=

L]

I

N &

J Ny
s~ I
M\
-:r\

=

=T)T EFDF]

R
CREBKRZE BOEATIIFEAT)

L

EREHEAX _EEHF == +—, 30 January 2020

Modelling program execution with
token-quided
(hierarchical) graph rewriting

Koko Muroya
(RIMS, Kyoto University)

EREHEAX _EEHF == +—, 30 January 2020

Overview: graphical models of program execution

applications:

<

token-guided graph rewriting

e cost analysis
e language designs for programming with data-flow networks
e reasoning about observational equivalence

e Visualising program execution

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

applications:

<

token-guided graph rewriting

e cost analysis
e language designs for programming with data-flow networks
e reasoning about observational equivalence

e Visualising program execution

Muroya (RIMS, Kyoto U.)

Graph-rewriting model
e dates back to [Wadsworth 1971]
e useful to achieve time-efficiency (by flexible sharing)

e e.g. call-by-need evaluation without extra machinery

Muroya (RIMS, Kyoto U.)

Graph-rewriting model

program result

Muroya (RIMS, Kyoto U.)

Graph-rewriting model
e dates back to [Wadsworth 1971]
e useful to achieve time-efficiency (by flexible sharing)

e e.g. call-by-need evaluation without extra machinery

Question

How to specify a strategy (i.e. a particular way of rewriting)?

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

applications:

token-guided graph rewriting

e cost analysis
e language designs for programming with data-flow networks
e reasoning about observational equivalence

e Visualising program execution

Muroya (RIMS, Kyoto U.)

Token-passing model

e based on Geometry of Interaction [Girard "89],

pioneered by [Danos & Regnier '99] [Mackie '95]
e ingredients

e the token, passed around on a fixed graph

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

? <L<**>*>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

E * * *
1 : <L<**>*>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

? <L<**> 1>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

2 <L<**> 1>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program
(AX. X + x) (1 + 2)

result
5)

A3

L<*,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

? . | L<* 3>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

A? L<* 3>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

? L<* 3>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

? <L<* 3> *>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

1 <L<* 3> *>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

? <L<*3>1>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

2 <L<*3>1>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

3 | L<* 3>

Muroya (RIMS, Kyoto U.)

Token-passing model

program
(AX. X + x) (1 + 2)

result
5)

A3

L<* 3>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

3 * L<* 3>

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

program
(AX. X + x) (1 + 2)

result
5)

B,6

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-passing model

e based on Geometry of Interaction [Girard "89],

pioneered by [Danos & Regnier '99] [Mackie '95]
e ingredients

e the token, passed around on a fixed graph

e said to be space-efficient (due to fixed graphs)

e ... but not really time-efficient (due to re-evaluation)

modelling call-by-name
evaluation by default

Question

How to achieve time-efficiency?

Muroya (RIMS, Kyoto U.)

Models of program execution

v time-efficiency v’ space-efficiency

Questions

e a trade-off between time-efficiency and space-efficiency?

® 3 to analyse the trade-off?

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

graph rewriting

applications:

token-guided graph rewriting

e cost analysis
e language designs for programming with data-flow networks
e reasoning about observational equivalence

e visualising program execution

token passing

- am am mm mmoamomm il

Muroya (RIMS, Kyoto U.)

Token-guided graph-rewriting model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-quided graph-rewriting model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-quided graph-rewriting model

program
(AX. X + x) (1 + 2)

result
5)

B,?

Muroya (RIMS, Kyoto U.)

Token-quided graph-rewriting model

program result
(Ax. x + x) (1 + 2) 6

Muroya (RIMS, Kyoto U.)

Token-quided graph-rewriting model

program result
(Ax. x + x) (1 + 2) 6

the token has detected a redex...

> pass
> rewrite

Muroya (RIMS, Kyoto U.)

Token-passing model

program result
(Ax. x + x) (1 + 2) 6

the token has detected a redex...

v pass
=frewrite

Muroya (RIMS, Kyoto U.)

Token-quided graph-rewriting model

program result
(Ax. x + x) (1 + 2) 6

the token has detected a redex...

> pass
> rewrite

Muroya (RIMS, Kyoto U.)

Token-quided graph-rewriting model

program result
(Ax. x + x) (1 + 2) 6

the token has detected a redex...

=DaSsS
v rewrite

Muroya (RIMS, Kyoto U.)

Token-quided graph-rewriting model
e a combination of graph rewriting and token passing
e graph rewriting, guided and controlled by the token

e redexes always detected by the token

e rewrites can only be triggered by the token

freedom
of choice

Muroya (RIMS, Kyoto U.)

Modes of token-guided graph-rewriting model

graph rewriting token passing

“maximum’” token-guided
graph rewriting

rewrites triggered by the
token whenever possible

“minimum’ token-guided
graph rewriting

rewrites never triggered by
the token

modelling... modelling...

e by default: call-by-need evaluation e by default: call-by-name evaluation

e also: call-by-value evaluation

by changing the routing of the token

Muroya (RIMS, Kyoto U.)

