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ABSTRACT

The Geometry of Interaction (GoI) framework, introduced by Girard, provides se-
mantics of linear logic proofs originally, and of functional programs as well via the
Curry-Howard correspondence. Notably the obtained program semantics—what we shall
call “GoI semantics”—captures dynamics of program execution while the semantics is
denotational and compositional. This feature of GoI semantics leads to its executable
representations and hence its practical applications, e.g. Mackie’s compilation technique
and Ghica’s high-level synthesis technique.

One of theoretical challenges in GoI semantics is accommodation of computational
effects such as (probabilistic) nondeterminism, exception and local/global states. For this
challenge the memoryful Geometry of Interaction (mGoI) framework was developed by
Hoshino, Muroya and Hasuo. It accommodates a class of computational effects, namely
algebraic effects studied by Plotkin and Power, that includes (probabilistic) nondeter-
minism, exception and global states. The mGoI framework provides the GoI semantics
represented by transducers that are “effectful” extensions of stream transducers or Mealy
machines.

The current work is a theoretical extension of the mGoI framework to accommodate
recursion, that is lacking in the original framework. We first extend the GoI semantics,
provided by the original mGoI framework, in two styles that we call the Girard and
Mackie styles. We then show the coincidence of these two styles and prove adequacy of
the extended GoI semantics with respect to Plotkin and Power’s operational semantics.

論文要旨

関数型プログラムに対する意味論のひとつを与える相互作用の幾何 (GoI)は、線形論理

の証明に対する意味論を与えるGirardによる枠組みをCurry-Howard対応を用いて応用し

たものである。このGoIが与えるプログラム意味論 (ここではGoI意味論と呼ぶことにす

る)には、表示的・要素還元的な意味論でありながらプログラム実行の動的な性質を捉えて

いるという特徴がある。この特徴を活かし GoI意味論に実行可能な表現を与えることで、

Mackieのコンパイル技術やGhicaの高位合成技術といった実用的な応用が生まれている。

GoI意味論において理論的な難しさを持つもののひとつに、(確率的)非決定性、例外、局

所/大域変数といった計算副作用がある。この計算副作用に対処するために星野、室屋、蓮

尾が考案したのが記憶付き相互作用の幾何 (mGoI)である。mGoIでは Plotkinと Power

によって提唱された、(確率的) 非決定性、例外、局所変数などからなる代数的副作用と呼

ばれる計算副作用のクラスを扱うことができる。またmGoIが与えるGoI意味論は、ミー

リーマシンの計算副作用への拡張ともいえるトランスデューサによって表現される。

これまでmGoIでは扱えなかった再帰を扱うために、この論文ではmGoIの理論的な拡

張を行う。mGoIの与える GoI意味論に対して、まず Girard様式・Mackie様式という 2

通りの拡張を与える。それら 2様式の一致を示したのち、得られたGoI意味論の妥当性を

Plotkinと Powerの操作的意味論に対して証明する。
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Chapter 1

Introduction

1.1 Geometry of Interaction

Girard’s Geometry of Interaction (GoI) framework [11] originally provides seman-
tics of linear logic proofs, and can also provide semantics of functional programs
via the Curry-Howard correspondence of proofs and programs. Given a program,
the GoI framework calculates its “execution path” that is invariant under β-
reductions. They are precisely given as elements of a C∗-algebra (or a dynamic
algebra), and can be understood as “valid paths” on the type derivation trees of
programs or as sequences of interactions between components of programs.

Several program semantics are proposed by exploiting the evaluation paths.
One is graph rewriting semantics [13], in which programs are translated to graphs
that intuitively represents the structure of type derivation trees, and reduction
of graphs respects execution paths. Another is token machine semantics [24, 4],
in which programs are translated to abstract machines—called token machines—
that directly calculates execution paths. A token machine can be expressed by a
graph, and its execution can be depicted using a token moving around the graph
and updating its data. These program semantics capture dynamics of program
evaluation in some sense. In particular function application is interpreted as
interactions of a function and its arguments in token machine semantics.

Since token machine semantics gives “executable” interpretation of programs,
it is exploited to obtain compilation techniques of functional programs. For exam-
ple Mackie gives in [24] a compilation technique of PCF by implementing token
machines in assembly language, and Ghica et al. in their series of work [6, 7, 8, 10]
gives a hardware synthesis technique of functional programs by directly imple-
menting token machines on hardware. Compilation techniques extracted from
token machine semantics can be defined compositionally and their correctness is
guaranteed by their definition, because token machine semantics is denotational.

Token machine semantics has not only practical applications but also the
categorical formalization. Abramsky, Haghverdi and Scott categorically formal-
izes GoI, in particular token machine semantics, in [1]. They namely introduces
the notion of GoI situation as an categorical axiomatization of token machines
together with constructions and axioms of them, and shows how a GoI situa-
tion yields a model of untyped λ-calculus. This categorical formalization of GoI,
that we shall call categorical GoI, enables us to give variations of token machine
semantics, in which the notion of token machine is variously extended, in a uni-
form way. For example Hasuo and Hoshino proposes token machine semantics
of quantum computation in [16], with equipping token machines with “quantum
branching.”
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1.2 Memoryful Geometry of Interaction

Computational effects are characteristics of computer programs such that (prob-
abilistic) nondeterminism, exception, local/global states, I/O and so on. While
they are well accommodated and utilized in practical programming languages, it
is well known that we need some additional mechanism to give their denotational
semantics. There have been proposed several categorical approaches to model
computational effects, in particular the monadic approach by Moggi [25] and the
algebraic approach by Plotkin and Power [30]. These categorical approaches en-
joy genericity, that is, they enable us to model various computational effects in a
uniform way.

The memoryful Geometry of Interaction (mGoI) framework, developed by
Hoshino, Muroya and Hasuo in [18], provides token machine semantics of effect-
ful computations. It combines categorical GoI with Plotkin and Power’s algebraic
approach to categorically model computational effects, and therefore can accom-
modate algebraic effects in a uniform way. Algebraic effects are computational
effects that can be modeled by Plotkin and Power’s approach, and they are gen-
erated only by operations specified by an algebraic signature. They include for
example (probabilistic) nondeterminism, exception, global states and I/O.

Token machines in the mGoI framework are not only “effectful” but also
“memoryful.” Hasuo and Hoshino suggest in [16] that “effectful” token machines
can be used to give token machine semantics of effectful computations, however
they observe difficulty in controlling generation of effects. The mGoI framework
equips “effectful” token machines with internal states (or “memories”) so that
they can control generation of effects. The resulting token machines are precisely
called transducers.

We explain how transducers utilize their internal states using an example. Let

P ≡ (λx. x+ x) choose(0, 1)

be a λ-term with the nondeterministic choice operation choose. It is translated in
the mGoI framework to a transducer LPM that behaves nondeterministically. Ex-
ecution of the transducer can be essentially understood as the following sequence
of interactions between two transducers Lλx. x+ xM and Lchoose(0, 1)M. The for-
mer transducer is “memoryless,” and the latter has the state space {∗, L,R} with
the initial state ∗.

1. Lλx. x+xM requires output of Lchoose(0, 1)M as the value of the left argument
x.

2. Lchoose(0, 1)M makes a nondeterministic choice. According to the choice,
it changes its internal state from ∗ to either L or R, and outputs either 0 or
1.

3. Lλx. x+ xM requires output of Lchoose(0, 1)M as the value of the right argu-
ment x.

4. Lchoose(0, 1)M consults its internal states, and outputs 0 if the state is L
and 1 if the state is R, without making any nondeterministic choice.

5. Lλx. x+xM outputs the sum of the first and second output of Lchoose(0, 1)M.
In this way the transducer LPM outputs either 0 or 1, that corresponds to the result
of call-by-value evaluation of the term P. Because of the “call-by-name” nature of
GoI, the transducer Lλx. x+ xM requires output of the transducer Lchoose(0, 1)M
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as many times as the variable x occurs in the subterm x + x. Therefore if we
adopt the call-by-value evaluation strategy, we need to prevent the transducerLchoose(0, 1)M from making nondeterministic choices every time its output is
required. The transducer utilizes its internal state to memorize the result of its
choice and avoid making another choice.

Note that we need to control effectful behavior of transducers even if we do
not adopt the call-by-value evaluation strategy. For example in the translation
of the λ-term

choose(λx. x, λx. x+ x) 1 ,

we need to make sure the transducer Lchoose(λx. x, λx. x + x)M behaves consis-
tently as either Lλx. xM or Lλx. x + xM. The consistent behavior is ensured in the
mGoI framework by utilizing internal states.

Our final remark on the mGoI framework is that it exploits a coalgebraic com-
ponent calculus based on [2, 17]. The mGoI framework provides token machine
semantics of effectful computations, namely computations with algebraic effects,
in which effectful λ-terms are translated to transducers. The translation is de-
fined by means of a coalgebraic component calculus that gives a set of operators
on coalgebraic components, namely transducers.

1.3 Contributions

The current work extends the mGoI framework to accommodate recursion that is
practically important in functional programming but lacking in the mGoI frame-
work. Our framework provides token machine semantics of effectful computations
with recursion, inheriting the features of the mGoI framework reviewed in the
last section. Namely in our framework, algebraic effects are accommodated in a
uniform way by exploiting category theory, and effectful λ-terms, possibly with
recursion, are translated to transducers by means of a coalgebraic component
calculus.

To translate recursion by means of a coalgebraic component calculus, we ex-
tend the component calculus developed in the mGoI framework by introducing
two styles of “fixed point” operators on transducers. They are namely the Girard
style and Mackie style fixed point operators, and defined by following existing
approaches to accommodate recursion in GoI. The Girard style fixed point oper-
ator enables us to interpret recursion as a limit of finite approximations, as much
like Girard’s domain-theoretic approach in [12]. The Mackie style fixed point
operator enables us to translate recursion by adding “self-loops” to transducers,
following Mackie’s approach in [24] to give token machine semantics for recursion
in the implementable way.

One of our main contributions is to show the coincidence of these two styles
of fixed point operators. Thanks to this coincidence result we can enjoy useful
features of both two styles in translating recursion. The domain-theoretic proper-
ties of the Girard style fixed point operator are exploited to obtain the adequacy
result, while the Mackie style fixed point operator gives simpler, and more easily
implementable, translation of recursion.

The other of our main contributions is to prove adequacy of our translation of
effectful λ-terms to transducers. Our adequacy result is with respect to Plotkin
and Power’s operational semantics given in [29].

The current work is based on the joint work with Naohiko Hoshino and Ichiro
Hasuo in [26].
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Chapter 2

Terms with Algebraic Effects

2.1 Syntax and Operational Semantics of Target Language

In this section we give syntax and operational semantics of our target language
LΣ, which are slight adaptations of those presented by Plotkin and Power in
[29]. The language LΣ is an extension of Moggi’s (call-by-value) computational
λ-calculus [25] by operations that generate computational effects called algebraic
effects, by arithmetic primitives and additionally by recursion. Main differences
between our language and the Plotkin and Power’s one are generalization of the
base type bool to coproduct types τ+σ and introduction of the binary summation
+ as an arithmetic primitive.

2.1.1 Target Language LΣ

Our target language LΣ is parameterized by an algebraic signature Σ that consists
of operations op, each of which is accompanied by its arity ar(op). All arities are
restricted to be finite for simplicity, although infinite arities can be accommodated
in our framework straightforwardly and their syntactical account is discussed in
[30]. For an operation op ∈ Σ we often write op+ if its arity is positive and op0 if
its arity is zero. An algebraic signature Σ determines which effectful computation
the language LΣ is for, by specifying operations that generate effects.

We give examples of algebraic signatures below and discuss what signatures
can be used in our framework later.

Example 2.1.1. Here are our leading examples of algebraic signatures taken
from [30].

• The signature Σexcept = {raisee | e ∈ E} is for exceptions where E is a set
that specifies possible exceptions. Each nullary operation raisee raises an
exception e ∈ E.

• The signature Σnondet = {choose} is for nondeterminism. The binary oper-
ation choose performs a nondeterministic choice, i.e. either its left argument
or its right argument is nondeterministically chosen and evaluated.

• The signature Σprob = {choosep | p ∈ [0, 1]} is for probabilistic choice.
For each p ∈ [0, 1], the binary operation choosep performs a probabilistic
choice in which its left argument is evaluated with probability p and its
right argument is with probability 1− p.

• The signature Σglstate = {lookupℓ | ℓ ∈ Loc} ∪ {updateℓ,v | ℓ ∈ Loc, v ∈
Val} is for actions on global states, where a set Loc specifies locations of
global states and a finite set Val specifies stored values. Each |Val |-ary
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operation lookupℓ evaluates one of its arguments according to a stored value
of the global state of location ℓ ∈ Loc. The unary operation updateℓ,v, for
each ℓ ∈ Loc and v ∈ Val , first store the value v to the global state of
location ℓ and then evaluates its (unique) argument.

