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GOCHUMOKU ONEGAISHIMASU: KANGAROO POINTS �

HERWIG HAUSER

In September 2008, Heisuke Hironaka gave a series of lectures at the Clay Mathematics
Institute explaining his approach to the resolution of singularities of algebraic varieties in
positive characteristic [Hi1]. This was complemented by more detailed lectures delivered
during the workshop on Resolution of Singularities at the Research Institute for Mathematical
Sciences (RIMS) at Kyoto in December 2008. In the course of the lectures, Hironaka relied
on results of the author from an unpublished manuscript written in 2003 [Ha1]. These results
investigate the main obstruction for resolution in positive characteristic – the occurence of
kangaroo points at certain stages of the resolution process of a singular variety. The paper
[Ha1] describes in detail their structure and proposes various approaches how one can try to
profit from this knowledge for the resolution in positive characteristic. Kangaroo points make
their reappearance in [Hi1] under the name of metastatic points.

The present note, which is based on the author’s lecture at RIMS, shall provide a brief
introduction to the theory of kangaroo points. More details can be found in the survey [Ha2].
For the proofs, we refer to [Ha1].

The outset: The key instance in nowadays resolution is the monomialization or principal-
ization of ideals: Transform a given ideal sheaf J on a smooth scheme W by a sequence
of blowups into an ideal J ∗ which is locally principal and generated by one monomial. The
singular subscheme X of W defined by J is thus transformed into a normal crossings divi-
sor. Several extra conditions can be imposed on the resolution (e.e. equivariance, excision,
effectiveness, explicitness, see [EH]). This leads to the notion of a strong resolution of an
ideal or scheme, requiring all these properties to be realized by the sequence of blowups.

All relevant notions of a resolution of a singular scheme (embedded, abstract, weak, ...)
follow by general arguments from the monomialization of ideals (cf. the last section of [EH]).
The proof for the existence of monomialization is usually built on the principle of cartesian
induction. It combines a horizontal descent (mostly given by a decrease in the embedding
dimension, and defined only locally at a given point a of W ) by a vertical induction on
a suitably defined resolution invariant. Denote by subscript “minus” the descent and by
superscript “prime” the transformation under blowup. Both have to be specified explicitly,
and vary from author to author. We write capital letters for the ideal stalks at given points.
One obtains a diagram

W ′ at a′  (W ′)− J ′  (J ′)−

↓ ↓

W at a  W− J  J−

� Jap.: “Have a look please!” MSC-2000: 14B05, 14E15, 12D10.
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where the vertical arrow denotes a blowup of W in a given center Z (which is closed and
regular), J ′ is the total transform (pullback) of J in W ′, and where W−, respectively (W ′)−
denote some regular ambient schemes associated in a natural way to J and J ′ locally at a and
a′. The ideals J− and (J ′)− are known as coefficient ideals of J and J ′ in W− and (W ′)−.
In characteristic zero, W− and (W ′)− are chosen as local regular hypersurfaces of maximal
contact.� In the recent approaches in positive characteristic (where maximal contact fails),
they are either again local hypersurfaces (defined suitably in a new way), or equal to W and
W ′ (in which case the missing decrease of dimension has to be replaced by a “dimensional”
invariant associated to J− and (J ′)− which is smaller than the respective invariant of J and
J ′). The descent to the “minus-setting” can be performed for instance by restriction (as
in characteristic zero), by projection (via elimination as proposed by Bravo-Villamayor), or
by enlargement (of the ideal J , as proposed by Kawanoue-Matsuki). Actually, the involved
ideals are often replaced by more sophisticated objects carrying detailed information (idealistic
filtration, Rees algebras, characteristic algebras, or mobiles). For simplicity, we stick to ideals.

The descent in dimension is only required at points a′ in W ′ where the transform J ′ of J
has not improved. By improvement we mostly understand the drop of local invariants such
as the multiplicity or the order of the ideal at the considered point. Let us call such points
a′ equiconstant points for J . These are the points where the (vertical) induction on the
local invariant fails. The idea then is to measure at these points the improvement of J ′ by a
secondary invariant, typically the order of the ideal (J ′)− at a′ in (W ′)−. The argument only
works if the order of (J ′)− does not exceed the order of J− at a inW−. In characteristic zero,
this can be shown to happen because for a careful choice of the center of blowup Z (which
will locally at a be contained in W−), the ideal (J ′)− equals the controlled transform of the
ideal J− under the blowup (W−)′ of W− along Z (this is a transform in between the total
and weak transform). After factoring from it exceptional components, we obtain a notion of
order of J− which does not increase under blowup. We call this secondary order the shade
of J at a (the precise definition is given below). If it decreased, we are done by induction, if
it remained constant, a further descent in dimension becomes necessary. By exhaustion one
arrives at a stage where the order must decrease (this always happens at least in dimension
1). We may summarize this argument in the cartesian diagram

