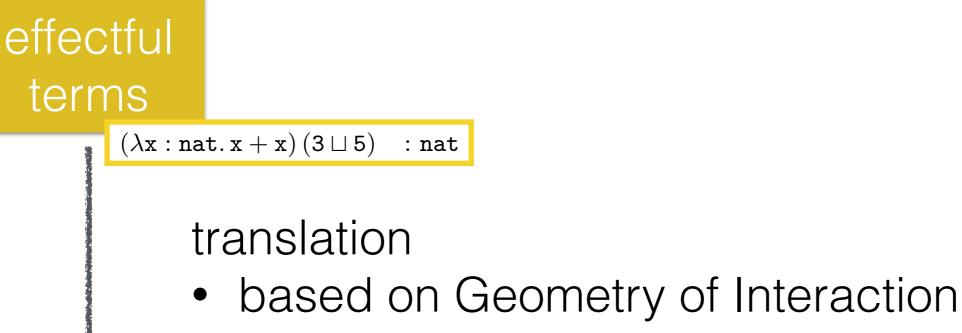


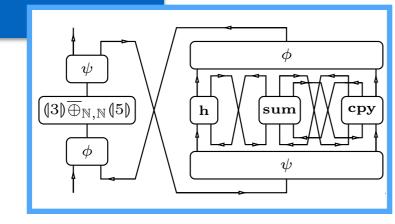
CSCAT(鹿児島), March 14, 2015

Memoryful Gol [Hoshino, —, Hasuo '14]



• via coalgebraic component calculus

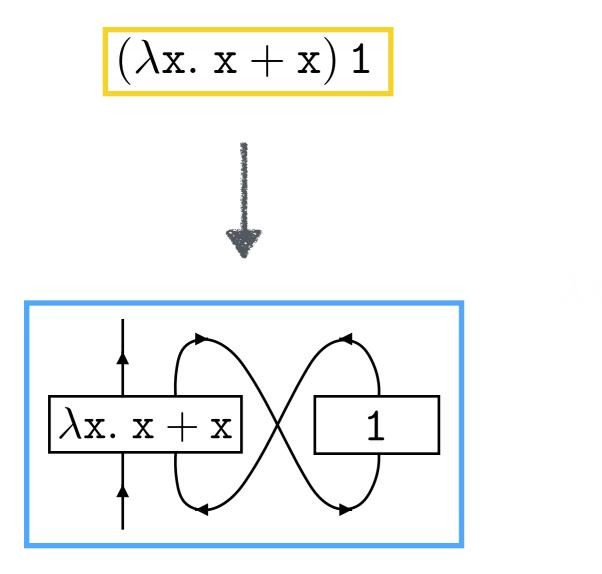
transducers

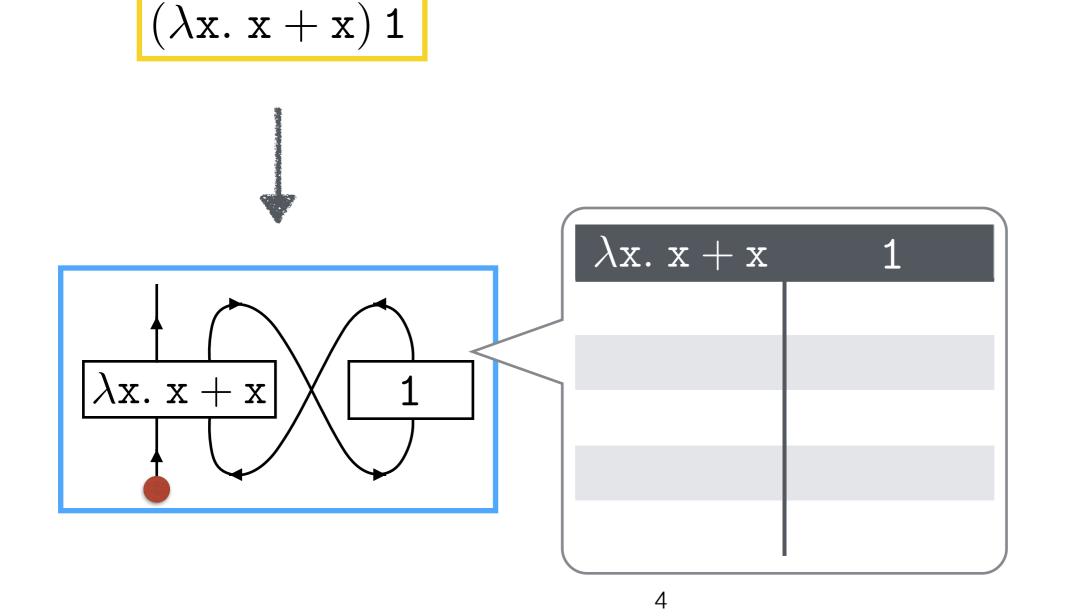


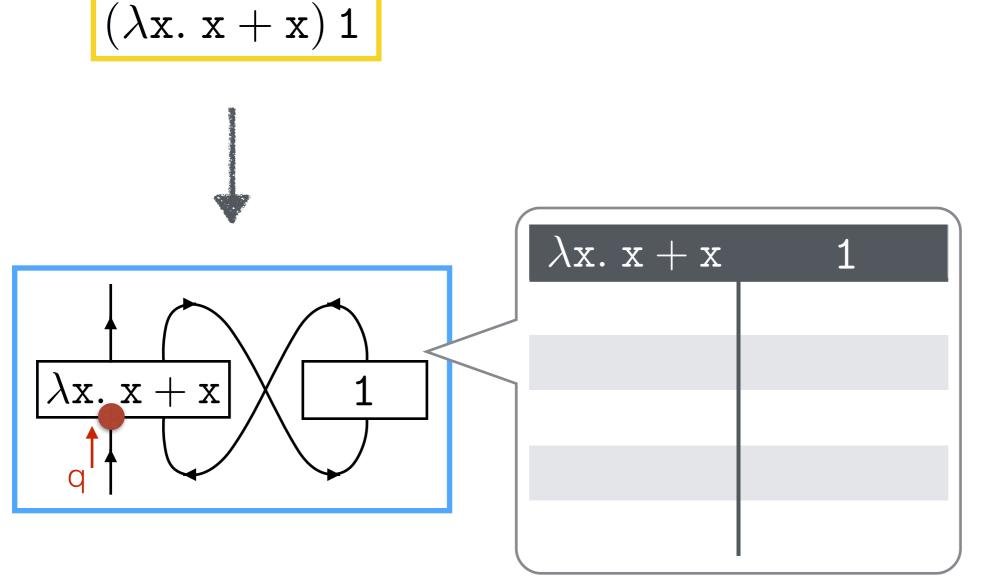
- semantics of { linear logic proof [Girard '89], functional programming
- token machine presentation [Mackie '95]

