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Introduction to IFP (1)

1 Outline of the algorithm in char p > 0

via (o, i1, v, s)-method

Basic structure

Weaving of the strand

& construction of the modification
In year 2, we construct

the strand of invariants “inv”’ and

the modifications (W7, I/, E7)

of the transformation (W;,1;, E;) = (W), 17, E).
inv(P) = (o, v, 8) (o, pty vy S) + +
(L, ;) = (I3, E7) (I3, E;)

) (Hg_laEg_l) (]I‘Z,E‘Z)
(O'z'?a ﬁga ﬁga SZ)
(I, BT (I3, E;™)
. . . . o, 00,00,0) or
(O',an_l, ﬁ;’nz—l’ I/;;nz—l’ S;nz—l) ( 7 ) ’ ’ )

(¢,,0,0,0,T)
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Termination in the horizontal direction

1 40 2 41
(O'iati) > (O'iati) > e

> (o, 77 = #EITY) > (00T H) > -
+ {(o,t)} satisfies the descending chain condition

—
In a fixed year ¢, weaving of the strand “inv” ends

after finitely many stages.

Induction on o (and t)

Enlargement of the idealistic filtration

& shrinking of the boundary
0 cn c..-cBE' cl c...CcI™
E°DE!'D>--- DEI ' D>E >...D>E"™

Choice of the center

C; = Supp(I;™).
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Termination in the vertical direction
inv(Py)
V
inv(P)
V

inv(P;_,)
V
inv(F;)
V

There is NO such strictly decreasing and infinite
sequence.
p—

Our algorithm ends after finitely many years.
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(4)

A closer look at the inductive weaving of the strand

& construction of the modifications

Assume inductively we have already woven “inv”

and constructed its associated modifications
up to year (7 — 1).
Assume also inductively we have already woven “inv”

and constructed its associated modifications

up to stage (5 — 1) in year 4.

|

year (2 — 1)

year 1 —_——_—
stage (j — 1)
(I B:) = (T, BY) (T}, E}) (LB
inv=""N(P) = (o}, i}, 0}, 80) -+ (o] 0 81T
Want to construct

& (I, E})

(af,ﬁg,ﬁg,sg)
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Summary of the construction

Case: inv™>"1(P) < invS Y P,_,)
( o) =0 (@(Hg_1)>

il = (D)

v = vy (@(Hfi—l))

$] = H#E] gea = #E|

X
|

I =Bd (Comb(ﬂﬂ.—l))
{ with Comp(I!™") = Cbe(I )
1 1 1 —1
. EZ — EJ \ Egaged EJ \ Ezj

=2}
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Case: invS"Y(P;) = inv™1(P_;)

7

and

J _
0, = 0,1
) = . . j—1
i = By pi— (9134—1 (L; ))
" 1,young 1,young

Ul = vy pi (@Ej_l (ﬂg—1)>
1,young 17, young
| o
S',Z — #Eg,aged
I =Bd (Comb(ﬂg’—l))

with Comb(I/ ™)

[ Cbe( ™)
)i < (B
| @i (7H(CombE)))
X if (ﬁfaf/’f) — (ﬁg—la’qu
E] =E/7\E ..
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2 Detail of the inductive weaving and

construction

Case: inv™"Y(P) < inv™"1(P,_,)

(O'zqvljgv’;ijasg)

Start with I/ .
Take the D-saturation D (I ).

Set

’

S.

1

§ Bl = pa (2T
ﬁg = vy (@(Hg_1)> :

ol = o (@(]Ig_l)> ,H;an LGS of @(]Ig_l)

\

Lemma
A <®(Hg_1)) & vy (@(I[:Z_l)) are independent of

the choice of H. Therefore, ﬁf & 17{ are well-defined.

Also set
4

i . . j—1
s; = 7 of irred. comp. in E; eea

N\

(passing through P;)

= # of irred. comp. in Eg_l in this case.
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(I, EY)

o Combined Modification
Comb(I?™") := Cbe(F ™)
Construction of “Cbc” and idea behind it