J ′  (J ′)− = (J−)′

↓ ↓

J  J−

where (J−)′ denotes the controlled transform ofJ−. We may now writeJ ′− for (J−)′ = (J ′)−.
The diagram commutes at all points a′ of W ′ where the order of J ′ has remained constant.
In particular, the descent (W ′)− ofW ′ at a′ coincides with the strict transform (W−)′ ofW−
under the blowup of W along Z. As the center Z is assumed to be contained in W− (locally
at a) (W−)′ equals the blowup of W− along Z.

W ′  (W ′)− = (W−)′

↓ ↓

W  W−

� This means that their transforms under blowup contain all points where the order of J has remained constant.
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We may now write W ′− for (W ′)− = (W−)′. In this argument it is crucial to show that the
invariant in lower dimension does not depend on the choice of the hypersurface W−. Indeed,
again in characteristic zero, the order of J− with respect to a hypersurface W− of maximal
contact is the maximal value of the orders over all choices of W−. It is therefore intrinsic.⊗

By the persistence of maximal contact at equiconstant points,W ′− has again maximal contact
with J ′ at a′. Hence the order of J ′− and the shade of J ′ are well defined at a′.

All this works fine in characteristic zero – up to some “minor” technicalities. One of these
complications is the necessary factorization of the controlled transform into an exceptional
monomial and a remaining ideal. More explicitly, write J− = M− · I− with exceptional
monomial M− (stemming from earlier blowups) and some ideal I−, and similarly for J ′−.
Then I ′− is the weak transform of I− and thus orda′I ′− ≤ ordaI−, by general properties of
blowups. We set shadeaJ = ordaI− and get

(orda′J ′, shadea′J ′) ≤lex (ordaJ, shadeaJ).

We now come to positive characteristic and the main difficulty there. It relies on the observa-
tion that the local hypersurface (W−)′ obtained as blowup ofW− alongZ need no longer have
maximal contact with J ′ at an equiconstant point a′ of W ′. As a consequence, the controlled
transform (J−)′ of J− in (W−)′ may have an order which is not maximal over all possible
choices of hypersurfaces at a′. In this case it is necessary to choose a new hypersurface
U ′ = (W ′)− in W ′ at a′ so as to maximize the order of the associated ideal (J ′)−. In partic-
ular, the ideals (J−)′ and (J ′)− need no longer coincide. As Abhyankar, Cossart and Moh
(and probably others) observed, also their orders may be different: orda′(J ′)− may be larger
than orda′(J−)′ (see [Co, Mo]). This destroys our required inequality orda′(I ′)− ≤ ordaI−.
The descent in dimension has become obsolete.

In the present note, we propose to look more closely at the equiconstant points where
orda′(I ′)− > ordaI−. These are the kangaroo points. A good understanding of their
occurrence is certainly helpful for advancing in characteristic p. Moreover, they serve as a
testing ground for proposed resolution invariants.�

Example: This is the simplest example of a kangaroo point in a resolution process. Consider
the following sequence of three point blowups in characteristic 2,

f0 = x2 + 1 · (y7 + yz4) (oasis point a0), (x, y, z)→ (xy, y, zy),

f1 = x2 + y3 · (y2 + z4), (x, y, z)→ (xz, yz, z),

f2 = x2 + y3z3 · (y2 + z2) (antelope point a2), (x, y, z)→ (xz, yz + z, z),

f3 = x2 + z6 · (y + 1)3((y + 1)2 + 1),

= x2 + z6 · (y5 + y4 + y3 + y2) (kangaroo point a3).

The first two blowups are monomial (the reference point in the exceptional divisor is an origin
of an affine chart) and yield a point a2 at the intersection of the two exceptional components.

⊗ One can also show the independence of the order by Hironaka’s technique of auxiliary blowups on cylinders.
� The characterization of kangaroo points stems from the manuscript [Ha1]. It is very well possible that various aspects

were already known earlier (but possibly never made explicit) by people working in the field. The main issue is

to exploit the precise information on the structure of kangaroo points in order to establish a subsequent resolution

argument.
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they give rise to the monomial factor y3z3 in front of y2 + z2. The point immediately prior
to a kangaroo point is called antelope point. The kangaroo point is a uniquely specified
point a3 of the exceptional divisor of the third blowup. It lies off the transforms of the
exceptional components produced by the first two blowups (see Figure 1). The coordinate
change x→ x+ yz3 at a3 eliminates y2z6 and produces

f3 = x2 + z6 · (y5 + y4 + y3).

