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1 Basic Definitions

Resolution of singularities

of an idealistic filtration with boundary

Global Construct a sequence of transformations

(W, 1, E)

|
(Wo, Loy Eg) «— -+ -
(Wi, Ly ;) < (Wisa, Lig1, Eita)
cee— (W, Ey)
S.t.
Supp(;) = 0.

Local Given P = P, € W = W,.
Objects (W, I;, E;) defined only as algebraically local
germs around P;.
We (or the devil) pick up an arbitrary point P;,
in the fiber of P; after blowing up the center C,.
Analytically Local (or Formal) Change

“algebraically local” above into “analytically local”.
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Transformation
(Wi, L, E;) & (Wis1, Liv1, Eigq)

of an idealistic filtration with boundary

(1) W; Pas W;1 blowup with center C;

S.t. )
C; C Supp(l;),

§ C; nonsingular,

C; transversal to E;.
\

Note: An idealistic filtration I is of i.f.g. type

def
< 1= G{(Zr,ar);ax € Z>o}rea,#r<o0)
(2) Idealistic filtration of i.f.g. type transforms

from I; = {Z; o}acr to iy = 7F (L) = {ZTit1,0taer
where
for a E Z>0

Tit1,0 = W;Jrll(l'i,a)owiﬂ . I(W;rll(ci))_“,

for general a € R
Iz'—l—l,a — OW’H—I’ a S 0

Ziv1,a = LZiv1,[a]y @ > 0.
(3) E, ,=FE;U w;Lll(Ci).
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2 General reduction steps

Res. sing. of an idealistic filtration with boundary

U

Res. sing. of a basic object

U

Embedded resolution
U + functoriality

Res. sing. of an abstract algebraic variety over k
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3 Plan of our lectures

Lecture 1 (Kawanoue) Philosophy and framework
of IFP

Lecture 2 Present

an algorithm for local resolution of singularities

of an idealistic filtration with boundary

in char = 0 via (o, 1, s)-method

(= Local uniformization theorem in char = 0;
well-known)

Lecture 3

Question| Can we translate the (o, i1, s)-algorithm

in char = 0 into the one in char =p > 0 ?

Answer| Yes !

Question| Does the translation work as a real al-

gorithm 7

Answer| No !

Present some BAD examples.

Analyze why they are bad.
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s
Introduction of invariant v.
Observe how v overcomes the difficulties
caused by the bad examples.
Lecture 4 Present
a candidate of an algorithm for
analytically local resolution of singularities
of an idealistic filtration with boundary
in char = p > 0 via (o, p, v, s)-method
(== Analytically local uniformization conjecture in
char = p > 0; unknown)
o Emphasize the difference between
(o, ity s)-method in char = 0 &
(o, ity v, s)-method in char = p > 0.
o Discuss how to deal with
Anomalies in the MONOMIAL CASE.
Lecture 5 (Kawanoue) Going

from “analytically local” to “(algebraically) local”
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4 Qutline of the algorithm

in char = 0 via (o, i, s)-method

Basic structure

Weaving of the strand

& construction of the modification
In year 2, we construct

the strand of invariants “inv”’ and
ope . 1 13 7
the modifications (W?, [, E;)

of the transformation (W;,1;, E;) = (W), 17, E).

inV(P) — (0'7 Iy S)(Ua ljas) e

(L, E;) = (I, EY) I, E;)
Y e i g
(L=, E ) (I, E5)
(O'zqv ﬁfzv SZ)
(I BT (I, E™)
m;—1 ~m;—1 m;—1 (O.’Il’,nz’ OO, O) or
(o; s ’» Sy )

(0,,0,0,T)
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Note: In the classical setting,

invassic(P) = (w, s)(w, s)(w, s) - - -.
(Tiya) = (T2, a%) (T} = {0V |1, a})

Weaving goes
(wz.l,szl) (wzzasf)

Termination in the horizontal direction
(O-z'latg) > (a?,t,}) > e
i1 _ gy i1 JHL 4
> (o5,t;  =#E; ") > (o7 ,t) > .-

+ {(o,t)} satisfies the descending chain condition

p—

In a fixed year 2, weaving of the strand “inv”’ ends

after finitely many stages.