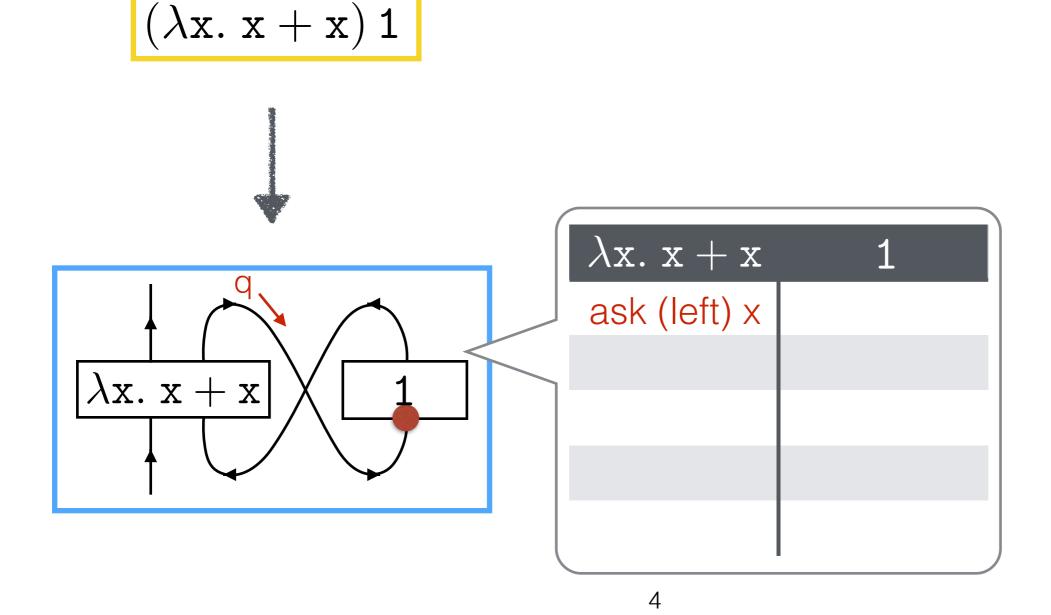
"Gol implementation"

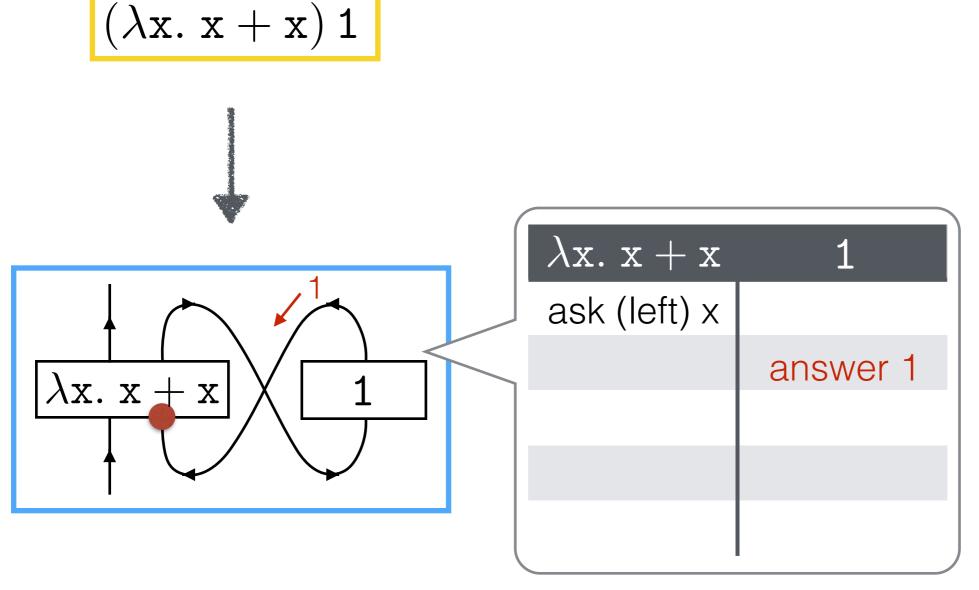
compilation techniques and implementations [Mackie '95] [Pinto '01] [Ghica '07]

