume the coordinate u can be chosen transver-
sal to exceptional divisors.

By the coefficient ideal of (T, 1) at U = u?" +f
we mean

T =3 ((H7 (Db ) Hy(2))10), n—iv*)+

(14, )

45



If

g=cotcll+...+eh+. . ey UTTET
then

k .
ci = ¢ € Hr(Djog)" (M1 (D)4

Conceptual definition Coefficient ideal can
be characterized by 4 conditions.

1. supp((U,p") + (C(Z, w)u)) = supp(Z, p)

2. Condition 1. persistent with respect to
blow-ups C C supp(Z, u).

3. If 6¢(C(Z, “)IIU) is monomial then o¢(Z, n) is
easily resolvable- ( reduces to (u, 1) 4+ (=%, ua))

4. If o¢(C(Z, ”)IIU) is 0 then (Z,u) = upk)
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Coefficient ideals defined for the excep-
tional divisors. Let (Z,u) be an ideal of max-
imal order. Let

X ={X;}ier
be a coordinates of some exceptional divisors
maximal contact. Consider

Tx = (Xi)icr

H1 = (X;)ic1D N Dioq

By the coefficient ideal of (Z,u) at X = 0 we
mean

L
CE,wix=>, > (Cox,p—1)

i=0 |o|=i

where

Cax = 1/X(fix | f € Hr (), X°|f}
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Derivations compatible with centers

Let uq,...,un lOcal coordinates at = € C such
that

C:uy=...=un=0.

The local coordinates at o/ € o~ 1(z) are of the
form
u; )
u; = " fori<m
Um
and u; = u; for ¢+ > m, where u,;, = u,’m =Y is

exc. divisor. Then
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Two kinds of compatible derivations

63,, for 1<i<m,
Uj

compatible with C of order -1

T he derivations 82, for m+4+1<:1<n.,

compatible with C of order O
for m+1<1:<n.

e,

Similarly X;5%; are compatible with C of or-

der O
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" Pure regular case”

vordul, . = [X°f] = [X(fo + HOT) = p € N,

Let ordh(fg) = u? = (0,...,0,ar,...,am,0,...).
Then, since we are in regular case.

,U/p<(O,...,lfr,o,...,a/p:/,L_pr,o,o,...)

:up_lr<(Oa'--ao7a’kj::u_prao7"')

Then ngpg lr(o)* = 0. set

Dlog .= {D € D|_ |D(O)p =0} > D!

Iog Iog

|og ([Z/{]p ,pT) — Dlog (Xaf)
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By the above

(T([U] i p") = (1/X® Dlog” (X°f),p")

is the real (i.e non-virtual) marked ideal of
maximal order. There exists a maximal con-
tact

Ve T(U) ki p")
Set

Hy = T([U]) - D,

Note H7(OP") = 0 and Hy([U]) = [U]&H(Xf)
Consider the coefficient ideal

C(UDyp) = M @ )y

/X"y (H7(DE, ) Hy U] )

fU=co+ectVt...+eV'+ ...+ V!

k _.
then ¢; = Ci||V c HT(Df?ogy(HT(I))HV'
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We can write

U] = [eol +erV+...+eVi+ . ey VP
where

[co] = co|ly = [U||v] is the "virtual part”.
c; = ¢;V' are elements of "real” marked ideals.

Example Let

U=ul 4+ X%uy ... ur + GUpgq,--.,un),
where ord;(G) > r. Then

(T(Up,p) := (1/ XDl (XU), ") = (u1, ..., ur)

Thus w1 is a maximal contact.

p .
(C([u])Hul) — [’U,p—I—G]@ Z ((’U,Q, c ooy Urp, HOT))p_Z
1=1



Pure irregular case

Consider the case

vordz([U] 1) = Ip* + 61

for simpler notations. Assume for simplicity
that

k k
U] = [XY(FY vi+...FPos+ G kg1 +HOT),
where F; are forms of degree [ and ka—l—l IS a
regular form of degree p* + 1. Then

I k
Diogltl] = ([X 1], ... [X%s], X"vgy1,..., X"HOT)])
Suppose the center ' has SNC with

[(X%1] + ...+ [X %]

That is after possible rearrangements and mod-
ifications

vord([X%[v;],C) =0 for i < sg <s
vord([X%[v;],C) = 1 for sg < i < s.

There are compatible derivations 8%@ of order
O for : < sg and order —1 for sg <1 < s.
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After the blow-up at C. (Y-exc. divisor)

C([U])—[Ylp X (Fy 1 "o+ SO)+

y (FP o1t LEP 4 G’kﬂ + HOT))].
After a sequence of blow-ups with permissible
centers we will keep the following form: there
exist exponents ag < aj < ... < am, and corre-
sponding indices sg < 51 < s2... < 8m < Sp41
such that

o€ a pk pk
U] = X10(Ff oy -+ Flyvag
xa1—ao(F¥" +1fu50+1+ -+ Fs Usl‘I'XaQ_al(

Xm0y — 1(Fp

1_|_1'US 1—|—1+F 'Usm‘l'G k_|_1+
HOT))))]

(JC[U]) = [X%v], ..., [X%vsp)], [XTvgo41)], -

[Xal’Usl] , [XOmo, 1-|-1] (XM ug,, ],
Xamv8m_|_1, oy XMy Xam - HOT,.. )],

k
where vy 41,...,vs, ., € DP (109(G oy 1 +HOT)
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The permissibilty of the center means that af-
ter possible rearrangements and modifications
there exist

O§S6§so§3/1Ssl...gslmgsmgsm_H

Vord([X,L-a[vj],C) =0 for s,_1 <5< s;
vord([X*[v;],C) =1 for s < j <s;.