The order of f has remained constant equal to 2 throughout. But the shade of f has increased
between a2 and a3. Namely, in y3z3 · (y2 + z2) the monomial y3z3 is exceptional and the
remaining factor y2 + z2 has order 2, whereas in z6 · (y5 + y4 + y3) the exceptional factor is
z6 and the remaining factor y5 + y4 + y3 has order 3.

oldold old

new

new new
a a

a
a0 1 2

3

oasis

antelope

kangaroo

Figure 1: The configuration of kangaroo, antelope and oasis points.

The invariant. We define the first two components of the local resolution invariant at closed
points a.• Moreover, we restrict to hypersurfaces. This suffices to describe the phenomena
we are interested in. For convenience, we take a to be the origin of W = A1+m. Let f be
a polynomial of order o > 0 at 0, generating the ideal J in W . Let V ⊂ W be a regular
hypersurface through 0 in an étale neighborhood of 0 (i.e., V is defined by an element in the
completion ÔW,0 of the local ring at 0). Let x, ym, . . . , y1 be local coordinates in W at 0
(= regular parameter system of ÔW,0) so that V is defined by x = 0 and ÔW,0 ∼= K[[x, y]].
Consider the Taylor expansion of f with respect to x, say

f(x, y) =
∑∞
i=0 ai(y)xi,

with ai ∈ ÔV,0 ∼= K[[y]]. The ideal of ÔV,0 generated by the powers ao!/(o−i)i of the
coefficients ai of f with 0 ≤ i < o is called the coefficient ideal J− = coeffV (f) of f with
respect to V . We say that V has weak maximal contact with f at 0 if V realizes the maximal
value of the order of J− over all choices of hypersurfaces. If the order is unbounded, f equals
a power of a local coordinate, a case which is simple and will be omitted here.

After a sequence of blowups, the coefficient ideal accumulates exceptional monomial factors,
giving rise to a factorization J− = M− · I−. Here, M− is a locally principal ideal supported
by the exceptional components. Its exponents are prescribed by the preceding resolution
process (or, in the language of mobiles of [EH], by the combinatorial handicap D). The
ideal I− represents the portion of J− which is not monomialized yet. In this way, for V a
hypersurface of weak maximal contact, the order of I− at a is well defined and independent
of any choices. We call it the shade of f (or J) at a, denoted by shadeaf . The local resolution
invariant for f (more precisely, its first two components) is then the lexicographic pair

(ordaf, shadeaf).

• In general, the invariant is a whole vector of integers whose components are orders of various ideals.
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This is just one candidate invariant, for alternatives in the case of surfaces see [Hi2], [Ha3]
and [HWZ]. In the case of purely inseparable equations f = xp

e

+ yr · g(y) of order pe at
0 with variables y = (ym, . . . , y1) and exponent vector r ∈ Nm prescribing the exceptional
multiplicities at a = 0, the shade of f is simply the order of g at 0 (up to the constant factor
(pe − 1)! which is usually omitted). Instead of choosing a hypersurface V of weak maximal
contact for f it then suffices to treat yrg(y) modulo pe-th powers, i.e., as an equivalence class
in the quotientK[[y]]/K[[yp

e

]].	 Most authors consider at this stage only purely inseparable
equations, whereas the paper [Ha1] treats arbitrary hypersurfaces (of order p).

In his paper on local uniformization, Moh investigates the possible increase of the shade of f
at equiconstant points [Mo]. Let (W ′, a′)→ (W,a) be a local blowup with smooth center Z
contained in the locus of order pe of f = xp

e

+ yrg(y) and transversal to the already existing
exceptional locus yr = 0. Assume that a′ is an equiconstant point for f at a and let f ′ denote
the transform of f at a′. Then Moh shows the inequality4

shadea′f ′ ≤ shadeaf + pe−1.

In case e = 1, the inequality reads shadea′f ′ ≤ shadeaf + 1. This allows just a small
increase of the shade, but is sufficient to destroy any straightforward induction. Our objective
will be to understand the situations where the increase actually happens.