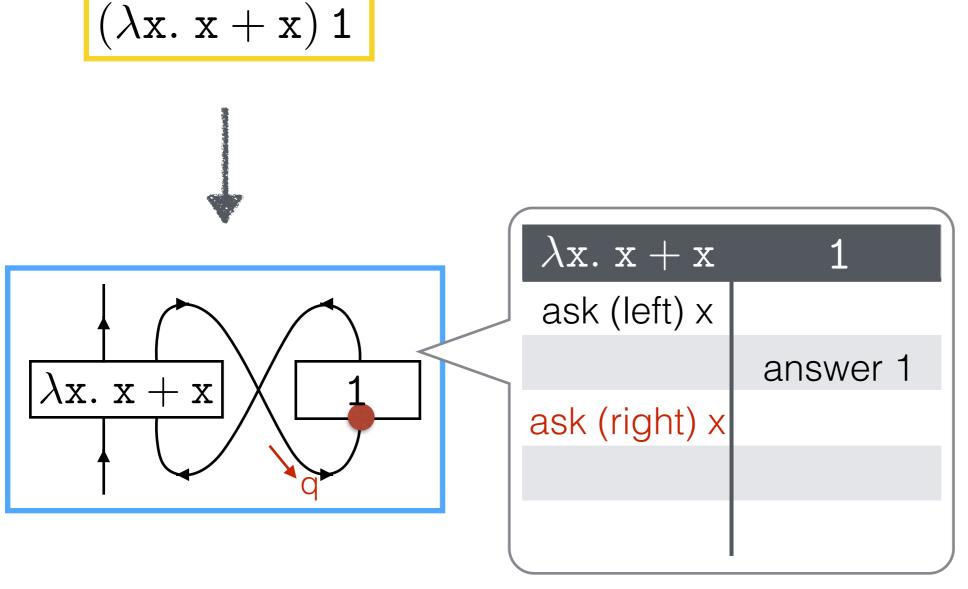


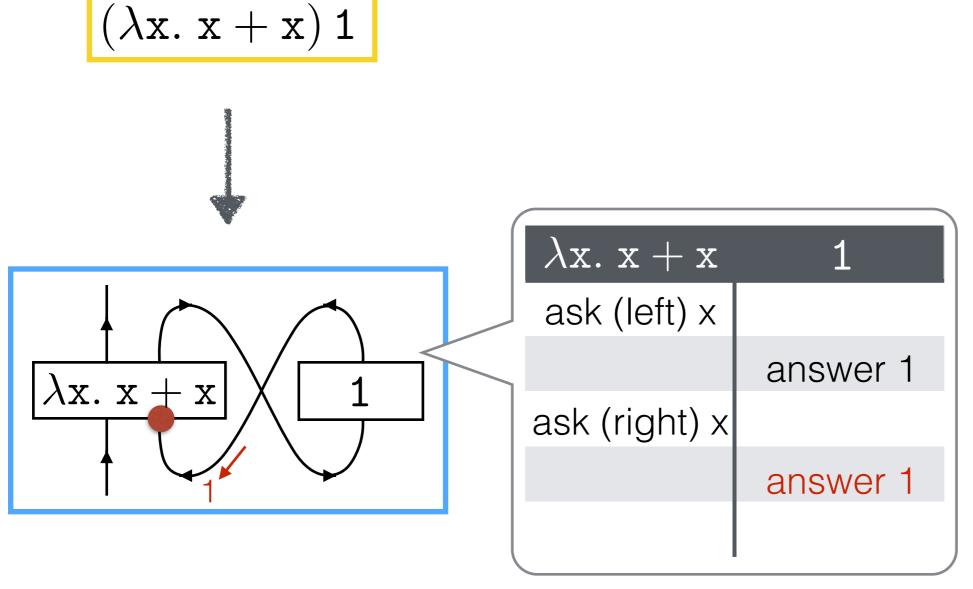


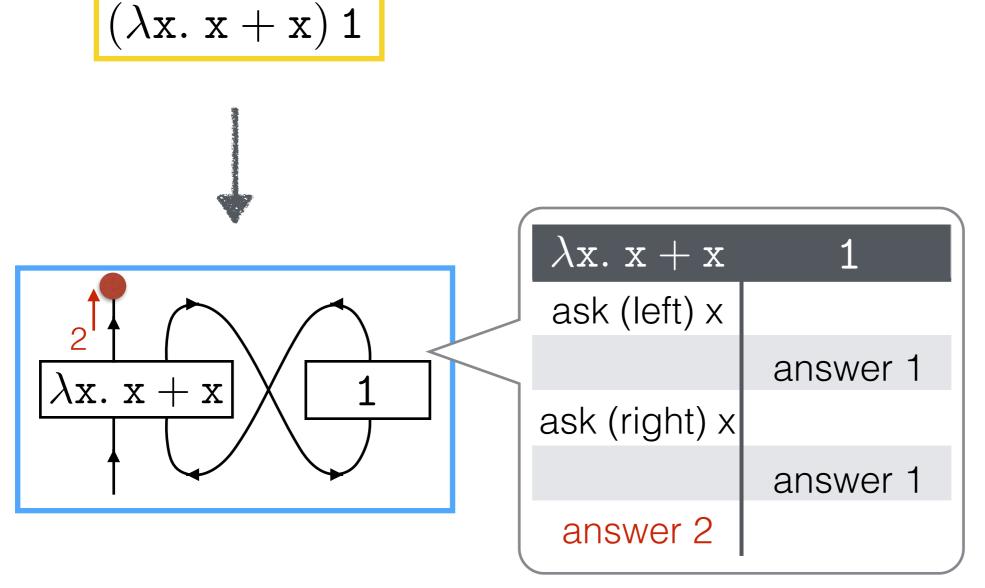












Memoryful Gol — Input

effectful terms

CBV λ -terms with <u>algebraic effects</u>

transducers

algebraic operations [Plotkin, Power '01]

- nondeterministic choice $M \sqcup N$
- probabilistic choice
- actions on global state

 $lookup_l(v: Val. M)$ $update_{l,v}(M)$

 $M \sqcup_p N$

Memoryful Gol — Output

stream transducers (Mealy machines)

 $(X, c: X \times A \to T(X \times B), x_0 \in X): A \to B$

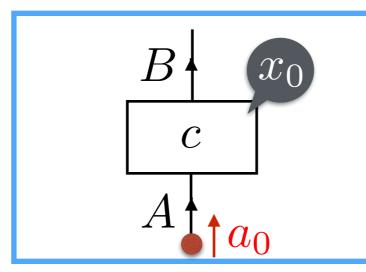
 a_0/b_2

T

 $= \mathcal{P}$

 x_2

transducers



 x_0

 a_0/b_1

 x_1

string diagram style

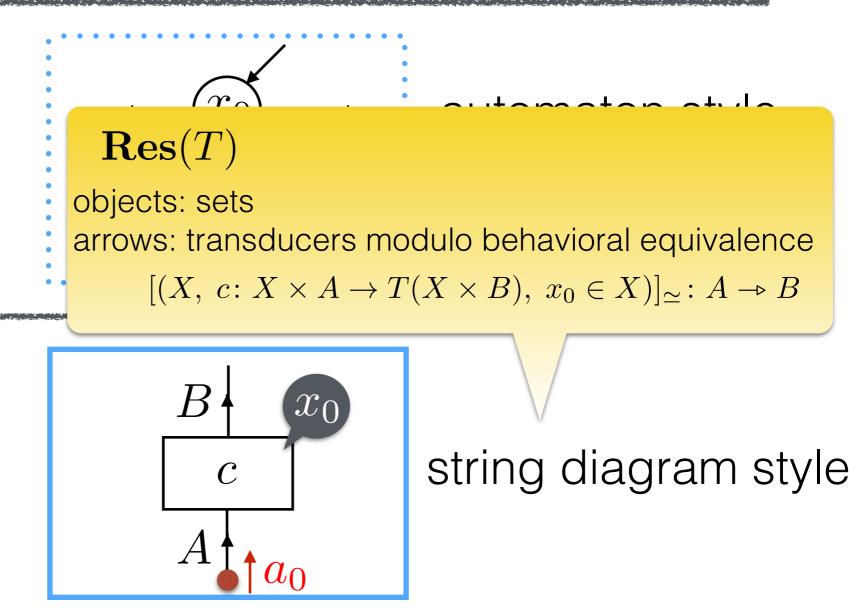
automaton style

Memoryful Gol — Output

stream transducers (Mealy machines)

 $(X, c: X \times A \to T(X \times B), x_0 \in X): A \twoheadrightarrow B$

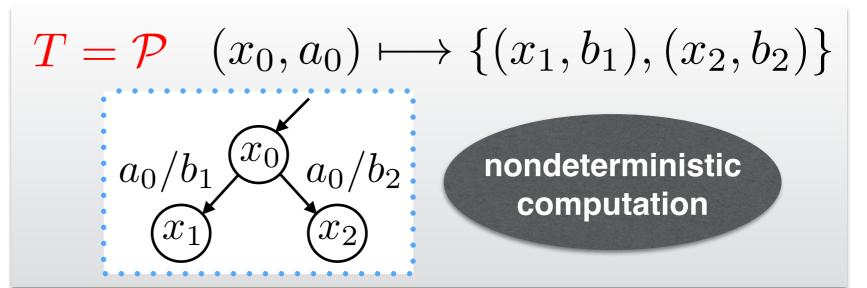
transducers



Memoryful Gol — Output

stream transducers (Mealy machines)

 $(X, c: X \times A \to T(X \times B), x_0 \in X): A \to B$



$$T = S = (1 + (-) \times S)^{S}$$

computation with
global state

transducers

$$T = \mathcal{D} \quad (x_0, a_0) \mapsto \begin{bmatrix} (x_1, b_1) \mapsto 1/4, \\ (x_2, b_2) \mapsto 3/4 \end{bmatrix}$$

$$a_0/b_1 \quad x_0 \quad a_0/b_2 \quad \text{probabilistic} \\ x_1 \quad \frac{1}{4} \quad \frac{3}{4} \quad x_2 \end{pmatrix} \quad \text{probabilistic}$$

effectful

terms

transducers

idea: resumptions + categorical Gol

[Abramsky, Haghverdi, Scott '02]

use coalgebraic component calculus

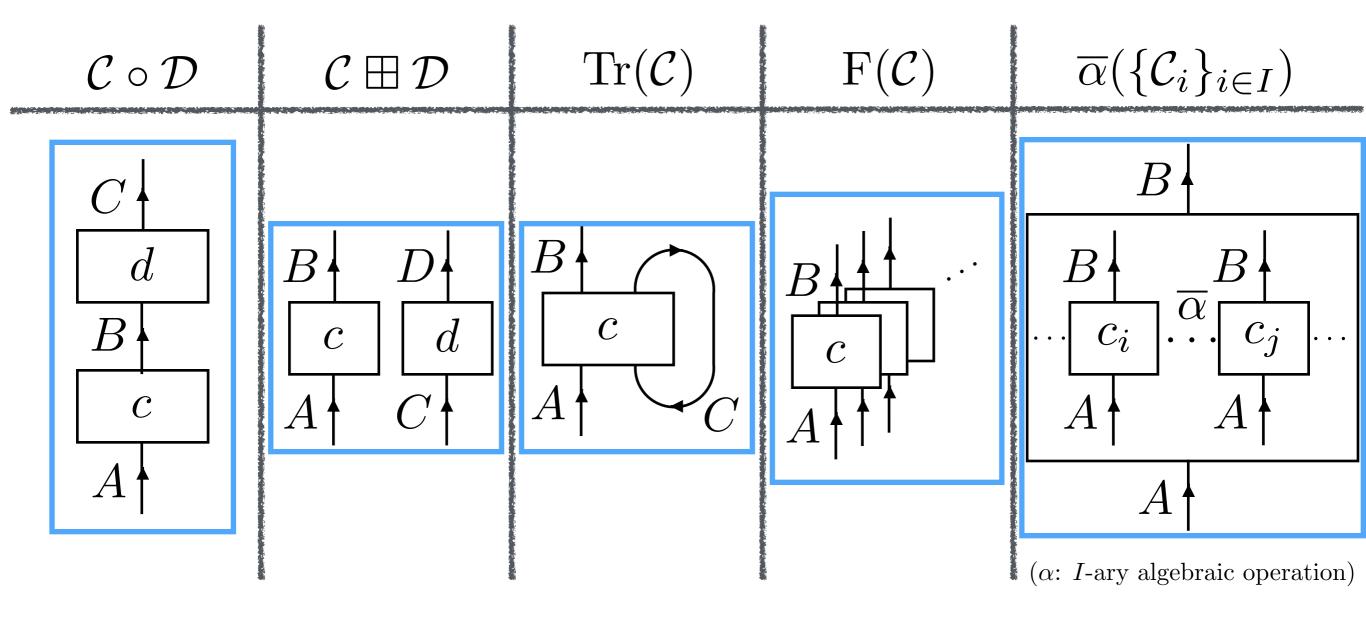
[Barbosa '03] [Hasuo, Jacobs '11]

