Local Coherence and Program Refinement (work in progress)

Makoto Hamana (Gunma University)

Koko Muroya (RIMS, Kyoto University)

Term Evaluation and Term Rewriting (work in progress)

Makoto Hamana (Gunma University)

Koko Muroya (RIMS, Kyoto University)

- Yes?
 - Arithmetics is a TRS.

$$(1+2) + (3+4) \rightarrow 3 + (3+4) \rightarrow 3 + 7 \rightarrow 10$$

 $\rightarrow (1+2) + 7 \rightarrow 3 + 7 \rightarrow$

- No!
 - Left-to-right arithmetics is not a TRS.

$$(1+2) + (3+4) \rightarrow 3 + (3+4) \rightarrow 3 + 7 \rightarrow 10$$

 $\rightarrow (1+2) + 7 \rightarrow 3 + 7 \rightarrow$

• The evaluation order is specified by evaluation contexts

[Felleisen, LFP '88 & POPL '88], e.g.
$$E := \square \mid E + t \mid n + E$$

- $\Box + (3 + 4)$ is
- $(1+2) + \square$ is
- 1. evaluate the first argument to a number
- 2. evaluate the second argument

- No!
 - Left-to-right arithmetics is not a TRS.

$$(1+2) + (3+4) \rightarrow 3 + (3+4) \rightarrow 3 + 7 \rightarrow 10$$

 $\rightarrow (1+2) + 7 \rightarrow 3 + 7 \rightarrow$

The evaluation order is specified by evaluation contexts

[Felleisen, LFP '88 & POPL '88], e.g.
$$E := \square \mid E + t \mid n + E$$

- $\Box + (3 + 4)$ is an evaluation context.
- $(1+2) + \square$ is not an evaluation context.

- No!
 - The evaluation *order* is specified by *evaluation contexts* [Felleisen, LFP '88 & POPL '88], e.g. $E := \Box \mid E + t \mid n + E$
 - Context-sensitive rewriting [Lucas, '00] is not enough.
- Question How can then we transfer TRS techniques to program semantics?
 - e.g. critical pair analysis
- Answer Use Term Evaluation Systems, a variant of TRS!

Term Evaluation Systems (TES)

evaluation

$$\frac{(l \to r) \in R \quad \theta \text{: subst.} \quad E \in \mathscr{E}}{E[l\theta] \to_R E[r\theta]}$$

closed under evaluation contexts & only

cf. ordinary rewriting

$$\frac{(l \to r) \in R \quad \theta \text{: subst.} \quad C \text{: context}}{C[l\theta] \to_R C[r\theta]}$$

closed under any contexts

Term Evaluation Systems (TES)

evaluation

$$(l \to r) \in R \quad \theta : \text{ subst.} \quad E \in \mathcal{E}$$

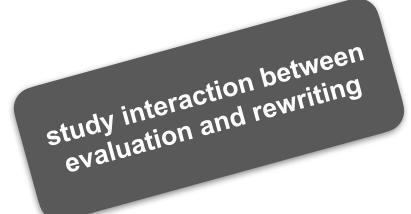
$$E[l\theta] \to_R E[r\theta]$$

closed under evaluation contexts & only

cf. ordinary rewriting

$$(l \to r) \in R$$
 θ : subst. C : context $C[l\theta] \to_R C[r\theta]$

closed under any contexts



Interaction between evaluation and rewriting

terms
$$t ::= \underline{n} \mid t + t \mid t \times t$$

evaluation contexts
$$E::= \Box \mid E+t \mid \underline{n}+E \mid E\times t \mid \underline{n}\times E$$
 evaluation rules $\underline{m}+\underline{n}\to \underline{m}+\underline{n}, \quad \underline{m}\times \underline{n}\to \underline{m}\times \underline{n}$ evaluation relation $\frac{l\to r}{E[l]\to E[r]}$

evaluation contexts
$$E ::= \Box \mid E + t \mid \underline{n} + E \mid E \times t \mid \underline{n} \times E$$
 evaluation rules $\underline{m} + \underline{n} \to \underline{m} + \underline{n}, \quad \underline{m} \times \underline{n} \to \underline{m} \times \underline{n}$ evaluation relation $\frac{l \to r}{E[l] \to E[r]}$ refinement rules $\underline{l} \times (\underline{m} + \underline{n}) \Rightarrow \underline{l} \times \underline{m} + \underline{l} \times \underline{n}, \quad \underline{m} + \underline{n} \Rightarrow \underline{m} \times \underline{n}$

```
evaluation contexts E ::= \Box \mid E + t \mid \underline{n} + E \mid E \times t \mid \underline{n} \times E evaluation rules \underline{m} + \underline{n} \to \underline{m} + \underline{n}, \quad \underline{m} \times \underline{n} \to \underline{m} \times \underline{n} evaluation relation \frac{l \to r}{E[l] \to E[r]} refinement rules \underline{l} \times (\underline{m} + \underline{n}) \Rightarrow \underline{l} \times \underline{m} + \underline{l} \times \underline{n}, \quad \underline{m} + \underline{n} \Rightarrow \underline{m} \times \underline{n}
```

