
in the presence of effects

✓ mutable state, errors

✓ nondeterministic choice

✓ I/O

× probabilistic choice

coinductive: 
“stepwise” reasoning

non-syntactical: 
cf. applicative bisimilarity [Abramsky ’90]

Preorder-constrained simulation for program refinement with effects

Koko Muroya (RIMS, Kyoto University), Takahiro Sanada (RIMS, Kyoto University), Natsuki Urabe (NII)

Program refinement : 
“observation of evaluating  is also 
observable in evaluating ”

t ⊑ u
t

u

Goal: coinductive, non-syntactical technique for proving program refinement

● error  

    


● nondeterministic choice  

    


● I/O  

    

t ⊑Q
{𝚎𝚛𝚛:0} u ⟺

t w↠ ✓ ⟹ u w′￼↠ ✓ ∧ |w |Q |w |
t ⊑{𝚘𝚛:2} u ⟺

t w↠ ✓ ⟹ u w′￼↠ ✓ ∧ w =remove(τ,𝚘𝚛0,𝚘𝚛1) w′￼

t ⊑{𝚒𝚗:2,𝚘𝚞𝚝0:1,𝚘𝚞𝚝1:1} u ⟺

t w↠ ✓ ⟹ u w′￼↠ ✓ ∧ w =remove(τ) w′￼

Program refinement as "trace inclusion”

nondeterministic automaton

    

for λ-calculus w/ algebraic effects  :

● terms  as states


●  as a final state

● algebraic operations  & ground results  as labels 

where 

● reduction as transition 

𝒜Ω = (TΩ ∪ {✓}, {τ} ∪ Ω ∪ ℕ, → , {✓})
Ω

TΩ

✓
Ω ℕ

Ω = {fi ∣ f ∈ Ω,0 ≤ i ≤ arity( f ) − 1}

E[(λx . t) v] τ→ E[t[v/x]]
f ∈ Ω

E[ f(t0, …, tarity( f )−1)]
fi→ E[ti] n n→ ✓

Example: reduction semantics as NA

Example pairs of NAs

2×(3+4) 2×3+2×4

6+2×4

6+8

1414

2×7

or(1,1) or(1,0)

✔✔

1

✔

1

✔

1

✔

0

✔

1+2+in(0,1) in(1+2+0,1+2+1)

3+0

✔

3+1

✔

3+0

✔

3+1

✔

3 4 3 4

1+2+0 1+2+13+in(0,1)

1414

1 1 1 0

3 4 3 4

𝚘𝚛0 𝚘𝚛1 𝚘𝚛0 𝚘𝚛1 𝚒𝚗0 𝚒𝚗1

𝚒𝚗0 𝚒𝚗1

Def. Let  be a preorder on .
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Fig. 3. Conditions of the ⇤-simulation. Parts in black are universally
quantified, and parts in magenta are existentially quantified.
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Fig. 4. Conditions of Def. IV.1. Parts in black are universally quantified, and
parts in magenta are existentially quantified.

3) StepM
^ FinalM =) FinalN

4) StepM
^ FinalM =) Step1

Theorem IV.3. Let A1 = (X1,⌃, 1, F1) and A2 =
(X2,⌃, 2, F2) be NAs with the same alphabet, Q ✓ ⌃⇤

⇥⌃⇤

be a preorder, and R ✓ X1⇥X2 be a relation. Let M,N 2 N
such that M  N . The following holds.

1) (Monotonicity) If R is an (M,Q)-simulation, it is also
an (N,Q)-simulation.

2) (Monotonicity) If M > 0 and R is an (M,Q)-simulation,
it is also a Q-simulation.

3) (Soundness) If M > 0, Q is closed under concatenation,
and R is an (M,Q)-simulation, each (x, y) 2 X1 ⇥X2

satisfies xRy =) x �Q y.
4) (Soundness) If Q is closed under concatenation, and R

is an Q-simulation, each (x, y) 2 X1 ⇥ X2 satisfies
xRy =) x �Q y.

5) (Completeness) There exists a Q-simulation R0 such that
each (x, y) 2 X1⇥X2 satisfies x �Q y =) xR0y.

obsolete below:
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Definition IV.4. Let Q ✓ ⌃⇤
⇥⌃⇤ be a pre-

order and M 2 N. we call R ✓ X1 ⇥X2 an
M -bounded Q-constrained simulation from
A1 to A2 if, for any (x, y) 2 R, the following
holds.

