# 階層的グラフの戦略的書き換えによる プログラム実行モデリングとその利用

室屋 晃子 (京都大学 数理解析研究所)

# Modelling program execution with token-guided (hierarchical) graph rewriting

Koko Muroya (RIMS, Kyoto University)

#### Overview: graphical models of program execution

graph rewriting

token passing





#### applications:

- cost analysis
- language designs for programming with data-flow networks
- reasoning about observational equivalence
- visualising program execution

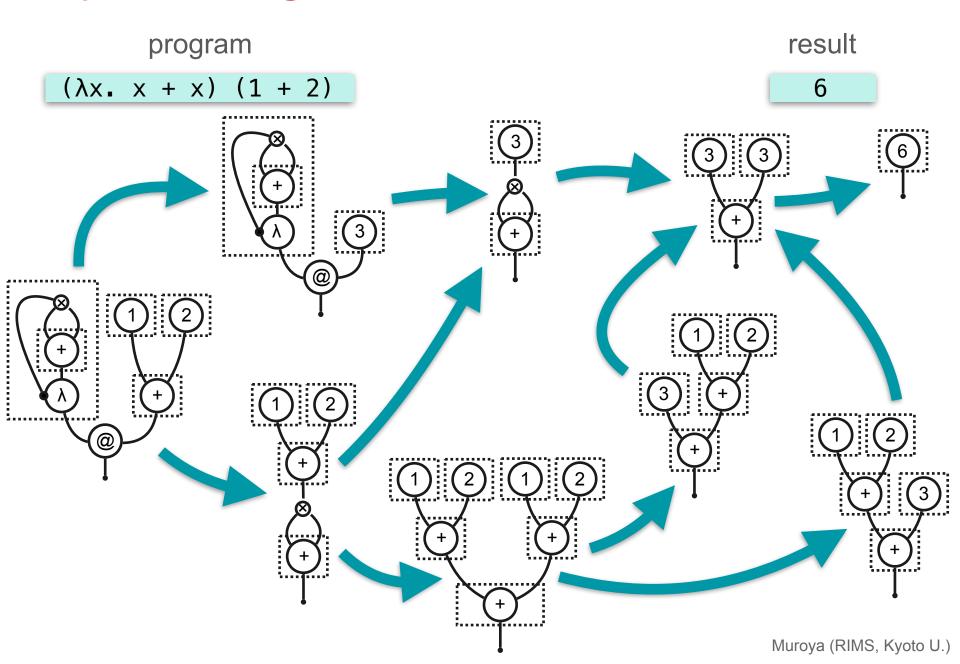
#### Overview: graphical models of program execution

graph rewriting

token passing






#### applications:

- cost analysis
- language designs for programming with data-flow networks
- reasoning about observational equivalence
- visualising program execution

#### Graph-rewriting model

- dates back to [Wadsworth 1971]
- useful to achieve time-efficiency (by flexible sharing)
  - e.g. call-by-need evaluation without extra machinery

#### Graph-rewriting model



#### Graph-rewriting model

- dates back to [Wadsworth 1971]
- useful to achieve time-efficiency (by flexible sharing)
  - e.g. call-by-need evaluation without extra machinery

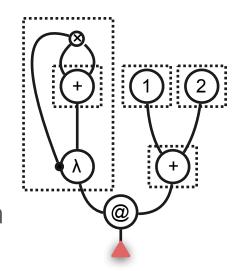
#### **Question**

How to specify a strategy (i.e. a particular way of rewriting)?

#### Overview: graphical models of program execution

graph rewriting

token passing






#### applications:

- cost analysis
- language designs for programming with data-flow networks
- reasoning about observational equivalence
- visualising program execution

- based on *Geometry of Interaction* [Girard '89],
   pioneered by [Danos & Regnier '99] [Mackie '95]
- ingredients
  - the token, passed around on a fixed graph
  - hierarchy of the graph, managing re-evaluation



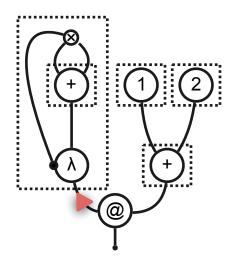
program

$$(\lambda x. x + x) (1 + 2)$$

result

6




\*

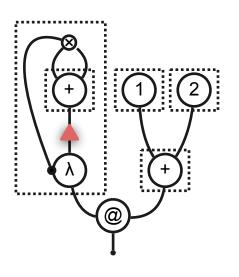
program

$$(\lambda x. x + x) (1 + 2)$$

result

6



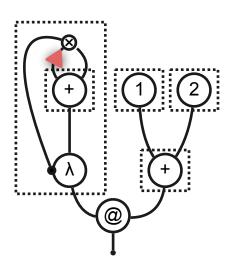

B,?