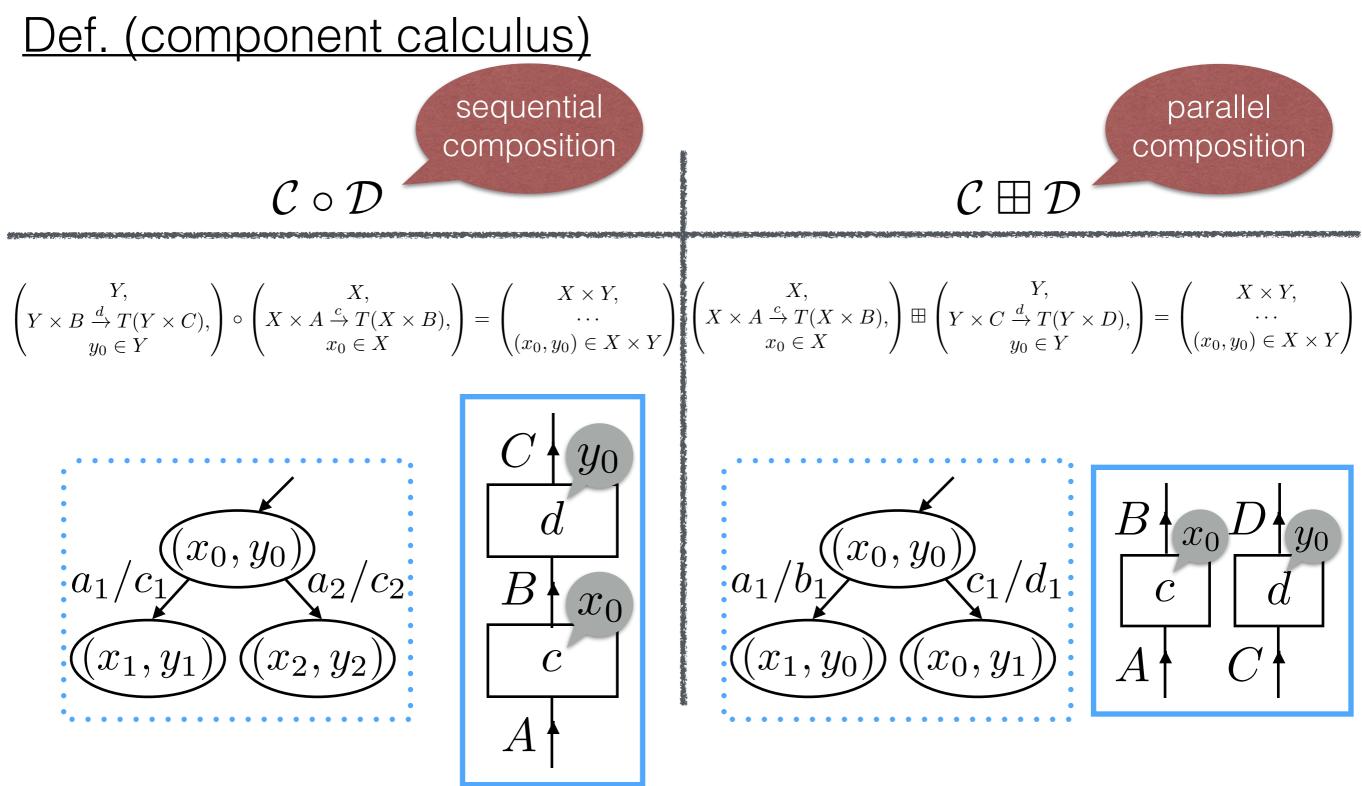
composition operations for software components