Ta!<e
H = {(ha, p*)}._, LGS

. — .pto pfa+1
with h, = 2~ mod mp,

{poe}y = {p™ <--- < pm} = {p¥}5,

and its associated reg. sys. of parameters

N\

\ (3317"' s Ly L4119 7wd)

e~

Power Series Expansion: Given f € Oy, p,
3! f =3 cp(f)HB with HB = p8'...p)
where

deg, cp(f) <p**—1lfora=1,---,1,

.e.,

cB(f) = X o<na<pea—i Cnymy Ty ** x,"

with c,,,..,, € El[Tir1,:-+ x4l



Observe
il = (DE)
= inf{ord (co(f)) /a; (f,a) € D), a € Zso}
vl = vy (@(Hf_l))
= inf{ord (co(f)) /(P — ¢);
(F,p% —t) € D' (D)5 )

t € Z>07peﬁ — 1> 0}
Want to add

{(co(f); 1) - a); (f,a) € DY), a € Zso}-
and
(o), - (0 — 0); (f.a) € D* (DE),00) .
t € Z>Oapeﬁ —t> 0}
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MAIN MECHANISM OF INDUCTION

Mechanism to guarantee

i) # oo or 0 = ol > ot
Take
(fya) € D7), a € Zso
with
ord (co(f)) /o = .
Then

[ (co(f), i - a) = (co(f), ord (ea(f)))
C@(.f) — ZO<n <pfa—1 Cnl“'nlm?1 Tt m?l

with ¢, .., € k[[Zi41,°** , Td]]
At the next (3 + 1)-th stage, we have

_/\

d: an appropriate diff. operator of degree t < ord (co(f))
such that
(8(ca(f)),ord (ea(f)) —t) € H]™ C DE™)
(8(eo(f)sord (eo(f) — ) ¢ B = H

— 0' > O'J_H.

Mechanism to guarantee

) £ oo or 0 = o) >l

is identical.



Introduction to IFP (11)

Naive candidate for “Cbc”
Naiverc(]Ig_l) =
Gl )
[ (eo(f)s i - a);

(f,0) € D), a € Zag
(co($), 7 - (p — 1));
U{ (f,p% —t) € D (@(H{‘l)p%)) ;b

\ \t€Z>Oapeﬁ_t>0
Technical Requirements

U 4

o “Cbc” should be independent of the choice of H
and reg. sys. of parameters (€1, , T}, X111, 5 Tq)-

o “Cbc” should be an idealistic filtration of i.f.g. type.

Real Construction for “Cbc”

Cpc(]Ig_l) =G [IL {@ (NaiveCpc(Hg_l)) H where

IL: the operator of taking the elements

at the Integral Level

Note|: Description above is at the analytic level.

At the algebraic level 7 See Lecture 5 by Kawanoue.
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Lemma| Cbc(I?™") is independent of the choice of

H and (wla"' s Ly Ll4+19° " ° 7wd)-

o Boundary Maodification
Bd (Comb(ﬂg—1)>
(fxs 1);

7—1
F)\ C Ez’,aged

= G | Comb(IX M U
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Case: invS>"1(P) = invS"1(P;_;)

MAIN POINTS

o Use of “History”
o Use of “Logarithmic Differentiation”

o Adjustment of the notion of LGS

Go back in “history” to year i,5cq

when the value inv=/"1(P) first started;

invS"YP) = invY(P_y)

1
— invSI— (Pipged)

< inVSJ_l ('Pl:aged_l)

Decomposition of the boundary

E'=E_ UE

i,young ) aged
where
Ej,yolung = the collection of
. the exceptional divisors
created after year 7,509
Eza d — Ej_l\EJ .
ge 1 1, young”®
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Notion of LGS adjusted

/

-‘f =) j—1 I?X
FACE 1, young
j—1 . j—1
{ Dpj (L) = ® ;-1 -saturation of [
7,young i,young
.—]_ [ [ [
D -1 ([ )} |y = its restriction to V
L i,young

i,young

Lemma {@Ej_l (]I‘Z_l)} |y is ®-saturated.

@ J ) (I[J 1) surjectlon {@ j1 (]I _1)} |V

i, young 1, young

®-saturated

U U
H Il—ft> HV;an LGS
Definition| H is an LGS of ® ;1 (I ).
i,young
4 .
oy =0 ({@ - (H-z‘l)} |v)
i,young
\ ¢ := codimyy,V
\ O'g,log = oy + cl>0 — (O'V,e + C)eeZZO

Lemma| (Yet to be checked)

.7 _ J J
z,log g;_ 1,log — — 0, 1-
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J ~3 ~3 JJ
(075 5 V3 5 S;)
Set
( . . . .
J J - J - J
O;, = O0jlog — Ti—1log — Ti-1
~3 7—1
w; = oo -1 O i1 (I
t H’Ei,young Ei,young ( ' )

i—1
= (D ) = Spepr i

i,young
{ ~i _ . . j—1
Vi — VH,E‘?_l @Eq—l (]I’L )