Muroya (RIMS, Kyoto U.)

program

$$(\lambda x. x + x) (1 + 2)$$

result

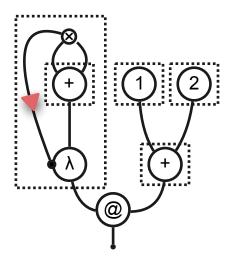



| ? | * | * |
|---|---|---|
|   |   |   |
|   |   |   |

program

$$(\lambda x \cdot x + x) (1 + 2)$$

result



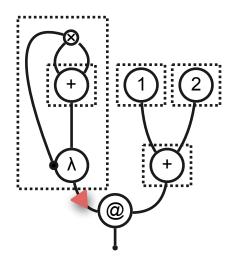

| 2 | * | <* <sub>.</sub> *> |
|---|---|--------------------|
| • |   | , -                |
|   |   |                    |
|   |   |                    |

program

$$(\lambda x \cdot x + x) (1 + 2)$$

result



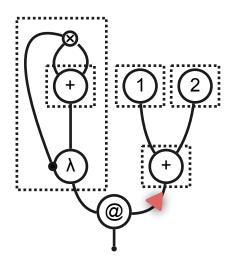

| ? | * | L<*,*> |
|---|---|--------|
|   |   |        |

program

$$(\lambda x. x + x) (1 + 2)$$

result

6




A,?

L<\*,\*>

program  $(\lambda x. x + x) (1 + 2)$ 

result



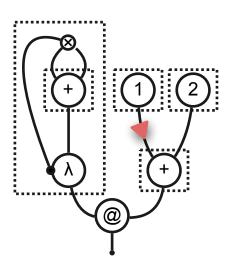


program

$$(\lambda x. x + x) (1 + 2)$$

result





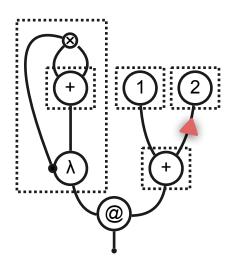

program

$$(\lambda x. x + x) (1 + 2)$$

result

6




1 <L<\*,\*>,\*>

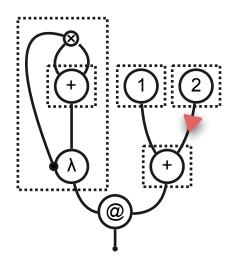
program

$$(\lambda x. x + x) (1 + 2)$$

result

6




? <L<\*,\*>,1>

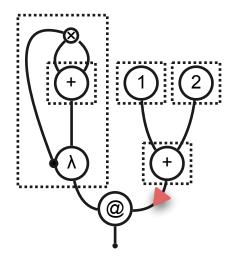
program

$$(\lambda x. x + x) (1 + 2)$$

result

6




2

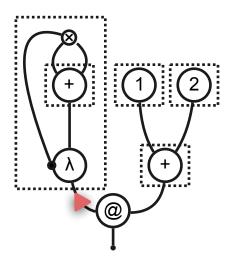
<L<\*,\*>,1>

program

$$(\lambda x \cdot x + x) (1 + 2)$$

result




| 3 | L<*,*> |
|---|--------|
|   |        |

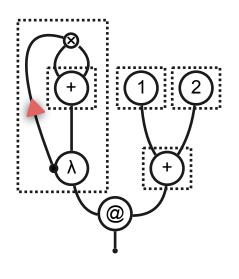
program

$$(\lambda x. x + x) (1 + 2)$$

result

6



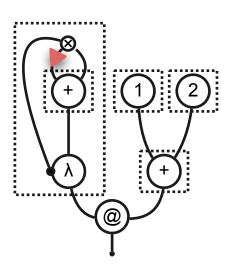

A,3

L<\*,\*>

program

$$(\lambda x \cdot x + x) (1 + 2)$$

result

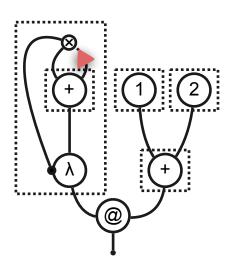



| 3 | * | L<*,*> |
|---|---|--------|

program

$$(\lambda x. x + x) (1 + 2)$$

result

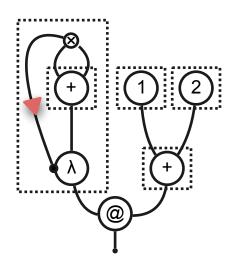





program

$$(\lambda x. x + x) (1 + 2)$$

result



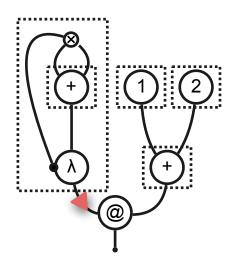

| ? | * | <*,3> |  |
|---|---|-------|--|
|   |   |       |  |
|   |   |       |  |

program

$$(\lambda x \cdot x + x) (1 + 2)$$

result




| ? | * | L<*,3> |  |
|---|---|--------|--|
|   |   |        |  |

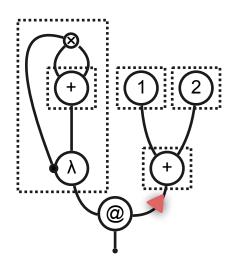
program

$$(\lambda x. x + x) (1 + 2)$$

result

6




A,?