Types τ and terms M of the language LΣ are defined by the following BNF’s:

τ ::= unit | nat | τ → τ | τ × τ | τ + τ

M ::= x ∈ Var | λx : σ. M | M M | rec(f : σ → τ, x : σ). M

| op+(M1, . . . , Mar(op)) | op0() | ∗ | fst(M) | snd(M) | ⟨M, M⟩
| inlτ,σ(M) | inrτ,σ(M) | case(M, x. M, y. M) | n ∈ N | M+ M

where Var is a set of variables, N is the set of natural numbers and op ∈ Σ is
an operation. In addition to ordinal λ-calculus the language LΣ accommodates
recursion, algebraic effects via operations in Σ, pairs, pattern matching and arith-
metic. As usual, substitution M[N/x] is inductively defined and a term M is called
closed if it has no free variables.

Typing rules are defined as below, where Γ denotes a finite list x1 : τ1, . . . , xm :
τm of some length m ∈ N.

Γ ⊢ xi : τi
Γ, x : σ ⊢ M : τ

Γ ⊢ λx : σ. M : σ → τ
Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ M N : τ

Γ, f : σ → τ, x : σ ⊢ M : τ

Γ ⊢ rec(f : σ → τ, x : σ). M : σ → τ

Γ ⊢ Mi : τ (i = 1, . . . , ar(op))

Γ ⊢ op+(M1, . . . , Mar(op)) : τ Γ ⊢ op0() : τ

Γ ⊢ ∗ : unit
Γ ⊢ M : τ × σ
Γ ⊢ fst(M) : τ

Γ ⊢ M : τ × σ
Γ ⊢ snd(M) : σ

Γ ⊢ M : τ Γ ⊢ N : σ
Γ ⊢ ⟨M, N⟩ : τ × σ

Γ ⊢ M : τ
Γ ⊢ inlτ,σ(M) : τ + σ

Γ ⊢ M : σ
Γ ⊢ inrτ,σ(M) : τ + σ

Γ ⊢ M : τ + τ ′ Γ, x : τ ⊢ N : σ Γ, x′ : τ ′ ⊢ N′ : σ
Γ ⊢ case(M, x. N, x′. N′) : σ

Γ ⊢ n : nat
Γ ⊢ M : nat Γ ⊢ N : nat

Γ ⊢ M+ N : nat

All arguments of an operation op+ are required to have the same type and a
term op0() can be arbitrarily typed. All other rules are usual. A term M is called
well-typed if there exists a derivable type judgement Γ ⊢ M : τ for some list Γ and
some type τ , and we restrict all terms to be well-typed.

2.1.2 Operational Semantics

In [29] Plotkin and Power define two kinds of operational semantics of their
language, namely the small step and the medium step operational semantics, and
additionally the notion of effect value aiming at big step operational semantics.
We adapt their definitions for our language LΣ.

We begin with defining values V, evaluation contexts E and redexes R by the
following BNF’s.

V ::= x ∈ Var | λx : σ. M | ∗ | ⟨V, V⟩ | inlτ,σ(V) | inrτ,σ(V) | n ∈ N
E ::= [−] | E M | V E | fst(E) | snd(E) | ⟨E, M⟩ | ⟨V, E⟩
| inlτ,σ(E) | inrτ,σ(E) | case(E, x. M, y. M) | E+ M | V+ E

R ::= (λx : σ. M) V | rec(f : σ → τ, x : σ). M

| op+(M1, . . . , Mar(op)) | fst(⟨V, V⟩) | snd(⟨V, V⟩)
| case(inlτ,σ(V), x. M, y. M) | case(inrτ,σ(V), x. M, y. M) | V+ V

5



Any closed term M can be uniquely decomposed using these notions if it is not a
value. Precisely it satisfies just one of the following.

• M ≡ V for a unique value V

• M ≡ E[R] for a unique evaluation context E and a unique redex R

• M ≡ E[op0()] for a unique evaluation context E and a unique nullary oper-
ation op0 ∈ Σ

For closed redexes, two kinds of transition relations are defined as below.

(λx : σ. M) V→ M[V/x]

rec(f : σ → τ, x : σ). M→ (λx : σ. M)[rec(f : σ → τ, x : σ). M/f]

fst(⟨V1, V2⟩)→ V1 snd(⟨V1, V2⟩)→ V2

case(inlτ,σ(V), x. N, x
′. N′)→ N[V/x]

case(inrτ,σ(V), x. N, x
′. N′)→ N′[V/y′] n+m→ n+m

op+(M1, . . . , Mar(op))
opi→ Mi (i = 1, . . . , ar(op))

The unlabeled “pure” transition relation → is for ordinal β-reduction; note that
we adopt the call-by-value evaluation strategy. A family of labeled “effectful”

transition relation {
opi→}ar(op)i=1 is for reduction according effects generated by the

operator op+. Additionally for a term op0(), a labeled “effectful termination”
predicate is defined by op0() ↓op.

These relations and predicates specify the two operational semantics via the
unique decomposition of terms. For closed terms that are not values, the small
step operational semantics are defined by lifting the transition relations and pred-
icates as below.

R→ M
E[R]→ E[M]

R
opi→ M

E[R]
opi→ E[M]

op0() ↓op
E[op0()] ↓op

For a closed term M its medium step operational semantics is defined by:

M⇒ V
def.⇐⇒ M→∗ V

M
opi⇒ N

def.⇐⇒ ∃L. M→∗ L
opi→ N

M ⇓op
def.⇐⇒ ∃L. M→∗ L ↓op

M ⇑ def.⇐⇒ ∃ infinite sequence M→ M′ → · · · .

Both small step and medium step operational semantics are uniquely determined
for each closed term.

Lemma 2.1.2. (I) Any closed term M of type τ satisfies just one of the following.

• M ≡ V for a unique closed value V of type τ

• M→ N for a unique closed term N of type τ

• M
opi→ Ni for a unique operation op+ ∈ Σ and a unique family {Ni}ar(op)i=1 of

closed terms of type τ

• M ↓op for a unique operation op0 ∈ Σ

6



(II) Any closed term M of type τ satisfies just one of the following.

• M⇒ V for a unique closed value V of type τ

• M
opi⇒ Ni for a unique operation op+ ∈ Σ and a unique family {Ni}ar(op)i=1 of

closed terms of type τ

• M ⇓op for a unique operation op0 ∈ Σ

• M ⇑

Although we do not give big step operational semantics, we utilize the notion
of effect value that aims at it. Effect values are defined to be elements of continu-
ous Σ-algebras. A continuous Σ-algebra A is an ω-cppo (i.e. ω-cpo with the least
element Ω), with each operation op ∈ Σ identified with a continuous function
from the ar(op)-fold product of A to A itself. In particular any set X induces the
free continuous Σ-algebra CTΣ(X) over it, and so does the set Valτ of values of
type τ . For a closed term M of type τ , its effect value |M| ∈ CTΣ(Valτ ) is defined
to be the limit of “finite approximations” |M|(k) ∈ CTΣ(Valτ ) as below.

|M|(0) := Ω

|M|(k+1) :=


V (M⇒ V)

op+(|N1|(k), . . . , |Nar(op)|(k)) (M
opi⇒ Ni for each i = 1, . . . , ar(op))

op0() (M ⇓op)
Ω (M ⇑)

|M| := sup
k∈ω
|M|(k)

Intuitively elements of the free continuous Σ-algebra CTΣ(Valτ ) can be under-
stood as possibly infinite Σ-branching trees over the set Valτ ∪ {Ω}. Therefore
an effect value |M| can be understood as a Σ-branching tree that is equal to:

V if M⇒ V

op+

|N1| . . . |Nar(op)|

if M
opi⇒ Ni for each i = 1, . . . , ar(op)

op0() if M ⇓op
Ω if M ⇑ .

2.2 Supported Algebraic Signatures

This section describes what algebraic signatures can be used in our framework:
these signatures are characterized by means of monads. We begin with some facts
about monads and their Kleisli categories that Moggi [25] utilizes to capture ef-
fectful computations, and provide some requirements for monads to develop our
framework. After recalling how algebraic signatures are modeled using monads
in Plotkin and Power’s series of work [29, 30], we characterize our supported
signatures by monads. This section utilizes some categorical stuff without ex-
planations, and readers are referred to e.g. [23] for basic categorical notions and
their precise definitions.
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2.2.1 Monads on the Category Set

A monad T on a category C is an endofunctor on C, equipped with two natural
transformations η : 1C ⇒ T and µ : T 2 ⇒ T subject to certain coherence condi-
tions. It induces the Kleisli category CT whose objects are the same objects as C
and whose arrows X →T Y are C-arrows in the form of X → TY . Moggi’s idea in
[25] is to represent effectful computations as CT -arrows, in contrast to pure com-
putations represented as C-arrows. For example, nondeterministic computation
can be represented as functions in the form of X → PY , where PY denotes the
powerset of Y ; given input in X, a function X → PY returns a subset V ⊆ Y of
possible output. Functions X → PY are precisely arrows of the Kleisli category
SetP , where P is the powerset monad PY = {V ⊆ Y } and Set is the category
of sets and functions.

The natural transformation µ : T 2 ⇒ T , called multiplication, is used to “flat-
ten” multiple effects that occur in composing two effectful computations. Namely,
composition g ◦T f : X →T Z of two CT -arrows f : X →T Y and g : Y →T Z is
defined by composing C-arrows:

g ◦T f : X
f // TY

Tg // T 2Z
µZ // TZ .

Pure computations can be regarded as effectful computations that in fact generate
no effects. The other natural transformation η : 1C ⇒ T , called unit, is used
to “lift” pure computations represented as C-arrows to effectful computations
represented as CT -arrows. Each C-arrow f : X → Y is lifted to a CT -arrow
f∗ : X →T Y defined by composing C-arrows:

f∗ : X
f // Y

ηY // TY .

Now we focus on a monad T on the particular category Set of sets and
functions. The Kleisli category SetT inherits both finite coproducts (+, ∅) and
countable ones

⨿
from Set, with injections preserved by the lifting (−)∗ from

Set-arrows to SetT -arrows. Let 1 be a singleton {∗}. The category Set has
finite products (×, 1) and any monad T on it comes with tensorial strengths [20]
stX,Y : X × TY → T (X × Y ) and st′X,Y : TX × Y → T (X × Y ). They induce
the premonoidal structure [31] of the Kleisli category SetT : for any A ∈ Set
and SetT -arrow f : X →T Y , two SetT -arrows A ⊗ f : A × X →T A × Y and
f ⊗A : X ×A→T Y ×A are defined to be Set-arrows

A⊗ f : A×X A×f // A× TY
stA,Y // T (A× Y )

f ⊗A : X ×A f×A // TY ×A
st′Y,A // T (Y ×A) .

We write f ⊗ g for (Y ⊗ g) ◦T (f ⊗ Z) : X × Z →T Y ×W if (Y ⊗ g) ◦T (f ⊗
Z) = (f ⊗W ) ◦T (X ⊗ g) holds, for each pair of SetT -arrows f : X →T Y and
g : Z →T W . If T is commutative, the premonoidal structure ⊗ gives monoidal
products (⊗, 1) in this way, however this is not always the case in our setting.

In order to develop the mGoI framework and extend it to recursion, we require
a monad T on Set to make its Kleisli category SetT satisfy some domain-theoretic
properties.

Requirement 2.2.1. In our framework a monad T on Set is required to satisfy
the following conditions.
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(a) The Kleisli category SetT is Cppo-enriched, i.e.

• every homset SetT (X,Y ) is an ω-cppo with the least element ⊥ and

• composition ◦T of SetT are continuous.

(b) Composition ◦T are additionally strict in the restricted form: for any SetT -
arrow f : X →T Y and Set-arrow g : Y → Z it holds that f ◦T ⊥ = ⊥ and
⊥ ◦T g∗ = ⊥.

(c) The finite coproducts (+, ∅) of SetT is Cppo-enriched, that is, cotupling
[−,−]T of SetT is continuous.

(d) The premonoidal structure ⊗ of SetT is continuous and strict. Namely,
for any set X, the maps X ⊗ (−) and (−) ⊗ X on homsets of SetT are
continuous and strict.

The first three conditions (a)–(c) above are in fact the sufficient conditions given
in [18] to develop the mGoI framework, and we add the last condition (d) to
accommodate recursion.

Example 2.2.2. Here are our leading examples of monads that satisfy Require-
ment 2.2.1. Note that all the monads given below are equipped with partiality,
that is often obtained by adding 1 = {∗}. The partiality induces an ω-cppo
structure of each set TX and hence gives a Cppo-enrichment of the category
SetT in the pointwise manner.

• The exception monad EX = 1 + E +X for a set E.

• The powerset monad PX = {U ⊆ X}.

