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Introduction to IFP (1)

1 Introduction
k = k : alg. closed field, chark = p > 0

Problem For algebraic variety V/k,

construct resolution of singularities of V'

echark =0 withVdimV

= solved by Hironaka

echark =p > 0 withdimV < 3
= solved by Abhyankar
(partially Cossart-Piltant)

echark =p > 0 withdimV > 4

= open!
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We attack this problem along
Idealistic Filtration Program (IFP)
which is desighed to “extend”
constructive algorithm in chark = 0

into arbitrary characteristic case.

Plan of our lectures We have NO

complete proof yet. We present
e philosophy and framework of IFP (today)

e candidate of algorithm for

“formal uniformization” (2,3,4-th day)

e algebraization problem (5-th day)

Today: we only consider the case

with NO exceptional divisors
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2 Review for char k = 0 approach

Brief review for “classical” approach

(mixture of known algorithms in char k£ =0).

Strategy| Construct embedded resolution

of V. C M (M: nonsingular variety/k)!

closed

e attach invp for closed point P € M

e Blowup the max. locus («+—nonsingular)

of inv p, and check the decrease of inv p.

Recipe of invp|  Invariant is of the shape

inVP — (H’Ov iy« [ty OO) (“’i S @20)7

and p;’s are defined as follows:
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1. Initial Step
Put bp:=1,
Ry := Opg,p : local ring at P € M
U
Iy :=Zy p : defining ideal of V

— (IO C Ry, b()) : initial data
ord p(Ip)
bo

Example PutP:zoeM::Az,

f:=x?—y3 and V := V(f) C M.

Put g :=

Then, RO — k[ma Y, Z]mm
Iy = (332 — yg)R()a
((z? — y?) C k[z,y, 2]mg, 1) : initial data
ordp(Ip) = ordg(x? — y3) = 2
po = 2/1 =2



Introduction to IFP (5)

2. “Restriction” Step
Take

Dordro)=1(Iy) 5 ¢y with ordp(¢o) = 1

Put by :=ordp(lp)!,
R{ := Ry/(¢o) : local ring at P € V(f)

U
ord p(Io)
I]_ o — Z (DordP(IO)_JIO)bl/]
j=1

—> (Il - Rl,bl) : new data

ordp(I7)
b1

Put p =
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Recall ordp(Ig) = 2. by = 2! = 2.

D~ Y(2® — y°) = (2 — y°, 2z, 3y?)

Take g = .

Ry = klz, Y, z]me/(x) = kly, z]m,

I = ((22,3y%)* + (2% — y°)) R
= y’Ry

((y?) C K[y, 2]mg, 1) : new data

Then,

ordp(Il{) = ordo(y3) — 3
p1 =3/by =3/2
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3. Last Step
Replace “initial data” by “new data,” go
back to Step 2, and repeat same procedure!

Continue it until gy 1 = oo.

Remark

e H =V (¢g): maximal contact of I at P.

{Q € M |ordg(Ip) > ordp(lp)} C H

near P

By construction, we have more:

o {Q € M | ordg(lp) > ordP(IO)}

' near P

{Q € H | OI’dQ(Il) > bl}
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ordp(I{) = 3. b, = 3! = 6.

D3 1(y%) = (y). Take ¢1=y.

Ry kly, zlmo/(y) = k[z]m,

I = y°Ry = (0), ordp(I3) = oo

po = oco. |invg = (2,3/2,00)

H =V (x): max. cont. of 2 = y> at 0.

{Q = (z,y,z) | ordg(z? — y°) > 2}
|

{Q = (0,y,2) | ordg(y°) > 2}
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Summary, Classical case
Invariant is defined in the following scheme:

initial data: pair (Ig,bg) = (Iy/,1) on M

Ob.l (I09 bO) (Ila bl) *e (Ita bt) (07 bt—l—l)
amb. M OHy -« DHy D Hiyq

order, g I R 17, 0O

U

invp = (o, K1y - - - 5 Bts OO)
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3 Framework of IFP

Try to apply the “classical” argument to
char k > 0 case = Fails! since
In positive characteristic, maximal
contact does not exist in general
To overcome this hurdle, we introduce
e [: idealistic filtration (I.F.)