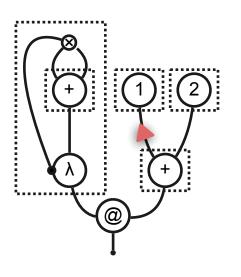
L<\*,3>

program

 $(\lambda x. x + x) (1 + 2)$ 

result



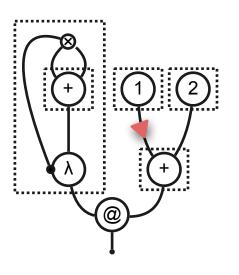

| ? | L<*,3> |
|---|--------|
|   |        |

program

$$(\lambda x. x + x) (1 + 2)$$

result

6

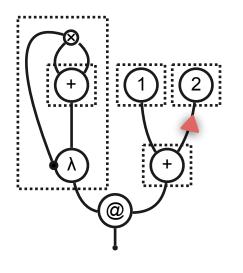



? <L<\*,3>,\*>

program

$$(\lambda x \cdot x + x) (1 + 2)$$

result



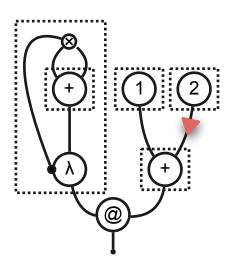

| 1 | <l<*,3>,</l<*,3>  | *> |
|---|-------------------|----|
|   | <l<*,3>,*</l<*,3> |    |

program

$$(\lambda x \cdot x + x) (1 + 2)$$

result




| ? | <l<*,3>,1&gt;</l<*,3> |  |
|---|-----------------------|--|
|   | 1                     |  |

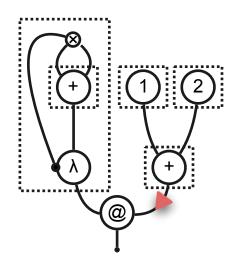
program

$$(\lambda x. x + x) (1 + 2)$$

result

6



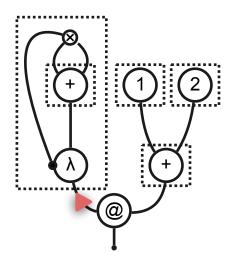

2

<L<\*,3>,1>

program

$$(\lambda x. x + x) (1 + 2)$$

result

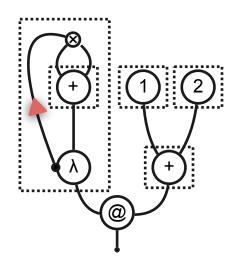



|   | <br>   |
|---|--------|
|   |        |
| 3 | L<*,3> |
|   |        |
|   |        |

program

$$(\lambda x \cdot x + x) (1 + 2)$$

result

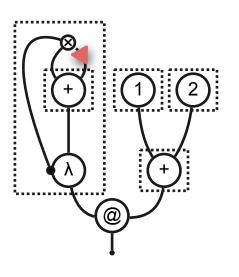



| A 2 | L ** 0> |
|-----|---------|
| A,3 | L<*,3>  |

program

$$(\lambda x \cdot x + x) (1 + 2)$$

result



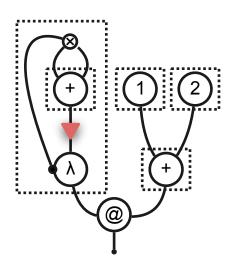

| 3 * L<*,3 | > |
|-----------|---|
|           |   |

program

 $(\lambda x. x + x) (1 + 2)$ 

result




| 3 | * | <*,3> |  |
|---|---|-------|--|
|   |   |       |  |

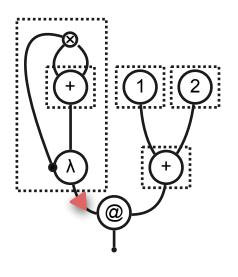
program

$$(\lambda x. x + x) (1 + 2)$$

result

6




| 6 | * | * |
|---|---|---|
|   |   |   |
|   |   |   |

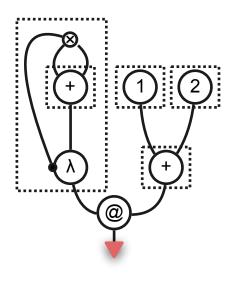
program

$$(\lambda x. x + x) (1 + 2)$$

result

6



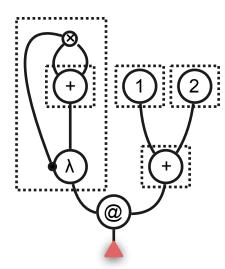

B,6 \*

program

$$(\lambda x. x + x) (1 + 2)$$

result

6




|   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | I control of the cont |   |
|   | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|   | I .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * |
| U | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|   | T. Control of the Con |   |
|   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|   | I .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|   | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

- based on Geometry of Interaction [Girard '89], pioneered by [Danos & Regnier '99] [Mackie '95]
- ingredients
  - the *token*, passed around on a fixed graph
  - *hierarchy* of the graph, managing re-evaluation
- said to be space-efficient (due to fixed graphs)
  - ... but not really time-efficient (due to re-evaluation)

#### Question

How to achieve time-efficiency?



modelling call-by-name

evaluation by default

### Models of program execution

graph rewriting

✓ time-efficiency

token passing

✓ space-efficiency

#### **Questions**

- a trade-off between time-efficiency and space-efficiency?
- a unified model to analyse the trade-off?

