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A fiew obstructions to embedded resolution.

Vincent COSSART

INTRODUCTION

The purpose of this conference is to give some hints about the proof of the theorem cited below
and to show on two examples that the notion of maximal contect fails completely in the case of the
positive characteristic.
Theorem. (Cossart et Piltant) [CP1,CP2]. Let k be a field of positive characteristic which is
differentially finite over a perfect field k0 and Z/k be a reduced quasiprojective scheme of dimension
three with singular locus Σ. There exists a projective morphism π : Z̃ → Z, such that
(i) Z̃ is regular.
(ii) π induces an isomorphim Z̃\π−1(Σ) ' Z\Σ.
(iii) π−1(Σ) ⊂ Z̃ is a divisor with strict normal crossings.

I Main reduction.

In [CP1], we prove that the proof may be reduced to the proof of this theorem below.

Theorem. Let k be a field of positive characteristic which is differentially finite over a perfect field
k0, i.e. Ω1

k/k0
has finite dimension.

Let S be a regular local ring of dimension three, essentially of finite type over k and such that
K := QF (S) has transcendance degree 3 over k. Let R̄ be an Artin-Schreier or purely inseparable
singularity of dimension three over S.

Let K := QF (S) and L := QF (R̄) (in particular L/K is a finite field extension).
Then, each k-valuation µ of L dominating R̄ and satisfying properties (i) and (ii) below has a

local uniformization:
(i) µ has rank one and κ(µ)/κ(S) is algebraic;
(ii) µ is the unique extension of its restriction to K.

I.1 Notations.
We let R := S[X](X,mS), X0 =Spec(R/(h), x0 his closed point, M = (X, mS), and k(x0) =

R/M is a finitely generated field extension of k. We denote by (u1, u2, u3) a regular system of
parameters (r.s.p. for short) of S, so M = (X, u1, u2, u3). We assume all along this text that h is
irreducible over S[X], i.e. that f is not of the form θp − θgp−1 for any θ ∈ S.

If g 6= 0, such a singularity is called “Artin-Schreier”, if g = 0, it is called “purely inseparable”.

I.2 Purely inseparable case.
Let us concentrate on the purely inseparable case which already contains enough difficulties.
To simplify, we take

h = Xp + f(u1, u2, u3), f ∈ k[u1, u2, u3].

We suppose that there is an exceptional divisor E which contains locally the singular locus of
h = 0 and such that I(E) divises u1u2u3. This can be achieved easily (see [CP1]). We suppose that
ordx0(f) > p (else, the singularity is eqasily solved). We define J (f, E), the ideal generated by the
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coefficients of df ∈ Ω1
S/k0

(logE). We defined H(x) =
∏

div(ui)⊂E U
a(i)
i , where a(i) =ordui(J (f, E)),

then set
J(f, E) := H(x)−1J (f, E).

The main invariant is:
ω(x) := ordx(J(f,E))

which, obviously does not depend on X.
I.2.1 Important remark. The case ω(x0) = 0 is easily solved: see [CP2] II.4.4 to II.4.7.

It can be shown that

ω(x0) = 0⇔ f = γMmodSp, M =
∏

div(ui)⊂E

u
a(i)
i ,

with γ invertible or parameter orthogonal to E and, if γ invertible, then M is not a p-power.

Villamayor’s example. In his conference, O. Villamayor prosed the following example as a
“terminal case”.

X2 + u2v, p = 2, E = div(u).

The computations give:

J (E) = (u2), H(x) = u2, J(E) = (1), ω(x0) = 0.

We agree with Orlando: it is a terminal case.
All this leads to:

I.2.2 Second reduction.
Let W := SpecS, find W ′, some iterated blowing up of W , where x ∈ W ′ the center of the

restriction of µ in W ′ verifies:
ω(x) < ω(x0).

The problem is reduced to a problem of moniomalization modulo p-powers in a smooth variety:
the problem is more difficult, but the dimension of the ambient space drops of one.

I.2.3 Permissible centers.
Now we forget X0 and we work in W , E is a normal crossing divisor in W . We do not write

here the definitions [CP2, chapter 1, II.5] of the permissible centers. We just recall that, if Y is
permissible at x, them it is smooth at x and locally normal crossing with E, furthermore, closed
points are permissible. Bad news: permissible centers are not necessarily contained in
the locus where ω is maximal. We have the following propositions.

