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1 Introduction

k = k : alg. closed field, char k = p ≥ 0

Problem For algebraic variety V/k,

construct resolution of singularities of V

• char k = 0 with ∀ dim V

⇒ solved by Hironaka

• char k = p > 0 with dim V ≤ 3

⇒ solved by Abhyankar

(partially Cossart-Piltant)

• char k = p > 0 with dim V ≥ 4

⇒ open!
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We attack this problem along

Idealistic Filtration Program (IFP)

which is designed to “extend”

constructive algorithm in char k = 0

into arbitrary characteristic case.

Plan of our lectures We have NO

complete proof yet. We present

• philosophy and framework of IFP (today)

• candidate of algorithm for

“formal uniformization” (2,3,4-th day)

• algebraization problem (5-th day)

Today: we only consider the case

with NO exceptional divisors
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2 Review for char k = 0 approach

Brief review for “classical” approach

(mixture of known algorithms in char k=0).

Strategy Construct embedded resolution

of V ⊂
closed

M (M : nonsingular variety/k)!

• attach invP for closed point P ∈ M

(invP : minimal ⇒ V is resolved at P )

• Blowup the max. locus (←nonsingular)

of invP , and check the decrease of invP .

Recipe of invP Invariant is of the shape

invP = (µ0, µ1, . . . , µt, ∞) (µi ∈ Q≥0),

(in the case with NO exc. divisors!)

and µi’s are defined as follows:
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1. Initial Step

Put b0 := 1,

R0 := OM,P : local ring at P ∈ M

⊂

I0 := IV,P : defining ideal of V

→ (I0 ⊂ R0, b0) : initial data

Put µ0 :=
ordP (I0)

b0

← order of I0 at P

Example Put P := 000000 ∈ M := A3
k,

f := x2 − y3, and V := V(f) ⊂ M .

Then, R0 = k[x, y, z]m000000,

I0 = (x2 − y3)R0,

((x2 − y3) ⊂ k[x, y, z]m000000, 1) : initial data

ordP (I0) = ord000000(x
2 − y3) = 2

µ0 = 2/1 = 2
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2. “Restriction” Step

Take

DordP (I0)−1(I0) 3 φ0 with ordP (φ0) = 1

(DJ = J+(∂g | g ∈ J, ∂ : derivation of R))

Put b1 := ordP (I0)!,

R1 := R0/(φ0) : local ring at P ∈ V(f)

⊂

I1 :=

ordP (I0)∑
j=1

(DordP (I0)−jI0)
b1/j

→ (I1 ⊂ R1, b1) : new data

Put µ1 =
ordP (I1)

b1
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Example

Recall ordP (I0) = 2. b1 = 2! = 2.

D2−1(x2 − y3) = (x2 − y3, 2x, 3y2)

Take φ0 = x.

Then,
R1 = k[x, y, z]m000000/(x) ∼= k[y, z]m000000

I1 = ((2x, 3y2)2 + (x2 − y3))R1

= y3R1

((y3) ⊂ k[y, z]m000000, 1) : new data

ordP (I1) = ord000000(y
3) = 3

µ1 = 3/b1 = 3/2
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3. Last Step

Replace “initial data” by “new data,” go

back to Step 2, and repeat same procedure!

Continue it until µt+1 = ∞.

Remark

• H =V(φ0): maximal contact of I0 at P .{
Q ∈M |ordQ(I0) ≥ ordP (I0)

}
⊂

near P
H

By construction, we have more:

•
{
Q ∈ M | ordQ(I0) ≥ ordP (I0)

}

= near P{
Q ∈ H | ordQ(I1) ≥ b1

}
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Example

ordP (I1) = 3. b2 = 3! = 6.

D3−1(y3) = (y). Take φ1 = y.

R2 = k[y, z]m000000/(y) ∼= k[z]m000000

I2 = y6R2 = (0), ordP (I2) = ∞

∴ µ2 = ∞. inv000000 = (2, 3/2, ∞)

H =V(x): max. cont. of x2 = y3 at 000000.{
Q = (x, y, x) | ordQ(x2 − y3) ≥ 2

}

={
Q = (0, y, z) | ordQ(y3) ≥ 2

}
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Summary Classical case

Invariant is defined in the following scheme:

initial data: pair (I0, b0) = (IV , 1) on M

obj. (I0, b0) (I1, b1) · · · (It, bt) (0, bt+1)

amb. M ⊃ H1 · · · ⊃ Ht ⊃ Ht+1

order µ0 µ1 · · · µt ∞

⇓

invP = (µ0, µ1, . . . , µt, ∞)
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3 Framework of IFP

Try to apply the “classical” argument to

char k > 0 case ⇒ Fails! since

In positive characteristic, maximal

contact does not exist in general

To overcome this hurdle, we introduce

• I: idealistic filtration (I.F.)