Induction on o (and t)

Enlargement of the idealistic filtration

& shrinking of the boundary

0 cl! c--- CE" CE C-..-CI™
E°DE!'D>--- DE/ ' D>E >...D>E"™
Choice of the center

C; = Supp(I;*").
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Termination in the vertical direction
inv(Py)
V
inv(P)
V

inv(P;_,)
V
inv(F;)
V

There is NO such strictly decreasing and infinite
sequence.
p—

Our algorithm ends after finitely many years.
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A closer look at the inductive weaving of the strand

& construction of the modifications

Assume inductively we have already woven “inv
and constructed its associated modifications
up to year (7 — 1).
Assume also inductively we have already woven “inv”
and constructed its associated modifications
up to stage (5 — 1) in year 4.

year (2 — 1) l
year 1 —_——_—
stage (j — 1)
(Hia E’&) — (Hga E(')) (H,}, Ezl) Tt (Hg_lv Eg_l)
inVSj_l(Pi) — (0'7,17 Ij:’ :) e (o-zj—l, ﬁZ—I, 83—1)

Want to construct

& (I}, EY)

(0'37/}37 )
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Summary of the construction

Case: inv™>"1(P) < invS Y P,_,)
ol =o (D)

| = pn (DET)

s =#F T = #pi!

. “1 t,aged —
andf . .
I = Bd (Comp(ﬂg_l))
{ with Comp(I! ") = Cpc(I ™)
. -, -, -, -,
X EZ — EZ \ Eg,aged — EzJ \ Ezj — @
Case: invS"Y(P;) = inv™"1(P_;)
( . .
o; =0,
i -,
| = (@Ez,;:ung@? >>
/- J—1
\ i = #Ei,aged
and
I =Bd (Comp(ﬂg—l))
with Comp(]l‘g_l)
< Cpe(I; ™) if iy < iy
o (=H(Comp(E)) if i = i,
. - C
E:Z — Eg \ E:Z,aged‘
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5 Detail of the inductive weaving and

construction

Case: inv™"Y(P) < inv™"1(P,_,)

(ag,ﬁg,sg)

Start with I/ .

Take the D-saturation D (I ).

Set o |
ol =a (D)
\ H; an LGS of @(]Ig_l)
A = (@(H‘g_l)) :
Lemma

A (@ (I[:z_l)) is independent of the choice of H.

Therefore, ﬁ'z is well-defined.

Also set
4

i . . j—1
s; = 7 of irred. comp. in E; eed

N\

(passing through P;)

= # of irred. comp. in E'Z_l in this case.
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(I, EY)

o Companion Modification

Comp(ﬂ‘g_l) := Cpc(I!™)

Construction of “Cpc” and idea behind it

Ta!<e
H = {(h1,1),--- ,(h;; 1)} LGS

N\

(331 = hq,--- 7wl:hl7wl+17°" 7$d)

reg. sys. of parameters

\
e~

Power Series Expansion: Given f € Oy, p,

HB:hll)l...h?l

ce(f) € kl[xit1, - - zd]]

f =Y cg(f)HP where

Observe
il = (D)

= inf{ord (co(f)) /a; (f,a) € D(I ), a € Zso}.
Want to add

{(co(f), B - a); (f,a) € D), a € Zxo}.
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MAIN MECHANISM OF INDUCTION
Take

(f,a) € D(71),a € Zsg
with
ord (co(f)) /a = fi.

exactly

Then |
(co(f), ﬁz -a) = (co(f),ord (co(f))

co(f) € kllzit1,- -+, zd]].
At the next (j + 1)-th stage, we have

d: an appropriate diff. operator
of degree ord (co(f)) — 1
such that
(8(ea(£)),1) € B C D)
(8(ea(£)),1) ¢ H = H.

: —
ag>af+
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Naive candidate for “Cpc”

NaiveCpc(]Ig_l)

(co(f), it} - a);
(fra) € D), a € Zso
Technical Requirements

=G| "Hu

o “Cpc” should be independent of the choice of H
and reg. sys. of parameters (€1, , T}, X111, 5 Tq)-
o “Cpc” should be an idealistic filtration of i.f.g.

type.