I.2.3.1 Proposition. If Y is irreducible of generic point ξ and permissible at x, then ω(ξ) >
ω(x)− 1.

I.2.3.2 Transformation laws. Let Y be as above and π : X ′ −→ X ′ be the blowing up centred
at Y . Then J(f ′, E′) is the weak transform of J(f, E, Y ) (defined below), where f ′ is the strict
transform of f and E′ the total transform of E.

I.2.3.3 Jacobian adapted to Y .
Let

D(E) := {D ∈ Derk0OW | D(I(E)) ⊂ I(E)},
D(E, Y ) := {D ∈ D(E) | D(I(Y )) ⊂ I(Y )}.
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Then
J(f, E, Y ) := H(x)−1(D(f), D ∈ D(E ,Y).

I.2.3.4 Example.
In the case where Y = x and E=div(u1u2), k0 = k, we get

D(E, Y ) = (
u1∂

∂u1
,
u2∂

∂u2
,M

∂

∂u3
).

I.2.3.5 Proposition. With notations as above, if x′ ∈W ′ is above x, then

ω(x′) 6 ω(x).

II No maximal contact for ω.
It is very well known that there is no maximal contact for the Hilbert-samuel function in

characteristic p > 0 (see section III).
Optimist people may think that there may be maximal contact for the couple (HS, ω) where

HS is the Hilbert-Samuel function. This is wrong. The following example shows that there cannot
exist in X a surface Σ such that the Hilbert-Samuel function the strict transforms of Σ is constant
at the points xi above x with (HS(x0), ω(x0)) = (HS(xi), ω(xi)), here HS(x) is just the local
multiplicity which is equal to p.

II.1. Example in dimension 3. (joint work with O. Piltant).

With the notations of I.2. We have a singularity in dimension 3 of equation:

h = Xp + ua
1ub

2(v
pe

+ (u2 − u1)pe

up+2
1 + extra).

extra ∈ S = k[u1, u2, v], of very big order, E = div(u1u2), a + b = 0 mod p, ab 6= 0 mod p, p 6= 2.
We suppose k = k0 algebraically closed.

Computations give:

H(x0) = ua
1ub

2, J(E) = (vpe

) mod M1+pe

, ω(xo) = pe.

We blow up along the origin.
We take as new origin the point x1 of parameters

(X/u1, u1, w := (u2 − u1)/u1, v/u1)

that we note (X, u1, w, v), using an usual convention.
We get

h1 = Xp + ua+b−p
1 (w + 1)b(vpe

+ wpe

up+2
1 + uA

1 extra′)

where h1 is the strict transform of h, A ∈ N, A very big. The reader sees that the set of points x′

above x0 with (HS(x0), ω(x0)) = (HS(x′), ω(x′)) is exactly Proj(X, V ), where V :=inx0(v), this
implies that, if Σ exists, its directrix [CJS,1.20] at x0 is V(X, V ).

We change one variable: let Y := X + u
a+b−p

p

1 , then

h1 = Y p + ua+b−p
1 (γvpe

w + wpe

up+2
1 + uA

1 extra′),
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E1 = div(u1), h(x1) = ua+b−p
1 , J(E1) = (vpe

, wpe

up+2
1 ) mod (uA

1 ), ω(x′) = pe.

We go on: we look at the sequences of blowing ups centered at closed points on the strict
transform of (Y, v, w). We use the usual convention i.e. we note the parameters of xi+1 (Y, u1, v, w)
instead of (Y/ui

1, u1, v/ui
1, w/ui

1).
We get at x2:

h2 = Xp + usomething
1 (w + 1)b(vpe

+ wpe

u1p + 1 + uA
1 extra2)

E2 = div(u1), h(x2) = usomething
1 , J(E2) = (vpe

, wpe

up+1
1 ) mod (uA

1 ), ω(x′) = pe.

We get at xp+3:

hp+3 = Xp + usomething
1 (w + 1)b(vpe

+ wpe

+ uA
1 extra3)

Ep+3div(u1), h(x3) = usomething
1 , J(E3) = (vpe

, wpe

) mod (uA
1 ), ω(x′) = pe.

Things are looking well: the initial part of J(Ep+3) is (vpe

, wpe

), the directrix of the ideal
J(Ep+3) has dimension 1: the equations are v = w = 0, the dimension was 2 for J(Ei), i < p + 3,
the equation was v = 0.