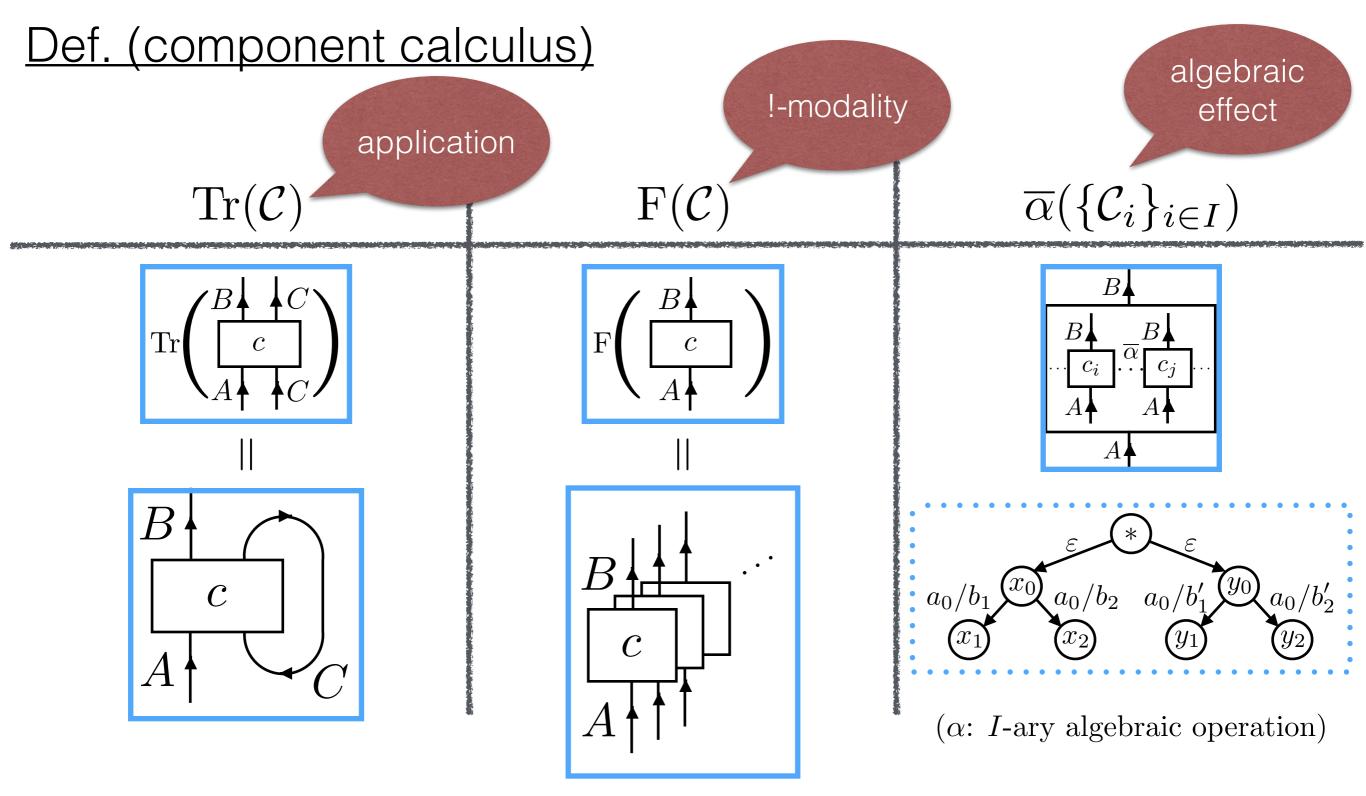
(many-sorted) process calculus

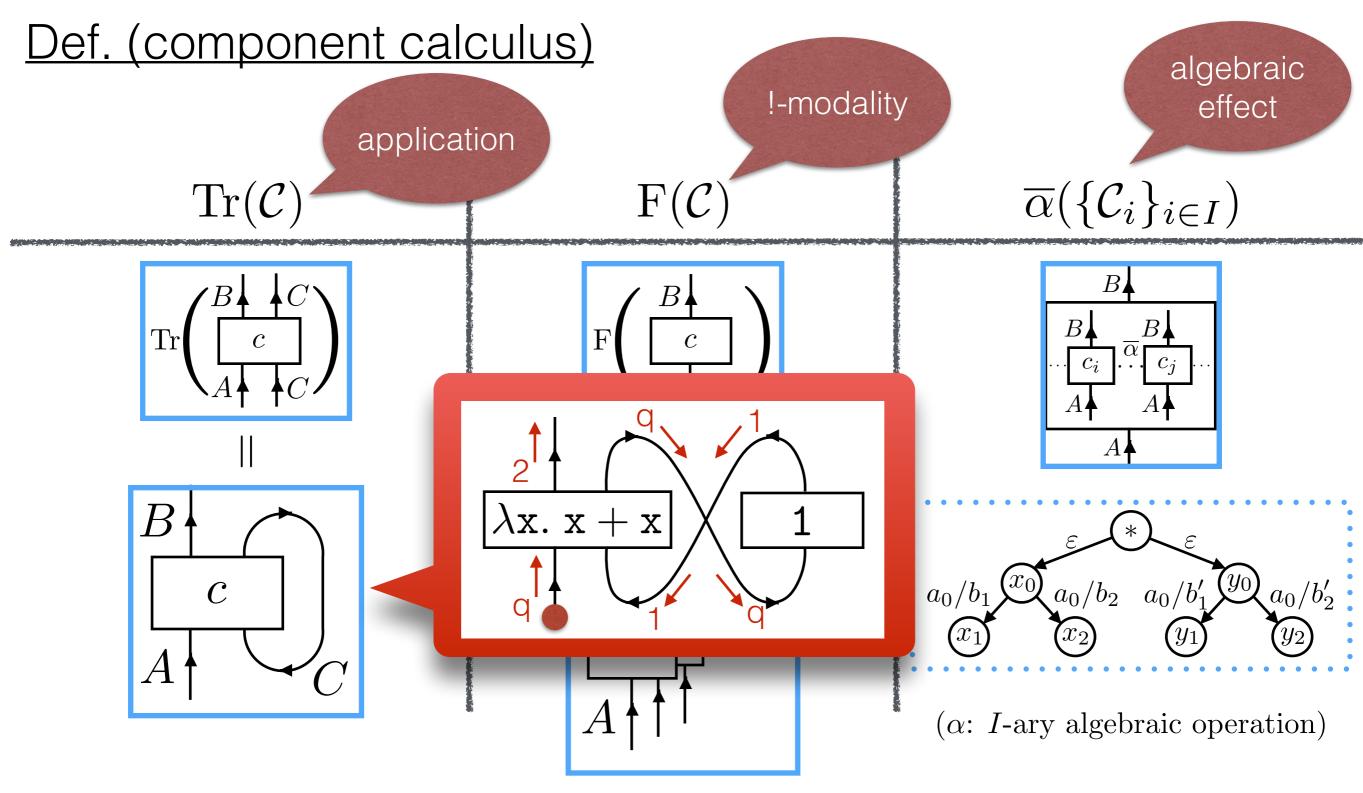
Muroya (U. Tokyo)

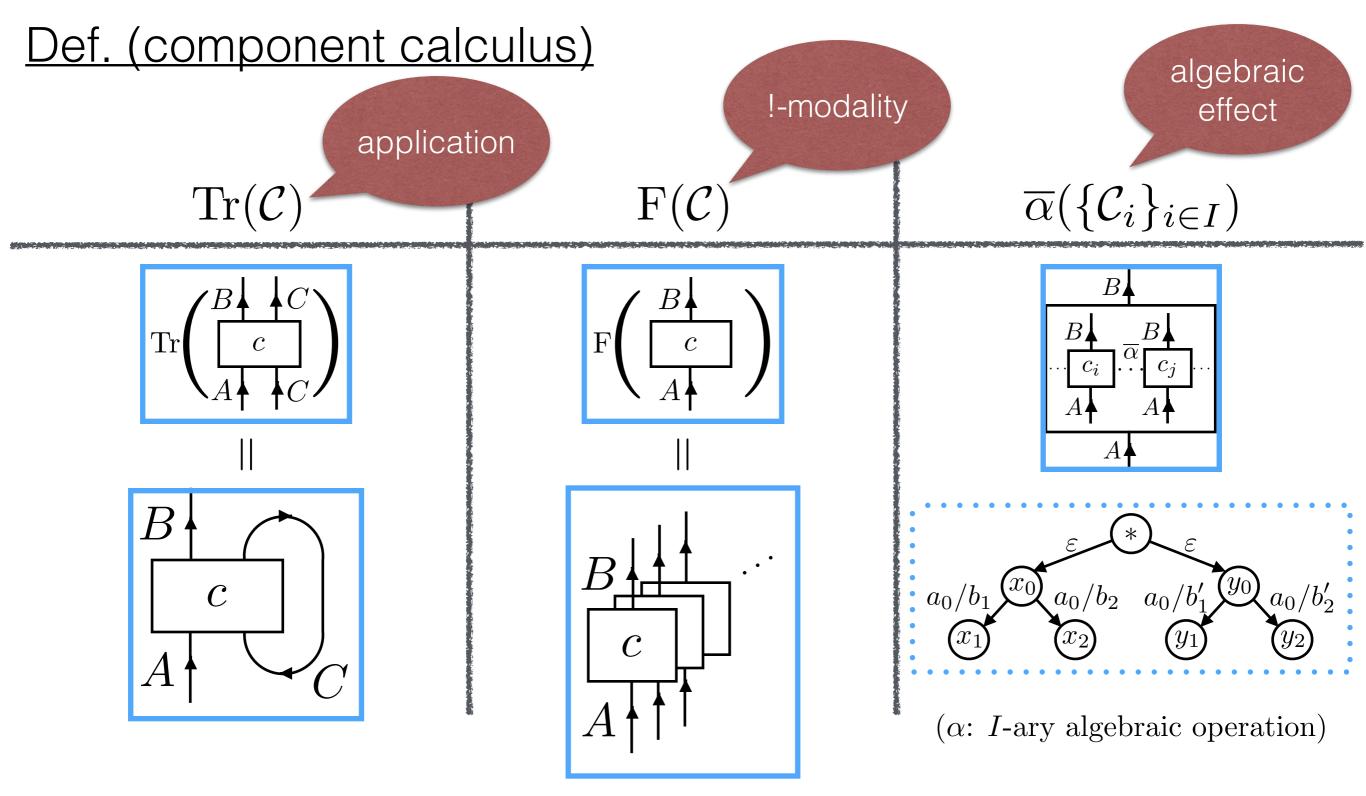
Def. (component calculus)











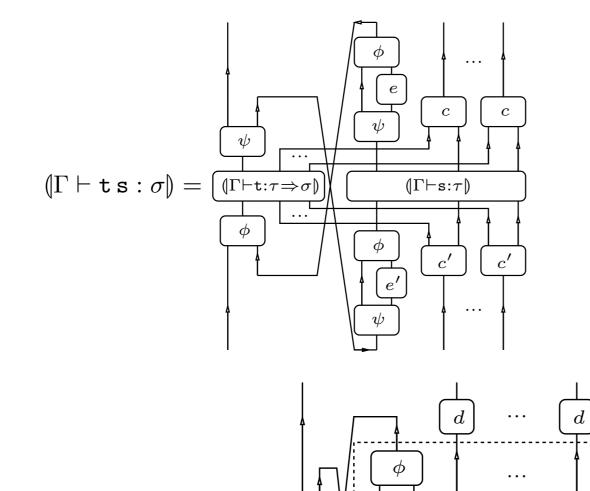
<u>Def. (interpretation $(\Gamma \vdash t : \tau)$)</u>

