

Lecture 1

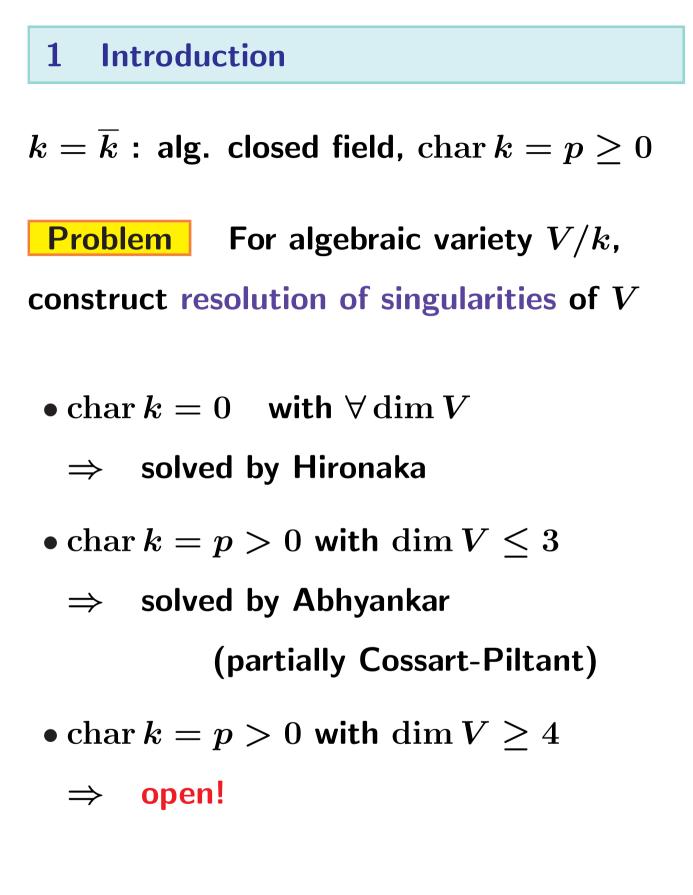
Overview of Idealistic Filtration Program

Hiraku Kawanoue and Kenji Matsuki

December 01, 2008

Contents

1	Introduction	(1)
2	Review for $char k = 0$ approach	(3)
3	Framework of IFP	(10)
4	Idealistic Filtration	(13)
5	Leading Generator System	(16)
6	Enlargement	(20)
7	Paired invariants	(23)
8	Basic Results	(25)



We attack this problem along

Idealistic Filtration Program (IFP)

which is designed to "extend"

constructive algorithm in char k = 0

into arbitrary characteristic case.

Plan of our lecturesWe have NOcomplete proof yet.We present

- philosophy and framework of IFP (today)
- candidate of algorithm for

"formal uniformization" (2,3,4-th day)

• algebraization problem (5-th day)

Today: we only consider the case

with NO exceptional divisors

2 Review for char k = 0 approach

Brief review for "classical" approach (mixture of known algorithms in char k = 0).

of $V \subset M$ (M: nonsingular variety/k)!

ullet attach inv_P for closed point $P\in M$

(inv_P: minimal \Rightarrow V is resolved at P)

• Blowup the max. locus (\leftarrow nonsingular) of inv_P, and check the decrease of inv_P.

Recipe of inv_P Invariant is of the shape $inv_P = (\mu_0, \mu_1, \dots, \mu_t, \infty) \quad (\mu_i \in \mathbb{Q}_{\geq 0}),$ (in the case with NO exc. divisors!) and μ_i 's are defined as follows:

1. Initial Step

Put $b_0 := 1$, $R_0:=\mathcal{O}_{M,P}$: local ring at $P\in M$ IJ $I_0 := \mathcal{I}_{V,P}$: defining ideal of V $\rightarrow (I_0 \subset R_0, b_0)$: initial data Put $\mu_0 := \frac{\operatorname{ord}_P(I_0)}{b_0} \leftarrow \text{ order of } I_0 \text{ at } P$ Example Put $P := \mathbf{0} \in M := \mathbb{A}^3_k$, $f:=x^2-y^3$, and $V:=\mathrm{V}(f)\subset M.$ Then, $R_0 = k[x, y, z]_{m_0}$, $I_0 = (x^2 - y^3)R_0,$ $((x^2-y^3)\subset k[x,y,z]_{\mathfrak{m}_0},1)$: initial data $\operatorname{ord}_{P}(I_{0}) = \operatorname{ord}_{0}(x^{2} - y^{3}) = 2$ $\mu_0 = 2/1 = 2$