We get at xp+4:

hp+4 = Xp + usomething
1 (w + 1)b(vpe

u1 + wpe

+ uA
1 extra4)

Ep+4 = div(u1), h(x4) = usomething
1 , J(E4) = (vpe

u1, w
pe

) mod (uA
1 ), ω(x′) = pe.

The initial part of J(Ep+4) is (wpe

), the directrix of the ideal J(Ep+4) has dimension 2: the
equation is w = 0.

We get at xp+3+N :

hp+3+N = Xp + usomething
1 (w + 1)b(vpe

uN
1 + wpe

+ uA
1 extrap+3+N )

Ep+3+N = div(u1), h(xp+3+N ) = usomething
1 , J(Ep+3+N ) = (vpe

uN
1 , wpe

) mod (uA
1 ), ω(x′) = pe.

The initial part of J(Ep+3+N ) is (wpe

), the directrix of the ideal J(Ep+3+N ) has dimension 2:
the equation is w = 0.

Let us blow up along xp+3+N : it is easily seen that the set of points x′ above xp+3+N with
(HS(x0), ω(x0)) = (HS(x′), ω(x′)) is exactly Proj(X, W ), where W :=inxp+3+N (w), this implies
that, if Σ exists, the directrix of its strict transform Σp+3+N at xp+3+N is V(X,W ). This
is impossible, by [CJS,12.1,12.3,13.3], its ideal should be (X,V ) mod (U1).

II.2 Conclusion
This kills the hope to have a maximal contact in “Giraud’s sense” for (HS, ω), i.e. to find a

surface Σ such that the strict drop of its local Hilbert-Samuel function would imply a strict drop
of some invariant of the original singularity.

The question is: define another invariant, finer than (HS,ω) such that, for this invariant, you
get a maximal contact in “Giraud’s sense”... For the moment, there is no answer.

III No maximal contact along a valuation. (joint work with U. Jannsen and S. Saito).

III.1. Recall of the algorithm, dimension 2, hypersurface case.

4



We follow Hironaka in [CGO, appendix]. X is a singular surface embedded in a 3-dimensional
smooth k-variety Z, k is an algebraic closed field of characteristic p > 0. We suppose that the
worse HS-stratum is a finite union of closed points, in this case the worse HS-stratum is the locus
of maximal multiplicity µ(x), we call it HS(X)

The algorithm is: blow up the locus of multiplicity > µ(x). This will stop.

More precisely, in an open neighbourhood U ⊂ X of x ∈ HS(X), you blow up X,Z along x:

X1 ⊂ Z1 −→ X ⊂ Z.

One can show that there are three different cases [CJS, section 2].
(i) Either there is no point in X1 near to x (no point with same multiplicity): STOP, the maximum
multiplicity dropped strictly above x.
(ii) Either there are a finite number of closed points in X1 near to x, then above U , blow up X1, Z1

along these points:
X2 ⊂ Z2 −→ X1 ⊂ Z1.

(iii) Or the set of points in X1 near to x is a projective line D1 then above U , blow up X1, Z1 along
D1:

X2 ⊂ Z2 −→ X1 ⊂ Z1,

either there is no point in X2 near to x, either there are a finite number of closed points in X2

near to x or the set of points in X2 near to x is a projective line D2 which projects isomorphically
on D1, then above U , blow up X2, Z2 along D2.

In the latter case, above U , the algorithm creates a “fundamental sequence” [CJS, section 5],
i.e. a finite sequence of blowing ups

Xm ⊂ Zm −→ Xm−1 ⊂ Zm− 1 −→ · · ·X2 ⊂ Z2 −→ X1 ⊂ Z1 −→ X ⊂ Z,

where the center of the blowing up Xi ⊂ Zi −→ Xi−1 ⊂ Zi−1 is a projective line Di−1 which
projects isomorphically on D1, 2 6 i 6 m and either there is no point in Xm near to x, or there
are a finite number of closed points in Xm near to x.

III.2 Maximal contact along a valuation
The example given in [CJS, section 15] shows that there is no maximal contact in positive

characteristic. What is new in this paper is that there is no maximal contact along a valuation.
Let us recall the definition of maximal contact [CJS, section 15].

