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Today's topic

e a coinductive technique for

quantitative equational reasoning on effectful programs
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Quantitative equational reasoning

e “p behaves the same as p’
and p’ terminates with a less number of steps”

e p'= p'I" A nz=m

e (basic) quantitative notion of observational refinement
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Quantitative equational reasoning

e “p behaves the same as p’

and p’ terminates with a certain number of steps”

A
e (PV'= p' V" A nOm <= p=zp
given a “length preorder” O C N X N

e (basic) quantitative notion of observational refinement
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A coinductive approach

e stepwise reasoning on execution traces, using

nondeterministic automata
e e.g. standard simulation

e (FYI: simulation is the asymmetric version of bisimulation)

= / - n / m
e p=p = @V = pI"A n=m)
<= p R p’such that

R
bes

(a) Final (b) Step
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Counting simulation [M. 2020]

e stepwise reasoning on execution traces, using

nondeterministic automata

e parameterised by a length preorder O C N X N

e (FYI: simulation is the asymmetric version of bisimulation)

A
e p<’p = (PI'= pPU" A nOm)
<= p R p’such that

R
@
oX30 [oRd

(a) C-Final (c) C-Step (2) where |aw|Q|w’|
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Counting simulation [M. 2020]

e stepwise reasoning on execution traces, using

nondeterministic automata

A
e p=p = PV = p'V" A nOm
<= p R p’such that
@R

w

@@

(a) C-Final (c) C-Step (2) where |aw|Q|w

e soundness only for “deterministic” programs
e or “branching-free” automata
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Counting simulation [M. 2020]

e Today’s topic: a coinductive technique for quantitative equational

reasoning on effectful programs

e (oal: extend counting simulation to a wider class of effects

©
1 @)
M 1 0
e
Cor(1, 01>
(a') ‘A-Qerr (2 X (§+ 4)) a'nd A-Qerr (2 X (b) Aﬂnd (Or(l, l)) a‘nd
3+2X é) ‘Annd (or(l’ Q))

Fig. 3: Example pairs of NAs
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Overview

e (oal: extend counting simulation to a wider class of effects

e Challenge 1:
e Solution 1:

e Challenge 2:
e Solution 2:

e Contribution:
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Challenge 1: varying observation

o 4 exception termination only ]

A
p=<p = (pU"'= p'U" A nOm)

e X nondeterminism ‘ result \

A
p=<p = (pU'v = pI"v A nOm)

e X IO [ result, and trace of 1/0 values ]

p<lp S U W) = p U ) A nOm)
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Challenge 1: varying observation

e internal vs. external choice

nondeterminism: internal, unobservable choice

or(1,HY1 = 1 Y1 A 1=1
coincidence of results

iInput: external, observable choice

in(l,1)  (1,in;)) = 1Y (,e) A 1 =1

coincidence of results, but
no coincidence of I/O traces
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Solution 1: “observation preorder” on traces

e program trace fr € 2*

where X = {7} UNUQ

pure
computation

execution
result

effect traces
(e.g. oriing)

e examples:
o Tr(or(1,2)) = {oryl,or;2}
o Tr(in(1,2)) = {inel,in,2}
o Tr(1) = {1}
o Tr(l+1)= {2}

12 Muroya (RIMS, Kyoto U.)



Solution 1: “observation preorder” on traces

e program trace fr € 2*

where 2 = {r} UN U Q

pure
computation

execution
result

effect traces
(e.g. or1ing)

. lO ll lk n
e ingeneral: py—=>p;— - —>n->v
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Solution 1: “observation preorder” on traces

e program trace fr € 2*

where X = {r} UN U Q

pure
computation

execution
result

effect traces
(e.g. or1ing)

e introducing “observation preorder” @ C 2% X 2%
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Solution 1: “observation preorder” on traces

e program trace tr € 2*

where X = {7} UNUQ

pure
computation

execution
result

effect traces
(e.g. or1ing)

e introducing “observation preorder” @ C 2% X 2%
e e.g. lifted length preorder:

: A
gvenQ CNXN, rQu < |[t|0]|u]
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Solution 1: “observation preorder” on traces

e program trace fr € X*

where X = {7} UNUQ

pure
computation

execution
result

effect traces
(e.g. oriny)

e introducing “observation preorder” @ C 2* x 2*
e e.g. “filtered equality”

A
given 2’ C 2, f =, U < tandu are the same except for 2’

e TabtctT = (remyy) abc
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Solution 1: “observation preorder” on traces

e program trace fr € 2*

where X = {7} UN U Q

pure
computation

effect traces
(e.g. oriing)

execution
result

e introducing “observation preorder” @ C 2% x 2%
Definition 1 ((quantitative) refinement). Let Q be a preorder on N (dubbed

length preorder ).

1. For Qep, t <&, u is defined by Vw.(t 5V = Jwau>v A lw|Q|w'|).
2. For Qn, t <9 u is defined by Yw.(t SV = Fwau>vAwQu|A

— /
w —rem .y w )

3. For 2, t <2 u is defined by Vw.(t S5V = wau>vA lw|Q|w'| A

W =rem,, W)
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Solution 1: “observation preorder” on traces

e program trace fr € 2*

where X = {t} UNUQ

pure
computation

effect traces

(e.g. oriing)

execution
result

e introducing “observation preorder” @ C 2% x 2%

Q refinement <&, for exception
QN Srem . 5e refinement and for nondeterminism
. T nd
QN =rem ., refinement <.¥ for I/0O
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Examples

—err ° —nd °* —Io

@
@
. oro or;

(a) Ag., (2% (3+4)) and Aq,, (2 X (b) An d (Or(l 1)) an
3+2x4) Agq,,(or(1,0))

e exhibit quantitative refinement <=

Fig. 3: Example pairs of NAs
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Overview
e (oal: extend counting simulation to a wider class of effects

e Starting point: 8 exception X nondeterminism X I/O

e Challenge 1: varying observation

e Solution 1: “observation preorder” on traces
e Challenge 2:

e Solution 2:

e Contribution:
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Challenge 2: branching effects
o exception
e X nondeterminism

e X1/O

e unsoundness of counting simulation for branching effects

e due to incomplete inspection of branches
N\

cf. definition of counting simulation |
G

% 9,
@ )

(a) C-Final (c) C-Step (2) where |aw|Q|w’|

\ S
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Solution 2: limited 3

e from unlimited 3 to limited 3

I

N R
. WA o

(c) C-Step (2) where |aw|Q|w’| (b) Step™ where
ai---aLQu’

w

a

e enabling full inspection of branches
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Overview
e (Goal: extend counting simulation to a wider class of effects

e Starting point: & exception X nondeterminism X I/0

e Challenge 1: varying observation
e Solution 1: “observation preorder” on traces

e Challenge 2: branching effects

e Solution 2: limited d

e Contribution:
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Contribution: (M, @)-simulation

e parameterised by

e ‘look-ahead bound” M € N
e observation preorder 0 & 2% X 2*

Definition 3 ((M, Q)-simulations). For each M € N, a binary relation R C
X1 x X5 is an M-bounded Q-constrained simulation ((M,Q)-simulation in

short) from A; to Az if, for any (z,y) € R, the following Final” and Step™
hold.

Final™ For each w = ai...an € X" and z1...zn € X7 such that n < M,
T N5 Ty 51 zn and T, € Fy, there exist w' € X* and y' € X2 such that

wQu', Y~y andy € Fy.