FinalM : For each w = a1 . . . an 2 ⌃⇤ and
x1 . . . xn 2 X⇤

1 such that n < M , x a1 
x1

a2 · · ·
an xn and xn 2 F1, there exist w0

2 ⌃⇤ and
y0 2 X2 such that wQw0; y w0 ⇤

2 y0; and y0 2 F2 .
StepM : For each w = a1 . . . aM 2 ⌃M and x1 . . . xM 2

⌃M such that x
a1 x1

a2 · · ·
aM xM , there exist

k 2 {1, . . . ,M}, w0
2 ⌃⇤ and y0 2 X2 such that

a1 . . . akQw0; y w0 ⇤
2 y0; and xkRy0 .

Theorem IV.5 (soundness). If Q is closed under concate-
nation (i.e. w1Qw0

1 and w0
2Qw0

2 imply w1w2Qw0
1w

0
2), xRy

implies x �Q y.

The soundness theorem above is a corollary of a more
general case (Thm. ??).
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Definition IV.6. Let Q ✓ ⌃⇤
⇥ ⌃⇤ be a

preorder. we call R ✓ X1 ⇥ X2 an 1-
bounded Q-constrained simulation from A1

to A2 if, for any (x, y) 2 R, the following
holds.
Final0: If x 2 F1 then there exist w0

2 ⌃⇤

and y0 2 X2 such that "Qw0, y w0 ⇤
2 y0

and y0 2 F2.
Step1: For each a1 . . . an 2 ⌃+ and

x1 . . . xn 2 X+
1 such that x

a1 x1
a2 · · ·

an xn and
xn 2 F1, there exist k 2 {1, . . . , n}, w0

2 ⌃⇤ and
y0 2 X2 satisfying: (1) a1, . . . , akQw0; (2) y w0 ⇤

2 y0;
and (3-i) xkRy0, or (3-ii) k = n and y0 2 F2 .

Theorem IV.7. Assume that Q is closed under concatenation.

1) (monotonicity) If R is an M -bounded Q-constrained
simulation then R is also an 1-bounded one.

2) (soundness) For each x 2 X1 and y 2 X2, if there
exists an 1-bounded Q-constrained simulation R such
that xRy then x �Q y.

3) (completeness) There exists an 1-bounded Q-
constrained simulation R such that for each x 2 X1 and
y 2 X2, x �Q y implies xRy.

B. Agda Implementation

V. GAME-THEORETIC CHARACTERIZATION

Proposition V.1. 1) For M 2 N1, there exists an M -
bounded Q-constrained simulation R such that xRy, if
and only if Simulator is winning from a state (", x, y) in
the game G

M,1,Q
A1,A2

.
2) For M,N,N 0

2 N1 such that N < N 0, if Simulator is
winning from a state (", x, y) in the game G

M,N,Q
A1,A2

, then
Simulator is also winning from the state (", x, y) in the
game G

M,N 0,Q
A1,A2

.

Proposition V.2. Assume that wQw0 for a preorder Q ✓ ⌃⇤
⇥

⌃⇤ can be checked in linear time to the lengths of w and w0.
For M,N 2 N, existence of an M -bounded Q-constrained
simulation R satisfying xRy can be checked in polynomial
time to |⌃|, |X1| and |X2|.

(1 + m)Qn

𝒜{𝚎𝚛𝚛} ∃R : Q-sim. tRu ⟹ t ⊑Q
{𝚎𝚛𝚛} u

Starting point: counting simulation [M. ’20]

1. Standard stepwise comparison is not satisfactory. 

          

2. Observation varies between effects.
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Fig. 1. Example automata that exhibit Q-trace inclusions.

Let A = (X,⌃, , F ) be a (2AP)-labeled NA. For x 2 X ,
we write x |=fin ' when L⇤(x) ✓ J'Kfin. We also use the
following sugar syntax: F' := true U ' and G' := false R '.

For a state x of an NA A, we write x |=fin ' when L⇤
A(x) ✓

J'Kfin. Then finite trace inclusion L⇤
A1

(x) ✓ L⇤
A2

(y) implies
y |=fin ' =) x |=fin ' for each LTL formula '. If we
replace L⇤

A1
(x) ✓ L⇤

A2
(y) with x �Q y, what happens to '?

As well as full formulas, studies on fragments of LTL
are also found in many papers [5], [6], [7]. We investigate
relationship between Q-constrained simulation and fragments
of LTL.

Assume first that Q is ✓
⇤ in Ex. III.2 (4). In this case,

✓
⇤-trace inclusion implies implication of a fragment of LTL

without negation.

Proposition III.7. If x �✓⇤ y then y |=fin ' =) x |=fin '
for each ' given by:

' ::=true | false | ¬p | ' _ ' | ' ^ ' |

X' | ' U ' | ' R ' . (3)

We can also consider the dual. If we replace ✓
⇤ with ◆

⇤

such that a1 . . . an ◆
⇤ a01 . . . a

0
n

def
, 8i. ai ◆ a0i, then ¬p in (3)

is replaced by p. This fragment of LTL is known as a positive
fragment (LTL+) [8]. We may call (3) a negative fragment.