III.2.1 Definition: hypersurface of maximal contact.
Let Z be an excellent regular scheme and X ⊂ Z be a closed subscheme.
A closed subscheme W ⊂ Z is called to have maximal contact with X at x ∈ X if the following

conditions are satisfied:
(i) x ∈W .
(ii) Take any sequence of permissible blowups [...]:

Z = Z0

π1

← Z1

π2

← Z2 ← . . .← Zn−1

πn

← Zn ← · · ·
∪ ∪ ∪ ∪ ∪

X = X0

π1

← X1

π2

← X2 ← . . .← Xn−1

πn

← Xn ← · · ·
(1)
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where for any n > 0

Zn+1 = BlDn(Zn)
πn+1

← Zn

∪ ∪
Xn+1 = BlDn(Xn)

πn+1

← Xn

(2)

and Dn ⊂ Xn is permissible. Assume that there exists a sequence of points xn ∈ Dn (n = 0, 1, . . .)
such that x0 = x and xn is near to xn−1 for all n > 1. Then Dn ⊂Wn for all n > 0, where Wn is
strict transform W in Zn.

Some optimist people asked us:
“Your definition of maximal contact is weaker than Hironaka’s, but still too strong, for the

uniformization problem, you just need the definition below. Have you an example where there is
no maximal contact along a valuation?”

We found one just before Kyoto conference.
III.2.2 Definition: maximal contact along a valuation. In the definition above suppose X is
a projective variety over a field k, let ν be a k-valuation, then on each Xn, ν has a center xn.

We say that a closed subscheme W ⊂ Z has maximal contact with X along ν if, for every
sequence (1) where x0 = x and xn is near to xn−1 for all n > 1, then xn ∈Wn for all n > 0, where
Wn is strict transform W in Zn.

Indeed if for any k-valuation ν there could exist a smooth W (ν) satisfying III.2.2, life would
be much easier (as says the guru Abhyankar) in desingularization theory.
III.2.3 The example.

p = 3

No exeptional divisor E, E = ∅, take

f := y3 + u2
2[(u

3
1 − u2

2)(u
3
1 + u2

2)
3 + uN

1 ], N 6= 0 mod (p), N >> 0.

Let us recall some definitions.
III.2.3.1 Hironaka’s polyhedrons. [H1] or [CJS, section 7] In the case where

f = ym +
∑

i,a,b,a+b>i,06i6m

λi,a,by
m−iua

1ub
2, λi,a,b ∈ k,

∆(f, u, y) is the convex hull spanned by {(a
i , b

i ), λi,a,b 6= 0}+ R>0
2. Hironaka defines ∆(f, u) as:

∆(f, u) = ∩y,inM(f)=Y m∆(f, u, y).

III.2.3.2 Notations. δ(f, u, t) =inf{a + b, (a, b) ∈ ∆(f, u, t)}, δ(f, u) =inf{a + b, (a, b) ∈ ∆(f, u)}.
We write sometimes δ(x) instead of δ(f, u) where x is the point of parameters (y, u1, u2),

indeed, one can prove that δ(f, u) does not depend on (u1, u2).
In our example, we get

δ(x) = 3 + 1/3
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III.2.3.3 ε(x). With the notations and hypotheses of III.2.3.1, assume that there is an exceptional
divisor E with components smooth and orthogonal to y = 0, then assume that

E ⊂ div(u1u2),

(we say E has “new components”), we define A1 =inf{a|(a, b) ∈ ∆(f, u)}, mutatis mutandis, we
define A2. Then

ε(x) := δ(x)−
∑

div(ui)⊂E

Ai.

In our example, E = ∅, we get
ε(x) = δ(x) = 3 + 1/3

III.2.3.4 Change of ε(x). In the example, to avoid useless denominators, we will replace ε(x) by
3ε(x) that we still denote by ε(x). From now on:

ε(x) = 10.

III.2.3.5. In the example, x is isolated in the HS-stratum.
Indeed

∂f

∂u1
= uN−1

1 u2
2.

So, if a curve is contained in the Hs-stratum at the beginning, uN−1
1 u2

2 has order at least 2 along
this curve which is contained in div(u1) or div(u2)
(i) if it is contained in div(u2), as f = y3 mod (u2), the only possibility is the curve V(y, u2) which
does not fit
(ii) if it is contained in div(u1), it should be V(z, u1) with y3 + u10

2 ∈ (z, u1)3

∂y3 + u10
2

∂u1
= u9

2 ∈ (z, u1)2

so z = u2, which does not fit.