Real Construction for “Cpc”

Cpe(II™) = G {IL {@ (Naivecpc(ﬂ;i—l)) }]

where
IL: the operator of taking the elements

at the Integral Level

Note|: Description above is at the analytic level.

ichar =0 Can be done at the algebraic level.

_ See Lecture 5 by Kawanoue.
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Lemma Cpc(]I*g_l) is independent of the choice of

H and (wla"' s Ly Ll4+19° " ° 7wd)-

o Boundary Maodification
Bd (Comp(ﬂg_l))
(fxs1);

7—1
F)\ C Ei,aged

= G | Comp(IX "M U
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Case: invS>"1(P) = invS"1(P;_;)
MAIN POINTS

o Use of “History”
o Use of “Logarithmic Differentiation”

o Adjustment of the notion of LGS

Go back in “history” to year i,5cq

when the value inv=/"1(P) first started;

invS"YP) = invS1(P_;)

1
— invSI— (Pipged)

< inVSJ_l ('Pl:aged_l)

Decomposition of the boundary

E'=E_ UE

i,young ) aged
where
Ej,yolung = the collection of
. the exceptional divisors
created after year 7,509
Eza d — Ej_l\EJ .
ge 1 1, young”®
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Notion of LGS adjusted

/

v = mF)\CEJ,YC)lungF)\
) @E] 1 (]I‘7 h = ® ;-1 -saturation of ]Ig_l
,young i,young
D i1 (]I'Z_l)} |lyy = its restriction to V
L i,young

Lemma {@Ej_l (]I‘Z_l)} |y is ®-saturated.

i,young

@ J ) (I[‘Z_l) surjectlon {@ j1 (Hz_l)} |V

,yOllIlg ,young

®-saturated

U U
lift
H — HV; an LGS
Definition| H is an LGS of ® _;+ (I 7).
ayoung
( 1
oy = 0 ({@ J—1 (H‘Z )} |V)
i,young
\ c := codimyy,V
\ af,log = oy + >0 = (ove + C)eGZZO
Lemma a.zq,log — 0'3 1,log — O-zq—l'




Introduction to IFP (18)

(Uzqv ﬁzv Sg)

Set

( . . . .

o-z"7 — O.zq,log — O.zq—l,log — 0’2‘?_1

al = My, pi-l (:DEj_l (Hg_1)>

»i,young z,young
_ | j—1 .
< — HH (QEzq,;C)lung (I[z )> - ZF)‘CE’L{;OIung KX
. _ _ -

s; = # of irred. comp. in E{_

\ (passing through P;)
where

(

i (Dyyr, (7))

i,young
= inf {ord (co(f)) /a; (f,a) € D i (]I'Z_l),
i,young

) a € ZLso, f = cp(f)H"}

px = inf {n/a; co(f) divisible by f7,

(fra) €D 1 (7Y, a € Zso,
i,young

\ f=> CB(f)HB}

Lemma| p, i1 (@Ej_1 (]I{_l)) is independent

1,young 1,young

of the choice of H (or Hy).

Therefore, ﬁ‘g is well-defined.
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(I, EY)

/

]I‘g = Bd (Comp(ﬂg_l))
with Comp(]lg_l)
\ Cpc(]lg_l) if Ii‘;’ < ;4
T @5, (7 (Comp(hy)) i =
E] =B\ E .

\

Description of “Cpc” in case ﬁ‘z < ﬁ{_l

Consider
BlackBox| =
(P, ETY \
{(calh) @k {ATFHN™} 4 - );
(fya) € @Eg,;;ung(ﬂ‘f_l)» a € Zxo,
.. |G f= chB(f)HB} U

e || {inno rn0n
q=1,---,7ry—1,

r»; the denominator of u),

i \ F)\ C E;Zj,;olung} )
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IPIL; the operator to take the elements
being at the integral levels as well as

having only integral powers in Q; .

IPIL(|BlackBox|)

. Eliminate ®; by turning it

into the real multiplication

Image

Cpc(E™1) := ® -1 (Image).