Kangaroo points: These are the points a′ above a where orda′f ′ = ordaf and shadea′f ′ >
shadeaf . The point a prior to a kangaroo point a′ is the antelope point. We shall work here
only at closed points and with formal power series. Moreover, we confine to point blowups,
since these entail the most delicate problems. Most of the concepts and results go through for
more general situations, cf. [Ha1]. For an integral vector r ∈ Nm and a number c ∈ N, let
φc(r) denote the number of components of r which are not divisible by c,

φc(r) = #{i ≤ m, ri 6≡ 0 mod c}.

Define rc = (rcm, . . . , r
c
1) as the vector of the residues 0 ≤ rci < c of the components of r

modulo c, and let |r| = rm + . . .+ r1.

The following result was proven in [Ha1] and is the one cited by Hironaka in his lectures. It
characterizes completely the shape of (the tangent cone of) polynomials at an antelope point
preceding a kangaroo point in a sequence of blowups. The assertions extend naturally to non
purely inseparable equations of order p. For these one has to take the correct definition of
coefficient ideal as above. Also, higher dimensional centers are allowed.

Theorem. Let (W ′, a′) → (W,a) be a local point blowup of W = A1+m with center
Z = {a} the origin. Let be given local coordinates (x, ym, . . . , y1) at a so that f(x, y) =
xp + yr · g(y) ∈ ÔW,a has order p and shadeaf = ordag at a with exceptional divisor
yr = 0. Let f ′ be the strict transform of f at a′. Then, for a′ to be a kangaroo point
for f , the following conditions must hold at a:

(1) The order |r|+ ordag of yrg(y) is a multiple of p.
(2) The exceptional multiplicities ri at a satisfy

rpm + . . .+ rp1 ≤ (φp(r)− 1) · p.

	 Hironaka calls the passage to equivalence classes cleaning, Włodarczyk virtual ideals. Accordingly, the shade is
called residual order by the first and virtual order by the second.

4 Abhyankar informed the author that he had been aware of the inequality.
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(3) The point a′ is determined by the expansion of f at a. It lies on none of the strict
transforms of the exceptional components yi = 0 for which ri is not a multiple of p.
(4) The tangent cone of g equals, up to linear coordinate changes and multiplication
by p-th powers, a specific homogeneous polynomial, called oblique, which is unique for
each choice of p, r and degree.⊕

For the general statement of the characterization of kangaroo points and the proof of the
various assertions, we refer to [Ha1, Thm. 1, sec. 5, and Thm. 2, sec. 12].

The necessity of condition (1) is easy to see and already appears in [Mo]. The arithmetic
inequality in condition (2) is related to counting the number of p-multiples in convex polytopes
and their r-translates in Rm. It implies that at least two exponents ri must be prime to p.
For surfaces (m = 2), condition (2) reads r2, r1 6≡ 0 mod p and r2 + r1 ≤ p. Condition (3)
implies that the reference point a has to jump off all exceptional components with ri 6≡ 0
mod p in order to arrive at a kangaroo point. So it has to leave at least two exceptional
components. 6=

The uniqueness assertion in condition (4) will be explained for the purely separable case
in the section on oblique polynomials below. If f is not purely inseparable, there is an
analogous description as in (4) characterizing completely the weighted tangent cone of f .±

The uniqueness proof becomes much more involved, cf. [Ha1, Ha2]. The assertion of (4) can
be interpreted as a “modulo p-th power version” of the Bernstein-Koushnirenko Theorem on
the number of solutions of systems of polynomial equations (which can be computed as the
mixed volume of the associated polytopes).

If g is homogeneous (or if f is weighted homogeneous), the increase of the shade is not a
serious obstacle since the coefficient ideal of f at the kangaroo point has become a monomial
ideal. The intricacy of the resolution in positive characteristic occurs when g is not homoge-
neous. It is then necessary to control the higher order terms of g, and this seems to be delicate.
Aside the surface case, it is not clear how to define local invariants for f which do not increase
under blowup and thus allow an induction argument. For surfaces, various invariants built
from modifications of the pair (ordaf, shadeaf) are possible. They are described in [HWZ].

From a more distanced perspective, the increase of the shade under certain blowups suggests
to change radically our approach to resolution. Orders of ideals and especially the concept of
shade as the order of a coefficient ideal just seem to be too simple-minded to catch accurately
the complexity of singularities in positive charateristic (though they might work after all
by applying suitable extra-arguments). One possibility consists in replacing blowups by
more sophisticated modifications (e.g., weighted blowups, higher Nash-modifications or a
generalization of normalization) or to look out for substantially new invariants. Attempts
in this latter direction have been made by Giraud (the order ν of the jacobian ideal of a
polynomial f , cf. Cossart’s lecture), Youssin, or Hauser. Valuable proposals which really
work are still to await.