• The subdistribution monad DX = {d : X → [0, 1] |
∑

x∈X d(x) ≤ 1}.

• A global state monad SX = (1 +X × S)S for a set S.

• A writer monad TX = 1 +M ×X for a monoid M .

• An I/O monad TX = µZ. (1 + O × Z + ZI + X) for sets I and O. By
regarding sets I and O as ω-cpo’s with discrete orders, for any ω-cppo Z,
FXZ := 1 + O × Z + ZI + X becomes an ω-cppo with the least element
∗ ∈ 1. Hence FX is an endofunctor on Cppo and it has a final coalgebra;
the I/O monad sends a set X to the carrier of the final FX -coalgebra in
Cppo.

It is shown in [18] that the conditions (a)–(c) in Requirement 2.2.1 induce a
trace operator in the Kleisli category SetT .

Lemma 2.2.3 ([18, Lemma 4.3]). If a monad T on Set satisfies conditions
(a)–(c) in Requirement 2.2.1, the Kleisli category SetT has a trace operator
trZX,Y : SetT (X + Z, Y + Z)→ SetT (X,Y ) that is uniform in the following re-
stricted form [14]: for any SetT -arrows f : X + Z →T Y + Z and g : X +W →T

Y + W and Set-arrow h : Z → W , (Y + h∗) ◦T f = g ◦T (X + h∗) implies
trZX,Y (f) = trWX,Y (g).
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2.2.2 Algebraic Operations on Monads

In [29] Plotkin and Power model algebraic signatures by families of arrows, called
algebraic operations, using monads. We adopt an equivalent definition of algebraic
operations given in [30].

Definition 2.2.4 (algebraic operation on a monad [30]). Let C be a category
with a cartesian closed structure (×, 1,⇒) and a monad M on it, and n be a
natural number. A family {αX,Y : (X ⇒ MY )n → X ⇒ MY }X∈Cop,Y ∈CM

of
C-arrows is an n-ary algebraic operation on M if it is natural in X ∈ Cop and
Y ∈ CM , i.e. the following diagrams in C commute for any objects X ′, X, Y and
Y ′ in C.

(X ′ ⇒ X)× (X ⇒MY )n

⟨comp◦((X′⇒X)×πi)⟩ni=1
��

(X′⇒X)×αX,Y // (X ′ ⇒ X)× (X ⇒MY )

comp

��
(X ′ ⇒MY )n αX′,Y

// X ′ ⇒MY

(X ⇒MY )n × (Y ⇒MY ′)

⟨compM◦(πi×(Y⇒MY ′))⟩ni=1
��

αX,Y ×(Y⇒MY ′)
// (X ⇒MY )× (Y ⇒MY ′)

compM
��

(X ⇒MY ′)n αX,Y ′
// X ⇒MY ′

Here (−)n gives the n-fold product, πi is the i-th projection, ⟨−⟩ni=1 is the tupling,
comp is composition of C and compM is that of CM .

For a monad T on the particular category Set, an algebraic operation on T
can be given by a family of maps between homsets of Set (i.e. sets of Set-arrows).

Example 2.2.5. Here are algebraic operations on some of the monads listed in
Example 2.2.2.

• For a set E and each element e ∈ E, a 0-ary algebraic operation raisee on the
exception monad E is equivalently given by the family {Y → 1+E+Y }Y ∈Set
of constant functions that always return e.

• A 2-ary algebraic operation ⊕ on the powerset monad P performs non-
deterministic choice. For two functions f, g : X → PY it takes pointwise
unions: (f ⊕ g)(x) = f(x) ∪ g(x).

• For any p ∈ [0, 1], a 2-ary algebraic operation ⊕p on the subdistribution
monad D performs probabilistic choice. For two functions f, g : X → DY
it superposes distributions in the pointwise manner: (f ⊕p g)(x)(y) = p ×
f(x)(y) + (1− p)× g(x)(y).

• Let Val be a finite set and Loc be a set. For their elements v ∈ Val and
ℓ ∈ Loc, a |Val |-ary algebraic operation lookupℓ and an 1-ary algebraic

operation updateℓ,v on the global state monad SX = (1+X×ValLoc)Val
Loc

perform actions on global states. For a family {fv : X → SY }v∈Val of
functions, the former operation looks up global states σ ∈ ValLoc ; and for
a function f : X → SY , the latter operation updates global states:

lookupℓ({fv}v∈Val )(x)(σ) = fσ(ℓ)(x)(σ)

updateℓ,v(f)(x)(σ) = f(x)(σ[ℓ 7→ v])

where σ[ℓ 7→ v](ℓ′) is equal to v if ℓ′ = ℓ and to σ(ℓ′) otherwise.
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2.2.3 Algebraic Signatures Supported by Monads

Finally we characterize algebraic signatures that can be used to specify our target
language, by looking at what monads can support the signatures.

Definition 2.2.6. We say a monad T on Set supports an algebraic signature Σ
if, for each operation op ∈ Σ, it has an ar(op)-ary algebraic operation op on T .

Our framework can translate terms in the language LΣ if the algebraic signature
Σ is supported by a monad subject to Requirement 2.2.1.

All the algebraic signatures Σ listed in Example 2.1.1 are indeed supported by
monads T listed in Example 2.2.2. The following table shows the correspondence
between operations in Σ and algebraic operations on T listed in Example 2.2.5.

algebraic signature Σ operation op monad T algebraic operation op

Σexcept raisee E raisee
Σnondet choose P ⊕
Σprob choosep D ⊕p

Σglstate lookupℓ S lookupℓ
updateℓ,v updateℓ,v

Table 2.1: Examples of Algebraic Signatures Supported by Monads
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Chapter 3

Component Calculus over Transducers

3.1 Categorical Geometry of Interaction

Before describing the component calculus, we briefly recall what we shall call cat-
egorical GoI, that is, the categorical formalization of GoI provided by Abramsky,
Haghverdi and Scott in [1]. In the mGoI framework, the component calculus over
transducers is developed with the intention of running machinery of categorical
GoI with transducers.

What plays a crucial role in categorical GoI is a GoI situation, that is a
particular traced symmetric monoidal category with an endofunctor accompanied
by retractions.

Definition 3.1.1 (traced symmetric monoidal category). A category C is traced
symmetric monoidal if it comes with:

• symmetric monoidal products (⊗, I), i.e. a bifunctor ⊗ : C×C→ C and an
object I ∈ C together with the following four natural isomorphisms, and

aX,Y,Z : (X ⊗ Y )⊗ Z ∼=→ X ⊗ (Y ⊗ Z)

lX : I ⊗X ∼=→ X

rX : X ⊗ I ∼=→ X

sX,Y : X ⊗ Y ∼=→ Y ⊗X

• a trace operator trZX,Y : C(X ⊗ Z, Y ⊗ Z)→ C(X,Y )

subject to certain coherence conditions (see e.g. [15, 19]).

Definition 3.1.2 (traced symmetric monoidal functor). Let (C,⊗, I, tr) be a
traced symmetric monoidal category. A functor F : C → C is traced symmetric
monoidal if it is:

• symmetric monoidal, i.e. equipped with an isomorphism i : I
∼=→ FI in C

and a natural isomorphism

mX,Y : FX ⊗ FY ∼=→ F (X ⊗ Y )

subject to certain compatibility conditions (see e.g. [15, 19]) with four nat-
ural isomorphisms listed in Definition 3.1.1, and

• traced, i.e. subject to the equation

trFZ
FX,FY (m

−1
Y,Z ◦ Ff ◦mX,Z) = F (trZX,Y (f))

for any C-arrow f : X ⊗ Z → Y ⊗ Z.
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Definition 3.1.3 (retraction). In a category C, a retraction f : X ◁ Y : g is a
pair of C-arrows f : X → Y and g : Y → X such that g ◦ f = idX .

Recall that GoI gives token machine semantics of programs, as studied e.g. in
[24]. A GoI situation is intuitively a category that can represent token machines,
with various data carried by tokens, as well as constructions of token machines
and axioms. It would be clear how a GoI situation represents all of them, in the
following sections where we give constructions of transducers that form a concrete
GoI situation.

We adapt the original definition of GoI situations given in [1] by slightly re-
laxing conditions of retractions in the same way as in [18, Remark 2.5]. Monoidal
naturality of pairs (d, d′) and (c, c′) is crucial to prove Theorem 3.3.8.

Definition 3.1.4 (GoI situation). A GoI situation is a list ((C,⊗, I, tr), F, U,
ϕ, ψ, u, v) that consists of a traced symmetric monoidal category (C,⊗, I, tr), a
traced symmetric monoidal functor F : C→ C, an object U ∈ C and the following
retractions in C:

ϕ : U ⊗ U ◁ U : ψ

u : FU ◁ U : v

n : I ◁ U : n′

eX : X ◁ FX : e′X (dereliction)

dX : FFX ◁ FX : d′X (digging)

cX : FX ⊗ FX ◁ FX : c′X (contraction)

wX : I ◁ FX : w′
X (weakening)

such that eX , wX are natural in X ∈ C and dX , d
′
X , cX , c

′
X are monoidal natural

in X ∈ C.

Categorical GoI captures how GoI gives an interpretation of programs, by
providing a way to obtain a linear combinatory algebra from a GoI situation.
Further combined with the Girard translation of linear logic to intuitionistic logic,
categorical GoI can yield an SK-algebra that is a model of untyped λ-calculus.

Proposition 3.1.5. Let ((C,⊗, I, tr), F, U, ϕ, ψ, u, v) be a GoI situation. The
homset C(U,U) is an SK-algebra, with a binary operation · : C(U,U)2 → C(U,U)
defined by

f · g := trUU,U (ψ ◦ f ◦ ϕ ◦ (U ⊗ (u ◦ Fg ◦ v)))

and two elements S,K ∈ C(U,U) that satisfy

S · f · g · h = f · h · (g · h), K · f · g = f

for any f, g, h ∈ C(U,U), where · is assumed to be left associative.

3.2 Component Calculus in the mGoI Framework

This section recalls the component calculus over transducers developed in the
mGoI framework [18, Section 4.2]. The component calculus intends to provide a
GoI situation that yields an SK-algebra with extra operations on it via categorical
GoI, so that the extra operations can be exploited to interpret algebraic effects.

Transducers are precisely T -transducers, with a monad T on Set that models
computational effects. They can be thought of as “effectful” Mealy machines
and, in terms of GoI, as “effectful and memoryful” token machines.

13



Definition 3.2.1 (T -transducer [18, Definition 4.1]). For sets A and B, a T -
transducer (X, c, x) from A to B consists of a set X, a SetT -arrow c : X ×A→T

X ×B and a Set-arrow x : 1→ X.

c

A

B

Figure 3.1: a
T -transducer
(X, c, x) : A _ B

We write (X, c, x) : A _ B if a T -transducer (X, c, x) is from
A to B. It is intuitively an “effectful” transition function
c : X×A→ T (X×B) with a set of input A, a set of output B,
a state space X and an initial state x ∈ X. Given input in A,
the transition function c internally updates its internal state
(or “memory”) and generates output in B. On this intuition
we depict a T -transducer (X, c, x) : A _ B as in Figure 3.1.

In a transition function c : X × A→ T (X × B), a monad
T is used to model computational effects. For example, if T
is the powerset monad P the transition function c is nonde-
terministic and returns a set of possible output, and if T is a
global state monad S the transition function generates output according to the
stored values of global states (see Example 2.2.2 for the monads P and S).

A T -transducer can be “memoryless.” A SetT -arrow f : A →T B is lifted to
a T -transducer

J(f) := (1, 1×A ∼=→ A
f−→ TB

∼=→ T (1×B), id1) : A _ B

that performs the same computation as f without internal states. This con-
struction J of T -transducers from SetT -arrows can be combined with the lift-
ing (−)∗ from Set-arrows to SetT -arrows, that yields “memoryless and pure”
T -transducers. A Set-arrow g : A→ B performs pure (i.e. non-effectful) compu-
tation and is lifted to a T -transducer J(g∗) : A _ B.

3.2.1 Operators on Transducers

The component calculus over T -transducers, developed in the mGoI framework,
is comprised of primitive “memoryless” T -transducers and the following operators
on T -transducers: (a) sequential composition ◦, (b) binary parallel composition
⊞, (c) the trace operator Tr, (d) the countable copy operator F , (e) binary ap-
plication •, and (f) lifted algebraic operations α. Figure 3.2 depicts how these
operators act on T -transducers. We describe the operators first and give primi-
tives later.

c

A

B

d

C

(a) Sequential Composition ◦

c

A

B

d

C

D

(b) Binary Parallel
Composition ⊞

c

N× A

N× B

(c) F (X, c, x) : N×A _ N×B

c

A

B

C

(d) TrCA,B(X, c, x) : A _ B

c d

A

B
N× C N× C

(e) Binary Application •

c1

A

B

cn

A

B

. . .