2. "Restriction" Step

Take

 $D^{\operatorname{ord}_P(I_0)-1}(I_0) \ni \phi_0 \text{ with } \operatorname{ord}_P(\phi_0) = 1$ $(DJ = J + (\partial g \mid g \in J, \ \partial : \text{derivation of } R))$

 $\mathsf{Put} \quad b_1 := \mathrm{ord}_P(I_0)!,$

 $egin{array}{ll} R_1 := R_0/(\phi_0) & : ext{ local ring at } P \in \mathrm{V}(f) \ \cup \end{array}$

$$I_1 := \sum_{j=1}^{\operatorname{ord}_P(I_0)} (D^{\operatorname{ord}_P(I_0)-j}I_0)^{b_1/j}$$

 $ightarrow (I_1 \subset R_1, b_1)$: new data

Put $\mu_1 = \frac{\operatorname{ord}_P(I_1)}{b_1}$

Example

Recall $\operatorname{ord}_P(I_0) = 2$. $b_1 = 2! = 2$. $D^{2-1}(x^2 - y^3) = (x^2 - y^3, 2x, 3y^2)$ Take $\phi_0 = x$.

Then, $R_{1} = k[x, y, z]_{\mathfrak{m}_{0}}/(x) \cong k[y, z]_{\mathfrak{m}_{0}}$ $I_{1} = ((2x, 3y^{2})^{2} + (x^{2} - y^{3}))R_{1}$ $= y^{3}R_{1}$ $((y^{3}) \subset k[y, z]_{\mathfrak{m}_{0}}, 1) : \text{new data}$

$${
m ord}_P(I_1) = {
m ord}_{m 0}(y^3) = 3$$
 $\mu_1 = 3/b_1 = 3/2$

3. Last Step

Replace "initial data" by "new data," go back to Step 2, and repeat same procedure! Continue it until $\mu_{t+1} = \infty$.

Remark

• $H = V(\phi_0)$: maximal contact of I_0 at P. $\left\{ Q \in M \,|\, \mathrm{ord}_Q(I_0) \ge \mathrm{ord}_P(I_0) \right\} \underset{\mathsf{near}}{\subset} H$

By construction, we have more:

• $\left\{ Q \in M \mid \operatorname{ord}_Q(I_0) \ge \operatorname{ord}_P(I_0) \right\}$ \parallel near P

 $ig\{ Q \in H \mid \operatorname{ord}_Q(I_1) \geq b_1 ig\}$

Example

$${
m ord}_P(I_1)=3, \quad b_2=3!=6.$$
 $D^{3-1}(y^3)=(y), \quad$ Take $\phi_1=y.$

$$R_2 = k[y, z]_{\mathfrak{m}_0}/(y) \cong k[z]_{\mathfrak{m}_0}$$

 $I_2 = y^6 R_2 = (0), \quad \operatorname{ord}_P(I_2) = \infty$
 $\therefore \quad \mu_2 = \infty. \quad \operatorname{inv}_0 = (2, 3/2, \infty)$

 $H\!=\!\mathrm{V}(x)$: max. cont. of $x^2=y^3$ at 0. $\left\{Q=(x,y,x)\mid \mathrm{ord}_Q(x^2-y^3)\geq 2
ight\}$

 $ig\{Q=(0,y,z)\mid \mathrm{ord}_Q(y^3)\geq 2ig\}$

Summary Classical case

Invariant is defined in the following scheme:

initial data: pair $(I_0,b_0)=(I_V,1)$ on M

obj.	(I_0,b_0)	(I_1,b_1)	• • •	(I_t,b_t)	$(0,b_{t+1})$
					$\supset H_{t+1}$
order	μ_0	μ_1	•••	μ_t	∞

 \Downarrow

 $\operatorname{inv}_{\boldsymbol{P}} = (\mu_0, \mu_1, \dots, \mu_t, \infty)$

3 Framework of IFP

Try to apply the "classical" argument to $\operatorname{char} k > 0$ case \Rightarrow Fails! since

In positive characteristic, maximal

contact does not exist in general

To overcome this hurdle, we introduce

• I: idealistic filtration (I.F.)