# Overview: graphical models of program execution

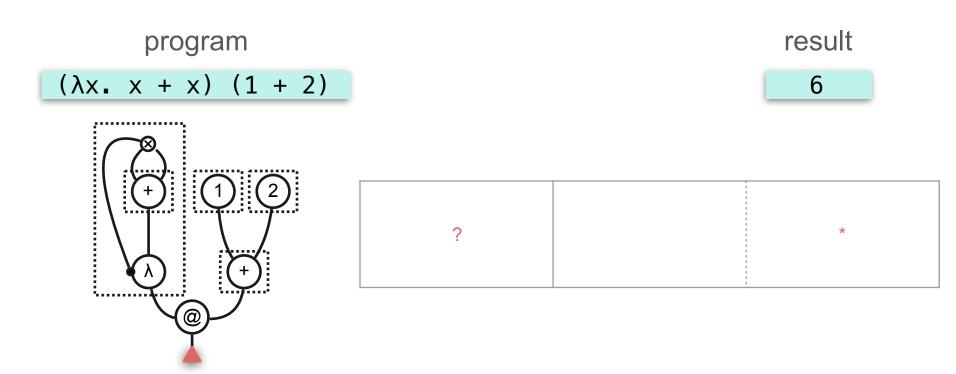
graph rewriting

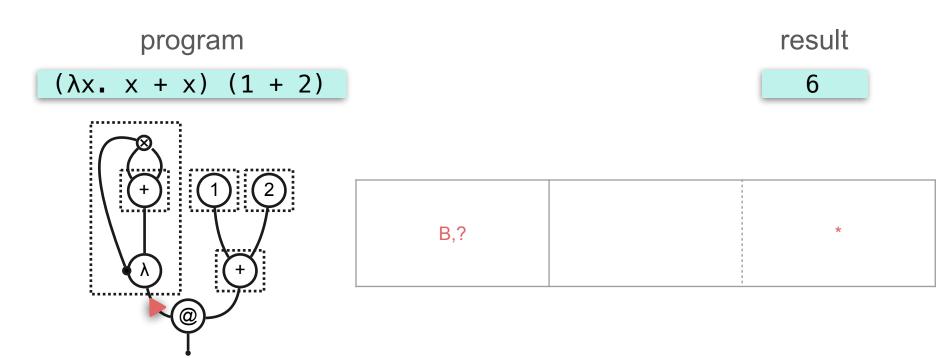
token passing

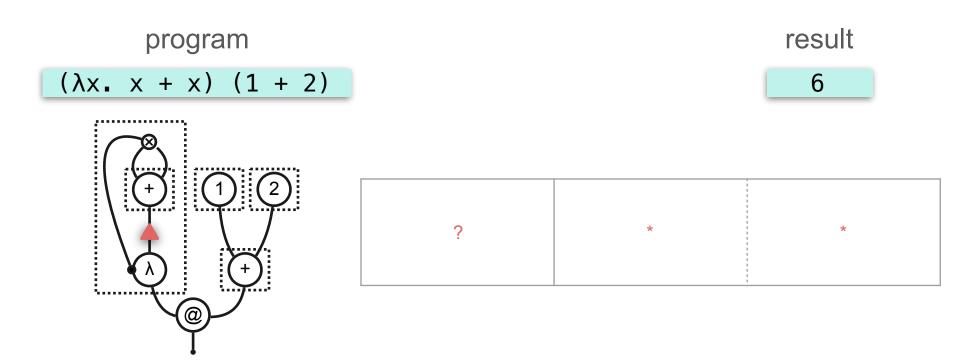


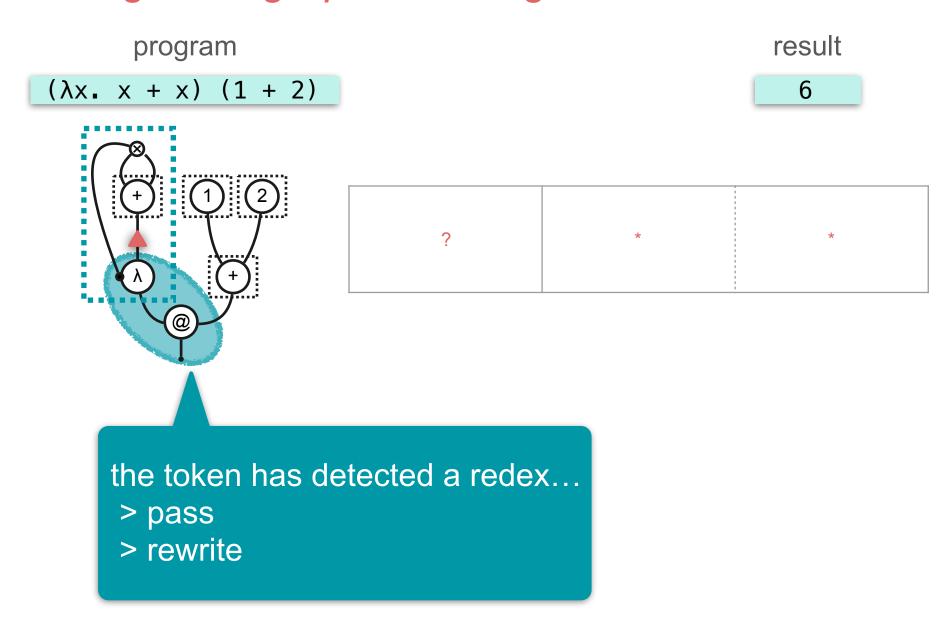
token-guided graph rewriting