(refinement of idealistic exponent, · · · )
99K analyzing algebraic structure

• H: Leading Generator System (LGS) of I

(collective substitute of maximal contacts,

with possibly singular elements )

By using LGS as substitute of max. cont, we

define invP as in previous section.
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We also emphasize 2 points:

1. In Classical case, ambient space changed

by restricting to max. cont. in each step

M ⊃ H1 ⊃ H2 ⊃ · · ·

In IFP, we stay in the same ambient M ,

but enlarging I.F. in each step

I0 ⊂ I1 ⊂ I2 ⊂ · · ·

2. In Classical case, invariant is of the shape

invP = (µ0, µ1, . . . , µt, ∞)

In IFP, invariant is of the shape

invP = ((σ0, µ∼
0 ), . . . , (σt, µ∼

t ), (σt+1, ∞))

The pair (σ, µ∼) is called paired invariant
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Summary IFP case

Invariant is defined in the following scheme:

initial data: I.F. I0 = G(IV × {1}) on M

obj. I0 ⊂ I1 · · · ⊂ It ⊂ It+1

amb. M M · · · M M

order (σ0, µ∼
0 ) · · · · · · (σt, µ∼

t )(σt+1, ∞)

⇓

invP = ((σ0, µ∼
0 ), . . . , (σt, µ∼

t ), (σt+1, ∞))
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4 Idealistic Filtration

R: regular k-algebra, I ⊂ R × R: subset

(We denote Ia = {f ∈ R | (f, a) ∈ I})

Definition 1 I is called idealistic filtration

(I.F.) on R if the following condition holds:

1. I0 = R

2. Ia : ideal of R (a ∈ R)

3. IaIb ⊂ Ia+b (a, b ∈ R)

4. Ia ⊃ Ib (a ≤ b)

Definition 2 T ⊂ R × R : subset

The minimal I.F. containing T is called the

I.F. generated by T and denoted as G(T).
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Example

If I = G(I × {b}) (I:ideal, b ∈ R>0)

Ia =



R : a ≤ 0

I : 0 < a ≤ b

I2 : b < a ≤ 2b

In : (n − 1)b < a ≤ nb

(I, b): pair ←→ G(I × {b}): I.F.
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Definition 3 Denote U = maxSpec R.

We define the support Supp(I) ⊂ U of I as

Supp(I)={Q∈ U |ordQ(Ia) ≥ a (∀a ∈ R)}

Saturate I.F. to visualize more information!

Definition 4 I: I.F. on R is called

D-saturated if the following condition holds:

∀∂ ∈ Diff t(R/k) (diff. operators of deg ≤ t),

∂Ia ⊂ Ia−t (∀a ∈ R)

The minimum D-saturated I.F. containing I

is called D-saturation of I denoted as D(I).

Example I = G((x2 − y3) × {2}) ⇒

D(I) = G({(x2 −y3, 2), (2x, 1), (3y2, 1)})
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5 Leading Generator System

I: D-saturated I.F. on R

Assumptions (Always assumed)

• R = (R, m) = OM,P : local ring at

closed point P in non-singular variety M

• µ(I) ≥ 1

(
µ(I) := inf

a>0

ordP (Ia)

a

)
(corresp. to the condition P ∈ Supp(I))

Definition 5 πn : mn → mn/mn+1 : proj.

The leading algebra L(I) of I is defined as

L(I)=
⊕
n≥0

πn(In)⊂Gr(R)

=
⊕
n≥0

mn/mn+1

 .

(In ⊂ mn since µ(I) ≥ 1)

Example I = G((x2 − y3) × {2}) ⇒

L(D(I)) ∼= k[x] (p 6= 2); k[x2] (p = 2)
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Observation R: regular, R/m = k

Gr(R) ∼= k[X] : polynomial ring/k
⊂ ⊂

L(I) ∼= L : graded k-subalg. of k[X]

I: D-sat. ⇒ L: stable under differentiation

i.e. ∂XJL ⊂ L (∀J : multi-index)

(∂XJ is defined by ∂XJXK =
(K

J

)
XK−J)

What can we say on such L?

char k = 0 ⇒ L is generated by L1,

(L1: homogeneous part of degree 1 of L)

Example f = x2 + xy,

L′ = k[f ] ⊂ k[x, y, z]

↓ enlarge L′ to be stable under diff.

∂xf = 2x + y, ∂yf = x,

L′[∂xf, ∂yf ] = k[x, y] ⊂ k[x, y, z]
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char k = 0, I = G(IV × {ordP (IV )}) ⇒

h ∈ L(D(I))1 ↔ max. cont. V(h) of IV

Example I = G((x2 − y3) × {2})

L(D(I)) = k[x], L(D(I))1 = k · x

From these observations, we can see

the substitute of max. cont. should

correspond to generators of L(I).

How is L generated in p > 0?

Proposition 6 (Hironaka-Oda)

S : polynomial ring/k, char k = p > 0

L ⊂ S : graded k-subalgebra of S,

stable under differentiation

⇒

 ∃ x1, . . . , x` ∈ S1 : k-lin. indep.

∃ e1, . . . , e` ∈ Z≥0 : non-neg. integers

s.t. x
pe1

1 , . . . , x
pe`

` generate S as k-algebra.
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Remark Also VALID for char k = 0 if

we set p = ∞. =⇒ ∀ei = 0.

i.e. L is generated by L1.