M M M ay an
Step™ Foreacha;...ap € XV andxy...xp € X" such thatx ~> -+ ~>

xM, there existk € {1,..., M}, w' € X* andy’ € X2 such that a1 - - - ax Qu’,

y ~» Y and xRy’

24 Muroya (RIMS, Kyoto U.)



Contribution: (M, @)-simulation

e parameterised by

e ‘look-ahead bound” M € N

e observation preorder 0 & 2% X 2*

Definition 3 ((M, Q)-simulations). For each M € N, a binary relation R C
X1 x X5 is an M-bounded Q-constrained simulation ((M,Q)-simulation in

short) from A; to Az if, for any (z,y) € R, the following Final” and Step™

hold.
@ @ wy @)1
w R w/ R w/
Gedo ok
(a) Final™ where lw| < M N wQu' (b) Step™ where a; - - - a; Qu’

25 Muroya (RIMS, Kyoto U.)



Contribution: (M, @)-simulation

e parameterised by

e ‘look-ahead bound” M € N

e observation preorder 0 & 2% X 2*

Corollary 1 (correctness of (M, Q)-simulations wrt. refinement).

1. For any M € Ny andt,u € Tg, ,t Sy v = t <9 u.

—€rr

2. For any M € Ny andt,u € T, t Spron=.. u =t -<Sd u.

{(T}UZng o

3. For any M € Ny andt,u € To,, t Spron= u = t <2 u. O
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Examples of (M, @)-simulations
e (2,<)-simulation for (a)

o (I,=U =remyyua )-simulation for (b)

o (2,=U =rem,,, )-simulation for (c)

(b) A.Qnd (or(l, l)) a'nd
A,y (or(1,0))

Fig. 3: Example pairs of NAs
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Overview
e (Goal: extend counting simulation to a wider class of effects

e Starting point: & exception X nondeterminism X 1/0

e Challenge 1: varying observation
e Solution 1: “observation preorder” on traces

e Challenge 2: branching effects

e Solution 2: limited d
e Contribution: (M, ©)-simulation

o Result: ¥ exception & nondeterminism § I/0
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Overview
e (Goal: extend counting simulation to a wider class of effects

e Starting point: & exception X nondeterminism X 1/0

e Challenge 1: varying observation
e Solution 1: “observation preorder” on traces

e Challenge 2: branching effects
e Solution 2: limited d
e Contribution: a generative spectrum of (M, ©)-simulations

o Result: ¥ exception & nondeterminism § I/0
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A generative spectrum of (M, @)-simulations

(1, Q)-similarity R (2, Q)-similarity \ ~ Q-trace inclusion
S1Q S2.9 ' " Ca

Fig.1: A generative spectrum, parameterised by the observation preorder Q

observation preorder Q|| (1,Q)-simulation Q-trace inclusion Cq
= standard simulation finite trace inclusion
=rem ) weak simulation weak trace inclusion
Q refinement <&, for exception
Q N =rem (T (new instances) |refinement <7, for nondeterminism
QN =rem,., refinement <. for /O
Table 1: Instances of the two ends of the generative spectrum (see Sec. BJ for
details)
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Overview
e (Goal: extend counting simulation to a wider class of effects

e Starting point: & exception X nondeterminism X 1/0

e Challenge 1: varying observation
e Solution 1: “observation preorder” on traces

e Challenge 2: branching effects
e Solution 2: limited d
e Contribution: a generative spectrum of (M, ©)-simulations

o Result: ¥ exception & nondeterminism § I/0
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Future work 1: bunching branches

e X probabilistic choice

e a naive attempt yields a false refinement:

oros(l,1) E<, oros(0,1)

e |dea: from nondeterministic automata to weighted

automata?
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Future work 2: efficient solving

?
o p<Yp’ < p Sy p for nondeterministic automata o/ (p), A (p’)

that represent whole execution of p, p’

<= reachability in a graph “pairing” /(p) with Z(p")

e polynomial time solving, based on whole execution

e lIdea: solving without executing programs

e using TRS techniques? [M. & Hamana, FLOPS '24]
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Overview

e (Goal: extend counting simulation to a wider class of effects

e Starting point: exception )( nondeterminism )( /0O

e Challenge 1: varying observation
e Solution 1: “observation preorder” on traces

e Challenge 2: branching effects
e Solution 2: limited

e Contribution: a generative spectrum of (M, (0)-simulations
e Result: exception nondeterminism 1/0O

e (with a game-theoretic characterisation)

e (with the up-to technique)
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