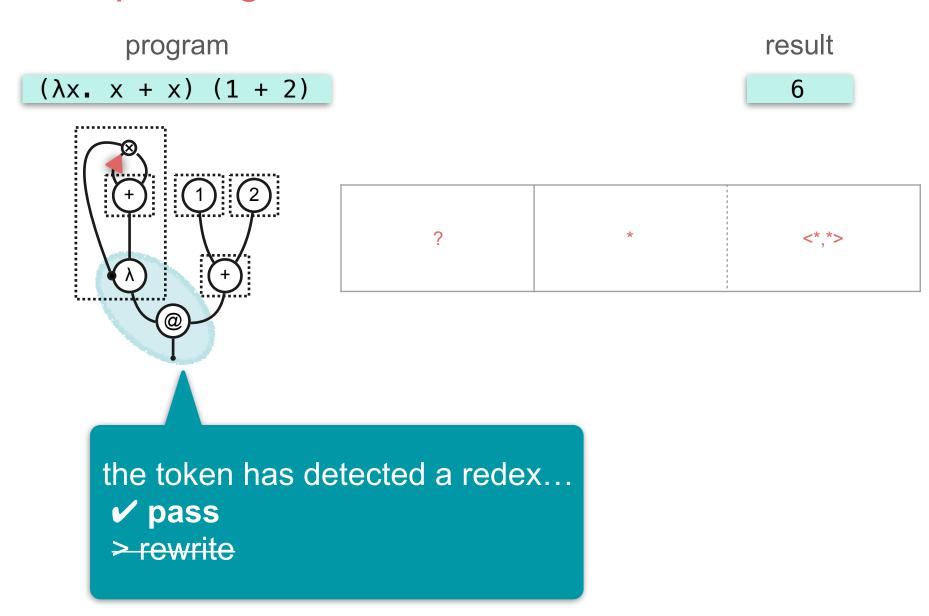
#### applications:

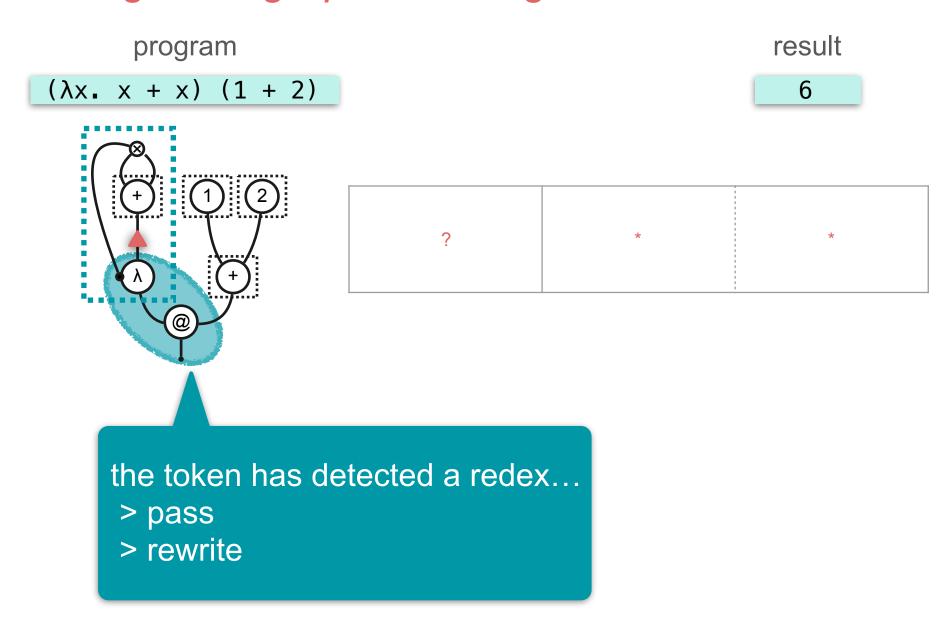

- cost analysis
- language designs for programming with data-flow networks
- reasoning about observational equivalence
- visualising program execution