III.2.3.6 Let us start Hironaka’s algorithm. We blow up along the origin and take the point
x1 above of parameters

y/u1, u1, u2/u1 ε(x1) = 6

y(1)3 + u7
1u

(1)
2

2
[(u1 − u

(1)
2

2
)(u1 + u

(1)
2

2
)3 + uN−8

1 ]
The exceptional divisor is div(u1) “new component”. Following Hironaka, we make the “fun-

damental sequence”: we get the point x3 above of parameters

(y(3), u
(3)
1 , u

(3)
2 ) := (y(1)/u2

1, u1, u
(1)
2 ),

f3 := y(3)3 + u
(3)
1 u

(3)
2

2
[(u(3)

1 − u
(3)
2

2
)(u(3)

1 + u
(3)
2

2
)3 + u

(3)
1

N−8
] ε(x3) = 6

We make again the “fundamental sequence”: we first blow up along x3, we look at the point
x4 above of parameters

(y(4), u
(4)
1 , u

(4)
2 ) := (y(3)/u

(3)
2 , u

(3)
1 /u

(3)
2 , u

(3)
2 )
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f4 := y(4)3 + u
(4)
1 u

(4)
2

4
[(u(4)

2 − u
(4)
2 )(u(4)

2 + u
(4)
2 )3 + u

(4)
1

N−8
u

(4)
2

N−13
], ε(x4) = 4

div(u(4)
1 u

(4)
2 ) is the exceptional divisor, both components are “new”: we end this second “fun-

damental sequence” we look at the point x5 above of parameters

(y(5), u
(5)
1 , u

(5)
2 ) := (y(4)/u

(4)
2 , u

(4)
1 , u

(4)
2 )

f5 := y(5)3 + u
(5)
1 u

(5)
2 [(u(5)

1 − u
(5)
2 )(u(5)

1 + u
(5)
2 )3 + u

(5)
1

N−8
u

(5)
2

N−12
], ε(x5) = 4.

Following the algorithm, we blow up along the origin, above at the point of parameters
z := y(5)/u

(5)
1 , v1 := u

(5)
1 , v := u

(5)
2 /u

(5)
1 + 1, let us see that the ε-invariant increases strictly:

ε(x6) = 5 (kangaroo point as defined by H. Hauser [HH]).

III.2.3.7 Surprising computation.
Exercise for the reader: compute ω(x5) and ω(x6) (cf. I.2). The main point is that z3 +v3

1(v−
1)[(v + 1)v3 + v2N−24

1 (v − 1)N−12] and (2, 1) a solvable vertex of ∆(f, z, v1, v).
Let us solve it.

f = z3 + v3
1 [(v2 − 1)v3 + vN−12

1 (v − 1)N−11]

w := z − v2
1v.

This gives
f = w3 + v3

1 [v5 + vN−12
1 (v − 1)N−11]

As N 6= 0 mod (3), ∆(f, w, v1, v) has two non solvable vertices (non integer coordinates)

(1, 5/3), (N/3− 4, 0),

div(v1) is the new component: ε(x6) = 5 > ε(x5) = 4.

III.2.3.8 No maximal contact on this example.
I claim that, in this example, if we end the fundamental sequence at x6 and add another

fundamental sequence, there will be a point x9 ∈ X9 such that there exists no t = y − γ, γ ∈
k[[u1, u2]] such that the xi are on the strict transform of div(t), 0 6 i 6 8. One can see that it
implies that there is no smooth hypersurface W ⊂ Z such that the xi are on the strict transform
of W ⊂ Z. We define x7 as the point on the strict transform of div(v) in the bu along x6. These
points x, x1,....,x8,x9 are near to each other: there is a valuation ν of the function field whose
center on Xi is xi, 0 6 i 6 9: there is no maximal contact ALONG THE VALUATION ν. So no
hope of maximal contact, even for the uniformization problem or Hironaka’s game.

Suppose a smooth hypersurface W ⊂ Z has maximal contact along ν, let us call t = 0 its
equation in a neighbourhood of x.

III.2.4 Proposition [CJS, section 15] Suppose x = x0 isolated in its HS-stratum, then if there
exists a smooth hypersurface t = 0 such that along a fundamental sequence starting at x = x0 the
xj, j > 0 (resp. j > i) are on the strict transform of div(t), then

t = y − γ, γ ∈ k[[u1, u2]], bδ(f, u, t)c = bδ(f, u)c.