α

A

B

(f) α{(Xi, ci, xi)}ni=1 : A _ B

Figure 3.2: Operators on T -transducers
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Sequential and Binary Parallel Composition ◦,⊞ Two T -transducers can
be composed in two different ways. One is sequential : two T -transducers are
executed one by one, in which output of one T -transducer is passed to input
of the other T -transducer. The other composition is parallel : one of two T -
transducers is chosen and executed according to input. This would be more clear
in the depictions (a) and (b) in Figure 3.2.

Definition 3.2.2 (sequential composition ◦). Sequential composition (Y, d, y) ◦
(X, c, x) : A _ C of two T -transducers (X, c, x) : A _ B and (Y, d, y) : B _ C is
defined to be

(X × Y , X × Y ×A
X⊗σ∗

Y,A−−−−−→T X ×A× Y
c⊗Y−−−→T X ×B × Y

X⊗σ∗
B,Y−−−−−→T X × Y ×B

X⊗d−−−→T X × Y × C , ⟨x, y⟩) .

Definition 3.2.3 (binary parallel composition ⊞). Binary parallel composition
(X, c, x) ⊞ (Y, d, y) : A + C _ B + D of two T -transducers (X, c, x) : A _ B
and (Y, d, y) : B _ C is defined to be (X × Y, e, ⟨x, y⟩) where e is the unique
SetT -arrow that makes the following two diagrams in SetT commute.

X × Y ×A
X⊗(Y⊗inl∗) //

σ∗
X,Y ⊗A

��

X × Y × (A+ C)
e // X × Y × (B +D)

Y ×X ×A
Y⊗c

// Y ×X ×B

σ∗
Y,X⊗inl∗

OO

X × Y × C
X⊗(Y⊗inr∗) //

X⊗d **UUU
UUUU

UUUU
UUUU

UUU
X × Y × (A+ C)

e // X × Y × (B +D)

X × Y ×D
X⊗(Y⊗inr∗)

33hhhhhhhhhhhhhhhhhh

In the above definitions we utilize the bicartesian structure of Set, namely tupling

⟨−,−⟩, swapping σX,Y : X × Y ∼=→ Y ×X and injections Z
inl−→ Z +W

inr←−W .

Countable Copy Operator F We can make a bunch of countably many
copies of a T -transducer, that is simply depicted by a dashed box in Figure 3.2 (c).
Input to a bunch of copies includes an index number that determines which copy
to be executed, and output from a bunch of copies also includes an index number
that indicates which copy has been executed. An index number is given by a
natural number; recall that N is the set of natural numbers.

Definition 3.2.4 (countable copy operator F ). For a T -transducer (X, c, x) :
A _ B, the T -transducer F (X, c, x) : N × A _ N × B is defined to be
(XN, e, ⟨x⟩i∈N) where e is the unique SetT -arrow that makes the following di-
agram in SetT commutes for each i ∈ N.

XN ×A
XN⊗inj∗i //

σ∗
i ⊗A

��

XN × (N×A) e // XN × (N×B)

XN ×X ×A
XN⊗c

// XN ×X ×B

(σ−1
i )∗⊗inj∗i

OO

In this definition we utilize the infinite bicartesian structure of Set, especially

N-fold coproduct N × (−) with the i-th injection Z
inji−−→ N × Z, and N-fold
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product (−)N with tupling ⟨−⟩i∈N and swapping σi : X
N ∼=→ XN × X. Precisely

the swapping σi picks the i-th element of a given infinite list as below.

σi(x0, . . . , xi−1, xi, xi+1, . . . ) = ((x0, . . . , xi−1, xi+1, . . . ), xi)

Trace Operator Tr Output of some T -transducer can be fed back to input of
the T -transducer itself. The trace operator Tr performs this construction, namely
making a “self-feedback loop” as in Figure 3.2 (d).

Definition 3.2.5 (trace operator Tr). Trace TrCA,B(X, c, x) : A _ B of a T -

transducer (X, c, x) : A + C _ B + C is defined to be (X, trX×C
X×A,X×B(c

′), x)
where c′ is the following SetT -arrow:

X ×A+X × C
(δ−1

X,A,C)∗

−−−−−−→T X × (A+ C)
c−→T X × (B + C)

δ∗X,B,C−−−−→T X ×A+X × C .

As stated in Lemma 2.2.3, a monad T subject to Requirement 2.2.1 induces a
trace operator tr of SetT . We apply it to the composition of c and distribution
δX,Y,Z : X × (Y + Z)

∼=→ X × Y +X × Z in Set.

Binary Application • Combining all the operators described above, two T -
transducers can be “composed” in another way that corresponds to the game-
theoretic parallel composition and hiding construction and is used to translate
function applications.

Definition 3.2.6 (binary application •). Binary application (X, c, x)• (Y, d, y) :
A _ B of two T -transducers (X, c, x) : A+N×C _ B+N×C and (Y, d, y) : C _
C is defined to be

TrN×C
A,B ((X, c, x) ◦ (J(id∗B)⊞ F (Y, d, y))) .

The depiction (e) in Figure 3.2 can be obtained by chasing the depiction of the
definition above as a graph. This operator • is an adaptation of the operator •
defined in [18, Section 4.2.4].

Lifted Algebraic Operations α Each algebraic operation on T can be lifted
to an operator on T -transducers.

Definition 3.2.7 (lifted algebraic operation α). Let α be an n-ary algebraic
operation on T . For a family {(Xi, ci, xi) : A _ B}ni=1 of T -transducers, the T -
transducer α{(Xi, ci, xi)}ni=1 : A _ B is defined to be (1+

⨿n
i=1Xi, e, inl

∗) where
e is the unique SetT -arrow that makes the following diagrams in SetT commute
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for each j = 1, . . . , n.

1×A inl∗⊗A //

x∗
j⊗A

��

(1 +
n⨿

i=1

Xi)×A e // (1 +
n⨿

i=1

Xi)×B

Xj ×A cj
// Xj ×B

(inr◦injj)∗⊗B

OO

Xj ×A
(inr◦injj)∗⊗A

//

cj

((QQ
QQQ

QQQ
QQQ

QQQ
QQQ

Q
(1 +

n⨿
i=1

Xi)×A e // (1 +

n⨿
i=1

Xi)×B

Xj ×B

(inr◦injj)∗⊗B

55kkkkkkkkkkkkkkkkk

Given a family {(Xi, ci, xi)}ni=1 of T -transducers, the operator α just introduces
a fresh initial state ∗ ∈ 1 and “effectful” transitions from the state ∗ to each
initial state xi of the given T -transducer (Xi, ci, xi). After making the “effectful”
first transition from the initial state ∗ to a state xi, the resulting T -transducer
α{(Xi, ci, xi)}ni=1 memorizes the result of the transition by its internal states (or
“memories”) and behaves exactly as the T -transducer (Xi, ci, xi).

3.2.2 Primitive “Memoryless” Transducers

Primitive T -transducers of mGoI’s component calculus are all “memoryless,” i.e.
lifted from SetT -arrows by the construction J . Below we give their underlying
SetT -arrows, or sometimes Set-arrows that can be made into SetT -arrows via
the lifting (−)∗.

One class of the underlying arrows are in the form of retractions. We use the
two chosen bijections

ϕ : N+ N ∼= N : ψ u : FN ∼= N : v (3.1)

in Set, and four retractions

ẽA : A◁ FA : ẽ′A (dereliction)

d̃A : FFA ∼= FA : d̃′A (digging)

c̃A : FA+ FA ∼= FA : c̃′A (contraction)

w̃A : ∅◁ FA : w̃′
A (weakening) ,

(3.2)

the first three of which are in Set and the last one of which is in SetT . The four
retractions are defined by

ẽA := inj0 ẽ′A := [idA]i∈N

d̃A := u×A d̃′A := v ×A
c̃A := ϕ×A c̃′A := ψ ×A
w̃A := !FA w̃′

A := trFA
FA,∅([idFA, idFA]

∗) .

For each set X, a set FX is defined to be N×X and a SetT -arrow !X : ∅ →T X
is the unique arrow from the initial object ∅.
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As suggested by the abuse of notation, these retractions are related to the
countable copy operator F . We can use the four retractions in (3.2) to manipulate
a bunch of copies of a T -transducer that is generated by the operator F , namely
by pre-composing the injection side and post-composing the surjection side to a T -
transducer in the form of F (X, c, x). Given a bunch of copies of a T -transducer,
dereliction picks one copy, digging sorts it to “a bunch of bunches of copies,”
contraction splits it to two bunches of copies and weakening totally discards
it, as illustrated in [18, Section 4.2.4]. Technically this is due to naturality of
ẽA, d̃A, c̃A in A ∈ Set and that of w̃A in A ∈ SetT .

In the concrete translation of terms to transducers given in the next chapter,
we will use four “suppressed” retractions

ϕ! : N+ N ∼= N : ψ!

e : N◁ N : e′ (dereliction)

d : N× N ∼= N : d′ (digging)

c : N+ N ∼= N : c′ (contraction)

w : ∅◁ N : w′ (weakening)

that can be obtained by composing bijections in (3.1) and retractions in (3.2).
They are precisely defined by

ϕ!(inl⟨i, n⟩) = ⟨i, gn⟩ ψ!⟨i, gn⟩ = inl⟨i, n⟩
ϕ!(inr⟨i, n⟩) = ⟨i, dn⟩ ψ!⟨i, dn⟩ = inr⟨i, n⟩

e(n) = ⟨0, n⟩ e′⟨i, n⟩ = n

d(i, ⟨j, n⟩) = ⟨⟨i, j⟩, n⟩ d′⟨⟨i, j⟩, n⟩ = (i, ⟨j, n⟩)
c(inl⟨i, n⟩) = ⟨gi, n⟩ c′⟨gi, n⟩ = inl⟨i, n⟩
c(inr⟨i, n⟩) = ⟨di, n⟩ c′⟨di, n⟩ = inr⟨i, n⟩

w = !N w′ = trNN,∅([idN, idN]
∗) .

We use the dynamic algebra notation by writing g for ϕ ◦ inl, d for ϕ ◦ inr and
⟨−,−⟩ for u(−,−).1

The other class of underlying arrows of primitive T -transducers includes the
following Set-arrows

kn : N→ N h: N+ N→ N+ N
sum: N+ N+ N→ N+ N+ N

defined concretely by

kn⟨i,m⟩ = ⟨i, n⟩ h(inl(gn)) = inl(dgn)

sum(inj0(n)) = inj2(n) h(inl(dgn)) = inl(gn)

sum(inj2⟨i, n⟩) = inj1⟨⟨i, n⟩, n⟩ h(inl(ddn)) = inr(n)

sum(inj1⟨⟨i, n⟩,m⟩) = inj0⟨i, n+m⟩ h(inr(n)) = inl(ddn) .

In the translation of terms to transducers, kn is used to translate the constant
term n, sum is used to translate the arithmetic primitive +, and h is used to
“force” the call-by-value evaluation strategy by serving as a CPS-like construct.

1g is for left and d is for right, in French. See e.g. [27, 21].
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3.2.3 “Category” of Transducers

It would be natural to ask what axioms the operators on T -transducers satisfy.
An answer to the question given in [18] is a categorical one, following observations
in [17], in which reasoning on T -transducers is not equational but up to behavioral
equivalence.

Definition 3.2.8 (homomorphism between T -transducers [18, Definition 5.1]).
Let (X, c, x), (Y, d, y) : A _ B be T -transducers. A homomorphism from (X, c, x)
to (Y, d, y) is a Set-arrow f : X → Y that makes both the left diagram below in
SetT and the right diagram below in Set commute.

X ×B h∗⊗B // Y ×B X
h // Y

X ×A

c

OO

h∗⊗A
// Y ×A

d

OO

1

x

OO

y

??~~~~~~~~

Definition 3.2.9 (behavioral equivalence [18, Definition 5.2]). Two T -transducers
(X, c, x), (Y, d, y) : A _ B are behavioral equivalent if there exists a T -transducer
(Z, e, z) : A _ B and homomorphisms from (X, c, x) to (Z, e, z) and from (Y, d, y)
to (Z, e, z).

We write (X, c, x) ≃ (Y, d, y) if (X, c, x) and (Y, d, y) are behavioral equivalent.
Behavioral equivalence enables us to abstract away from state spaces of T -

transducers. For example, a T -transducer (X, c, x) : A _ B is not equal to a
composed T -transducer J(id∗B) ◦ (X, c, x) : A _ B because their state spaces are
not equal but isomorphic, namely X and X × 1 respectively. By choosing an
isomorphism X

∼=→ X × 1 as a homomorphism, the two T -transducers can be
identified via behavioral equivalence.

All the operators on T -transducers introduced so far are compatible with be-
havioral equivalence, and axioms they satisfy can be described in the categorical
term. We list the facts about the component calculus that are investigated in
[18].