I . .
L analyzing algebraic structure

e H: Leading Generator System (LGS) of I

possibly singular

By using LGS as substitute of max. cont, we

define inv p as in previous section.
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We also emphasize 2 points:

1. In Classical case, ambient space changed

by restricting to max. cont. in each step
M D Hy D H2 ) e

In IFP, we stay in the same ambient M,

but enlarging |.F. in each step

IOCI1CI2C"'

2. In Classical case, invariant is of the shape

Invp = (H’Ov H1y---9 Kty OO)

In IFP, invariant is of the shape

invp = ((007 Hbv)a c ooy (O'tv N';tv)a (Jt+19 OO))

The pair (o, n™) is called paired invariant
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Summary| |IFP case

Invariant is defined in the following scheme:

initial data: I.F. [p = G(Iyy X {1}) on M

obj. lp Cly -+ Cly C lg41

amb. M M ... M M

order (og,pg) *++ -+- (ot 1y”) (o141, 00)
U

invp = ((0'09 Na)a c ooy (Uta N;J)v (O't—l—la OO))
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4 ldealistic Filtration

R: regular k-algebra, [ C R X R: subset
(We denote I, = {f € R | (f,a) € 1})

Definition 1 I is called idealistic filtration
(I.F.) on R if the following condition holds:
1. Ip=R
2. Iy : ideal of R (a € R)

3. Il C Ha—l—b (a, b € R)

Definition 2 T C R X R : subset
The minimal |.F. containing T is called the

I.F. generated by T and denoted as G(T).



- Example
If I = G(I x {b}) (I:ideal, b € R )

2

R ca <0

I :0<a<b

I? :b<a<?2b

I :(n—1)b<a<nb

\

(I,b): pair —— G(I x {b}): L.F.

(14)
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Definition 3 Denote U = maxSpec R.
We define the support Supp(l) C U of I as

Supp(l) ={Q € U |ordg(lq) = a (Va € R)}

Saturate |.F. to visualize more information!

Definition 4 1I: I.F. on R is called
3-saturated if the following condition holds:

Vo € Diff'(R/k)

Oly C Iyt (Va €R)

The minimum ®-saturated |.F. containing [

is called ®-saturation of I denoted as ().

(Bamplel I = G((=* —¢’) x {2}) =

:D(H) — G({(wz — y37 2)7 (2339 1)9 (3929 1)})



Introduction to IFP (16)

5 Leading Generator System

[: ®-saturated |I.F. on R
Assumptions| (Always assumed)
eR = (R,m) = Opy p: local ring at

closed point P in non-singular variety M

R e

Definition 5 m,: m” — m"”/m" "1 proj.

The leading algebra L(I) of I is defined as

n>0 n>0

IBamplel I = G((=* —¢’) x {2}) =

L(®M) =  klz] (p #2); k[z%] (p=2)
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Observation| R: regular, R/m = k
Gr(R) = k[X] : polynomial ring/k
U U
L(M) = L : graded k-subalg. of k[X]
[: ®-sat. = L: stable under differentiation
i.e. OxgL C L (VJ: multi-index)
(87 is defined by 95, XK = (%) xK-J)

What can we say on such L?

char k = 0 = L is generated by L,

(L1: homogeneous part of degree 1 of L)

MRSl £ = o + ov.

L' = k[f] C klz,y, 2]

| enlarge L’ to be stable under diff.

Oxf =2x + vy, Oyf = =,
L'[0xf, Oy f] = k[z,y] C k[z,y, 2]
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chark =0, [ = G(Zy X {ordp(Iy)}) =
h € L(®(I)); < max. cont. V(h) of Iy

IBa@mplel| 1= G((=* —y°) x {2})

L(®()) = klz], L(®@M)1 =k =

From these observations, we can see

the substitute of max. cont. should

correspond to generators of L(I).

How is L generated in p > 07

Proposition 6| (Hironaka-Oda)

S: polynomial ring/k, chark=p >0
L C S: graded k-subalgebra of S,

( stable under differentiation

dx1,...,cp €851 : k-lin. indep.
= <

dety...,ep € Z>¢g : non-neg. integers

e1 e
s.t. m’f oo ees wlg generate S as k-algebra.

\
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Remark Also VALID for chark = O if

we set p = co. =—> Ve; = 0.

I.e. L is generated by L.

