Topology from the Differentiable Viewpoint

Exercise 1. s ’
Suppose that X is a subset of R® and Z is a subset of X. Show that
the restriction of any smooth map on X to Z is a smooth map on Z.

Exercise 2.

The map f: R — R, x — z° is a smooth bijective map between smooth
manifolds and its inverse f~! is continuous. However, show that f is
not a diffeomorphism. '
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Exercise 3.

Suppose that f: X — Y is a diffeomorphism of differentiable manifolds.
Show that the derivative df, is an isomorphism of the tangent spaces
ToX and Ty Y for all z € X.

Exercise 4. ‘
Prove that R* and R’ are not diffeomorphic if k # [.
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