• The category Res(T ), defined by

– objects: sets

– arrows: resumptions, i.e. equivalence classes of T -transducers modulo
behavioral equivalence, with identities given by J(id∗) and composi-
tions by ◦,

is indeed a category and it has a traced symmetric monoidal structure
(⊞, ∅,Tr).

• The countable copy operator F , abused for sets as FX := N × X, is a
traced symmetric monoidal functor on (Res(T ),⊞, ∅,Tr). This fact enables
us to identify a T -transducer F (X, c, x) : F (A + C) _ F (B + D) with
F (X, c, x) : FA+FC _ FB+FD via behavioral equivalence, as done e.g.
in Figure 3.3.

• The list ((Res(T ),⊞, ∅,Tr), F,N, J(ϕ∗), J(ψ∗), J(u∗), J(v∗)), together with
primitive T -transducers lifted from the retractions in (3.2), forms a GoI
situation (see Definition 3.1.4). This means naturality of ẽA, w̃A lifts to that
of J(ẽ∗A), J(w̃A), and additionally monoidal naturality of d̃A, d̃′A, c̃A, c̃′A lifts

to that of J(d̃∗A), J(d̃
′∗
A), J(c̃

∗
A), J(c̃

′∗
A).
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• [18, Theorem 5.3] Operators α are natural and Tr distributes over them up
to the behavioral equivalence.

Figure 3.1 & 3.2 can be therefore seen as string diagrams in the traced symmetric
monoidal category (Res(T ),⊞, ∅,Tr).

3.3 Extension of Component Calculus

In the last sections we explained the component calculus over T -transducers de-
veloped in the mGoI framework. We extend it by introducing new operators,
namely two styles of fixed point operators, and an auxiliary operator, that is
countable parallel composition, so that our framework can accommodate recur-
sion. Figure 3.3 depicts how these operators act on T -transducers.

c1

A1

B1

c2

A2

B2

. . .. . .

(a) Countable Parallel
Composition ⊞n∈N

c

A

A

N×A

N×A

c c c . . .

(b) FixG(X, c, x) : A _ A

c

c̃
∗

A

c̃′
∗

A

d̃′
∗

A

d̃
∗

A

ẽ
∗

A

ẽ′
∗

A

A

A

N × A

N × A

N × A

N × A

N × N × A

N × N × A

N × A

N × A

(c) FixM (X, c, x) : A _ A

Figure 3.3: New Operators on T -transducers

Denotationally recursion is often interpreted as infinitely many self-applications
of some function, and operationally it can be understood as infinitely many re-
peats of some procedure. Our new two fixed point operators, used in the concrete
translation of recursion to transducers, are based on this intuition. One is Girard
style, in which a given T -transducer is “applied” to itself for infinitely many times
via binary application •, and the other one isMackie style, in which “self-feedback
loops” are made for a given T -transducer via the trace operator Tr.

3.3.1 Countable Parallel Composition ⊞n∈N

As an auxiliary operator on T -transducers, we define countable parallel composi-
tion ⊞n∈N by extending binary parallel composition ⊞. This extension is possible
because Set have both infinite products

∏
n∈N and coproducts

⨿
n∈N that are

inherited by SetT .

Definition 3.3.1 (countable parallel composition ⊞n∈N). Countable parallel
composition ⊞n∈N{(Xn, cn, xn)} :

⨿
n∈NAn _ ⨿

n∈NBn of a family {(Xn, cn, xn) :
An _ Bn} of T -transducers is defined to be (

∏
n∈NXn, e, ⟨xn⟩n∈N) where e is the

unique SetT -arrow that makes the following diagram in SetT commutes for each
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i ∈ N.

(
∏
n∈N

Xn)×Ai

(
∏

n∈N Xn)⊗inj∗i //

σ∗
i ⊗Ai

��

(
∏
n∈N

Xn)× (
⨿
n∈N

An)
e // (

∏
n∈N

Xn)× (
⨿
n∈N

Bn)

(
∏
n∈N

Xn)×Xi ×Ai
(
∏

n∈N Xn)⊗ci

// (
∏
n∈N

Xn)×Xi ×Bi

(σ−1
i )∗⊗inj∗i

OO

It is easy to confirm that this operator is compatible with behavioral equivalence.
Countable parallel composition ⊞n∈N can be seen as a generalization of the

countable copy operator F as well. For any T -transducer (X, c, x), we have the
behavioral equivalence ⊞n∈N{(X, c, x)} ≃ F (X, c, x) that directly follows from
Definition 3.2.4 and Definition 3.3.1.

3.3.2 Girard Style Fixed Point Operator FixG

The Girard style fixed point operator FixG intends to produce infinitely many
“self-binary-applications” of a given T -transducer.

Definition 3.3.2 (Girard style fixed point operator FixG). For a T -transducer
(X, c, x) : A + N × A _ A + N × A, the T -transducer FixG(X, c, x) : A _ A is
defined to be

TrNA,A(⊞n∈N{Fn(X, c, x)} ◦ J((idA +
⨿
i∈N

σ′Ni,Ni
)∗) )

where N is defined by

N :=
⨿
i∈N

(Ni +Ni) , N0 := N×A

N1 := N× N×A
N2 := N× N× N×A
...

and σ′R,S is swapping R+ S
∼=→ S +R with respect to coproducts of Set.

Figure 3.3 (b) precisely depicts the above definition. By chasing the depiction as
a graph, we can obtain another depiction of a T -transducer FixG(X, c, x) : A _
A shown in Figure 3.4, that can be seen as an infinitely long chain of binary
applications (see also Figure 3.2 (e)).

c

A

A

c

N×A

N×A

c

N× N×A

N× N×A

c

N× N× N× A

N× N× N× A

. . .

Figure 3.4: Another Depiction of FixG(X, c, x) : A _ A

This infinitely long chain of binary applications in fact yields a fixed point with
respect to binary application •, that is why we call FixG “fixed point” operator.
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Proposition 3.3.3. Let (X, c, x) : A+N×A _ A+N×A be a T -transducer. The
T -transducer FixG(X, c, x) : A _ A satisfies the following behavioral equivalence

(X, c, x) • FixG(X, c, x) ≃ FixG(X, c, x) .

Proof. We illustrate the proof using diagrammatic depictions below, where blue
boxes indicate to which T -transducer the trace operator Tr is applied.

(X, c, x) • FixG(X, c, x) =
c

FixG(X, c, x)

A

A

N×A

N×A

≃ c

A

A

N× A

N× A

N× A

c

A

A

N×A

N×A

c c c . . .

≃ c

A

A

N× A

N× A

N× A

c

N
2
× A

N2
× A

c c c . . .

≃ c

A

A

N×A

N×A

c c c c . . .

= FixG(X, c, x)

The first behavioral equivalence follows from trace axioms [15, 19] satisfied by the
trace operator Tr and from naturality of swapping σ′. The second one exploits
the fact, noted in Section 3.2.3, that the countable copy operator F gives a traced
symmetric monoidal functor on the category Res(T ). The last one follows from
trace axioms again, and additionally from the following behavioral equivalence

(Y0, d0, y0)⊞ (⊞n∈N{(Yn+1, dn+1, yn+1)}) ≃ ⊞n∈N{(Yn, dn, yn)}

that is easy to be confirmed for any family {(Yn, dn, yn)}n∈N of T -transducers.

3.3.3 Induced ω-cpo Structure on Transducers

The Girard style fixed point operator FixG can be characterized not only by
a fixed point but also by a limit of finite approximations. This means that the
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operator FixG enables us to translate recursion as a limit of finite approximations,
as much like Girard’s approach [12] to interpret recursion in GoI. Therefore we
call FixG “Girard style” fixed point operator.

Precisely the operator FixG yields a supremum with respect to an ω-cpo
structure on T -transducers. Since a monad T is subject to Requirement 2.2.1,
each homset of the category SetT is an ω-cppo (SetT (Z,W ),⊑,⊥). This ω-cppo
enrichment of SetT induces an ω-cpo structure on T -transducers, namely an ω-
cpo (Trans(T )(A,B),⊴) for each set Trans(T )(A,B) of T -transducers from A
to B, in the following way.

• A binary relation ⊴ on T -transducers, defined by

(X, c, x) ⊴ (Y, d, y)
def.⇐⇒ X = Y ∧ x = y ∧ c ⊑ d

for two T -transducers (X, c, x), (Y, d, y) : A _ B, is a partial order.

• Let (X, c1, x) ⊴ (X, c2, x) ⊴ · · · be an ω-chain of T -transducers from A to
B. Its supremum supi∈ω(X, ci, x) : A _ B is given by (X, supi∈ω ci, x).

• Additionally, for any set X and Set-arrow x : 1 → X, a T -transducer
(X,⊥, x) : A _ B gives a minimal element.

This partial order ⊴ is quite “raw,” in the sense that it is only defined when
two T -transducers have the same state spaces and the same initial states. The
order ⊴ forces us to stay aware of state spaces of T -transducers in domain-
theoretic reasoning, while behavioral equivalence ≃ enables us to abstract away
from state spaces of T -transducers in equational reasoning. Currently we have
no way to relate the order ⊴ to behavioral equivalence ≃, however, in spite of
this inconvenience, the order ⊴ has enough power to help us prove the adequacy
result.

As the order ⊴ on T -transducers is “lifted” from the order ⊑ on SetT -arrows,
our component calculus over T -transducers “inherits” domain-theoretic proper-
ties from the category SetT .

Lemma 3.3.4. Operators of the component calculus satisfy the following, up to
(not behavioral equivalence but) the exact equality =.

continuity strictness

sequential composition ◦ ✓ ✓⋆1

binary parallel composition ⊞ ✓ ✓⋆2

countable copy operator F ✓ ✓
trace operator Tr ✓ ✓

binary application • ✓ ✓⋆3

lifted algebraic operation α ✓ ×
countable parallel composition ⊞n∈N ✓ ✓⋆2

Girard style fixed point operator FixG ✓ ✓

⋆1 In the restricted form: (Y, d, y)◦(X,⊥, x) = (X×Y,⊥, ⟨x, y⟩) and (X,⊥, x)◦
(Z, e∗, z) = (Z ×X,⊥, ⟨z, x⟩), for any T -transducers (X, c, x) and (Y, d, y),
and any T -transducer (Z, e∗, z) with its transition function lifted from a
Set-arrow e.

⋆2 If all arguments have ⊥ as transition functions.
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⋆3 In the restricted form: (X,⊥, x) • (Y, d, y) = (Z,⊥, z) for any T -transducer
(Y, d, y) and any T -transducer (X,⊥, x) with its transition function ⊥,
where Z and z is respectively the state space and the initial state of
(X,⊥, x) • (Y, d, y).

Proof. The properties shown in the table are consequences of the conditions
stated in Requirement 2.2.1. These conditions imply the facts about the category
SetT listed below, and once we observe them the properties of the component
calculus can be easily confirmed by definitions of operators.

• Countable cotupling [{−}n∈N]T inherits continuity from (finite) cotupling
[−,−]T .

• Both finite and countable cotuplings are strict in the sense of [⊥,⊥]T = ⊥
and [{⊥}n∈N]T = ⊥. It is because of the restricted strictness of composition
◦T .

• The trace operator tr is continuous and strict by its definition that takes
advantage of Cppo-enrichment of SetT .

• Continuity of algebraic operations on T follows from continuity of compo-
sition ◦T and cotupling [−,−]T .

• There exists an algebraic operation on T that is not strict.

Continuity of algebraic operations can be confirmed using the bijective corre-
spondence, studied in [30], of an n-ary algebraic operation α on T and a SetT -
arrow (called generic effects) β : 1 →T n. For a family {fi : A →T B}ni=1 of
SetT -arrows, the SetT -arrow α{fi}ni=1 : A→T B can be equivalently given by

A
β⊗A−−−→T n×A ∼=→T A+ · · ·+A

[f1,...,fn]T−−−−−−→T B

using the corresponding generic effect β, where n is the n-fold coproduct of 1.
An example of non-strict algebraic operation is a 1-ary algebraic operation

raise
(1)
e on the exception monad E (see Example 2.2.2 & 2.2.5). The alge-

braic operation raise
(1)
e always returns e ∈ E, ignoring its argument, while

⊥ ∈ SetE(X,Y ) = Set(X, 1 + E + Y ) always returns ∗ ∈ 1.

The domain-theoretic properties of our component calculus support charac-
terization of the Girard style fixed point operator FixG by a limit of finite ap-
proximations.