(refinement of idealistic exponent, ···)

analyzing algebraic structure

 I: Leading Generator System (LGS) of I
 (collective substitute of maximal contacts, with possibly singular elements)

By using LGS as substitute of max. cont, we define inv_P as in previous section.

We also emphasize 2 points:

1. In Classical case, ambient space changed by restricting to max. cont. in each step

$$M \supset H_1 \supset H_2 \supset \cdots$$

In IFP, we stay in the same ambient M, but enlarging I.F. in each step

$$I_0 \subset I_1 \subset I_2 \subset \cdots$$

2. In Classical case, invariant is of the shape

$$\operatorname{inv}_P = (\mu_0, \mu_1, \dots, \mu_t, \infty)$$

In IFP, invariant is of the shape

 $\operatorname{inv}_P = ((\sigma_0, \mu_0^{\sim}), \dots, (\sigma_t, \mu_t^{\sim}), (\sigma_{t+1}, \infty))$ The pair (σ, μ^{\sim}) is called paired invariant Summary IFP case

Invariant is defined in the following scheme:

initial data: I.F. $\mathbb{I}_0 = \mathrm{G}(I_V imes \{1\})$ on M

obj.	\mathbb{I}_{0}	$\subset \mathbb{I}_1$	• • •	$\subset \mathbb{I}_t$	$\subset \mathbb{I}_{t+1}$
amb.	$oldsymbol{M}$	$oldsymbol{M}$	• • •	$oldsymbol{M}$	$oldsymbol{M}$
order	(σ_0,μ_0^{\sim}))	••• ((σ_t,μ_t^\sim)	(σ_{t+1},∞)

 \Downarrow

 $\operatorname{inv}_P = ((\sigma_0, \mu_0^{\sim}), \dots, (\sigma_t, \mu_t^{\sim}), (\sigma_{t+1}, \infty))$

4 Idealistic Filtration

R: regular k-algebra, $\mathbb{I} \subset R imes \mathbb{R}$: subset (We denote $\mathbb{I}_a = \{f \in R \mid (f,a) \in \mathbb{I}\}$)

Definition 1 I is called idealistic filtration (I.F.) on R if the following condition holds:

 $\begin{array}{ll} 1. & \mathbb{I}_0 = R \\ 2. & \mathbb{I}_a: \text{ ideal of } R \quad (a \in \mathbb{R}) \\ 3. & \mathbb{I}_a \mathbb{I}_b \subset \mathbb{I}_{a+b} \quad (a,b \in \mathbb{R}) \\ 4. & \mathbb{I}_a \supset \mathbb{I}_b \quad (a \leq b) \end{array} \end{array}$

Definition 2 $\mathbb{T} \subset R \times \mathbb{R}$: subset

The minimal I.F. containing ${\mathbb T}$ is called the

I.F. generated by $\mathbb T$ and denoted as $G(\mathbb T).$

Example

$$If I = G(I \times \{b\}) \quad (I:ideal, b \in \mathbb{R}_{>0})$$
$$I_a = \begin{cases} R & : a \leq 0 \\ I & : 0 < a \leq b \\ I^2 & : b < a \leq 2b \\ I^n & : (n-1)b < a \leq nb \end{cases}$$
$$(I,b): pair \longleftrightarrow G(I \times \{b\}): I.F.$$

Definition 3 Denote $U = \max \operatorname{Spec} R$. We define the support $\text{Supp}(\mathbb{I}) \subset U$ of \mathbb{I} as $\operatorname{Supp}(\mathbb{I}) = \{ Q \in U | \operatorname{ord}_Q(\mathbb{I}_a) \ge a \; (\forall a \in \mathbb{R}) \}$ Saturate I.F. to visualize more information! **Definition 4** I: I.F. on R is called **D**-saturated if the following condition holds: $\forall \partial \in \operatorname{Diff}^t(R/k)$ (diff. operators of deg $\leq t$), $\partial \mathbb{I}_a \subset \mathbb{I}_{a-t} \quad (\forall a \in \mathbb{R})$ The minimum \mathfrak{D} -saturated I.F. containing \mathbb{I} is called \mathfrak{D} -saturation of \mathbb{I} denoted as $\mathfrak{D}(\mathbb{I})$.