7,young z,young

j—1
=vg (D1 (I - -1 A
( Ei,young( i) ZF ACE; young
i ] . j—1
s; = 7 of irred. comp. in E,L-,aged

(passing through P;)

\

where
(D @7)
— inf {ord (co(f) /ai (F.a) € Dyr (7)),
< a € Zxo, f = Y cp(f)H"} |

px = inf {n/a; co(f) divisible by f7,
(fa a’) S @Ej—l (Hg_l)a a € Z>o,

i,young

J= ZCB(f)HB}
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and where
v (D, 7))
E; young

= inf {ord (co(f)) /(P — t);

(Fps =) € Dy (Dyr (7y00).

E; young i,young

< t € Zs0,p® —t >0, f =3 cp(f)H"}
vy = inf {n/(p® — t); co(f) divisible by f},

(f,p? —1) € Dtﬂ ! <®E?—1 (Hg_1)> ;

t € Zso,p® —t >0, f = cp(f)HP}

\

Lemma
J—1 J—1
Mo i1 D i (I &v. i1 D i (I
H E’L ,young Ei,young( v ) H’Ei,young Ei,young( ¢ )

are mdependent of the choice of H (or Hy ).

Therefore, ] & D 1/ are well-defined.
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(I, EY)

— Bd (Comb(ﬂg—l))
Comb(I2 ™)
[ Cbe( )

if (ﬁzaNJ) < (l‘l’z 1”/3 1
:DJ 1 (ﬂﬁ(Comb(]I- )))

E; ,young

if (ﬁ NJ) = (Nz 17Vz 1

— EN\ B

1,aged*®

(17)
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Description of “Cbc” in case (fi/,07) < (f!_,,v7_

1

1

Consider

BlackBox| = ® i1 -saturation of

zyoung

/@,,1 (F~Hu

zyoung

{(ca(f) @ AT HN i - a);
(f;a) € D (Hg_l)va € Z>o,

zyoung

f=>Yce(f)HP} U
{(calF) @k {qTFN -0},
vl - (p? — t));
G| (fip*—t)e D!, (@Eq'—l (H'Z_l)),

zyoung t,young

t S Z>Oapeﬁ — > 07
f=>c(f)H"} U
{(fA® (£2)71,0);

q=1,--- 9TA_17

t,young

\ F, C B} }

r»; the common denominator of )y & v,

/
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IPIL; the operator to take the elements
being at the integral levels as well as

having only integral powers in Q; .

IPIL(|BlackBox|)

. Eliminate ®; by turning it

into the real multiplication

Image

Cbc(]I‘g_l) =D -1 (Image).

1,young

Lemma Cbc(]l;g_l) is independent of the choice of

H (or Hy) and (21, s @1, i1y 5 Tq)-
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MAIN MECHANISM OF INDUCTION

Mechanism to guarantee

7éooor0———>0' >0“7+1-

Take
(fra) €D(I]7),a € Zso
with
ord (co(f)) /a = .
exactly
Case: a - puy € Z>o VA.

In this case, we have

co(#) - {12} " € Ow, p.
and

(co(£) - {(TT AN} ", il - a) =

(co(f) - {(TT M)} " s ord (c@(f) AT

Observe

co(F){TTHN} " = T ocnacpeat bnpm @it -+ 27"
With by, € k[[Tig1, - - ,x4]]-

Note: We take (x;. 1, + ,x4) to contain

{fA; Fy C E'Zyolung}
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At the next (j+1)-th stage, taking the ®-saturation

D(I’), we create a new element in LGS.

. -
= 0"-7>0'Z‘-7+.

Case: I\ (say, \o) s.t. a - pux & Z>op.

In this case, dn € Z- s.t.
171" —
o) - {ITAN ] € Ow,
and
divisible by f, for some n, € Z,,

and that

([eo() - {ATANY ] n - i - a) =

n

(et - {qT#)} | = wora )

\ -

7

divisibley f;\”g
At the next (j+1)-th stage, taking the ®-saturation

D(IV), we create a new element of the form (fie,my)
in LGS.

J J+1
p— g > O .

