Preorder-constrained simulation for program refinement with effects

Koko Muroya (RIMS, Kyoto University), Takahiro Sanada (RIMS, Kyoto University), Natsuki Urabe (NII)

Goal: coinductive, non-syntactical technique for proving program refinement

Program refinement $t \sqsubseteq u$:
"observation of evaluating t is also observable in evaluating u "

coinductive:

"stepwise" reasoning
non-syntactical:
cf. applicative bisimilarity [Abramsky '90]

```
in the presence of effects
\checkmark ~ m u t a b l e ~ s t a t e , ~ e r r o r s
\checkmark nondeterministic choice
\checkmark I/O
* probabilistic choice
```


Example: reduction semantics as NA

nondeterministic automaton

$\mathscr{A}_{\Omega}=\left(\mathbf{T}_{\Omega} \cup\{\boldsymbol{\checkmark}\},\{\tau\} \cup \bar{\Omega} \cup \mathbb{N}, \rightarrow,\{\sqrt{ }\}\right)$
for λ-calculus $\mathrm{w} /$ algebraic effects Ω :

- terms \mathbf{T}_{Ω} as states
- $\sqrt{ }$ as a final state
- algebraic operations $\bar{\Omega}$ \& ground results \mathbb{N} as labels
where $\bar{\Omega}=\left\{f_{i} \mid f \in \Omega, 0 \leq i \leq \operatorname{arity}(f)-1\right\}$
- reduction as transition

$$
\overline{E[(\lambda x . t) v] \xrightarrow{\tau} E[t[v / x]]} \frac{f \in \Omega}{E\left[f\left(t_{0}, \ldots, t_{\text {arity }(f)-1}\right)\right] \xrightarrow{f_{i}} E\left[t_{i}\right]} \quad \bar{n} \xrightarrow{n} \boldsymbol{V}
$$

Program refinement as "trace inclusion"

- error $t \sqsubseteq_{\{\text {err:0\} }}^{Q} u \Longleftrightarrow$

$$
t \xrightarrow{w} \checkmark \Longrightarrow u \stackrel{w^{\prime}}{\rightarrow} \checkmark \wedge|w| Q|w|
$$

- nondeterministic choice $t \sqsubseteq_{\{\text {or:2\} }} u \Longleftrightarrow$

$$
t \stackrel{w}{\rightarrow} \checkmark \Longrightarrow u \stackrel{w^{\prime}}{\rightarrow} \checkmark \wedge w=_{\operatorname{remove}\left(\tau, \text { or }_{0}, \text { or }_{1}\right)} w^{\prime}
$$

- I/O $t \sqsubseteq_{\left\{\text {in:2, out } 0_{0}: 1, \text { out }_{1}: 1\right\}} u \Longleftrightarrow$

$$
t \xrightarrow{w} \boldsymbol{\checkmark} \Longrightarrow u \stackrel{w^{\prime}}{\rightarrow} \checkmark \wedge w=_{\operatorname{remove}(\tau)} w^{\prime}
$$

Starting point: counting simulation [M. '20]

Def. Let Q be a preorder on \mathbb{N}.

Prop. For $\mathscr{A}_{\{\mathrm{err}\}}, \quad \exists R: Q$-sim. $t R u \Longrightarrow t \sqsubseteq_{\{\mathrm{err}\}}^{Q} u$.

Proposal: Preorder-constrained simulation

Def. Let $M \in \mathbb{N}$, and let \mathbb{Q} be a preorder on Σ^{*}.

Thm.

- For $\mathscr{A}_{\{\mathrm{err}\}}, \quad \exists R:(M, \tilde{Q})$-sim. $t R u \Longrightarrow t \sqsubseteq_{\{\mathrm{err}\}}^{Q} u$
- For $\mathscr{A}_{\text {\{or\} }\}}$,
$\exists R:\left(M,=_{\text {remove }\left(\tau, \text { or }_{0}, \text { or }_{1}\right)}\right)$-sim. $t R u \Longrightarrow t \sqsubseteq_{\{\text {or }\}} u$
- For $\mathscr{A}_{\left\{\text {in, out } t_{0}, \text { out }_{1}\right\}}$,
$\exists R:\left(M,=_{\text {remove }(\tau)}\right)$-sim. $t R u \Longrightarrow t \sqsubseteq_{\left\{\text {in, out }_{\left.0, \text { out }_{1}\right\}}\right.} u$

Example pairs of NAs

\checkmark	\checkmark					\checkmark	\checkmark	$\sqrt{ }$	\checkmark
$14 \uparrow$	$\uparrow 14$					$3 \uparrow$	$\uparrow 4$	$3 \uparrow$	$\uparrow 4$
14	14			\checkmark		3	4	3	4
τ	$\uparrow \tau$		\checkmark		\checkmark	$\tau \uparrow$	$\uparrow \tau$	$\tau \uparrow$	$\uparrow \tau$
τ	6+8	\checkmark				$3+0$	3+1	$3+0$	$3+1$
2×7	$\uparrow \tau$	$1 \uparrow$	¢1	$1 \uparrow$	$\uparrow 0$	in ${ }^{8}$	$\bigcirc \mathrm{in}_{1}$	$\tau \uparrow$	$\uparrow \tau$
τ	$6+2 \times 4$	1	1	1	0	$3+\mathrm{in}(0,1)$		$1+2+0$	$1+2+1$
$2 \times(3+4)$	+3+2×4	$\operatorname{or}(1,1)=-$		= = .		$1+2$	$(0,1)$	in(1+2	,1+2+1)

Two challenges

1. Standard stepwise comparison is not satisfactory.

2. Observation varies between effects.

Advanced topics

- generalised notion of trace inclusion
- complete variant of preorder-constrained simulation
- two-player reachability game
- up-to technique in terms of preorders