 $\begin{array}{ll} \mathsf{Example} & \mathbb{I} \,=\, \mathrm{G}((x^2 - y^3) \times \{2\}) \Rightarrow \\ \mathfrak{D}(\mathbb{I}) = \mathrm{G}(\{(x^2 - y^3, 2), (2x, 1), (3y^2, 1)\}) \end{array}$

5 Leading Generator System

 \mathbb{I} : \mathfrak{D} -saturated I.F. on R

Assumptions (Always assumed)

• $R = (R, \mathfrak{m}) = \mathcal{O}_{M,P}$: local ring at closed point P in non-singular variety M• $\mu(\mathbb{I}) \ge 1$ $\left(\mu(\mathbb{I}) := \inf_{a>0} \frac{\operatorname{ord}_P(\mathbb{I}_a)}{a}\right)$ (corresp. to the condition $P \in \operatorname{Supp}(\mathbb{I})$)

Definition 5 $\pi_n \colon \mathfrak{m}^n \to \mathfrak{m}^n/\mathfrak{m}^{n+1} \colon \operatorname{proj.}$ The leading algebra $L(\mathbb{I})$ of \mathbb{I} is defined as

$$\begin{split} \mathrm{L}(\mathbb{I}) &= \bigoplus_{n \ge 0} \pi_n(\mathbb{I}_n) \subset \mathrm{Gr}(R) \left(= \bigoplus_{n \ge 0} \mathfrak{m}^n / \mathfrak{m}^{n+1} \right) \\ &\left(\mathbb{I}_n \subset \mathfrak{m}^n \text{ since } \mu(\mathbb{I}) \ge 1 \right) \end{split}$$

 $\begin{array}{ll} \mathsf{Example} & \mathbb{I} \ = \ \mathrm{G}((x^2 - y^3) \times \{2\}) \ \Rightarrow \\ \mathrm{L}(\mathfrak{D}(\mathbb{I})) \cong & k[x] \ (p \neq 2); \ k[x^2] \ (p = 2) \end{array}$

Observation
$$R$$
: regular, $R/\mathfrak{m} = k$ $Gr(R) \cong k[X]$: polynomial ring/k \cup \cup

 $\mathrm{L}(\mathbb{I}) \;\cong\; L \;: ext{graded }k ext{-subalg. of }k[X]$

I: \mathfrak{D} -sat. \Rightarrow *L*: stable under differentiation

i.e. $\partial_{X^J} L \subset L$ ($\forall J$: multi-index)

(∂_{X^J} is defined by $\partial_{X^J} X^K = {K \choose J} X^{K-J}$)

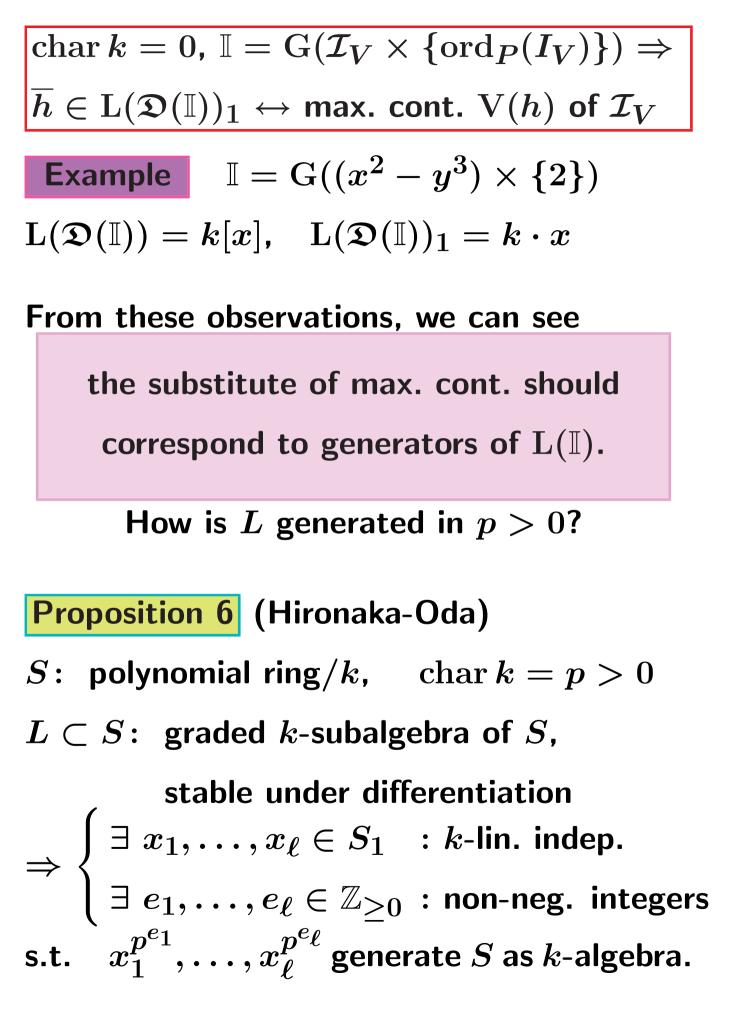
What can we say on such L?