⊕ The possibility of multiplication with p-th powers was not properly indicated in the original version of [Ha1] (though

it was proven there).
6= This fact seems to be kind of folklore in the field. It was apparently observed by several people, among them Cossart,

Spivakovsky and F. Cano.
± If f is of order c at 0, write it in Weierstrass form f = xc +

∑c−1
i=0 ai(y)xi, set e = mini c

c−i · ord ai
with e ≥ c and then take the tangent cone of f with respect to the weight vector (e/c, 1, . . . , 1), see [Ha1].
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Oblique polynomials: We now describe the tangent cone of the polynomials g appearing in
f = xp + yrg(y) at antelope points preceding a kangaroo point. In [Ha1], the uniqueness
assertion (4) in the theorem above was established for the tangent cone of arbitrary hypersur-
faces of order p, and oblique polynomials were characterized in various specific situations. In
[Hi1], a general description of oblique polynomials is given, and Schicho found independently
a similar formula. Below we combine all viewpoints to a conjoint presentation.

Fix variables y = (ym, . . . , y1). Set ` = m − 1, and let p be the characteristic of the
ground field K. A non-zero polynomial P = yrg(y) with r ∈ Nm and g homogeneous of
degree k is called oblique with parameters p, r and k if P has no non-trivial p-th power
polynomial factor and if there is a vector t = (0, t`, . . . , t1) ∈ (K∗)m so that the polynomial
P+(y) = (y + tym)rg(y + tym) has, after deleting all p-th power monomials from it, order
k+ 1 with respect to the variables y`, . . . , y1. Without loss of generality, the vector t can and
will be taken equal to (0, 1, . . . , 1). We shall write ordpzP

+ to denote the order of P+ with
respect to z = (y`, . . . , y1) modulo p-th powers.

Example. Take m = 2, p = 2 and P (y) = y2y1(y2
2 + y2

1) with k = 2. Then P+(y) =
P (y2, y1 + y2) = y2y

2
1(y1 + y2) has modulo squares order 3 with respect to y1.

It is checked by computation that the condition ordpzP
+ ≥ k+1 onP+ is a prerequisite for the

occurence of a kangaroo point as in the theorem. The result of Moh implies ordpzP
+ ≤ k+1,

so that equality must hold. Condition (4) of the theorem tells us that there is, up to addition
of p-th powers, at most one oblique polynomial for each choice of the parameters p, r and
k. In order that P is indeed oblique it is then also necessary that the degree of P is a multiple
of p and that r satisfies rpm + . . .+ rp1 ≤ (φp(r)− 1) · p (again by the theorem).

The following trick for characterizing oblique polynomials appears in [Ha1] for surfaces
and is extended in [Hi1] to arbitrary dimension.� We dehomogenize P with respect to ym.
This clearly preserves p-th powers. Moreover, when applied to monomials of total degree
divisible by p (as is the case for the monomials of the expansion of P ), the dehomogenization
creates no new p-th powers. It is thus an “authentic” transformation in our context, i.e., the
characterization of oblique polynomials can be transcribed entirely to the dehomogenized
situation. Setting ym = 1 and z = (y`, . . . , y1) we get Q(z) = P (1, z) = zs · h(z) with s =
(r`, . . . , r1) ∈ N` and h(z) = g(1, z) a polynomial of degree≤ k. The translated polynomial
is Q+(z) = Q(z + I) = (z + I)s · h(z + I), where I = (1, . . . , 1) ∈ N`. The condition
ordpzP

+ ≥ k+1 now reads ordpzQ
+ ≥ k+1 or, equivalently,Q+ ∈ 〈z`, . . . , z1〉k+1+K[zp].