Definition 7 A representative H C I of
generators of L(I) in the shape as above
is called a leading generator system (LGS)

of . By definition, H is not unique.
H = {(hip%) | 1 < i < £}
h; = ¥ ' + (higher).

JESERBE] LGS H of C((2? — 4%) x {2})
{(x,1)} char k # 2

H =
\ {(x* — y3,2)} chark = 2

Remark | V(h;) may be singular.
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6 Enlargement

(I,b) Classical
|l change level b — ordp(I)=0b": p
(I,ordp(I)) on low dim’l ambient H C M

U How to Translate?

I with LGS H IFP

M “enlargement”

I/ on original ambient M
Rough idea

e divide I into H and “remainder w.r.t. H"
I = *“H+4 (Remainder)”
e and change level of “remainder” part

I’ = “H+ (level-adjusted Remainder) ”
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Following example is the idealistic case.

- Translate as follows:

pair: (z? — y%) C klz, y, 2z]my/ (%), 2)
4
ILF.: G((x, 1), (x* —y>,2)) on k[z, y, Zlmg
and
pair: ((z? —y°) C k[z,y, z]mo/(z), 3)
J
I.LF.: G((x,1), (y3,3)) on k[x, Yy, 2|mg

Is it always possible?

Yes, but in formal level. In R, we have

I =GHU{(co(f),a) | (f,a) €1})

I' = D(GHU {(co(f); #~a) | (f,a) €T}))

where co(f) is determined as follows:
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Remainder in completion| Take

[ x = {x1,...,2p},y C R

 H= {(h;; p%) | 1 <1 < £}: LGS of I
such that

(h; € 2P wPil (1< < 0)

\ {x,y}: reg. sys. of par’'s(RSP) of R

\

Proposition 8| Regard R = k[|x,y]]. Then,
f € R= 3 co(f) € k[[y]llx] C R
f—co(f) € Xi_1 hiR
degy,(co(f)) < p% (1< i<0)

S.t.

co(f): “the remainder of f w.r.t. H”.

Descent to Zariski local level Not finished.

Later we will investigate this subject again.



Introduction to IFP (23)

/ Paired invariants

I[: ®-saturated |I.F. on R as before,
H = {(h;,p%) | 2}: LGS of I

Definition 9 (o: “dimension”) Define

o(l) = (o0,01,-..) € ZZy
where o =dimR — #{i|¢; < e}

Gl | = ©(G((? — v¥) x {2})):

{@1=p} (#2)

{22 — 3,2 = p)} (p=2)

dim R = dim k[x,y, z]g = 3
(2,2,2,...) p#£ 2
(3,2,2,...) p #£ 2

H = ¢

= o(l) =

Remark | chark = 0 = o(I): const. seq.
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Definition 10 (n™: order mod. H) Define

ordg(J) = sup{n € Z>g | J C m"+  Rh;}
)

ordy(la)

and p~(I) = infa~q

Example
I =D(G((=® —y°) x {2}))
— (%((332 — y39 2), (2z,1), (33/29 1))
{(x,1)} (p # 2)

H = <
{(2?—v%2)} (p = 2)

p # 2 = modulo (x) = p~(I) =

N | W

p =2 = modulo (2% — y3) = pu~() =2

Proposition 11| If I is ®-saturated,

o(I) and p~(I) are independent
of the choice of LGS H.
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8 Basic Results

We have to arrange the situation to function
without “nonsingularity of max. cont.”

These results are important in this context.

Theorem 12| (U.S.C. of paired inv.)

.
Spec R : nonsingular affine variety/k

I : )-saturated |.F. on R

\
= (op(l), up(I)) with lex. order is upper

semi-continuous on P € maxSpec R.

We look at only maxSpec R. It is enough
since we define inv p for only closed points

P as in classical approach.
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Theorem 13| (NonSingularity Principle)
Let [ be ©-saturated I.F. on R = Op; p
with (I) > 1. Assume p™~(I) = oco. Then,

1. I is generated by LGS H of I.

)
F{x; |1} C R : a part of RSP of R

\ d{e; | i} C Z>¢ : non-neg. integers

such that {(mfei,pei) | z} is an LGS of [.

This theorem says:
In the final step of defining invariant,
p~(I) = oco. Then, Support of I is

germ of nonsingular variety. i.e.

Supp(l) = V({x; | ¢}) near P