As δ(x) = 3 + 1/3, by III.2.4, γ ∈ (u1, u2)3.
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γ = P3(u1, u2) + P4(u1, u2) + ρ, ρ ∈ (u1, u2)5,

Pi(u1, u2) ∈ k[u1, u2], homogeneous of degree i or = 0, i = 3, 4.

f := t3 + u2
2[(u

3
1 − u2

2)(u
3
1 + u2

2)
3 + uN

1 ] + P 3
3 + P 3

4 + ρ3.

f1 = t(1)
3

+ u7
1u

(1)
2

2
[(u1 − u

(1)
2

2
)(u1 + u

(1)
2

2
)3 + uN−8

1 ] + u9
1P3(1, u

(1)
2 )3 + u9

1P4(1, u
(1)
2 )3 + u12

1 ρ′.

f3 := t(3)
3
+u

(3)
1 u

(3)
2

2
[(u(3)

1 −u
(3)
2

2
)(u(3)

1 +u
(3)
2

2
)3 +u

(3)
1

N−8
]+P3(1, u

(3)
2 )3 +u

(3)
1

3
P4(1, u

(3)
2 )3 +

u
(3)
1

6
ρ′3,

δ(x3) = 2+1/3, so by III.2.4, P3(1, u
(3)
2 ) ∈ (u(3)

2 )2, let us denote P3(1, u
(3)
2 ) = au

(3)
2

2
+ bu

(3)
2

3
,

a, b ∈ k.

f4 := t(4)
3

+ u
(4)
1 u

(4)
2

4
[(u(4)

2 − u
(4)
2 )(u(4)

2 + u
(4)
2 )3 + u

(4)
2

N−8
u

(4)
2

N−13
] + a3u

(4)
2

3
+ b3u

(4)
2

6
+

u
(4)
1

3
P4(1, u

(4)
2 )3 + u

(4)
1

6
u

(4)
2

3
ρ′′3.

As V(y(4), u
(4)
2 ) is permissible, it is contained in div(t(4)), so V(y(4), u

(4)
2 ) =V(t(4), u(4)

2 )

P4(1, u
(4)
2 ) = λu

(4)
2 + cu

(4)
2

2
+ du

(4)
2

3
+ eu

(4)
2

4
, λ, c, d, e ∈ k.

f5 := t(5)
3
+ u

(5)
1 u

(5)
2 [(u(5)

1 − u
(5)
2 )(u(5)

1 + u
(5)
2 )3 + u

(5)
1

N−8
u

(5)
2

N−12
] + a3 + b3u

(5)
2

3
+ u

(5)
1

3
(λ3 +

c3u
(5)
2

3
+ d3u

(5)
2

6
+ e3u

(5)
2

9
) + u

(5)
1

9
ρ′′3,

δ(f5, u) = 2, by III.2.4,

a = b = λ = 0, ρ′ not invertible.

f7 := t(6)
3
+ v1

3(v− 1)[(v +1)v3 + vN−12
1 (v− 1)N−12] + v1

3(c3(v− 1)3 + d3(v− 1)6v1
3 + e3(v−

1)9v1
6) + v1

6 × something

f7 = w3 + v3
1 [v5 + vN−12

1 (v − 1)N−11].

δ(x7) = 2 + 2/3.
We end the fundamental sequence, we get
f8 = t3 + (v− 1)[(v + 1)v3 + vN−12

1 (v− 1)N−12] + c3(v− 1)3 + d3(v− 1)6v1
3 + e3(v− 1)9v1

6 +
v1

3 × something
f8 = w3 + v5 + vN−12

1 (v − 1)N−11

δ(x8) = 5/3, c = 0, else there is no point on the strict transform of div(t) and x8 is, furthermore
by III.2.4,

d = 0.

We go on: we blow up x8 and we look at the near point x9 on the strict transform of v = 0.

f9 = w3 + u2v5 + uN−15(uv − 1)N−11

As x9 is supposed to be on the strict transform of div(t),

something is not invertible.

f9 = t3+(uv−1)[(uv+1)v3+uN−15(v−1)N−12]+e3(uv−1)9u3+u3×something′, something′

is invertible or divisible by u3.
In any case, as δ(x8) = 7/3 > 2, the monomial (uv − 1)(uv + 1)v3 gives a contradiction with

III.2.4.
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