Assume next that Q is vsubstr in Ex. III.2 (3). In this case,
vsubstr-trace inclusion implies implication of safety properties
guarded by G.

Proposition III.8. If x �vsubstr y then y |=fin ' ) x |=fin '
for each ' given by:

' ::= true | false | ' _ ' | ' ^ ' | G and
 ::= p | ¬p |  _  |  ^  | ' . (4)

We can again consider the dual. Let wsupstr be the super-
string relation defined by w wsupstr w0 def

, w0
vsubstr w0.

Then vsubstr-trace inclusion implies implication of liveness
properties guarded by F. I.e. G in Prop. III.8 is replaced
by F .

Finally, we can combine Ex. III.2 (3) with Ex. III.2 (4),
and define Q so that a1 . . . akQa01 . . . a

0
k0 means k  k0 and

existence of j1 < · · · < jk such that ai ✓ a0ji for each i 2
{1, . . . , k}. Then Q-trace inclusion implies implication of '’s
which are given by removing p from (4).
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a a
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Fig. 2. Conditions of the standard simulation. Parts in black are universally
quantified, and parts in magenta are existentially quantified.

IV. COINDUCTIVE CHARACTERISATION:
PREORDER-CONSTRAINED SIMULATIONS

A. Definition, Soundness and Completeness

Definition IV.1. Let A1 = (X1,⌃, 1, F1) and A2 =
(X2,⌃, 2, F2) be NAs with the same alphabet, and Q ✓

⌃⇤
⇥ ⌃⇤ be a preorder.
• For M 2 N, a relation R ✓ X1⇥X2 is an M -bounded Q-

constrained simulation ((M,Q)-simulation in short) from
A1 to A2 if, for any (x, y) 2 R, the following FinalM
and StepM hold.

• A relation R ✓ X1 ⇥X2 is a Q-constrained simulation
(Q-simulation in short) from A1 to A2 if, for any (x, y) 2
R, Final1 and the following Step1 hold.

FinalM For each w = a1 . . . an 2 ⌃⇤ and x1 . . . xn 2 X⇤
1

such that n < M , x a1 1 x1
a2 1 · · ·

an 1 xn and xn 2 F1,
there exist w0

2 ⌃⇤ and y0 2 X2 such that wQw0, y
w0

  2

y0 and y0 2 F2.
StepM For each w = a1 . . . aM 2 ⌃M and x1 . . . xM 2 XM

1

such that x
a1 1 x1

a2 1 · · ·
aM 1 xM , there exist

k 2 {1, . . . ,M}, w0
2 ⌃⇤ and y0 2 X2 such that

a1 . . . akQw0, y
w0

  2 y0 and xkRy0.
Step1 For each w = a1 . . . an 2 ⌃+ and x1 . . . xn 2 X+

1

such that x a1 1 x1
a2 1 · · ·

an 1 xn and xn 2 F1, there
exist k 2 {1, . . . , n}, w0

2 ⌃⇤ and y0 2 X2 such that
(1) a1 . . . akQw0; (2) y

w0

  2 y0; and (3-i) xkRy0, or (3-ii)
k = n and y0 2 F2.

Fig. 4 illustrates the conditions of Def. IV.1. The condition
Final1 is an instance of FinalM . The condition Step1 has
two possibilities (i) and (ii), due to the clauses (3-i) and (3-ii).

Lemma IV.2. Let M,N 2 N such that M  N . The following
holds.

1) FinalN =) FinalM
2) StepM =) StepN

Two challenges
● generalised notion of trace inclusion


● complete variant of preorder-constrained simulation


● two-player reachability game


● up-to technique in terms of preorders

Advanced topics

Def. Let , and let  be a preorder on .  


               

Thm.


● For ,    


● For , 

    


● For , 

    

M ∈ ℕ 𝒬 Σ*

w𝒬w′￼
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Fig. 3. Conditions of the ⇤-simulation. Parts in black are universally
quantified, and parts in magenta are existentially quantified.
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Fig. 4. Conditions of Def. IV.1. Parts in black are universally quantified, and
parts in magenta are existentially quantified.

3) StepM
^ FinalM =) FinalN

4) StepM
^ FinalM =) Step1

Theorem IV.3. Let A1 = (X1,⌃, 1, F1) and A2 =
(X2,⌃, 2, F2) be NAs with the same alphabet, Q ✓ ⌃⇤

⇥⌃⇤

be a preorder, and R ✓ X1⇥X2 be a relation. Let M,N 2 N
such that M  N . The following holds.

1) (Monotonicity) If R is an (M,Q)-simulation, it is also
an (N,Q)-simulation.

2) (Monotonicity) If M > 0 and R is an (M,Q)-simulation,
it is also a Q-simulation.