For a type judgement $(\Gamma \vdash t: \tau)(\Gamma = x_1: \tau_1, \ldots, x_n: \tau_n)$,

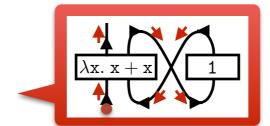
we inductively define

$$(\!(\Gamma \vdash \mathsf{t} \colon \tau)\!) = \underbrace{\begin{array}{c} & & & & & \\ \mathbb{N} \not \mid \mathbb{N} \not \mid \cdots \not \mid \mathbb{N} \\ & & & & \\ \mathbb{N} \not \mid \mathbb{N} \not \mid \cdots \not \mid \mathbb{N} \end{array}}_{\mathbb{N} \not \mid \mathbb{N} \not \mid \cdots \not \mid \mathbb{N}}$$

Def. (interpretation $(\Gamma \vdash t : \tau)$)



$$(\![\Gamma \vdash \lambda \mathbf{x} : \tau. \mathbf{t} : \tau \Rightarrow \sigma]\!) = [\mathbf{h}]$$



d'

 $(\Gamma, \mathbf{x}: \tau \vdash \mathbf{t}: \sigma)$

d'

. . .

Def. (interpretation $(\Gamma \vdash t : \tau)$)

$$(\Gamma \vdash n : \operatorname{nat}) = (\Gamma \vdash (\lambda xy : \operatorname{nat} x + y) ts : \operatorname{nat})$$

$$(\Gamma \vdash t + s : \operatorname{nat}) = (\Gamma \vdash (\lambda xy : \operatorname{nat} x + y) ts : \operatorname{nat})$$

$$(\mathbf{x}_{1} : \tau_{1}, \cdots, \mathbf{x}_{n} : \tau_{n} \vdash \mathbf{x}_{i} : \tau_{i}) = (\mathbf{x}_{1} \cdots \mathbf{y})$$

<u>Thm. (soundness)</u>

For closed terms M and N of type τ ,

• $\vdash M = N : \tau$ implies $([(M)]_{\simeq}, [(N)]_{\simeq}) \in \Phi[[\tau]]$

• $\vdash M = N : \text{nat implies } (M) \simeq (N).$

- Moggi's equations for computational lambda-calculus
- equations for algebraic operations

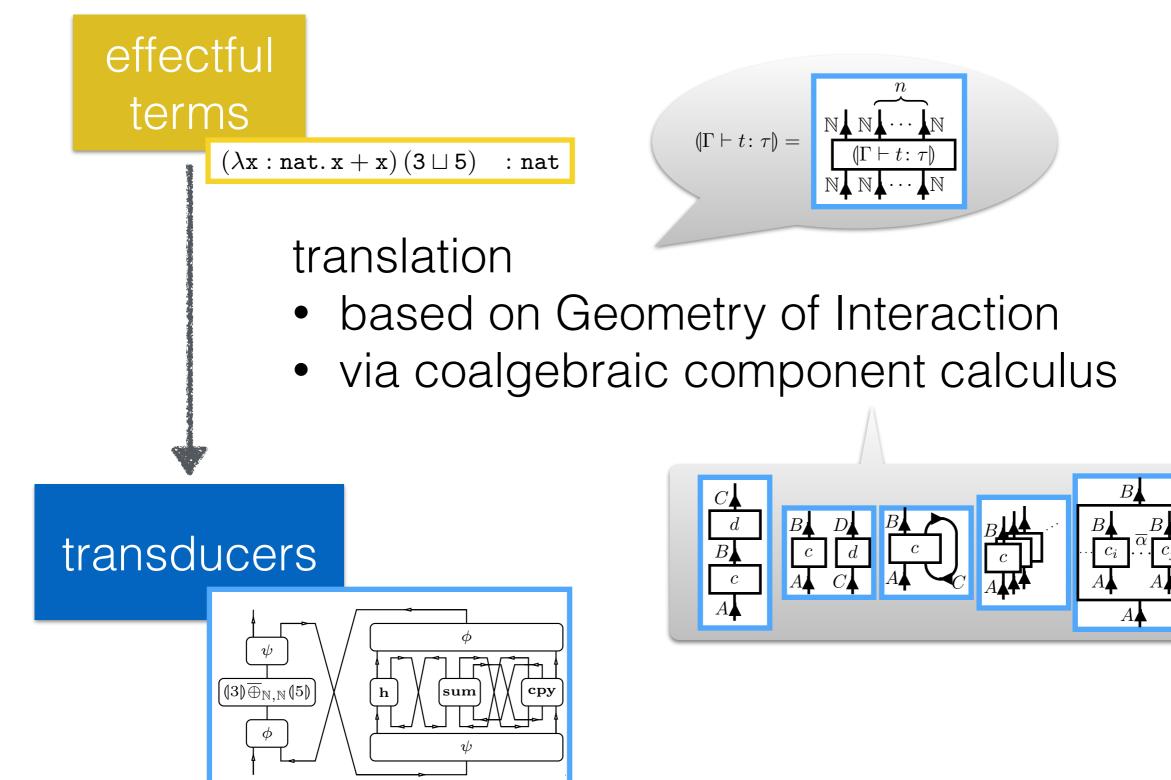
 $M\sqcup M=M$

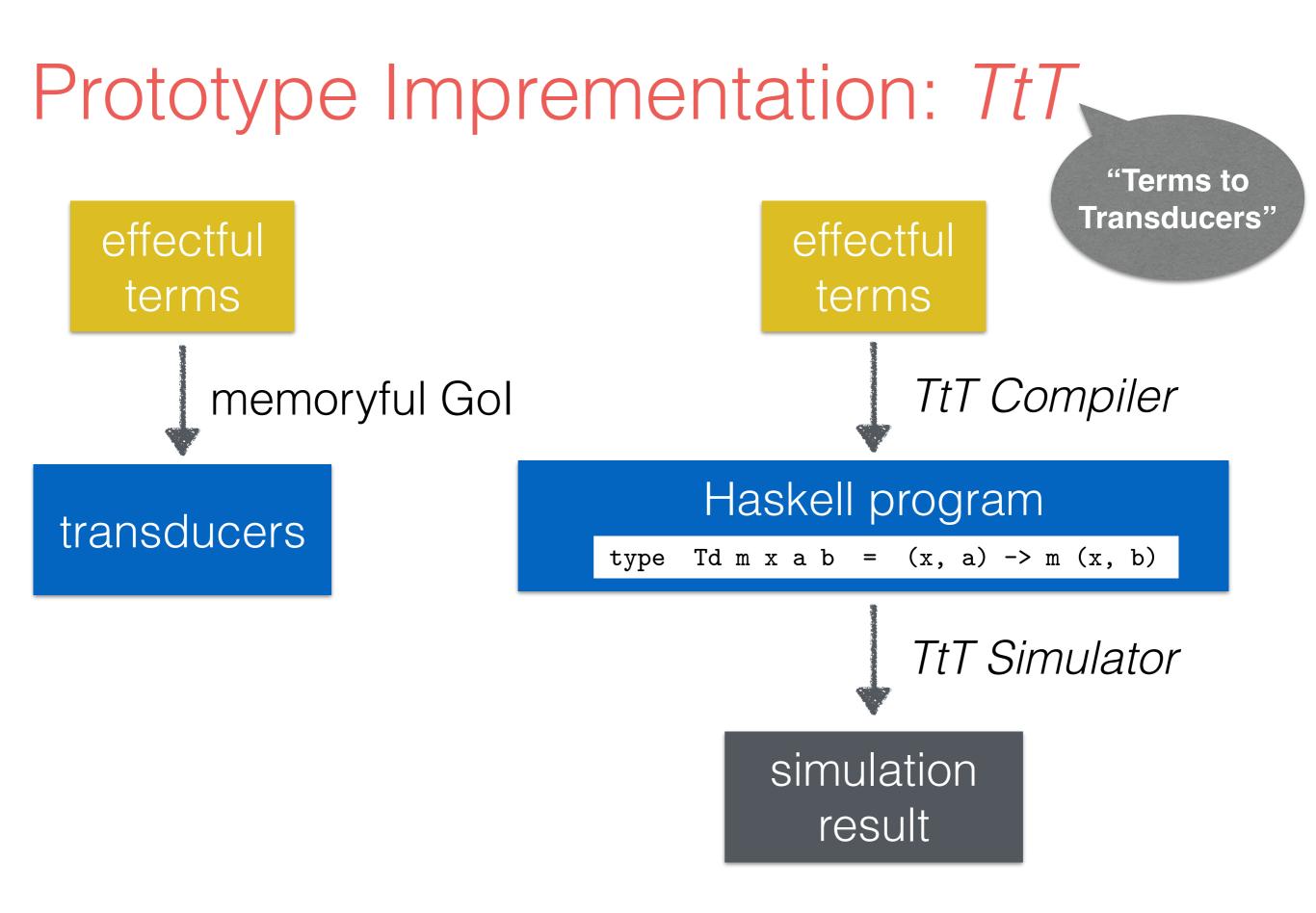
$$E[\operatorname{opr}(M_1,\ldots,M_n)] = \operatorname{opr}(E[M_1],\ldots,E[M_n])$$