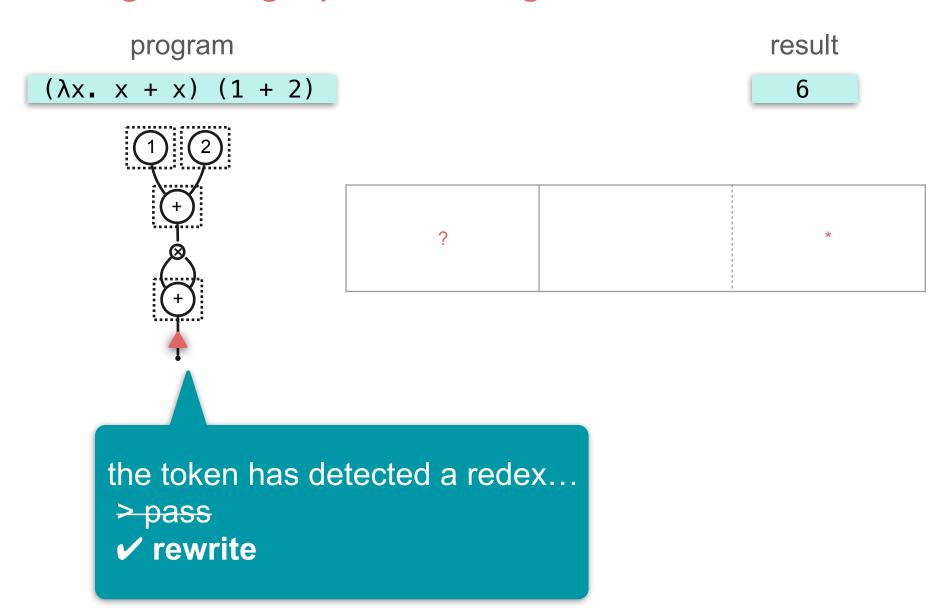

program


$$(\lambda x. x + x) (1 + 2)$$

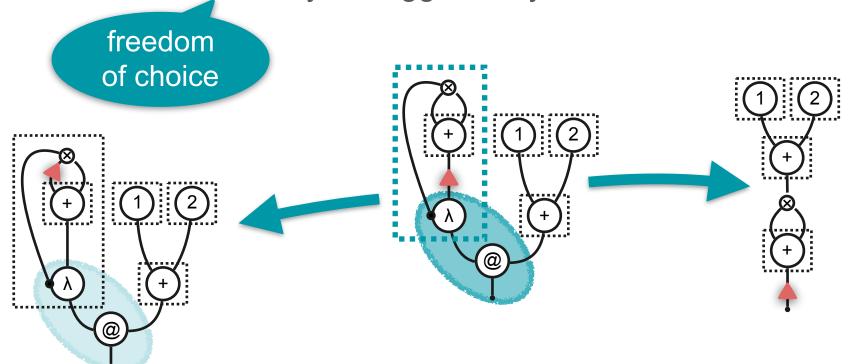

result


6












- a combination of graph rewriting and token passing
- graph rewriting, guided and controlled by the token
  - redexes always detected by the token
  - rewrites can only be triggered by the token



# Modes of token-guided graph-rewriting model

graph rewriting

"maximum" token-guided graph rewriting

rewrites triggered by the token *whenever possible* 

#### modelling...

- by default: call-by-need evaluation
- also: call-by-value evaluation
   by changing the routing of the token

token passing

"minimum" token-guided graph rewriting

rewrites *never* triggered by the token

modelling...

by default: call-by-name evaluation

# Modes of token-guided graph-rewriting model

graph rewriting

"maximum" token-guided graph rewriting

rewrites triggered by the token whenever possible

token passing

"minimum" token-guided graph rewriting

rewrites *never* triggered by the token

demo: <a href="https://koko-m.github.io/Gol-Visualiser/">https://koko-m.github.io/Gol-Visualiser/</a> for the (pure, untyped) lambda-calculus

# Overview: graphical models of program execution

graph rewriting

token passing





#### applications:

- cost analysis
- language designs for programming with data-flow networks
- reasoning about observational equivalence
- visualising program execution

# Application 1: cost analysis

graph rewriting

✓ time-efficiency

token passing

✓ space-efficiency

Goal (also original motivation)

analysis of a trade-off between time-efficiency and spaceefficiency

### Application 1: cost analysis

graph rewriting

"maximum" token-guided graph rewriting

rewrites triggered by the token *whenever possible* 

token passing

"minimum" token-guided graph rewriting

rewrites *never* triggered by the token

[— & Ghica, LMCS '19]

proof of time-efficiency of the "maximum" mode

- call-by-need evaluation
- call-by-value evaluation

### Application 1: cost analysis

graph rewriting

"maximum" token-guided graph rewriting

rewrites triggered by the token *whenever possible* 

token passing

"minimum" token-guided graph rewriting

rewrites *never* triggered by the token

#### [ongoing work]

analysis of various modes, and hence the time-space trade-off

- "maximum" mode & "minimum" mode,
- "up-to" mode (e.g. allowing up to 100 rewrites),
- "no-increase" mode (i.e. forbidding growth of the graph), etc.