Moreover we assume that along the center

ord(X“~%-1) + min vord([X;'[v;],C) >
$i<J<Si41

max 61 ([X;'[vy], ©)

s;i—1<3'<s;
The latter condition is to assure linear order
on the set

{ag,a1,...,am}

Roughly, along the center
"ord” (X% 1)y; > " ord” (vjr)
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Tilted Derivations

Define

_ 1 o(|lU .

B = (2D o i< g << s+
i 8’Uj

1

(D[U] | D e Dloga D([Xza[vj]) — O)O<7Z§m,3i_1<j<si

xrm

Observe: there are compatible derivations %
1

- of order O for s;_1 < j < s, and
- order —1 for s, < j <s;. After blow-up these
transform

P =b1) = (/Y™ 0" (), ~6)
Thus
D(o[U]) = o“(D([U]))
Consider the maximal contact U’ € T(D([U])).
C(UD | = Uy + CDIUD)
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" Logarithmic order” . By the logarithmic or-
der

OrdIog z(Z) — M
we mean is the smallest natural number p such

that ngg(I) is monomial (generated by mono-
mials).

Lemma If F'is a form of degree u then

Ofdiog z(xaf) = OMdioga(r) < M

. If F'is a form of degree in the " pure case”
then

Ordiog z(xaf) = OMdiog(f) = H

Corollary If F' is the form of degree u, and
Xaf e OP then

Ordiog x([xef)] 5 <+ P
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2. " Logarithmic case”
et
k
U=u + X,

Write f = fo + HOT , where fp is the initial
form of f. Then fy € (Xq,...,X)).

2.1 " Logarithmic regular case’.
vordz ([U]) := ordz(fo) > ordiog [ X fol

Maximal contact- "old” exceptional divisors X.
Consider coefficient ideal

c(UD)x = Ulix®1/XY Y Cax

1=1 |a|:r
Ca,x = 1/X(fix | [ € Hx(IU]), X°[f}
After removing old divisors.
vordy(U) = ordz(fo) > Ordlogw[XafO] >

Ordiog z[0°(X“ fo)] = ordz(c(fo)) = vordz(a“([U])
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2.2 " Logarithmic Moh-Seidenberg (kanga-
roo) case”.

ordz(fo) < ordieg -[X“fo] = ord(fo) +p"

Lemma. —2_[X%fo] , =0, where j < k. Thus
8u,-p*7 p

ok
fo=) X%F/
i

We define
vordg([Uf]) := ordiog(fo)) — or,

where ¢, = p"” when U/ in "M-S"” case , and
o = 0 when U in the " pure case”

"M-S” Jumping phenomenon corresponds to
passing from logarithmic case to the pure case
and vice versa (in case a new initial M-S form
is created). Solution is similar as for "pure
irregular case”
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The virtual order remains constant while the
order along center varies as d, changes its value
from O to p". " Tilted initial form” is stable and
improves

Set for simplicity

vordg([U]) = p — 61
Suppose

(U] = [X*(F1 + HOT)],

where Fy is in " pure” form transforms to

[X“(G1+ F1 + HOT)],

where GG1 in M-S form, as in the Lemma.
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Then
DI L (UD) = (gi, fir ha).

where f;, g; are functions whose initial forms
are of logarithmic order 1 such that

9i = X"D i, ([U]) = X* (XD 1(G1+HOT) = Xg;

fi = Dy ([U]) = XD, (F1 + HOT)) = X",

where v; is a parameter, |b|=u—1

There exists compatible derivations of order O:

0
D; = Xi~—,
oX,

where X, are coordinates of "old divisors”

There exists compatible derivations of order
—1 of the form :

0

ov;
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After the blow-up we keep the following form

U] = [XO(G14+F1+X17O(Go+Fo+ X271 (Gz+. ..

Xom=m=1(Fy,41 + HOT))))]

" Two way traffic” - new GG; may form and " move
down”. Then they transform into F;. Tilted
initial form expands.

I k
Do (U] = ((X4g4, ..., X¥g,, XWOvy, ..., X vy,
Xalgél_l_l, . ,Xalg,’SQ,Xalvsl_H, ey X Mg,

ooy X0y 41y, XM, X9 HOT, .. )
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Define

~ 1 , .
D([U]) = E(Dj[U] [0<i<m,s;—1<j<s;)

1 a([u)

(acai 81)]-

|0<i<m,s;_1<J<s)+

waim(D[U] | D € Diog, D(Xg;) = 0, D(X{(v;)) = 0)

Then since there are compatible derivations

.0
D], 9v; we have

D(o“[U]) = o“(D(UD))

If the form G, exists in the above tilted initial
form the maximal contact is defined by "old
divisors” . We consider a coefficient ideal

C(lul) x = Ul x + (DD x

Otherwise consider a maximal contact V € T (D([U]))
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