 $(\lambda x. M) (N_1 \sqcup N_2) = (\lambda x. M) N_1 \sqcup (\lambda x. M) N_2$

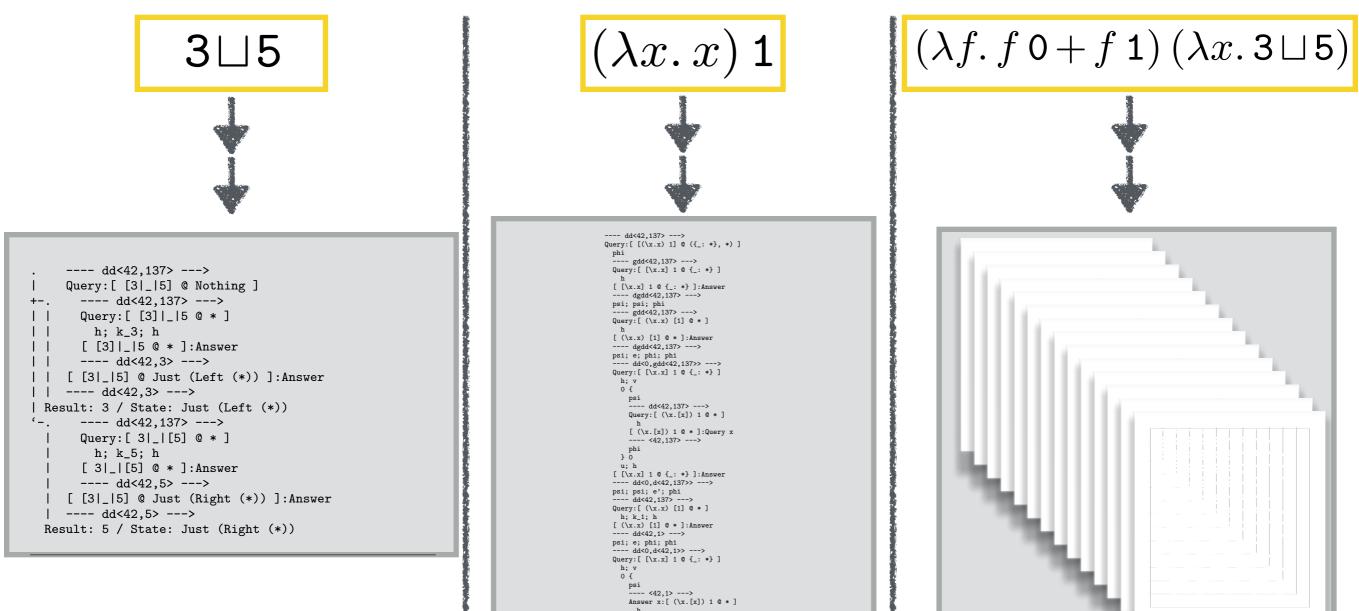
behavioral equivalence

Memoryful Gol [Hoshino, —, Hasuo '14]





Prototype Imprementation: TtT



(4,526 lines)

18

[(\x.[x]) 1 @ *]:Answer ---- dd<42.1> --->

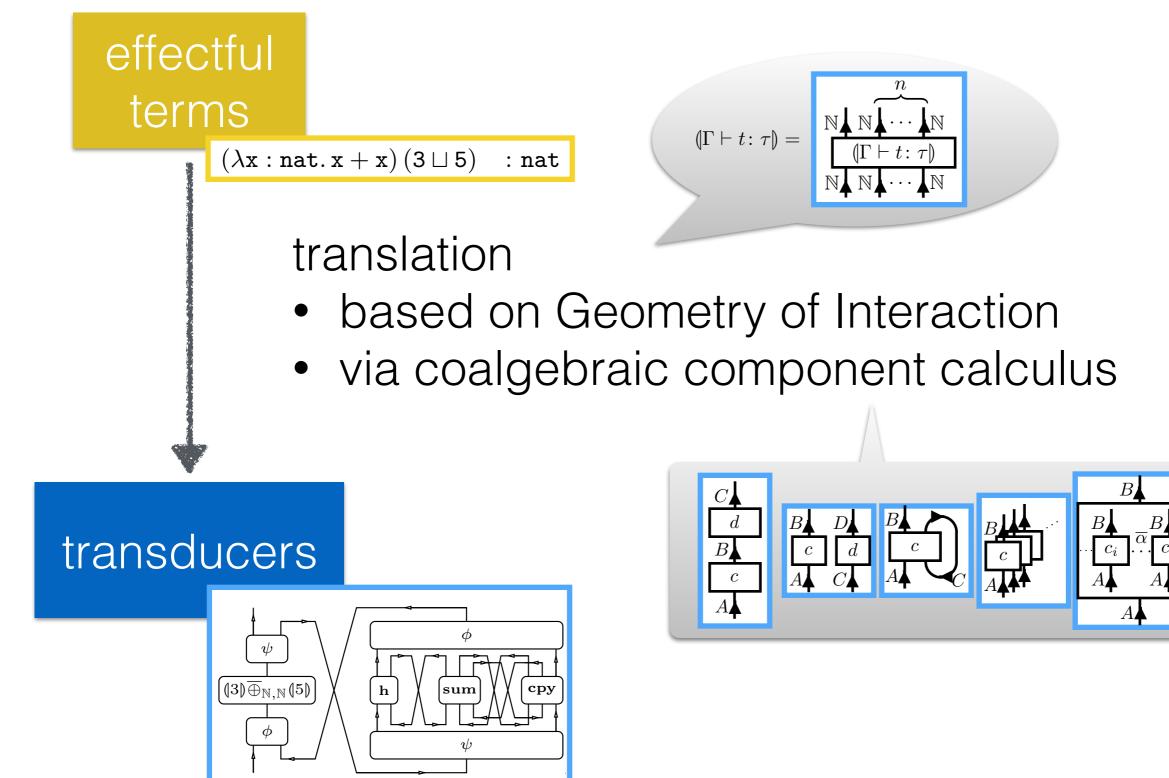
[[\x.x] 1 @ {_: *}]:Answer ---- dd<O,gdd<2,1>> ---> psi; psi; e'; phi ---- dgd<2,1> ---> Query:[(\x.x) [1] @ *]