### Overview: models of program execution

graph rewriting

token passing





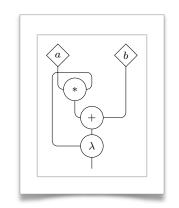
#### applications:

- cost analysis
- language designs for programming with data-flow networks
- reasoning about observational equivalence
- visualising program execution

**Goal** programming language designs for:

- construction of a dataflow network
- evaluation of a dataflow network
- update of a dataflow network

#### **Goal** programming language designs for:


- construction of a dataflow network
- evaluation of a dataflow network
- update of a dataflow network

#### **Goal** programming language designs for:

- construction of a dataflow network
- evaluation of a dataflow network
- update of a dataflow network

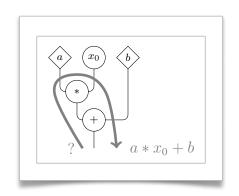
[— & Cheung & Ghica, LICS '18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS '18] Idealised TensorFlow

construction of a parametrised model
 (e.g. f(x) = a \* x + b)
 as a network with parameter nodes



### **Goal** programming language designs for:

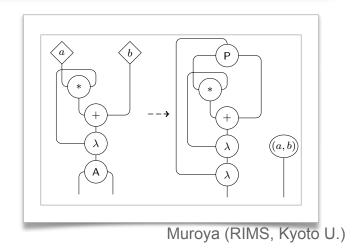
- construction of a dataflow network
- evaluation of a dataflow network
- update of a dataflow network


- prediction with a parametrised model by
  - 1. graph rewriting: function application to input data



#### **Goal** programming language designs for:

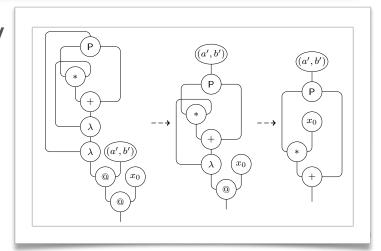
- construction of a dataflow network
- evaluation of a dataflow network
- update of a dataflow network


- prediction with a parametrised model by
  - 2. **token passing** over the resulting network



### **Goal** programming language designs for:

- construction of a dataflow network
- evaluation of a dataflow network
- update of a dataflow network


- functional update of parameters by
  - 1. graph rewriting:
    novel "graph abstraction"
    to turn a parametrised model
    into an ordinary function



### **Goal** programming language designs for:

- construction of a dataflow network
- evaluation of a dataflow network
- update of a dataflow network

- functional update of parameters by
  - 2. **graph rewriting:**function application to
    new parameter values



### **Goal** programming language designs for:

- construction of a dataflow network
- evaluation of a dataflow network
- update of a dataflow network

[— & Cheung & Ghica, LICS '18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS '18]

#### Idealised TensorFlow

- extension of the simply-typed lambda-calculus with:
   parameters, "graph abstraction", "opaque" vector types
- type soundness & some observational equivalences
- visualiser of token-guided graph rewriting
   <a href="https://cwtsteven.github.io/Gol-TF-Visualiser/CBV-with-CBN-embedding/index.html">https://cwtsteven.github.io/Gol-TF-Visualiser/CBV-with-CBN-embedding/index.html</a>
- OCaml PPX implementation <a href="https://github.com/DecML/decml-ppx">https://github.com/DecML/decml-ppx</a>

### **Goal** programming language designs for:

- construction of a dataflow network
- evaluation of a dataflow network
- update of a dataflow network

for presentation,
See (esp. from 34:11):

V=sampVedCsNM&t=102s

[Cheung & Ghica & —, unpublished manuscript (arXiv:1910.09579)]

#### Transparent Synchronous Dataflow

- extension of the simply-typed lambda-calculus with:
   spreadsheet-like "cells" (allowing circular dependency),
   "step" command (updating cells step-by-step & concurrently)
- type soundness & some efficiency guarantee
- visualiser of token-guided graph rewriting <a href="https://cwtsteven.github.io/TSD-visual/">https://cwtsteven.github.io/TSD-visual/</a>
- OCaml PPX implementation <a href="https://github.com/cwtsteven/TSD">https://github.com/cwtsteven/TSD</a>
   (explained in <a href="https://danghica.blogspot.com/2019/11/making-ocaml-more-like-excel.html">https://danghica.blogspot.com/2019/11/making-ocaml-more-like-excel.html</a>
  )

# Overview: graphical models of program execution

graph rewriting

token passing





#### applications:

- cost analysis
- language designs for programming with data-flow networks
- reasoning about observational equivalence
- visualising program execution

### Question(s)

Do two program fragments behave the same?

or, is it safe to replace a program fragment with another?

#### if YES:

- justification of refactoring, compiler optimisation
- verification of programs

Question(s)

Do two program fragments behave the same?

### Question(s)

Do two program fragments behave the same?

What program fragments behave the same?

the beta-law

$$(\lambda x.M)N \simeq M[x := N]$$

a parametricity law

let 
$$a = \text{ref } 1 \text{ in } \lambda x. (a := 2; !a) \simeq \lambda x. 2$$

### Question(s)

Do two program fragments behave the same?