char $k = 0 \Rightarrow L$ is generated by L_1 , (L_1 : homogeneous part of degree 1 of L)

Example
$$f = x^2 + xy$$
, $L' = k[f] \subset k[x,y,z]$

 \downarrow enlarge L' to be stable under diff.

 $\partial_x f = 2x + y$, $\partial_y f = x$, $L'[\partial_x f, \partial_y f] = k[x,y] \subset k[x,y,z]$



Remark Also VALID for char k = 0 if we set $p = \infty$. $\Longrightarrow \forall e_i = 0$.

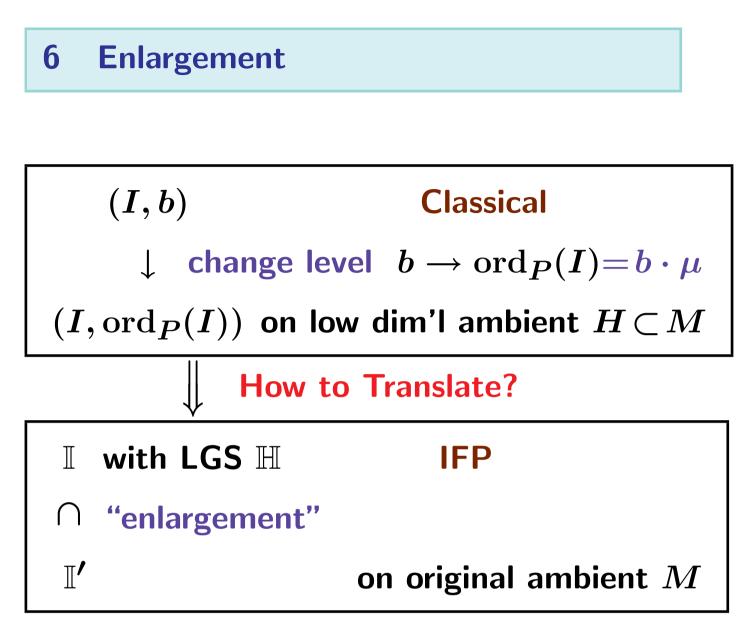
i.e. L is generated by L_1 .

Definition 7 A representative $\mathbb{H} \subset \mathbb{I}$ of generators of $L(\mathbb{I})$ in the shape as above is called a leading generator system (LGS) of \mathbb{I} . By definition, \mathbb{H} is not unique.

$$\mathbb{H} = \{(h_i, p^{e_i}) \mid 1 \leq i \leq \ell\}$$
 $h_i = x_i^{p^{e_i}} + (ext{higher}).$

 $\begin{array}{ll} \mbox{Example} & \mbox{LGS} \ \mathbb{H} \ \mbox{of} \ \mathbb{G}((x^2-y^3)\times\{2\}) \mbox{:} \\ \\ \mathbb{H} = \left\{ \begin{array}{ll} \{(x,1)\} & \mbox{char} \ k \neq 2 \\ \\ \{(x^2-y^3,2)\} \ \mbox{char} \ k = 2 \end{array} \right. \end{array}$

Remark $V(h_i)$ may be singular.



