The Basel Problem and the Riemann Hypothesis (Answers)

Exercise 1. For n = 1, 2, 3, ... denote the *n*th partial sum by S_n , i.e.

$$S_n = \sum_{k=1}^n \frac{1}{2^{k-1} \cdot k^2}.$$

Then, we compute with a calculator ...

S_1	=	1	S_9	=	1.1644475
S_2	=	1.125	S_{10}	=	1.1644670
S_3	=	$1.1527778\ldots$	S_{11}	=	$1.1644751\ldots$
S_4	=	1.1605903	S_{12}	=	1.1644785
S_5	=	1.1630903	S_{13}	=	1.1644799
S_6	=	1.1639583	S_{14}	=	1.1644806
S_7	=	$1.1642772\ldots$	S_{15}	=	1.1644808
S_8	=	1.1643993	S_{16}	=	1.1644810

So for S_{16} we get the first six digits of S_{∞} as Euler computed. We conclude that Euler calculated at least the first 16 terms, or did he have another secret method?

Exercise 2. Comparing the coefficient of x^5 in the Taylor expansion of the sine, which is 1/120, with the corresponding coefficient in Euler's product expansion gives

$$\frac{1}{\pi^4} \cdot \sum_{n=1}^{\infty} \sum_{m=n+1}^{\infty} \frac{1}{n^2 m^2} = \frac{1}{120}.$$

The double sum on the left hand side runs over all positive integers n and m with the restriction n < m. If we sum over all pair of positive integers without this restriction instead, we obtain the following formula

$$\left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right) \cdot \left(\sum_{m=1}^{\infty} \frac{1}{m^2}\right) = 2 \cdot \sum_{n=1}^{\infty} \sum_{m=n+1}^{\infty} \frac{1}{n^2 m^2} + \sum_{n=1}^{\infty} \frac{1}{n^4}.$$

Now, after inserting this result into the previous equation and using Euler's solution to the Basel problem, we obtain the desired formula

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \left(\frac{\pi^2}{6}\right)^2 - \frac{\pi^4}{60} = \frac{\pi^4}{90}.$$