3) (Soundness) If M > 0, Q is closed under concatenation,
and R is an (M,Q)-simulation, each (x, y) 2 X1 ⇥X2

satisfies xRy =) x �Q y.
4) (Soundness) If Q is closed under concatenation, and R

is an Q-simulation, each (x, y) 2 X1 ⇥ X2 satisfies
xRy =) x �Q y.

5) (Completeness) There exists a Q-simulation R0 such that
each (x, y) 2 X1⇥X2 satisfies x �Q y =) xR0y.

obsolete below:
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Definition IV.4. Let Q ✓ ⌃⇤
⇥⌃⇤ be a pre-

order and M 2 N. we call R ✓ X1 ⇥X2 an
M -bounded Q-constrained simulation from
A1 to A2 if, for any (x, y) 2 R, the following
holds.

FinalM : For each w = a1 . . . an 2 ⌃⇤ and
x1 . . . xn 2 X⇤

1 such that n < M , x a1 
x1

a2 · · ·
an xn and xn 2 F1, there exist w0

2 ⌃⇤ and
y0 2 X2 such that wQw0; y w0 ⇤

2 y0; and y0 2 F2 .
StepM : For each w = a1 . . . aM 2 ⌃M and x1 . . . xM 2

⌃M such that x
a1 x1

a2 · · ·
aM xM , there exist

k 2 {1, . . . ,M}, w0
2 ⌃⇤ and y0 2 X2 such that

a1 . . . akQw0; y w0 ⇤
2 y0; and xkRy0 .

Theorem IV.5 (soundness). If Q is closed under concate-
nation (i.e. w1Qw0

1 and w0
2Qw0

2 imply w1w2Qw0
1w

0
2), xRy

implies x �Q y.

The soundness theorem above is a corollary of a more
general case (Thm. ??).
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Definition IV.6. Let Q ✓ ⌃⇤
⇥ ⌃⇤ be a

preorder. we call R ✓ X1 ⇥ X2 an 1-
bounded Q-constrained simulation from A1

to A2 if, for any (x, y) 2 R, the following
holds.
Final0: If x 2 F1 then there exist w0

2 ⌃⇤

and y0 2 X2 such that "Qw0, y w0 ⇤
2 y0

and y0 2 F2.
Step1: For each a1 . . . an 2 ⌃+ and

x1 . . . xn 2 X+
1 such that x

a1 x1
a2 · · ·

an xn and
xn 2 F1, there exist k 2 {1, . . . , n}, w0

2 ⌃⇤ and
y0 2 X2 satisfying: (1) a1, . . . , akQw0; (2) y w0 ⇤

2 y0;
and (3-i) xkRy0, or (3-ii) k = n and y0 2 F2 .

Theorem IV.7. Assume that Q is closed under concatenation.

1) (monotonicity) If R is an M -bounded Q-constrained
simulation then R is also an 1-bounded one.

2) (soundness) For each x 2 X1 and y 2 X2, if there
exists an 1-bounded Q-constrained simulation R such
that xRy then x �Q y.

3) (completeness) There exists an 1-bounded Q-
constrained simulation R such that for each x 2 X1 and
y 2 X2, x �Q y implies xRy.

B. Agda Implementation

V. GAME-THEORETIC CHARACTERIZATION

Proposition V.1. 1) For M 2 N1, there exists an M -
bounded Q-constrained simulation R such that xRy, if
and only if Simulator is winning from a state (", x, y) in
the game G

M,1,Q
A1,A2

.
2) For M,N,N 0

2 N1 such that N < N 0, if Simulator is
winning from a state (", x, y) in the game G

M,N,Q
A1,A2

, then
Simulator is also winning from the state (", x, y) in the
game G

M,N 0,Q
A1,A2

.

Proposition V.2. Assume that wQw0 for a preorder Q ✓ ⌃⇤
⇥

⌃⇤ can be checked in linear time to the lengths of w and w0.
For M,N 2 N, existence of an M -bounded Q-constrained
simulation R satisfying xRy can be checked in polynomial
time to |⌃|, |X1| and |X2|.

a1⋯ak𝒬w′￼

𝒜{𝚎𝚛𝚛} ∃R : (M, Q̃)-sim. tRu ⟹ t ⊑Q
{𝚎𝚛𝚛} u

𝒜{𝚘𝚛}

∃R : (M, =remove(τ,𝚘𝚛0,𝚘𝚛1) )-sim. tRu ⟹ t ⊑{𝚘𝚛} u
𝒜{𝚒𝚗,𝚘𝚞𝚝0,𝚘𝚞𝚝1}

∃R : (M, =remove(τ) )-sim. tRu ⟹ t ⊑{𝚒𝚗,𝚘𝚞𝚝0,𝚘𝚞𝚝1} u

Proposal: Preorder-constrained simulation
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