Definition 3.3.5 (finite approximation Fix
(i)
G ). For a T -transducer (X, c, x) : A+

N × A _ A + N × A and each i ∈ ω, the T -transducer Fix(i)G (X, c, x) : A _ A is
defined to be

TrNA,A(⊞n∈N{Fn(X, c(i)n , x)} ◦ J((idA +
⨿
i∈N

σ′Ni,Ni
)∗) )

where N and σ′ are defined as in Definition 3.3.2, and c
(i)
n is the SetT -arrow

defined by

c(i)n :=

{
⊥ if i ≤ n
c otherwise

for each i ∈ ω and n ∈ N.
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⊥

A

A

N×A

N×A

⊥ ⊥ . . . ⊴ c

A

A

N×A

N×A

⊥ ⊥ . . . ⊴ c

A

A

N×A

N×A

c ⊥ . . . ⊴ · · ·

Figure 3.5: The ω-chain of Finite Approximations Fix
(i)
G (X, c, x)

Proposition 3.3.6. Let (X, c, x) : A + N × A _ A + N × A be a T -transducer.

The family {Fix(i)G (X, c, x) : A _ A}i∈ω of T -transducers forms an ω-chain

Fix
(0)
G (X, c, x) ⊴ Fix

(1)
G (X, c, x) ⊴ · · ·

as depicted in Figure 3.5, and the T -transducer FixG(X, c, x) : A _ A satisfies
the following behavioral equivalence

FixG(X, c, x) ≃ sup
i∈ω

(Fix
(i)
G (X, c, x)) .

Proof. Since the family {(X, c(i)n , x) : A+N×A _ A+N×A}i∈ω forms an ω-chain

(X, c(0)n , x) ⊴ (X, c(1)n , x) ⊴ · · ·

and its supremum supi∈ω(X, c
(i)
n , x) is given by (X, c, x), the statement is an

immediate consequence of Lemma 3.3.4, namely continuity of the operators ◦, F ,
Tr and ⊞n∈N.

3.3.4 Mackie Style Fixed Point Operator FixM

Girard interprets recursion in GoI as a limit of finite approximations in [12],
and the Girard style fixed point operator FixG follows his approach in the sense
of Proposition 3.3.6. This approach to interpret recursion in GoI is in fact not
unique. There is another one by Mackie [24], in which recursion is interpreted as
proof nets with a single “box” and feedback loops. In our setting Mackie’s ap-
proach corresponds to translate recursion with a single use of the countable copy
operator F and the trace operator Tr, and especially without any use of countable
parallel composition ⊞n∈N. We introduce another fixed point operator FixM on
T -transducers, that follows Mackie’s approach as depicted in Figure 3.3 (c), and
therefore call it “Mackie style” fixed point operator.

Definition 3.3.7 (Mackie style fixed point operator FixM ). For a T -transducer
(X, c, x) : A + N × A _ A + N × A, the T -transducer FixM (X, c, x) : A _ A is
defined to be

TrN×A+N×A
A,A ( (J(ẽ′

∗
A)⊞ J(id∗N×A+N×A)) ◦ (J(c̃′

∗
A)⊞ J(d̃∗A))

◦ F (X, c, x)

◦ (J(c̃∗A)⊞ J(d̃′
∗
A)) ◦ (J(ẽ∗A)⊞ J(σ′

∗
N×A,N×A)) )

where σ′ is swapping defined as in Definition 3.3.2.

This Mackie style fixed point operator FixM coincides with the Girard style
fixed point operator FixG, therefore both two styles of fixed point operators enjoy
useful properties shown in Proposition 3.3.3 & 3.3.6.
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Theorem 3.3.8 (coincidence of two styles of fixed point operator). The following
behavioral equivalence

FixG(X, c, x) ≃ FixM (X, c, x)

holds for any T -transducer (X, c, x) : A+ N×A _ A+ N×A.

Proof. We use diagrammatic depictions to illustrate the proof, in which natural-
ity of the trace operator Tr is often used implicitly. What is crucial in the proof
is monoidal naturality of primitive T -transducers J(d̃∗), J(d̃′

∗
), J(c̃∗), J(c̃′

∗
). It

holds because the underlying Set-arrows d̃ and c̃ are monoidal natural with re-
spect to coproducts (+, ∅) of Set, and the pairs d̃ ∼= d̃′ and c̃ ∼= c̃′ are in fact
isomorphic.

The first step is to “flatten” nested use of the countable copy operator F in
the operator FixG, exploiting naturality of the primitive T -transducer J(d̃∗). For
the technical reason we add an extra nest of the operator F before flattening
them, using naturality of the primitive T -transducer J(ẽ∗) and the fact that the
operator F yields a traced symmetric monoidal functor on the category Res(T ).

FixG(X, c, x) ≃

ẽ
∗

A

ẽ′
∗

A

A

A

c

N× A

N× A

N
2
× A

N
2
× A

c c c . . .

≃

ẽ
∗

A

ẽ′
∗

A

A

A

c

d̃′
∗

A

d̃∗
A

N
2
× A

N
2
× A

N× A

N× A

N×A

N×A

c

d̃′
∗

A

d̃∗
A

c

d̃′
∗

A

d̃∗
A

c

d̃′
∗

A

d̃∗
A

. . .

The second step is to get rid of countable parallel composition ⊞n∈N. Two
T -transducers in the form of F (X, c, x) : B + D _ B + D can be “joined” via
monoidal naturality of primitive T -transducers J(c̃), J(c̃) as below:

c

B

B

D

D

c

B

B

D

D

≃ c

B

B

D

D

c̃
∗

A

c̃′
∗

A

c̃
∗

A

c̃′
∗

A

B

B

D

D

D B

D B

and in this way the countable number of T -transducers in the form F (X, c, x)
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can be “joined.”

FixG(X, c, x) ≃ c

c̃
∗

A

c̃′
∗

A

P
′

A

PA

ẽ
∗

A

ẽ′
∗

A

A

A

N × A

N × A

N × A

N × A

N × N × A

N × N × A

N × A

N × A

We define the T -transducer PA : N× N×A _ N×A by

PA := d̃
∗

A
d̃
∗

A
d̃
∗

A
. . . . . .

c̃′
∗

FA

c̃
∗

A

c̃′
∗

FA

c̃
∗

A

c̃′
∗

FA

c̃
∗

A

N
2
× A

N × A

N
2
× A

N × A

N
2
× A

N × A

N
2
× A

N × A

N
2
× A

N × A

and obtain the T -transducer P ′
A from PA by replacing J(d̃) with J(d̃′), J(d̃) with

J(c̃′) and vice versa.
The last step is rather tricky. Let QA : N×A _ N×A and RA : N×A _ N×A

be T -transducers defined as below.

QA :=

d̃′
∗

A
d̃′

∗

A
d̃′

∗

A

d̃′
∗

FA
d̃′

∗

FA

d̃′
∗

F2A

. . . . . .

c̃′
∗

A

c̃′
∗

A

c̃′
∗

A

d̃
∗

A

c̃
∗

FA

d̃
∗

FA

c̃
∗

F2A

d̃
∗

F2A

c̃
∗

F3A

N × A

N × A

N
2
× A

N
3
× A

N
4
× A

N × A

N
2
× A

N × A

N
2
× A

N
3
× A

N × A

N
2
× A

N
3
× A

N
4
× A

N × A

N
2
× A

N × A

N
3
× A

N × A

N
4
× A , RA := QA

c̃′
∗

A

c̃
∗

A

N × A

N × A

N × A

N × A

N × A

We can obtain T -transducers Q′
A, R

′
A from QA, RA in the same way as we obtain

P ′
A from PA. Since J(d̃′) and J(c̃′) are inverses of J(d̃) and J(c̃) respectively,
P ′
A, Q

′
A, R

′
A yield inverses of PA, QA, RA respectively. Additionally RA and R′

A

27



satisfies monoidal naturality since J(d̃), J(d̃′), J(d̃), J(c̃′) are monoidal natural.
Therefore by introducing T -transducers QA, Q

′
A using the behavioral equivalence

PA

QA

N × N × A

N × A

N × A

≃
QFA

c̃′
∗

FA

c̃
∗

FA

d̃
∗

A

N × N × A

N × N × A

N × A

N × N × A

N × N × A

N × N × A

we obtain the desired behavioral equivalence.

FixG(X, c, x) ≃ c

R
′

A

RA

R
′

FA

RFA

c̃
∗

A

c̃′
∗

A

d̃′
∗

A

d̃
∗

A

ẽ
∗

A

ẽ′
∗

A

A

A

N × A

N × A

N × A

N × A

N × A

N × A

N × N × A

N × N × A

N × N × A

N × N × A

N × A

N × A

≃ FixM (X, c, x)
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Chapter 4

Adequate Translation of Effectful Terms to

Transducers

4.1 Translation to Transducers

We give a concrete translation L−M of terms in a language LΣ to T -transducers,
choosing a monad T that satisfies Requirement 2.2.1 and “supports” the algebraic
signature Σ in the sense of Definition 2.2.6. The definition of the translationL−M is by means of our component calculus over T -transducers, and given using
diagrammatic depictions. Our translation L−M is precisely an extension of the
translation given by the mGoI framework to recursion.

Definition 4.1.1 (translation L−M). Let Γ be a finite list x1 : τ1, . . . xm : τm and
Γ ⊢ M : τ be a type judgement. The T -transducer

LΓ ⊢ M : τM = LΓ ⊢ M : τM

N

N

N

N

N

N. . .

. . .

m

m

:

m⨿
i=0

N _ m⨿
i=0

N

is inductively defined as in Figure 4.1–4.3, where we omit labels of edges (either
N or N× N) and write e.g. c instead of c∗, for visibility.

In translation of recursion depicted in Figure 4.2 we implicitly use the Mackie
style fixed point operator FixM . The Girard style fixed point operator FixG can
be used instead as depicted in Figure 4.4, due to Theorem 3.3.8.
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LΓ ⊢ xi : τiM = h

w
′

w

w
′

w

w
′

w

w
′

w

. . .

. . .

. . .

. . .

. . .

. . .

i− 1

i− 1

LΓ ⊢ λx : σ. M : σ → τM = h LΓ, x : σ ⊢ M : τM

ψ

φ

v

u

d′

d

d′

d

. . .

. . .

. . .

. . .

LΓ ⊢ M N : τM = LΓ ⊢ M : σ → τM LΓ ⊢ N : σM

φ

ψ

φ

ψ

ψ

φ

e
′

e

c
′

c

c
′

c

. . .

. . .

. . .

. . .

Figure 4.1: Inductive Definition of the Translation L−M: Core Fragments
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LΓ ⊢ rec(f : σ → τ, x : σ). M : σ → τM = h LΓ, f : σ → τ, x : σ ⊢ M : τM

ψ

φ

v

u

c

c
′

d
′

d

d
′

d

d
′

d

. . .

. . .

. . .

. . .

LΓ ⊢ op+(M1, . . . , Mar(op)) : τM = LΓ ⊢ M1 : τM LΓ ⊢ Mar(op) : τM. . .

op+

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

LΓ ⊢ op0() : τM = op0

w
′

w

w
′

w

. . .

. . .

LΓ ⊢ n : natM = h kn

w
′

w

w
′

w

. . .

. . .

LΓ, x : nat, y : nat ⊢ x+ y : natM = h sum

w
′

w

w
′

w

. . .

. . .

(if x ̸≡ y)

LΓ, x : nat ⊢ x+ x : natM = h sum

c
′

c

w
′

w

w
′

w

. . .

. . .

Figure 4.2: Inductive Definition of the Translation L−M: Recursion, Operations
in Σ and Arithmetic Primitives
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LΓ ⊢ ∗ : unitM = h

w
′

w

w
′

w

. . .

. . .

LΓ ⊢ fst(M) : τM = LΓ ⊢ M : τ × σM

φ

ψ

h

w′

w

ψ!

φ!

ψ

φ

. . .

. . .

LΓ ⊢ snd(M) : σM = LΓ ⊢ M : τ × σM

φ

ψ

h

w′

w

ψ!

φ!

ψ

φ

. . .

. . .

LΓ ⊢ ⟨M, N⟩ : τ × σM = LΓ ⊢ M : τM LΓ ⊢ N : σM

c
′

c

c
′

c

φ

ψ

φ

ψ

h

φ!

ψ!

ψ

φ

ψ

φ

. . .

. . .

. . .

. . .

. . .

. . .

LΓ ⊢ inlτ,σ(M) : τ + σM = LΓ ⊢ M : σM

φ

ψ

h

φ!

ψ!

ψ

φ

w′

w

ψ!

φ!

ψ!

φ!

. . .

. . .

LΓ ⊢ inrτ,σ(M) : τ + σM = LΓ ⊢ M : τM

φ

ψ

h

φ!

ψ!

ψ

φ

w′

w

ψ!

φ!

ψ!

φ!

. . .

. . .

LΓ ⊢ case(M, x. N, x′. N′) : σM = LΓ ⊢ M : τ + τ ′M LΓ, x : τ ⊢ N : σM LΓ, x′ : τ ′ ⊢ N
′ : σM

φ

ψ

φ

ψ

φ!

ψ!

φ!

ψ!