Definition 7 A representative H ⊂ I of

generators of L(I) in the shape as above

is called a leading generator system (LGS)

of I. By definition, H is not unique.

H = {(hi, pei) | 1 ≤ i ≤ `}

hi = x
pei

i + (higher).

Example LGS H of G((x2 −y3)×{2}):

H =

 {(x, 1)} char k 6= 2

{(x2 − y3, 2)} char k = 2

Remark V(hi) may be singular.
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6 Enlargement

(I, b) Classical

↓ change level b → ordP (I)=b · µ

(I, ordP (I)) on low dim’l ambient H ⊂M

⇐
= How to Translate?

I with LGS H IFP

⊃ “enlargement”

I′ on original ambient M

Rough idea

• divide I into H and “remainder w.r.t. H”

I = “ H + (Remainder)”

• and change level of “remainder” part

I′ = “ H+(level-adjusted Remainder) ”
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Following example is the idealistic case.

Example Translate as follows:

pair: (x2 − y3) ⊂ k[x, y, z]m000000/(x), 2)

⇓

I.F.: G((x, 1), (x2 − y3, 2)) on k[x, y, z]m000000

and

pair: ((x2 − y3) ⊂ k[x, y, z]m000000/(x), 3)

⇓

I.F.: G((x, 1), (y3, 3)) on k[x, y, z]m000000

Is it always possible?

Yes, but in formal level. In R̂, we have

Î = G(H ∪ {(c000000(f), a) | (f, a) ∈ I})

Î′ = D(G(H ∪ {(c000000(f), µ∼a) | (f, a) ∈ I}))

where c000000(f) is determined as follows:
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Remainder in completion Take x = {x1, . . . , x`}, y ⊂ R

H = {(hi, pei) | 1 ≤ i ≤ `}: LGS of I

such that hi ∈ x
pei

i + mpei+1 (1 ≤ i ≤ `)

{x, y} : reg. sys. of par’s(RSP) of R

Proposition 8 Regard R̂ = k[[x, y]]. Then,

f ∈ R̂ ⇒ ∃! c000000(f) ∈ k[[y]][x] ⊂ R̂

s.t.

 f − c000000(f) ∈
∑r

i=1 hiR̂

degxi
(c000000(f)) < pei (1 ≤ i ≤ `)

c000000(f): “the remainder of f w.r.t. H”.

Descent to Zariski local level Not finished.

Later we will investigate this subject again.
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7 Paired invariants

I: D-saturated I.F. on R as before,

H = {(hi, pei) | i}: LGS of I

Definition 9 (σ: “dimension”) Define

σ(I) = (σ0, σ1, . . . ) ∈ Z∞
≥0

where σe = dim R − #{i | ei ≤ e}

Example I = D(G((x2 − y3) × {2})):

H =

 {(x, 1 = p0)} (p 6= 2)

{(x2 − y3, 2 = p1)} (p = 2)

dim R = dim k[x, y, z]000000 = 3

⇒ σ(I) =

 (2, 2, 2, . . .) p 6= 2

(3, 2, 2, . . .) p 6= 2

Remark char k = 0 ⇒ σ(I): const. seq.
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Definition 10 (µ∼: order mod. H) Define

ordH(J) = sup{n ∈ Z≥0 | J ⊂ mn+
∑
i

Rhi}

and µ∼(I) = infa>0
ordH(Ia)

a

Example

I = D(G((x2 − y3) × {2}))

= G((x2 − y3, 2), (2x, 1), (3y2, 1))

H =

 {(x, 1)} (p 6= 2)

{(x2 − y3, 2)} (p = 2)

p 6= 2 ⇒ modulo (x) ⇒ µ∼(I) =
3

2

p = 2 ⇒ modulo (x2 − y3) ⇒ µ∼(I) = 2

Proposition 11 If I is D-saturated,

σ(I) and µ∼(I) are independent

of the choice of LGS H.
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8 Basic Results

We have to arrange the situation to function

without “nonsingularity of max. cont.”

These results are important in this context.

Theorem 12 (U.S.C. of paired inv.) Spec R : nonsingular affine variety/k

I : D-saturated I.F. on R

⇒ (σP (I), µ∼
P (I)) with lex. order is upper

semi-continuous on P ∈ maxSpec R.

We look at only maxSpec R. It is enough

since we define invP for only closed points

P as in classical approach.
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Theorem 13 (NonSingularity Principle)

Let I be D-saturated I.F. on R = OM,P

with µ(I) ≥ 1. Assume µ∼(I) = ∞. Then,

1. I is generated by LGS H of I.

2.

 ∃{xi | i} ⊂ R : a part of RSP of R

∃{ei | i} ⊂ Z≥0 : non-neg. integers

such that
{
(x

pei

i , pei) | i
}

is an LGS of I.

This theorem says:

In the final step of defining invariant,

µ∼(I) = ∞. Then, Support of I is

germ of nonsingular variety. i.e.

Supp(I) = V({xi | i}) near P