- Question Is refinement correct wrt. evaluation?
- Goal to prove that $t \Rightarrow u$ implies, for any context C,
 - $C[t]: \rightarrow$ -normalising $\Longrightarrow C[u]: \rightarrow$ -normalising

evaluation contexts
$$E ::= \Box \mid E + t \mid \underline{n} + E \mid E \times t \mid \underline{n} \times E$$
 evaluation rules $\underline{m} + \underline{n} \to \underline{m} + \underline{n}, \quad \underline{m} \times \underline{n} \to \underline{m} \times \underline{n}$ evaluation relation $\frac{l \to r}{E[l] \to E[r]}$ correct incorrect refinement rules $\underline{l} \times (\underline{m} + \underline{n}) \Rightarrow \underline{l} \times \underline{m} + \underline{l} \times \underline{n}, \quad \underline{m} + \underline{n} \Rightarrow \underline{m} \times \underline{n}$

- Question Is refinement correct wrt. evaluation?
- Goal to prove that $t \Rightarrow u$ implies, for any context C,
 - $C[t]: \rightarrow$ -normalising $\Longrightarrow C[u]: \rightarrow$ -normalising

From TES/TRS perspective:

evaluation relation
$$\frac{(l \to r) \in R \quad \theta \text{: subst.} \quad E \in \mathcal{E}}{E[l\theta] \to_R E[r\theta]}$$
 refinement relation
$$\frac{(l \Rightarrow r) \in A \quad \theta \text{: subst.} \quad C \text{: context}}{C[l\theta] \Rightarrow_A C[r\theta]}$$

- Question Is refinement correct wrt. evaluation?
- Goal to prove that $t \Rightarrow_A u$ implies, for any context C,
 - $C[t]: \to_R$ -normalising $\Longrightarrow C[u]: \to_R$ -normalising

evaluation relation
$$\frac{(l \to r) \in R \quad \theta \text{ : subst. } \quad \underline{E} \in \mathcal{E}}{E[l\theta] \to_R E[r\theta]}$$
 refinement relation
$$\frac{(l \Rightarrow r) \in A \quad \theta \text{ : subst. } \quad C \text{ : context}}{C[l\theta] \Rightarrow_A C[r\theta]}$$

- Question Is refinement correct wrt. evaluation?
- Goal to prove that $t \Rightarrow_A u$ implies, for any context C,
 - $C[t]: \to_R$ -normalising $\Longrightarrow C[u]: \to_R$ -normalising

- Sufficient to prove that $t \Rightarrow_A u$ implies
 - $t: \to_R$ -normalising $\Longrightarrow u: \to_R$ -normalising

evaluation relation
$$\frac{(l \to r) \in R \quad \theta \text{ : subst. } \quad E \in \mathcal{E}}{E[l\theta] \to_R E[r\theta]}$$
 refinement relation
$$\frac{(l \Rightarrow r) \in A \quad \theta \text{ : subst. } \quad C \text{ : context}}{C[l\theta] \Rightarrow_A C[r\theta]}$$

- Sufficient to prove that $t \Rightarrow_A u$ implies
 - $t: \to_R$ -normalising $\Longrightarrow u: \to_R$ -normalising

[M., PhD thesis '20]

• For deterministic \rightarrow_R , sufficient to prove that $t \Rightarrow_A u$ implies

$$s \longrightarrow \longrightarrow$$

$$\psi$$

$$t_1 \xrightarrow{*} u \longrightarrow \nearrow$$

$$s \longrightarrow t_2 \stackrel{*}{\longrightarrow} u_2$$

$$\downarrow \downarrow = t_1 \stackrel{*}{\longrightarrow} u_1$$

Critical pair analysis for local coherence

Definition 2.8 (*R*-peaks, *R*-joinability, (A, R)-peaks, (A, R)-joinability). Let $\mathcal{E}(\Sigma, R)$ be a TES with a template A.