Modes of token-guided graph-rewriting model

Q
3
Q

O
>
R
)
=
S,
=
>

Q

“maximum’” token-guided
graph rewriting

“minimum’ token-guided
graph rewriting

rewrites triggered by the rewrites never triggered by
token whenever possible the token

https://koko-m.qithub.io/Gol-Visualiser/

Muroya (RIMS, Kyoto U.)

https://koko-m.github.io/GoI-Visualiser/

Overview: graphical models of program execution

applications:

<

token-guided graph rewriting

e language designs for programming with data-flow networks
e reasoning about observational equivalence

e Visualising program execution

Muroya (RIMS, Kyoto U.)

Application 1: cost analysis

v time-efficiency v’ space-efficiency

Goal (also original motivation)

analysis of a trade-off between time-efficiency and space-
efficiency

Muroya (RIMS, Kyoto U.)

Application 1: cost analysis

Q
3
Q

O
>
R
)
=
S,
=
>

Q

“maximum’” token-guided
graph rewriting

“minimum’ token-guided

graph rewriting

rewrites never triggered by
the token

rewrites triggered by the
token whenever possible

Muroya (RIMS, Kyoto U.)

Application 1: cost analysis

-"""1

graph rewriting token passing

“maximum” token-guided “minimum” token-guided
graph rewriting graph rewriting

rewrites triggered by the rewrites never triggered by
token whenever possible the token

[ongoing work]
analysis of various modes, and hence the time-space trade-off

o “maximum’” mode & “minimum’” mode,

e “up-to” mode (e.g. allowing up to 100 rewrites),

e “no-increase” mode (i.e. forbidding growth of the graph), etc.

Overview: models of program execution

applications:

<

token-guided graph rewriting

e cost analysis

e reasoning about observational equivalence

e Visualising program execution

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:
e construction of a dataflow network
e evaluation of a dataflow network

e Uupdate of a dataflow network

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:
e construction of a dataflow network
e evaluation of a dataflow network

e Uupdate of a dataflow network

[— & Cheung & Ghica, LICS '18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’'18]

Idealised TensorFlow

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:
e construction of a dataflow network
e evaluation of a dataflow network

e Uupdate of a dataflow network

[— & Cheung & Ghica, LICS '18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’'18]

Idealised TensorFlow

e construction of a parametrised model
(e.g. f(x)=a*x +Db) 0@ @
as a network with parameter nodes l@

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:
e construction of a dataflow network
e cvaluation of a dataflow network

e Uupdate of a dataflow network

[— & Cheung & Ghica, LICS '18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’'18]

Idealised TensorFlow

e prediction with a parametrised model by

O
1. graph rewriting: Eﬁ . P OR0;
function application to input data o

|

————

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:
e construction of a dataflow network
e cvaluation of a dataflow network

e Uupdate of a dataflow network

[— & Cheung & Ghica, LICS '18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’'18]

Idealised TensorFlow

e prediction with a parametrised model by

2. token passing over ©
the resulting network ®

? axxg+b

T ———

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:
e construction of a dataflow network
e evaluation of a dataflow network

e (pdafe of a dataflow network

[— & Cheung & Ghica, LICS ’18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’18]

Idealised TensorFlow

e functional update of parameters by

O)

1. graph rewriting: E° . Eu
novel “graph abstraction” o g @
® O r

to turn a parametrised model
into an ordinary function rors VTS U)

Application 2: programming with data-flow networks

Goal programming language designs for:
e construction of a dataflow network
e evaluation of a dataflow network

e (pdafe of a dataflow network

[— & Cheung & Ghica, LICS '18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’'18]

Idealised TensorFlow

e functional update of parameters by

(») @) @
2. graph rewriting: Em Y ®
5 + +
o
©

function application to
new parameter values e @

JC olgoloixs J Iadliude Jdesid U
0 0 Ul d UdldliC C U
oualtle Ol d dalallC - U

[— & Cheung & Ghica, LICS ’18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’18]
Idealised TensorFlow

e extension of the simply-typed lambda-calculus with:

7 (11

parameters, “graph abstraction”, “opaque” vector types
e type soundness & some observational equivalences

e visualiser of token-guided graph rewriting

e OCaml PPX implementation

https://cwtsteven.github.io/GoI-TF-Visualiser/CBV-with-CBN-embedding/index.html
https://github.com/DecML/decml-ppx

JC olgoloixs J Iadliude Jdesid U
0 0 Ul d UdldliC C U
odadtle Ol d dalallC - U

[Cheung & Ghica & —, unpublished manuscript (arXiv:1910.09579)]

Transparent Synchronous Dataflow

extension of the simply-typed lambda-calculus with:
spreadsheet-like “cells” (allowing circular dependency),
“step” command (updating cells step-by-step & concurrently)

type soundness & some efficiency guarantee
visualiser of token-guided graph rewriting