Let us write this as

(z + I)s · h(z + I)− v(z)p ∈ 〈z`, . . . , z1〉k+1

for some polynomial v ∈ K[z]. As h has degree ≤ k, the polynomial v cannot be zero.
In addition, we see that the condition ordpzQ

+ ≥ k + 1 is stable under multiplication with
homogeneous p-th power polynomials w(z), in the sense that ordpz (wp ·Q+) ≥ k + 1 + p ·
degw. Using that (z + I)s is invertible in the completion K[[z]] we get

h(z + I) = b(z + I)−s · v(z)pck,

where bu(z)ck denotes the k-jet (= expansion up to degree k) of a formal power series
u(z). From Moh’s inequality we know that (z + I)s · h(z + I) − v(z)p cannot belong to
〈z`, . . . , z1〉k+2. Therefore, in case that v(z) is a constant, the homogeneous form of degree

� We are indebted to R. Blanco, D. Wagner and E. Faber for computing several significative examples.
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k+ 1 in (z+ I)−s must be non-zero. This form equals
∑
α∈N`,|α|=k+1

(−s
α

)
zα. We conclude

that if all
(−s
α

)
with |α| = k + 1 are zero in K, then v was not a constant.∂ Inverting the

translation τ(z) = z + I we get the following formula for the dehomogenized tangent cone
at antelope points preceding kangaroo points,

zs · h(z) = zs · τ -1{b(z + I)−s · v(z)pck}.

The homogenization of this polynomial with respect to ym followed by the multiplication
with yrm

m then yields the actual oblique polynomial P (y) = yrg(y).

Example. In the example P (y) = y3
2y

3
1(y2

2 + y2
1) from the beginning we have characteristic

p = 2, exponents r2 = r1 = 3 and degree k = 2. Therefore ` = 1 and s = 3, which yields a
binomial coefficient

(−3
α

)
=
(−3

3

)
= −10 equal to 0 in K. Indeed, P has as non-monomial

factor g(y) the square (y2 + y1)2. In the example P (y) = y2y1(y2
2 + y2

1) from above with
r2 = r1 = s = 1, the polynomial g is again a square, even though

(−s
α

)
=
(−1

3

)
= −1 is

non-zero in K.

Surfaces: In the surface case, there are several ways to overcome (or avoid) the obstruction
produced by the appearance of kangaroo points. The first proof of surface resolution in
positive characteristic is due to Abhyankar, using commutative algebra and field theory [Ab].
Resolution invariants for surfaces then appear, at least implicitly, in his later work on resolution
of three-folds. In [Hi2], Hironaka proposes an explicit invariant for the embedded resolution
of surfaces in three-space (see [Ha3] for its concise definition). It is not clear how to extend
this invariant to higher dimensions.

In [Ha1], it is shown for surfaces that during the blowups prior to the jump at a kangaroo
point the shade must have decreased at least by 2 (with one minor exception) and thus makes
up for the later increase at the kangaroo point. To be more precise, given a sequence of
point blowups in a three dimensional ambient space for which the subsequent centers are
equiconstant points for some f , call oasis point the last point a◦ below the antelope point a
where none of the exceptional components through a has appeared yet. The following is then
a nice exercise:

The shade of f drops between the oasis point a◦ and the antelope point a of a kangaroo
point a′ at least to the integer part of its half,

shadeaf ≤ b 12 · shadea◦f◦c.

In the purely inseparable case of an equation of order equal to the characteristic, this decrease
thus dominates the later increase of the shade by 1 except for the case shadea◦f◦ = 2 which
is easy to handle separately and will be left to the reader. It seems challenging to establish a
similar statement for singular three-folds in four-space.

In [HWZ], we proceed somewhat differently by considering also blowups after the occurence
of a kangaroo point. A detailed analysis shows that when taking three blowups together (the
one between the antelope and the kangaroo point, and two more afterwards), the shade always
either decreases in total, or, if it remains constant, an auxiliary secondary shade drops. This
shade can again be interpreted as the order of a suitable coefficient ideal (now in just one
variable), made coordinate independent by maximizing it over all choices of hypersurfaces
inside the chosen hypersurface.

∂ The converse need not hold, see the example.
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The cute thing is that one can subtract, following an idea of Dominik Zeillinger [Ze] which was
made precise and worked out by Dominique Wagner, a correction term from the shade which
eliminates the increases without creating new increases at other blowups. This correction
term, called the bonus, is defined in a subtle way according to the internal structure of the
defining equation. It is mostly zero, takes at kangaroo points a value between 1 and 2, and in
certain well defined situations a value between 1/2 and 1.

This bonus allows to define an invariant – a triple consisting of the order, the modified shade
and the secondary shade – which now drops lexicographically after each blowup. The bonus
is defined with respect to a local flag. Flags break symmetries and are stable under blowup
(in a precise sense) and thus allow to define the bonus at any stage of the resolution process.
We refer to [HWZ] for the details, as well as for the definition of an alternative invariant, the
height, which profits much more from the flag than the shade and allows a simpler definition
of the bonus. The invariant built from the height yields a quite systematic induction argument
which may serve as a testing ground for the embedded resolution of singular three-folds.
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