)

Mechanism to guarantee
Jj+1

i

~3J J
v, ocoor 0 =0, >0

is identical.
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3 Termination in the horizontal direc-

tion (revisited)

(o'z'lvtg) > (U?at%) > e
In fact, we have
(a' tJ 1) >( J+1 t]),

since
(uz, l) # (oo oo) or (0,0)

— o' > (J“7+1
(7!, 7) = (00, 00) or (0,0) & s’ # 0
— ol >l &t >t
(1, 7]) = (o0,00) or (0,0) & s] =0
— End of weaving
with (ag,oo 00, 0) or
(67,0,0,0,T)
except when with (a 0,0,0,®)

1
— Continue weaving 0' > oJJr
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{(o,t)} satisfies the descending chain condition.

p—

In a fixed year 2, weaving of the strand “inv”’ ends

after finitely many years.

Main mechanism of induction on o (and t)
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4 Choice of the center (revisited);

how to end weaving of the strand
Choose C; = Supp(IL;™).

oo, ETLENTY @ E)

s
(o, ", 00,00,0)
Note: When ] = oo, the invariant U] is necessarily

equal to oo, i.e., U] = oo.

( m m;—1
I = DI

Supp(I;™)
; 3)-saturated =

nonsingular.

N\

Nonsingularit
| = o0 onsingularity

Principle
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Note: Even when
invS" P;, .0 (0;" ,0,0,s;% #0)

taged’ taged
|l

|
inv=S""1( ) (o;" ,0,0,8"" = 0)

laged’
and hence when I = © _m; 1 (177 is only
,young
@Emi—l -saturated a priori, we see from the

1,young

(25)

construction that I is ®-saturated with pu = oo.

m; m; m;—1  pm;—1
Supp(ﬂi )J—Ez \ Ez ,aged — Ei,young
by construction
and
m;
Supp(]lz ) C rjF)\CEOagedU UEzagecllF)\

by construction of “Bd”

Su-pp(]I )J— ( i,aged ..U Ez aged) U Emz_l

,young
i

E;
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@ HLE™ (E,E)

(O'ga Oa 09 0)
This should always be the MONOMIAL CASE.

Case:

However, we have the following example.

Example
char(k) = 5
I (z® + f'y,5)
(f%4)
D1 (7)) 5@+ f1y,5) = (F4,4)
El g = {F}, F ={f =0}

( H = {(z* + f*y,5)}
pr = 4 divisible mod H by f? per level

i =0
< vr = 4 divisible mod H by f* per level
7 =0

Say Ezj,;gled = 0.

Then we should be in the MONOMIAL CASE,

since we have (a;;j, ;’I‘Z, ﬁg, S‘Z) = (a;;j, 0,0,0).

(26)
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However, we can NOT take the expected center

Supp(® 51 (E7)|F) ¢ Supp(®,1 (I

i,young i,young
defined by defined by
(z, f) (z, f,y)

Observation|: When > puyx = 1 & ) vy = 1, the

expected center may NOT be included in the support

of the idealistic filtration.

This observation leads us to the classification into

the following two subcases.
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Subcase: ZFAcEj—l py =1

i,young

In this subcase,
weaving of the strand does NOT end

at the j-th stage.

We replace

(af, 0, 0,0) the original j-th unit
with

(67,0,0,0,®) the new j-th unit.
We leave

(I, E?) the original j-th modification

as it is.

From the subcase assumption,

AT AN ) € Dy (7 C I

i,young

—

At the next (j + 1)-th stage,
taking the ®-saturation (when inv=/(P,) < invS/(P;_,)),
we create a new element in LGS

J+1
i []

= 0'“Z>a'
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Note: When invS’(P;) = invS’/(P;_;), we go back
in history to the time when the value inv=/(P;) first
started (i.e., year i,50.q). The new element created
at that time survives to year =.

J+1
i L]

— ol >0
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Subcase: ) px > 1

.Fk(:l?j_l

i,young

This subcase is GENUINE MONOMIAL CASE

via (o, i1, v, s)-method (and we set j = m;).

We introduce the invariant I' = (Fl, FQ, Fg, F4)

where

( ' = —min{n;3(Ay, - , Ap)
with Fy,,--- , F, C E’Z;fio_uilg
X s.t. px, + o0+ py, > 1,
Unx, +o00 oy, > 1,

PiEF)\lm'°°mF)\n}

\

Note: From the subcase assumption
ZFACEf,;(}ung px > 1 and from the general fact

vy > iy VA, it follows that there exists at least

one (Ay, - -+ , A,) satisfying the conditions mentioned

in the definition of I';.