(20)

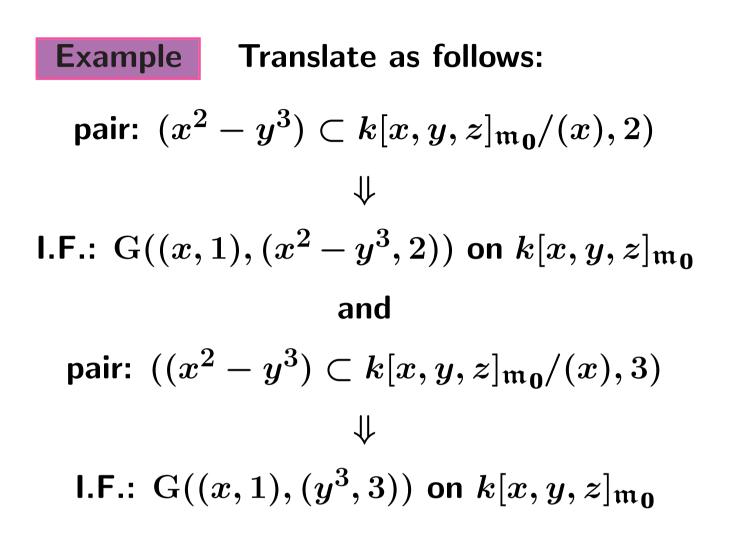
Rough idea

 \bullet divide ${\mathbb I}$ into ${\mathbb H}$ and "remainder w.r.t. ${\mathbb H}"$

$$\mathbb{I} = " \mathbb{H} + (\text{Remainder})"$$

- and change level of "remainder" part
 - $\mathbb{I}' = "\mathbb{H} + (\text{level-adjusted Remainder})"$

Following example is the idealistic case.



Is it always possible?

Yes, but in formal level. In \widehat{R} , we have

$$\begin{split} \widehat{\mathbb{I}} &= \mathrm{G}(\mathbb{H} \cup \{ (c_{\mathbf{0}}(f), a) \mid (f, a) \in \mathbb{I} \}) \\ \widehat{\mathbb{I}}' &= \mathfrak{D}(\mathrm{G}(\mathbb{H} \cup \{ (c_{\mathbf{0}}(f), \mu^{\sim} a) \mid (f, a) \in \mathbb{I} \})) \end{split}$$

where $c_0(f)$ is determined as follows:

Remainder in completion Take $\left\{egin{array}{l} \mathrm{x} = \{x_1, \ldots, x_\ell\}, \mathrm{y} \subset R \ & \mathbb{H} = \{(h_i, p^{e_i}) \mid 1 \leq i \leq \ell\} ext{: LGS of } \mathbb{I} \end{array}
ight.$ such that $\left\{ egin{array}{l} h_i \in x_i^{p^{e_i}} + \mathfrak{m}^{p^{e_i}+1} & (1 \leq i \leq \ell) \ \{\mathrm{x},\mathrm{y}\}\colon ext{ reg. sys. of par's(RSP) of } R \end{array}
ight.$ **Proposition 8** Regard $\widehat{R} = k[[x, y]]$. Then, $f\in \widehat{R} \Rightarrow \exists ! \ c_{\mathbf{0}}(f) \in k[[y]][x] \subset \widehat{R}$ s.t. $\begin{cases} f - c_{\mathbf{0}}(f) \in \sum_{i=1}^{r} h_{i} \widehat{R} \\ \deg_{\pi}(c_{\mathbf{0}}(f)) < p^{e_{i}} \quad (1 \leq i \leq \ell) \end{cases}$

 $c_0(f)$: "the remainder of f w.r.t. \mathbb{H} ".

Descent to Zariski local level Not finished. Later we will investigate this subject again.