When do program fragments behave the same?

the beta-law

$$(\lambda x.M)N \simeq M[x := N]$$

Does the beta-law always hold?

### Question(s)

Do two program fragments behave the same?

When do program fragments behave the same?

the beta-law

$$(\lambda x.M)N \simeq M[x:=N]$$

Does the beta-law always hold?

**No**, it is violated by program contexts that can measure memory usage (e.g. with OCaml's Gc module)...

$$(\lambda x.0) 100 \simeq 0$$

### Question(s)

Do two program fragments behave the same?

#### What fragments, in which contexts?

... in the presence of (arbitrary) language features

```
pure vs. effectful (e.g. 50 + 50 vs. ref 1)
encoded vs. native (e.g. State vs. ref)
extrinsics (e.g. Gc.stat)
foreign language calls
```

Question(s)

Do two sub-graphs behave the same?

What sub-graphs, in which contexts?

... in token-guided graph rewriting for (arbitrary) language features

[Ghica & — & Waugh Ambridge, unpublished manuscript (arXiv:1907.01257)]

Local reasoning for robust observational equivalence

proof of (robustness of) observational equivalence by exploiting **locality** of graph representation/syntax

#### **Locality** of graph syntax

"Does new  $a \rightarrow 1$  in  $\lambda x$ . (a := 2; !a) behave the same as  $\lambda x$ . 2?"

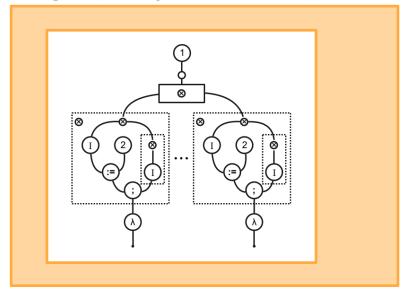
with linear syntax:

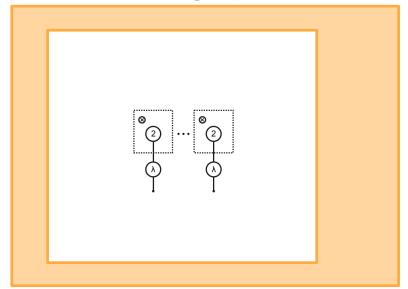
#### **Locality** of graph syntax

"Does new  $a \rightarrow 1$  in  $\lambda x$ . (a := 2; !a) behave the same as  $\lambda x$ . 2?"

with linear syntax: comparison between sub-terms

| ••• new $a \rightarrow 1$ in | • • • | $\lambda x \cdot (a := 2; !a)$ | • • • | $\lambda x \cdot (a := 2; !a)$ | • • • |
|------------------------------|-------|--------------------------------|-------|--------------------------------|-------|
| • • •                        |       | $\lambda x.2$                  | • • • | $\lambda x.2$                  | • • • |


#### **Locality** of graph syntax


"Does new  $a \rightarrow 1$  in  $\lambda x$ . (a := 2; !a) behave the same as  $\lambda x$ . 2?"

with linear syntax: comparison between sub-terms

| ••• new $a \rightarrow 1$ in | $\lambda x \cdot (a := 2; !a)$ | $\cdots \lambda x \cdot (a := 2; !a) \cdots$ | • • |
|------------------------------|--------------------------------|----------------------------------------------|-----|
| •••                          | $\lambda x.2$                  | $\lambda x.2$                                | • • |

with graph syntax: comparison between sub-graphs





# Overview: graphical models of program execution

graph rewriting

token passing





#### applications:

- cost analysis
- language designs for programming with data-flow networks
- reasoning about observational equivalence
- visualising program execution

# Application 4: visualising program execution

- OCaml Visual Debugger
   <a href="https://fyp.jackhughesweb.com/">https://fyp.jackhughesweb.com/</a> by Jack Hughes
- comparison between programs
  - mutable state: encoded vs native
     <a href="https://www.youtube.com/watch?v=ysZdqoclu7E">https://www.youtube.com/watch?v=ysZdqoclu7E</a>
  - sorting algorithms: insertion vs bubble
     <a href="https://www.youtube.com/watch?v=bZMSwo0zLio">https://www.youtube.com/watch?v=bZMSwo0zLio</a>
  - sorting algorithms: merge vs insertion
     <a href="https://www.youtube.com/watch?v=U1NI-mWeNe0&t=213s">https://www.youtube.com/watch?v=U1NI-mWeNe0&t=213s</a>

# Overview: graphical models of program execution

graph rewriting

token passing





#### applications:

- cost analysis
- language designs for programming with data-flow networks
- reasoning about observational equivalence
- visualising program execution

# Overview: graphical models of program execution

graph rewriting

token passing





biggest, persistent, challenge:

- mathematical formalisation
  - graph theory?
  - category theory? (DPO rewriting, string diagrams, ...)
  - rewriting theory? (term-graph rewriting, ...)