- An R-peak is given by a triple (t_1, s, t_2) such that $s \to_R t_1$ and $s \to_R t_2$.
- An R-peak (t_1, s, t_2) is R-joinable if there exists a term u such that $t_1 \stackrel{*}{\to}_R u$ and $t_2 \stackrel{*}{\to}_R u$.
- An (A, R)-peak is given by a triple (t_1, s, t_2) such that $s \Rightarrow_A t_1$ and $s \rightarrow_R t_2$.
- An (A, R)-peak (t_1, s, t_2) is (A, R)-joinable if there exist terms u_1, u_2 such that $t_1 \stackrel{*}{\to} u_1$, $t_2 \stackrel{*}{\to} u_2$ and $u_2 \stackrel{\equiv}{\Rightarrow}_A u_1$.

Definition 2.11 (local coherence). A TES $\mathcal{E}(\Sigma, R)$ with a template A is *locally coherent* if any (A, R)-peak is (A, R)-joinable.

Critical pair analysis for local coherence

Definition 5.2 (overlaps). Let $(l_1 \Rightarrow r_1) \in A$ and $(l_2 \rightarrow r_2) \in R$.

- A shrinking overlap between $(l_1 \Rightarrow r_1)$ and $(l_2 \rightarrow r_2)$ is given by data $(l_1 \Rightarrow r_1, l_2 \rightarrow r_2, p, \theta)$, such that p is a non-variable position of l_1 and θ is a most general unifier between $l_1|_p$ and l_2 .
- An expanding overlap between $(l_1 \Rightarrow r_1)$ and $(l_2 \rightarrow r_2)$ is given by data $(l_1 \Rightarrow r_1, l_2 \rightarrow r_2, p, \theta)$, such that p is a non-variable position of l_2 and θ is a most general unifier between $l_2|_p$ and l_1 .

Definition 5.3 (critical pairs).

- The (shrinking) critical pair generated by a shrinking overlap $(l_1 \Rightarrow r_1, l_2 \rightarrow r_2, p, \theta)$ is given by a triple $(r_1\theta, l_1\theta, l_1\theta[r_2\theta]_p)$.
- The (expanding) critical pair generated by an expanding overlap $(l_1 \Rightarrow r_1, l_2 \rightarrow r_2, p, \theta)$ is given by a triple $(l_2\theta[r_1\theta]_p, l_2\theta, r_2\theta)$.

3. Correctness of refinement $t \Rightarrow_A u$ wrt. evaluation $t \rightarrow_R u$

Theorem 5.5 (Critical Pair Theorem). Let $\mathcal{E}_{S,V}(\Sigma,R)$ be a well-behaved TES with a template A. If R is linear, and A is linear, right-ready and compatible with V, the TES $\mathcal{E}_{S,V}(\Sigma,R)$ with the template A is locally coherent if and only if every critical pair is joinable.

- · well-behaved evaluation contexts, with a notion of values
 - \mathscr{E} is defined by a certain BNF, e.g.: $E := \square \mid \cdots \mid f(v, E) \mid f(E, t)$
- linear rules
 - l, r are linear terms in $(l \to r) \in R, (l \Rightarrow r) \in A$
- <u>right-ready</u> rules
 - in r of $(l \Rightarrow r) \in A$, if p is a variable position, $r[\ \square\]_p \in \mathscr{E}$
- ullet compatible rules wrt. values V
 - A template A is said to be *compatible with* a set $V \in T(\Sigma, X)$ if, for any $v \in V$ and any $(l \Rightarrow r) \in A$, if there exist a position p and a substitution θ such that $v[l\theta]_p \in V$ and $v[r\theta]_p \notin V$, then $v[r\theta]_p \stackrel{*}{\to}_R v[l\theta]_p$.

Overview

Term Evaluation Systems with refinement (ordinary rewriting)

evaluation relation
$$\frac{(l \to r) \in R \quad \theta \text{: subst.} \quad E \in \mathcal{E}}{E[l\theta] \to_R E[r\theta]}$$
 refinement relation
$$\frac{(l \Rightarrow r) \in A \quad \theta \text{: subst.} \quad C \text{: context}}{C[l\theta] \Rightarrow_A C[r\theta]}$$

- Question Is refinement correct wrt. evaluation?
- Goal to prove that $t \Rightarrow_A u$ implies, for any context C,
 - $C[t]: \to_R$ -normalising $\Longrightarrow C[u]: \to_R$ -normalising