ψ

φ

ψ

φ

ψ

φ

ψ!

φ!

c′

c

c′

c

c′

c

c′

c

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4.3: Inductive Definition of the Translation L−M: Product Types and
Coproduct Types
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LΓ ⊢ rec(f : σ → τ, x : σ). M : σ → τM ≃ h LΓ, f : σ → τ, x : σ ⊢ M : τM

v

u

d′

d

d′

d

ψ

φ

c′

c

c′

c

u

v

d

d
′

d

d
′

. . .

. . .

. . .

. . .

. . .

. . .

. . .. . .FixG

Figure 4.4: Equivalent Translation of Recursion by FixG

4.1.1 Underlying Categorical Model

The original translation in the mGoI framework is extracted from a categorical
interpretation on the model PerΦ. The model PerΦ, developed in [18, Section 6],
is the Kleisli category of a monad Φ: Per→ Per. Similarly our translation L−M
is backed up by a modified categorical model PerΦ′ , that is the Kleisli category
of a modified monad Φ′ : Per→ Per. We briefly describe how our model PerΦ′

is constructed, without going into technical details.
The category Per is a bicartesian category obtained via categorical GoI

combined with the realizability construction (see e.g. [22]). Since the category
Res(T ) of resumptions (i.e. equivalence classes of T -transducers modulo behav-
ioral equivalence≃) forms a GoI situation, categorical GoI provides an SK-algebra
(Res(T )(N,N), ·) as stated in Proposition 3.1.5. The realizability construction
on the SK-algebra (Res(T )(N,N), ·) yields the bicartesian closed category Per
of partial equivalence relations on Res(T )(N,N).

The model PerΦ′ is obtained as the Kleisli category of the strong monad Φ′

on Per. The monad Φ′ is induced by an adjunction

CAdm⊥ � | 22⊥ Per
[ss

between Per and its (non-full) subcategory CAdm⊥. The subcategory CAdm⊥
is defined by picking up “well-behaved” objects and arrows in Per. Intuitively
objects and arrows in CAdm⊥ respect lifted algebraic operations α on T -
transducers (and hence resumptions) and the ω-cpo structure (Trans(T )(N,N),⊴
) on T -transducers with minimal elements in the form of (X,⊥, x) (see Sec-
tion 3.3.3).

Note that the monad Φ′ is a modification of the original monad Φ used in
the mGoI framework. If we relax the notion of “well-behavior” and use another
subcategory CPer of Per, whose objects and arrows respect lifted algebraic
operations α only, we have another adjunction

CPer � { 33⊥ Per
[ss

and it induces the monad Φ.
Because the category Per is bicartesian closed and Φ′ is a strong monad on it,

the Kleisli category PerΦ′ gives a categorical model of the language LΣ as in [24,
29]. Our concrete translation L−M is extracted from a categorical interpretation

33



of LΣ on the model PerΦ′ . In particular we can prove that algebraic operations
on T injectively induces algebraic operations on Φ′, like in [18, Theorem 6.1], and
that the Girard style fixed point operator FixG yields a (categorical) fixed point
operator of PerΦ′ . These results justify our translation of operations op ∈ Σ by
lifted algebraic operations op on T -transducers, and of recursion by the Girard
style fixed point operator FixG (and equivalently the Mackie style fixed point
operator FixM ).

4.2 Adequacy of Translation

Our adequacy result relates the translation L−M, extracted from categorical (de-
notational) semantics, to operational semantics described in Section 2.1.2. The
statement of adequacy is in Plotkin and Power’s sense [29], in which evaluation
results of terms are “collected” via both T -transducers and effect values.

For a closed term M of base type nat, we can observe that executing the T -
transducer LMM : N _ N with input in the form of dd⟨i,m⟩ produces output in the
form of dd⟨i, n⟩, where i,m ∈ N can be arbitrary and n ∈ N corresponds to a
possible evaluation result of the term M (see Section 3.2.2 for the notation). On
this observation we fix the retraction enc : N◁ N : dec such that

enc(n) = dd⟨0, n⟩ dec(dd⟨i, n⟩) = n

and “collect” execution results of a T -transducer (X, c, x) : N _ N by taking

(X, c, x)† := ((π′X,N)
∗ ◦T c)(x, enc(m0)) ∈ TN

where π′X,N : X×N→ N is the second projection of Set and m0 is a fixed natural

number. This procedure (−)† executes a given T -transducer from its initial state
with input data enc(m), and gathers output data, ignoring internal states that
memorizes history of effect occurrences in execution. Two behavioral equivalent
T -transducers (X, c, x) ≃ (Y, d, y) : N _ N indeed produce the same “collection”
of execution results, i.e. (X, c, x)† = (Y, d, y)† holds.

To “collect” evaluation results of terms via effect values, we utilize the fact
that the set TN, isomorphic to the set SetT (1,N), is a continuous Σ-algebra.
Since the monad T satisfies Requirement 2.2.1 and supports the algebraic sig-
nature Σ in the sense of Definition 2.2.6, each operation op ∈ Σ comes with
an ar(op)-ary algebraic operation op on T and it gives an ar(op)-ary continuous
function on the ω-cppo SetT (1,N).

Let CValnat be the set of closed values of type nat. For a closed term M of
base type nat, its effect value |M| is an element of the free continuous Σ-algebra
CTΣ(CValnat) on the set CValnat (see Section 2.1.2). Therefore we can obtain a
strict homomorphism J−K : CTΣ(CValnat)→ TN between continuous Σ-algebras
by lifting the function

CValnat
∼=→ N enc∗−−−→ TN .

Note that all elements of the set CValnat is in the form of n and we can take the
canonical isomorphism CValnat

∼=→ N in Set that assigns n to n.
Given a closed term M of base type nat, we “collect” its evaluation results

via the effect value |M| by taking J|M|K ∈ TN. Recall that the effect value |M| can
be understood as a (possibly infinite) tree whose leaves correspond to possible
evaluation results of M. The procedure J−K gathers all leaves of |M|, forgetting
the branching structure of |M| that represents history of effect occurrences in
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evaluation of M. For example, if we take Σ = Σnondet from Example 2.1.1 and
T = P from Example 2.2.2, effect values of two terms choose(0, choose(1, 2)) and
choose(choose(0, 1), 2) are distinct but identified as {enc(0), enc(1), enc(2)} ∈
PN via the procedure J−K.

With two procedures (−)† and J−K in hand, adequacy of our translation L−M
is precisely stated as below.

Theorem 4.2.1 (adequacy of L−M). Any closed term M of base type nat satisfiesLMM† = J|M|K.
4.2.1 Proof of Adequacy

To prove Theorem 4.2.1 we introduce a language LΣ following [29]. It is made
from the target language LΣ by replacing the term constructor rec with recn
for each n ∈ N and adding the non-value constant Ωτ for each type τ . Transition
relation → for a redex recn(f : σ → τ, x : σ). M is defined by

recn+1(f : σ → τ, x : σ). M→ (λx : σ. M)[recn(f : σ → τ, x : σ). M/f]

rec0(f : σ → τ, x : σ). M→ λx : σ. Ωτ .

In the way analogous to LΣ, any closed term M of LΣ can be uniquely de-
composed into one of the forms of V, E[R], E[op0()] and E[Ωτ ], and its reduction

via transition relations→,
opi→ is uniquely determined. Additionally the reduction

always terminates [29, Lemma 6]. Therefore, in the language LΣ, the effect value
|M| for a closed term M of type τ can be defined by

|M| :=


V (M ≡ V)

op+(|N1|, . . . , |Nar(op)|) (M
opi→ Ni for each i = 1, . . . , ar(op))

op0() (M ↓op)
Ω (M ≡ E[Ωτ ′ ])

It is an element of the free continuous Σ-algebra CTΣ(CValτ ) over the set
CValτ of closed values of type τ . Since the set CValnat includes Ωnat other
than n, we define the procedure J−K : CTΣ(CValnat) → TN by lifting the func-

tion CValnat
∼=→ N + {Ωnat}

[id∗,⊥]−−−−→ TN using the least element ⊥ of the ω-cppo
SetT ({Ωnat},N).

The translation LΓ ⊢ recn(f : σ → τ, x : σ). M : σ → τM and LΓ ⊢ Ωτ : τM are
defined by

LΓ ⊢ recn(f : σ → τ, x : σ). M : σ → τM = h LΓ, f : σ → τ, x : σ ⊢ M : τM

v

u

d′

d

d′

d

ψ

φ

c′

c

c′

c

u

v

d

d′

d

d′

. . .

. . .

. . .

. . .

. . .

. . .

. . .. . .Fix
(n)
G

LΓ ⊢ Ωτ : τM = ⊥

w
′

w

w
′

w

. . .

. . .
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where ⊥ is the least element of the ω-cppo SetT (N,N). We use the n-th approx-

imation Fix
(n)
G of the Girard style fixed point operator as in Figure 4.4.

For a closed term M of LΣ of base type nat and for each n ∈ N, let M(n)

be a term of LΣ made from M by replacing all occurrences of rec with recn.
Theorem 4.2.1 can be proved by:

J|M|K = Jsup
n∈ω
|M(n)|K

= sup
n∈ω

J|M(n)|K (by continuity of J−K)
= sup

n∈ω
LM(n)M†

= (sup
n∈ω

LM(n)M)† (by continuity of ◦T )

= LMM† (by Proposition 3.3.6)

where the first equation can be proved as in [29] and the third one is a consequence
of the following lemma.

Lemma 4.2.2 (adequacy of L−M for LΣ). Any closed term M of LΣ of base type
nat satisfies LMM† = J|M|K.
Proof. The proof utilizes logical relations between T -transducers and closed terms.
Let CVal+τ be the set obtained by adding closed terms in the form of recn(f :
σ → τ, x : σ). M to the set CValτ , and CTermτ be the set of closed terms of
type τ . For each type τ , a binary relation Rτ ⊆ Trans(T )(N,N) × CVal+τ is
inductively defined by

Runit = {(J(id∗N), ∗)}
Rnat = {(J(κ∗n), n) | n ∈ N}
Rσ→τ = {(J(ϕ∗) ◦ r ◦ J(ψ∗), V) | ∀(d, U) ∈ Rσ. (r •′ d, V U) ∈ Rτ}
Rτ×σ = {(J(ϕ∗) ◦ (c⊞ d) ◦ J(ψ∗), ⟨V, U⟩) | (c, V) ∈ Rτ , (d, U) ∈ Rσ}

Rτ+σ = {( c

w′

w

ψ

φ

ψ

φ

ψ

φ

N

N

N

N

N

N

, inlτ,σ(V)) | (c, V) ∈ Rτ} ∪ {( d
w′

w

ψ

φ

ψ

φ

ψ

φ

N

N

N

N

N

N

, inrτ,σ(V)) | (d, V) ∈ Rσ}

where κn : N→ N is the constant function to n. For a list Γ = x1 : τ1, . . . xm : τm,
the binary relation RΓ is defined by Rτ1×· · ·×Rτm . Each Rτ ⊆ Trans(T )(N,N)×
CVal+τ is lifted to the least binary relation Rτ ⊆ Trans(T )(N,N)×CTermτ such
that

• (d, M) ∈ Rτ if (c, M) ∈ Rτ and c ≃ d

• (J(h∗) •′ c, V) ∈ Rτ if (c, V) ∈ Rτ

• (c, M) ∈ Rτ if M→ N and (c, N) ∈ Rτ

• (op{c1, . . . , car(op)}, M) ∈ Rτ if M
opi→ Ni and (ci, Ni) ∈ Rτ for each i =

1, . . . , ar(op)

• (op{}, M) ∈ Rτ if M ↓op

• (J(⊥), E[Ωτ ′ ]) ∈ Rτ .
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Note that the binary relation Rτ is closed under behavioral equivalence. The
operator •′ on T -transducers is an adaptation of binary application •. For two
T -transducers (X, c, x) : A+C _ B +C and (Y, d, y) : C _ C, the T -transducer
(X, c, x) •′ (Y, d, y) is defined to be

TrN×C
A,B ( (X, c, x) ◦ (J(id∗B)⊞ (J(u∗) ◦ F (Y, d, y) ◦ J(v∗))) ) .

It can be easily proved that

Rnat ⊆ {(c, M) | c† = J|M|K}
by (structural) induction on Rnat. Let Γ ⊢ M : τ be a type judgement andLMM[⃗c] : N _ N be a T -transducer defined by (· · · ((LMM •′ c1) •′ c2) · · · •′ cm). To
prove the desired statement it suffices to prove

∀(⃗c, V⃗) ∈ RΓ. (LMM[⃗c], M[⃗V/Γ]) ∈ Rτ

by induction on M. In the proof below we exploit axioms that are satisfied by our
component calculus and listed in Section 3.2.3.