1,young

Lemma Cpc(]lg_l) is indepenedent of the choice of

H (or Hy) and (21, s @1, i1y 5 Tq)-

Note: We take (x;.1,-+ ,x4) to contain

{f>n Fy C Ezq,;(;lung}'
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6 Termination in the horizontal direc-

tion (revisited)

(Uq;latg) > (U?at%) > e
In fact, we have

(a“z?a tg_l) > (O-ZJ+1’ t}?)a

] # oo or0
Jj+1
i

) =ocoor0&s! #0

. » . .
— ol >l &t >t

— o] >0

i =ocoor0 & s =0

\ — End of weaving.

{(o,t)} satisfies the descending chain condition.

p—

In a fixed year 2, weaving of the strand “inv”’ ends

after finitely many years.

Main mechanism of induction on o (and t)
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7 Choice of the center (revisited)

Choose C; = Supp(L;™).

G ENTY (@ B

(a-;"’i, 00, 0)

Supp(I;*) = {h; = --+ = h; = 0}

Case:

where

H = {(ha,1)},_, an LGS for [/ = @Emi_lg(ﬂjf”i‘l)
7,youn

I
(in this case D (I 1))
Note: In the framework of IFP,
(
" =20 )

Supp(I;*)
§{ ;®-saturated —

nonsingular.

Nonsingularit
| = o0 onsingularity

Principle
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Supp (1) LE™ = mz—l \ E™i~t = gmi?

t,aged — i,young

by construction

and

Supp(I;*) C N 1 F)

0
F CE agedLJ UEZ aged

by construction of “Bd”

Su‘pp(]I )J— ( i,aged U---UE; aged) U b ,yzoung

||
E;
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TN BT @, B
(0.;"7290,0)
This is the MONOMIAL CASE.

We introduce the invariant I' = (I'y, I'5, ')

Case:

where
(
'y = —min{n;3I(A1,:-: ,An)
with F)\l, e 7F)\n C E'Z;jo_uilg

sit. pux, +--+pr, > 1L, P € Fy N---NFy,}

F2 = max{uAl + o+ X, s El()\la R >\n)
with Fy -+ , Fy C E™~!

1,young

{ S.t. [,l,}\l—'—"'_l_ll)\nz]-7Pi€F)\1m°”mF>\n}

I's = maX{()\la R An)’
with Fy,,--- ,F\ C E™i !

t,young

s.t. px, +--+pux, >1, P € Fy\,N---NF,}

—n =T, px + -+ + pa, = T2}
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We replace
(o,",0,0) the original m;-th unit
with
(o,",0,0,T) the new m;-th unit.
We also replace

I;" = Bd(Comp(I;" ")) = D m—1 (I

i,young

the original m;-th modification

with

mi—l
@Emi—l (]I’L )U

]Imz — O i,young
{(.f)\la 1)9 R (f)\na 1); (>‘17 R An) — F3}

the new m;-th modification.

1

Supp(]lzni) — {hl — .o = h; = O}
Mfxy == fa, =0}
where

H = {(ha,1)},_, an LGS for D U

i,young
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Question| What should be the statement of
Nonsingularity Principle in the MONOMIAL CASE

in the framework of IFP ?

Note: Answer given only via (o, 1, v, s)-method.

Supp(I/*) LE™ = mz—l \ E™i~t = gmi?

t,aged — i,young

by construction

and

Supp(I;*) C N 1 F)

zaged
by construction of “Bd”

0
FACEY ., 0qU-VE; ,

Supp(I;*)L ( paged Ut U B ) UE

1,aged young

||
E;
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8 Termination in the vertical direction

(revisited)

Crucial Claim| The strand of invariants “inv

never increases after blowup, i.e.,

inv(P;) < inv(P;_4).

Proof of the crucial claim is not trivial.

Claim| The strand of invariants “inv

actually strictly decreases after blowup, i.e.,

inv(P;) < inv(P;_q).

