An Introduction to Error Correcting Codes

Exercise 1.

Is the following binary code of length 4 linear?

$$C = \left\{ \begin{array}{l} (0,0,0,0), (1,1,0,0), (1,0,1,0), (1,0,0,1), \\ (0,1,1,0), (0,1,0,1), (0,0,1,1), (1,1,1,1) \end{array} \right\}$$

What is the minimal Hamming distance of C?

Exercise 2.

Let C be the linear binary code with generating matrix

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

Determine a parity check matrix and the minimal Hamming distance of C.

Exercise 3.

Let C be a linear binary (n, k, d) code. Prove the following bound for the minimal Hamming distance d, known as the *Plotkin bound*

$$d \leq \frac{n \cdot 2^{k-1}}{2^k - 1}.$$

Hint. Estimate the sum of Hamming weights $\sum w(c)$ over all code words $c \in C$ in two different ways. First show that at most 2^{k-1} code words in C may have a non-zero ith entry for any i and conclude that $\sum w(c)$ is at most $n \cdot 2^{k-1}$. On the other hand, the fact that $w(c) \geq d$ for any $c \in C \setminus \{0\}$ gives a lower bound for $\sum w(c)$.

An Introduction to Error Correcting Codes

(English-Japanese Dictionary)

channel 伝送路 code 符号

code length 符号語の長さ

code word符号語decode復号dimension次元encode符号化encryption暗号化finite field有限体

forward error correction 前方誤り訂正 Hamming weight ハミング重み

linear code線型符号linear dependent線型従属linear independent線型独立

linear subspace 線型部分空間

matrix 行列

metric 距離函数

minimum distance decoding 最小距離復号

minimal Hamming distance 最小ハミング距離

noice ノイズ

rate 割合

standard basis 標準基底

syndrome decoding シンドローム復号

systematic 系統的

vector space ベクトル空間