• If M ≡ xi, the behavioral equivalence

LxiM[⃗c] ≃ J(h∗) •′ ci ,
together with (ci, Vi) ∈ Rτi , implies (LxiM[⃗c], xi [⃗V/Γ]) ∈ Rτi .

• If M ≡ λx : σ. N, the induction hypothesis implies

(J(ϕ∗) ◦ LNM[⃗c] ◦ J(ψ∗), λx : σ. N[⃗V/Γ]) ∈ Rσ→τ .

Therefore it follows that (Lλx : σ. NM[⃗c], (λx : σ. N)[⃗V/Γ]) ∈ Rτ from the
behavioral equivalence

Lλx : σ. NM[⃗c] ≃ J(h∗) •′ (J(ϕ∗) ◦ LNM[⃗c] ◦ J(ψ∗)) .

• If M ≡ N1 N2, let App(d1,d2) : N _ N be a T -transducer defined by

App(d1,d2) := d1 d2

φ

ψ

φ

ψ

ψ

φ

e
′

e

for two T -transducers d1,d2 : N _ N. Because of the behavioral equivalence

LN1 N2M[⃗c] ≃ App(LN1M[⃗c], LN2M[⃗c])
it suffices to prove that

(d1, N1) ∈ Rσ→τ ∧ (d2, N2) ∈ Rσ ⇒ (App(d1,d2), N1 N2) ∈ Rτ

holds for any N1 ∈ CTermσ→τ and N2 ∈ CTermσ. The proof can be done
by induction on reductions of N1 and N2, in which we exploit properties of
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lifted algebraic operations α (see Section 3.2.3) and strictness of our compo-
nent calculus (see Lemma 3.3.4). The key observations are the behavioral
equivalences

App( J(h∗) •′ (J(ϕ∗) ◦ (e1) ◦ J(ψ∗)), d2 ) ≃ d2
e1

φ

ψ

ψ

φ

App(J(h∗) •′ (J(ϕ∗) ◦ (e1) ◦ J(ψ∗)), J(h∗) •′ e2 ) ≃ e1 •′ e2

that holds for any T -transducers d2 : N _ N, e1 : N + N _ N + N and
e2 : N _ N.

• If M ≡ recn(f : σ → τ, x : σ). N, let rn : N _ N be a T -transducer defined
by

rn := Fix
(n)
G ( (J(ϕ∗)⊞ J(v∗)) ◦ LNM[⃗c] ◦ (J(ψ∗)⊞ J(u∗)) ) .

Because we have the behavioral equivalence

Lrecn(f : σ → τ, x : σ). NM[⃗c] ≃ J(h∗) •′ rn
it suffices to prove that

(rn, recn(f : σ → τ, x : σ). N[⃗V/Γ]) ∈ Rσ→τ

holds for any n ∈ N. The proof, done by induction on n, is supported by
the two behavioral equivalences

r0 •′ e ≃ J(⊥)
rn+1 •′ e ≃ LNM[⃗c, rn, e]

that hold for any T -transducer e : N _ N.

• If M ≡ op+(N1, . . . , Nar(op)), the desired property directly follows from the
behavioral equivalence

Lop+(N1, . . . , Nar(op))M[⃗c] ≃ op(LN1M[⃗c], . . . , LNar(op)M[⃗c]) .
• If M ≡ op0() or M ≡ E[Ωτ ′ ], the proof is obvious by the definition of Rτ .

• The other cases can be proved in the same way as the case M ≡ N1 N2.

4.3 Execution of Resulting Transducers

As shown in Section 2.2.3, the algebraic signature Σprob for probabilistic choice is
supported by the subdistribution monad D, with a binary operation choosep ∈
Σprob coming with a 2-ary algebraic operation ⊕p on D. Probabilistic programs,
expressed as terms in the language LΣprob

, can therefore be translated to D-
transducers in our framework. In this section we use (recursive) probabilistic
programs as examples and illustrate execution of the resulting D-transducer.
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The first example program is expressed as the following closed term that
includes recursive calls of a function.

P1 ≡ (rec(flipLoop : nat→ nat, x : nat). Q) 0 : nat

where Q ≡ choose0.4(x, flipLoop (x+ 1))

This term P1 flips an unfair coin repeatedly until head is observed, counting how
many tails are observed. Its effect value |P1| can be seen as the infinite binary tree
shown in Figure 4.5, and the structure of the tree represents how the evaluation
of P1 branches according to the results of coin flipping. Gathering all leaves
of the tree yields J|P1|K ∈ DN, that is the (sub)distribution over N such thatJ|P1|K(enc(n)) = 0.4× 0.6n for each n ∈ N.

choose0.4

0 choose0.4

1 choose0.4

2 . . .

Figure 4.5: The Effect Value |P1|

The resulting D-transducer LP1M : N _ N can be depicted as in Figure 4.6.
Thinking of transducers as token machines, we can visualize execution of the

LP1M = h LQM

ψ

φ

v

u

c

c′

d′

d

L0M

φ

ψ

φ

ψ

ψ

φ

e′

e

Enter

Exit

where LQM = LxM LflipLoop (x+ 1)M⊕0.4

Figure 4.6: The D-transducer LP1M : N _ N

D-transducer LP1M : N _ N using a token that carries a natural number as data.
A token enters through the open edge labeled with “Enter” carrying the data
enc(m0), moves around the depiction along edges with updating its data, and
hopefully exits though the open edge labeled with “Exit”. Theorem 4.2.1 implies
that, if a token exits it carries the data enc(n) with probability 0.4×0.6n for each
n ∈ N.

The way in which a token travels around captures dynamics of evaluation of
the term P1 in some sense. For example we can observe that a token enters a
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copy of the “subtransducer” LQM as many times as the subterm Q is evaluated (i.e.
the coin is flipped). It in fact enters a different copy of LQM for each time, namely
it enters the g0-th copy for the first time, the d⟨g0, g0⟩-th copy for the second
time, the d⟨d⟨g0, g0⟩, g0⟩-th copy for the third time and so on. Note that, since
the transducer LQM is depicted within the dashed box in Figure 4.6, it is “copied”
by the operator F and each copy has its own index given by a natural number.
Additionally a token goes along the path, indicated by the bold red arrows in
Figure 4.6, as many times as the subterm flipLoop is recursively called (i.e. the
coin results in tail and is flipped again).

Each copy of the transducer LQM has the state space isomorphic to the set
{∗, L,R}, and its transition diagram is given by'&%$ !"#L1 :: ��������∗0.4oo �� 0.6 // '&%$ !"#R 1dd

where labels denote probabilities. The copies of LQM memorizes history of proba-
bilistic choices using their internal states. If the coin results in tail twice and in
head at the third time, the transducer LP1M outputs enc(2) and internal states of
the copies of LQM result in as below.

index internal state

g0 R
d⟨g0, g0⟩ R

d⟨d⟨g0, g0⟩, g0⟩ L
others ∗

Readers can see how exactly a token travels around using our tool TtT 1—
short for “Terms to Transducers.” The tool automatically translates a given term
of the language LΣprob

and visualize execution of the resulting D-transducer by
showing how a token moves around and updates its data.

4.3.1 Execution Cost

The second example program is expressed as the following closed term.

P2 ≡ (λx : nat. x+ x) choose0.4(3 + 4, 5 + 6) : nat

It includes no recursive calls of functions and its effect value |P2| is equal to the fi-
nite binary tree shown in Figure 4.7. We can obtain the distribution J|P2|K ∈ DN
such that J|P2|K(enc(14)) = 0.4 and J|P2|K(enc(22)) = 0.6, and Theorem 4.2.1
implies that the resulting D-transducer LP2M : N _ N, roughly depicted in Fig-
ure 4.8, outputs enc(14) with probability 0.4 and enc(22) with probability 0.6.

Using this example we focus on execution cost of transducers. Since we adopt
the call-by-value evaluation strategy, the subterm choose0.4(3+4, 5+6) is evalu-
ated exactly once in evaluation of the term P2. Therefore one probabilistic choice
is made by the operation choose0.4 and either 3+ 4 or 5+ 6 is evaluated exactly
once.

However in execution of the D-transducer LP2M, we can observe that the “sub-
transducer” ⊕0.4{L3 + 4M, L5 + 6M} is executed twice, i.e. a token enters it twice.
For the first time a token enters, the subtransducer makes a probabilistic choice,
memorizes the result using its internal state, and passes the token to either L3+4M
or L5+6M. When the token comes again, the subtransducer remembers the results

1http://koko-m.github.io/TtT/

40



choose0.4

14 22

Figure 4.7: The Effect Value |P2|

LP2M = Lλx : nat. x+ xM L3 + 4M L5 + 6M⊕0.4
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Figure 4.8: The D-transducer LP2M : N _ N

of its previous choice using its internal state, and passes the token to the same
transducer as the one it passed the token to last time. As a result, in execution
of the D-transducer LP2M, one probabilistic choice is made by the operator ⊕0.4

and either L3 + 4M or L5 + 6M is executed twice.
This unwanted “re-execution” of transducers corresponds to the duplication of

the bounded variable x in the subterm λx : nat. x+x. While we force transducers
to never “re-generate” effects by exploiting their internal states, transducers are
in fact “re-executed” as many times as bounded variables are duplicated. This
means that execution cost of transducers is not compatible with evaluation cost of
terms, because evaluation cost of terms is not affected by duplication of bounded
variables as long as we adopt the call-by-value evaluation strategy.
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Chapter 5

Conclusion and Future Work

We developed a framework that provides a translation of effectful λ-terms to
transducers, as an extension of the mGoI framework [18]. In the mGoI frame-
work, various algebraic effects are accommodated in a uniform way by employing
categorical GoI [1] and categorical semantics of algebraic effects [29], and a trans-
lation from effectful λ-terms to transducers is defined by means of a coalgebraic
component calculus over transducers. Our framework inherits all these character-
istics of the mGoI framework, and further accommodates recursion that is lacking
in the mGoI framework. We defined new two styles of “fixed point” operators on
transducers—namely the Girard style and Mackie style fixed point operators—
and show their coincidence. They enable us to give a translation from effectful
λ-terms to transducers, that is defined by means of a component calculus over
transducers, even for recursion. The translation was proved to be adequate.

We can say our adequacy result is essentially due to the primitive transducer
J(h∗) (see Section 3.2.2). It is well known that program semantics based on
GoI has the “call-by-name” nature, in the sense that function application is
interpreted as interactions of a function and its arguments where arguments are
evaluated as many times as they are called by the function. We utilize the
primitive transducer J(h∗) as a CPS-like construct to model the call-by-value
evaluation strategy in token machine semantics. There exists another but similar
approach to model the call-by-value evaluation strategy in GoI-based semantics,
namely Schöpp’s approach in [32] to employ a refinement of Plotkin’s call-by-
value CPS-transformation [28]. The relationship between our CPS-like construct
and Schöpp’s refined CPS-transformation is yet to be examined.

Since transducers can be understood as “effectful and memoryful” token ma-
chines, we can think of extracting a compilation technique of effectful terms to
hardware, from our framework, by implementing transducers on hardware as in
[24, 6]. In extracting the compilation technique, one difficulty would arise from
the use of countable copy operator F and countable parallel composition ⊞n∈N
of the component calculus. They both can inflate state spaces of transducers to
infinite ones, and therefore can make hardware implementation of transducers
consume much more resources. In our translation of recursion (see Figure 4.2)
we reduce occurrences of these two operators, especially exclude occurrences of
countable parallel composition ⊞n∈N, using the Mackie style fixed point opera-
tor instead of the Girard style one. To deal with the countable copy operator
F that still appears in our translation, bounded linear logic [9] might provide a
useful way to statically estimate how many copies will be actually executed and
to implement transducers using finite resources.

For compilation techniques it is important not only to consume less resources
but also to execute compiled programs faster. This faster execution of compiled
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programs corresponds to execution of resulting transducers at less cost in our
framework. We observed in Section 4.3.1, however, that execution cost of result-
ing transducers is unnecessarily high. To be concrete our framework does not
respect the cost model of the call-by-value evaluation strategy, in the sense that
execution cost of resulting transducers is not compatible with evaluation cost of
terms in the call-by-value evaluation strategy.

This cost problem is not specific to our setting and in fact applies to token
machine semantics in general. There have been proposed some approaches to
make token machine semantics respect the cost model of a specific evaluation
strategy, and they would help us deal with the cost problem in our framework. For
example Fernández and Mackie propose a dynamic jumping mechanism of token
machines in [5] to make their token machine semantics respect the call-by-value
evaluation strategy. Their approach is influenced by Danos and Regnier’s work
[4] that proves token machine semantics can respect the cost model of the call-by-
name evaluation strategy if one introduce a (static) jumping mechanism to token
machines. Additionally Dal Lago et al. in [3] obtain token machine semantics
that respects the call-by-value evaluation strategy, in which token machines are
generalized to “multi-token machines” that can process several tokens at once.
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