Proof of the claim using [Crucial Claim

Observe

(i) P; € Supp(I)) Vj

(i) invSI(P) = invSI(P;_,)

(B) =D,  («(_,)).

i,young

— D

1,young
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Suppose
inv(P;) = inv(FP;_q)
invS"i(P;)  invS"-1(Pi_q)

Then by (ii) with 5 = m;, we have
Dy () = Dys (W),

i,young 7,youn

On the other hand,
Supp (D (w4(I")) ) = Supp (w4(")) = 0,

7,youn

since

the last (m;-th) modification has
the distinguished feature that

its transformation after blowup has NO support.
But then by (i)

P; € Supp (L") = Supp (@Emi (]I;nz)) = 0,

i,young

a contradiction !
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Last Claim| The strictly decreasing sequence
inv(Py) > inv(Py) > ---

> inv(P;_;) > inv(P;) > - .-
stops after finitely many years.

Caution No descending chain condition

for the value set of “inv”’, since
denominators of g and I'; in I' = (', 2, I'3)

are NOT a priori bounded.

Proof of the last claim

Suppose inductively “inv=’" stabilizes, i.e.,

Fij s.t. inv™ (B) = inv™ (P, Vi > i;.

Then |
D, ()

i,young

— CDE"'I,j,young; (ﬂ-u(]lz_l))

— _ , J
B @Ezq,young éﬂ-u CgEg—l,young (Hz—l))>

TP e (“W?—z))))
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—

Denominators of ﬁg are uniformly bounded

by the number determined by the levels

of the generators of ]Ii
J

(Similarly denominators of I'; are uniformly bounded.)

p—

“invS/T1" stabilizes after finitely many years.
—

“inv” stabilizes after finitely many years. Q.E.D.

Note: We can NOT extend “inv” infinitely in the

horizontal direction (i.e., can NOT increase “j

infinitely), since the set {(o,t)} satisfies the de-

scending chain condition !
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9 Example

Res. sing. of the idealistic filtration with boundary
(W,LE) = (A%, G{(=* —¥°1)}),0)
Year 0

(15, Eg = 0) (=*—19’,1)

(2, 2, O)
K
(1,00,0)
(I3, B = 0) (z*—y?,2) |
(2z,1)
(3y?, 1)

(2,2,0)(1,%,0)
(]12 E2 — 0) (y373)

(3y%,2)

(6y,1)

(2,2,0)(1,3,0)(0,00,0)

?29

Blowup with center (x, y)
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Year 1

(I3, EY = {F1}) (y(y — =*),1)

(2,1, 0)
\
(I3, Bf = {F}) (y — % 1) F\ (2,00,[)
(2,1,0)(1, 00, 1)

(I[2 E2 =0)(y,1); E 1aged = {F1}
(2,1,0)(1,00,1)(1,2,0)

(I3, E? = 0) (2, 2)
(2x,1)
(2,1, 0)(1, 00,1)(1,2,0)(0, oo, 0)

Blowup with center (x, y)
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Year 2

(13, E3 = {F1, F>}) (zy(y — x),1)

(2,1,0) F-{%-0/
(2,00 fo-%=01
(l,00,0)
/i Ff:T(?(:O%
(2,0,0,]")

(3, E; = {F1, F»}) (y —z,1)
(2, 1, O.)(l, o0, 1)

(]12 E2 {Fz}) (y9 1) E2aged {Fl}
(2,1,0)(1,00,1)(1,0,1)

(13, B2 = 0) (z,1); B2, = {F3}
(2,1,0)(1, 00, 1)(1,0,1)(0, 0o, 0)

Blowup with center (x, y)
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Year 3
(I3, B = {Fy, Fs, F3}) (x*y(y — x),1)
|
(23(Y + 1)Y, 1)
(2,1,0) F3=f’)§=03
& [2/0/0/]1”) (1 @, O>

(]I%a Eg} — {Fla Fy, F3}) (Ya 1)
(2,1,0)(1,00,0)

(Hga E§ — {Fla F29 F3})
Cy = Supp(t3) = {Y = 0}

Center of blowup in year 3
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Observation

Cs = Supp(I3) # MaxLocus(inv)
because
“Comp” fails to separate “MaxLocus” when 1 =1

Anomaly when p =1
—

Our algorithm (even in char = 0) is only local

(for the moment).