Introductior

/

I's

1 to IFP

= max{p, + -+ px,; I( A, -

. i—1
with FAl, ce ,FAn C E?ZT,r;oung

s.t. py, + -0+ puy, =1,
U, -+ vy, >1,

with Fy,, .-+, Fy, C B0
s.t. px, + -0+ pr, 2 1,

T R SV
P,c F\,N---NF,}
—n =T, pux + -+ py, =2}
= max{ (A, * ,An);
with Fy,, .-+, Fy, C B0
s.t. px, + 0+ pr, 2> 1,

T R SV
P,c F\,N---NF,}
—n =Ty, pux 4+ 4+ py =T

V)\1_|_"'+V>\n:I‘3}

> An)
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We replace

(o,",0,0,0) the original m,;-th unit
with

(0,,0,0,0,T) the new m;-th unit.

We also replace

[ = Bd(Comb(I]%)) = D m1 (1)

1,young

the original m;-th modification

with
mi—l

]I:n’z — O i,young

{(.f)qal)a"' 7(f)\n9 1); (>\17“' 9>‘n) — F4}

the new m,;-th modification.

obvious
D
Supp (CDE'f"i—l (I |z)> =
1,young
C

from the definition of T

where

Supp(I; ")

Z =F\N---NF, with (A,-++,A,) = Iy
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D mi-1 (I 2
’young

;D-saturated & pu = oo

—

nonsingularity proinciple

Supp(L;"*) = Supp (5‘3 mi—1 (I3 )Iz))

i,young

;nonsingular.

Supp (1) LE™ = mz—l \ EmiTL = it

t,aged — i,young

by construction

and

Supp(I;*) C N 1 F)y

0
F CE; dLJ UE’L aged

1,age

by construction of “Bd”

Supp(]I )J— ( 1,aged Jeee U Ez aged) U E, ’yloung

||
E;
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(34)

5 Termination in the vertical direction

(revisited)

Crucial Claim| The strand of invariants “inv

never increases after blowup, i.e.,

inv(P;) < inv(P;_4).

We have yet to check this

Crucial Claim

for the algorithm via (o, i, v, s)-method !



Introduction to IFP (35)

Claim| The strand of invariants “inv

actually strictly decreases after blowup, i.e.,

inv(P;) < inv(P;_q).

Proof of the claim using [Crucial Claim

Observe
(i) P; € Supp(I)) Vj
(i) invSI(P) = invS/(P;_,)

— D Eg,young(ﬂf) =9 Eg,young(ﬂﬁ(ﬂg_l))-
Suppose
inv(P;)) = inv(FP;_q)
Il Il with m; = m,;_.
invS"(P;)  invS"1(P;_q)

Then by (ii) with 7 = m;, we have
D () = Dy ().

i,young 1,young



Introduction to IFP

On the other hand,

Supp (@ B (W”(Hﬁﬂ))) = Supp (7*(I}",)) = 0,

1,young

since

the last (m;-th) modification has

the distinguished feature that

its transformation after blowup has NO support.

But then by (i)
P; € Supp (L") = Supp (CDE i (]Ilnz)) = 0,

i,young

a contradiction !
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Last Claim| The strictly decreasing sequence
inv(Py) > inv(Py) > ---

> inv(P;_;) > inv(P;) > - .-
stops after finitely many years.

Caution No descending chain condition

for the value set of “inv’”’, since
denominators of t and 'y, I'; in ' = (I'y, '3, '3, T'y)

are NOT a priori bounded.

Proof of the last claim

Suppose inductively “inv=’" stabilizes, i.e.,

Fij s.t. inv™ (B) = inv™ (P, Vi > i;.

Then |
D, ()

i,young

— CDE"'I,j,young; (ﬂ-u(]lz_l))

— _ , J
B @Ezq,young éﬂ-u CgEg—l,young (Hz—l))>

TP e (“W?—z))))
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—

Denominators of ﬁg are uniformly bounded

by the number determined by the levels

of the generators of ]Igj.
(Similarly denominators of I'; & I'3 are

uniformly bounded.)

p—

SI*1" stabilizes after finitely many years.

€6
1nv
p—

“inv” stabilizes after finitely many years. Q.E.D.

Note: We can NOT extend “inv” infinitely in the

horizontal direction (i.e., can NOT increase “j

infinitely), since the set {(o0,t)} satisfies the de-

scending chain condition !