7 Paired invariants

I: \mathfrak{D} -saturated I.F. on R as before,

 $\mathbb{H} = \{(h_i, p^{e_i}) \mid i\}: \text{LGS of } \mathbb{I}$ **Definition 9** (σ : "dimension") Define

$$egin{aligned} &\sigma(\mathbb{I}) = (\sigma_0, \sigma_1, \dots) \in \mathbb{Z}_{\geq 0}^\infty \ & ext{where} & \sigma_e = \dim R - \#\{i \mid e_i \leq e\} \end{aligned}$$

$$\begin{array}{ll} \text{Example} & \mathbb{I} = \mathfrak{D}(\mathrm{G}((x^2 - y^3) \times \{2\})): \\ \mathbb{H} = \begin{cases} \{(x, 1 = p^0)\} & (p \neq 2) \\ \{(x^2 - y^3, 2 = p^1)\} & (p = 2) \end{cases} \\ \dim R = \dim k[x, y, z]_{\mathbf{0}} = 3 \\ \Rightarrow & \sigma(\mathbb{I}) = \begin{cases} (2, 2, 2, \ldots) & p \neq 2 \\ (3, 2, 2, \ldots) & p \neq 2 \end{cases} \end{cases}$$

Remark char $k = 0 \Rightarrow \sigma(I)$: const. seq.

$\begin{array}{ll} \hline \textbf{Definition 10} \ (\mu^\sim: \ \text{order mod. }\mathbb{H}) & \textbf{Define} \\ \\ \text{ord}_\mathbb{H}(J) = \sup\{n \in \mathbb{Z}_{\geq 0} \mid J \subset \mathfrak{m}^n + \sum_i Rh_i\} \\ \\ \text{and} & \mu^\sim(\mathbb{I}) = \inf_{a>0} \frac{\text{ord}_\mathbb{H}(\mathbb{I}_a)}{a} \end{array}$

Example

$$\mathbb{I} = \mathfrak{D}(G((x^2 - y^3) \times \{2\}))$$

$$= G((x^2 - y^3, 2), (2x, 1), (3y^2, 1))$$

$$\mathbb{H} = \begin{cases} \{(x, 1)\} & (p \neq 2) \\ \{(x^2 - y^3, 2)\} & (p = 2) \end{cases}$$

$$3$$

$$p
eq 2 \Rightarrow \mathsf{modulo}\ (x) \qquad \Rightarrow \mu^{\sim}(\mathbb{I}) = rac{1}{2}$$

 $p=2\,\Rightarrow {\sf modulo}\,\,(x^2-y^3)\,\Rightarrow \mu^\sim({\mathbb I})=2$

Proposition 11 If \mathbb{I} is \mathfrak{D} -saturated, $\sigma(\mathbb{I})$ and $\mu^{\sim}(\mathbb{I})$ are independent of the choice of LGS \mathbb{H} .

8 Basic Results

We have to arrange the situation to function without "nonsingularity of max. cont." These results are important in this context.

Theorem 12 (U.S.C. of paired inv.) $\begin{cases}
\text{Spec } R : \text{nonsingular affine variety}/k \\
\mathbb{I} : \mathfrak{D}\text{-saturated I.F. on } R \\
\Rightarrow (\sigma_P(\mathbb{I}), \mu_P^{\sim}(\mathbb{I})) \text{ with lex. order is upper semi-continuous on } P \in \max \operatorname{Spec} R.
\end{cases}$

We look at only $\max \operatorname{Spec} R$. It is enough since we define inv_P for only closed points P as in classical approach.

Theorem 13 (NonSingularity Principle) Let \mathbb{I} be \mathfrak{D} -saturated I.F. on $R = \mathcal{O}_{M,P}$ with $\mu(\mathbb{I}) \geq 1$. Assume $\mu^{\sim}(\mathbb{I}) = \infty$. Then,

1. I is generated by LGS H of I.

$$\begin{array}{l} \mathsf{2.} & \left\{ \begin{array}{l} \exists \{x_i \mid i\} \subset R & : \text{ a part of RSP of } R \\ \exists \{e_i \mid i\} \subset \mathbb{Z}_{\geq 0} & : \text{ non-neg. integers} \end{array} \right. \\ & \text{ such that } \left\{ (x_i^{p^{e_i}}, p^{e_i}) \mid i \right\} \text{ is an LGS of } \mathbb{I}. \end{array}$$

This theorem says:

In the final step of defining invariant, $\mu^{\sim}(\mathbb{I}) = \infty$. Then, Support of \mathbb{I} is germ of nonsingular variety. i.e.

$$\mathrm{Supp}(\mathbb{I}) = \mathrm{V}(\{x_i \mid i\})$$
 near P