OCaml PPX implementation
(explained in

https://cwtsteven.github.io/TSD-visual/
https://github.com/cwtsteven/TSD
https://danghica.blogspot.com/2019/11/making-ocaml-more-like-excel.html
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s

Overview: graphical models of program execution

applications:

<

token-guided graph rewriting

e cost analysis

e language designs for programming with data-flow networks

e Visualising program execution

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two program fragments behave the same?

or, is it safe to replace a program fragment with another?

let x = 100 in 2 - y ?

let y = 50 in SN ey = 350 + 50
y +y

y +y

let x = 100 in 7 _ . 2

let y = 50 in iy S 350 + 50
50 + 50

y +y

if YES:

e justification of refactoring, compiler optimisation

e verification of programs

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two program fragments behave the same?

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do-twe program fragments behave the same?

What program fragments behave the same?

the beta-law
(Ax.M)N ~ Mi[x:= N]

a parametricity law
leta=ref 1 in Ax.(a:=2;!la) =~ Ax.2

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Doe-two program fragments behave the same?

When do program fragments behave the same?

the beta-law
(Ax.M)N ~ Mi[x:= N]

Does the beta-law always hold?

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Doe-two program fragments behave the same?

When do program fragments behave the same?

the beta-law
(Ax.M)N ~ Mi[x:= N]

Does the beta-law always hold?

No, it is violated by program contexts that can measure
memory usage (e.g. with OCaml’'s Gc module)...

(Ax.0) 100 %« O

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two program fragments behave the same?
What fragments, in which contexts?

... in the presence of (arbitrary) language features

pure vs. effectful (e.g. 50 + 50 vsS. ref 1)
encoded vs. native (e.g. state VS. ref)
extrinsics (e.g. Ge.stat)

foreign language calls

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two sub-graphs behave the same?
What sub-graphs, in which contexts?

... In token-guided graph rewriting for (arbitrary) language features

[Ghica & — & Waugh Ambridge, unpublished manuscript (arXiv:1907.01257)]

Local reasoning for robust observational equivalence

proof of (robustness of) observational equivalence

by exploiting locality of graph representation/syntax

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Locality of graph syntax
“Does newa — 1 in Ax.(a :=2; !la) behave the same as 1x.27”

with linear syntax:
newa—olin - Ax.(a:=2;!la) - Ax.(a:=2;a) «--
Ax.2 Ax.2

Muroya (RIMS, Kyoto U. & U. B’ham.)

Application 3: reasoning about observational equivalence

Locality of graph syntax

“Does newa — 1 in Ax.(a :=2; !la) behave the same as 1x.27”

with linear syntax: eemparisenbetween-sub-terms

newa-—o1in| -+ Ax.(a:=2;!la) - Ax.(a:=2;!1a)| .-
Ax.2 Ax.2

Muroya (RIMS, Kyoto U. & U. B’ham.)

Application 3: reasoning about observational equivalence

Locality of graph syntax

“Does newa — 1 in Ax.(a :=2; !la) behave the same as 1x.27”

with linear syntax: eemparisonbetweensub-terms
eee newa—olin - Ax.(a:=2;!a) ««- Ax.(a:=2;!a) «--

Ax.2 Ax.2
with graph syntax: comparison between sub-graphs

—0-0°
aCanCl

Muroya (RIMS, Kyoto U. & U. B’ham.)

Overview: graphical models of program execution

applications:

<

token-guided graph rewriting

e cost analysis
e language designs for programming with data-flow networks

e reasoning about observational equivalence

Muroya (RIMS, Kyoto U.)

Application 4: visualising program execution

e OCaml Visual Debugger

https://fyp.jackhughesweb.com/ by Jack Hughes

e comparison between programs

e mutable state: encoded vs native

https://www.youtube.com/watch?v=ysZdqoclu/E

e sorting algorithms: insertion vs bubble
https://www.youtube.com/watch?v=bZMSwo0zL io

e sorting algorithms: merge vs insertion
https://www.youtube.com/watch?v=U1NI-mWeNe0&t=213s

Muroya (RIMS, Kyoto U.)

https://fyp.jackhughesweb.com/
https://www.youtube.com/watch?v=ysZdqocIu7E
https://www.youtube.com/watch?v=bZMSwo0zLio
https://www.youtube.com/watch?v=U1NI-mWeNe0&t=213s

Overview: graphical models of program execution

applications:

<

token-guided graph rewriting

e cost analysis
e language designs for programming with data-flow networks
e reasoning about observational equivalence

e Visualising program execution

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

<

token-guided graph rewriting

biggest, persistent, challenge:
e mathematical formalisation
e graph theory?
e category theory? (DPO rewriting, string diagrams, ...)

e rewriting theory? (term-graph rewriting, ...)

Muroya (RIMS, Kyoto U.)