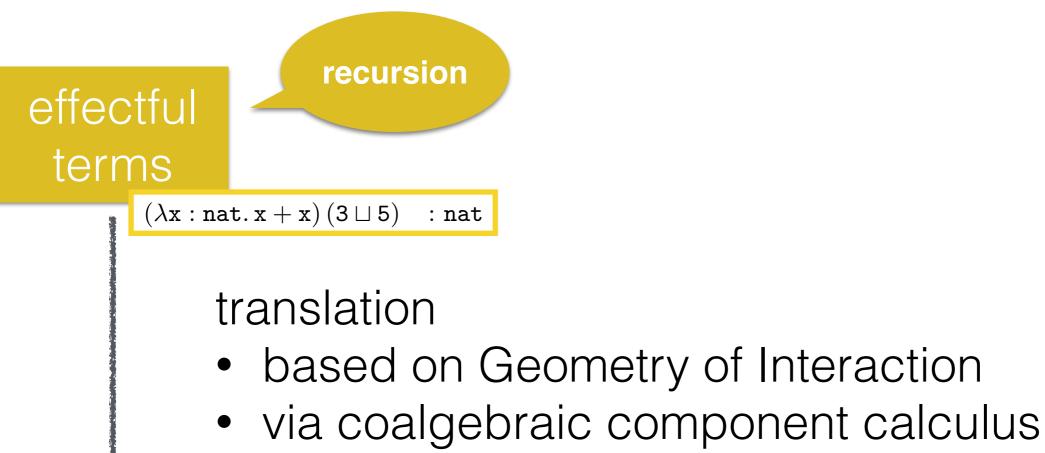
[(\x.x) [1] 0 *]:Answer ---- gdd<42,1> ---> psi; phi; phi ---- dgdd<42,1> ---> Query:[(\x.x] 1 0 {_: *}] h [(\x.x] 1 0 {_: *}]:Answer ---- gdd<42,1> ---> psi [[(\x.x) 1] 0 ({_: *}, *)]:Answer

---- dd<42,1> ---> Result: 1 / State: ({_: *}, *)

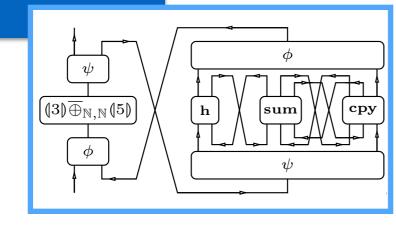
phi } 0

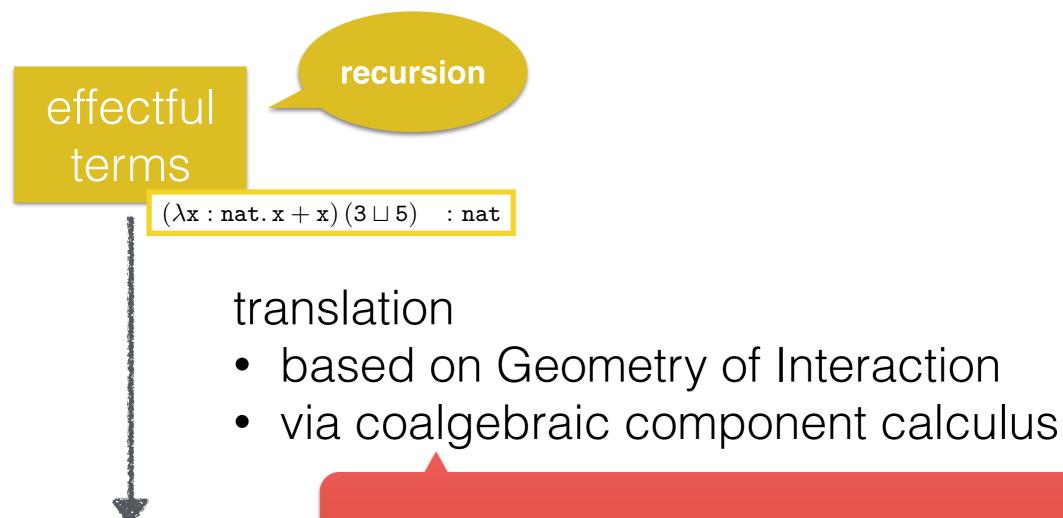
Memoryful Gol [Hoshino, —, Hasuo '14]



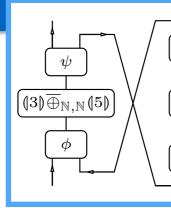


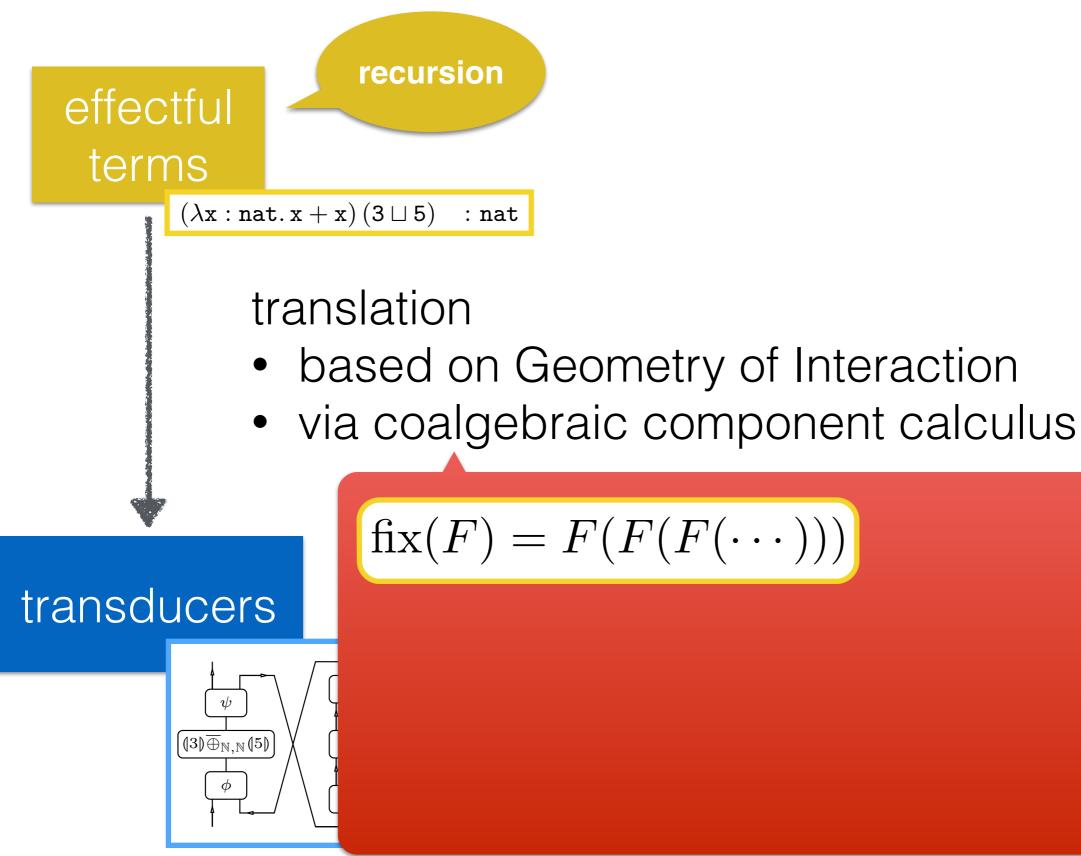
transducers

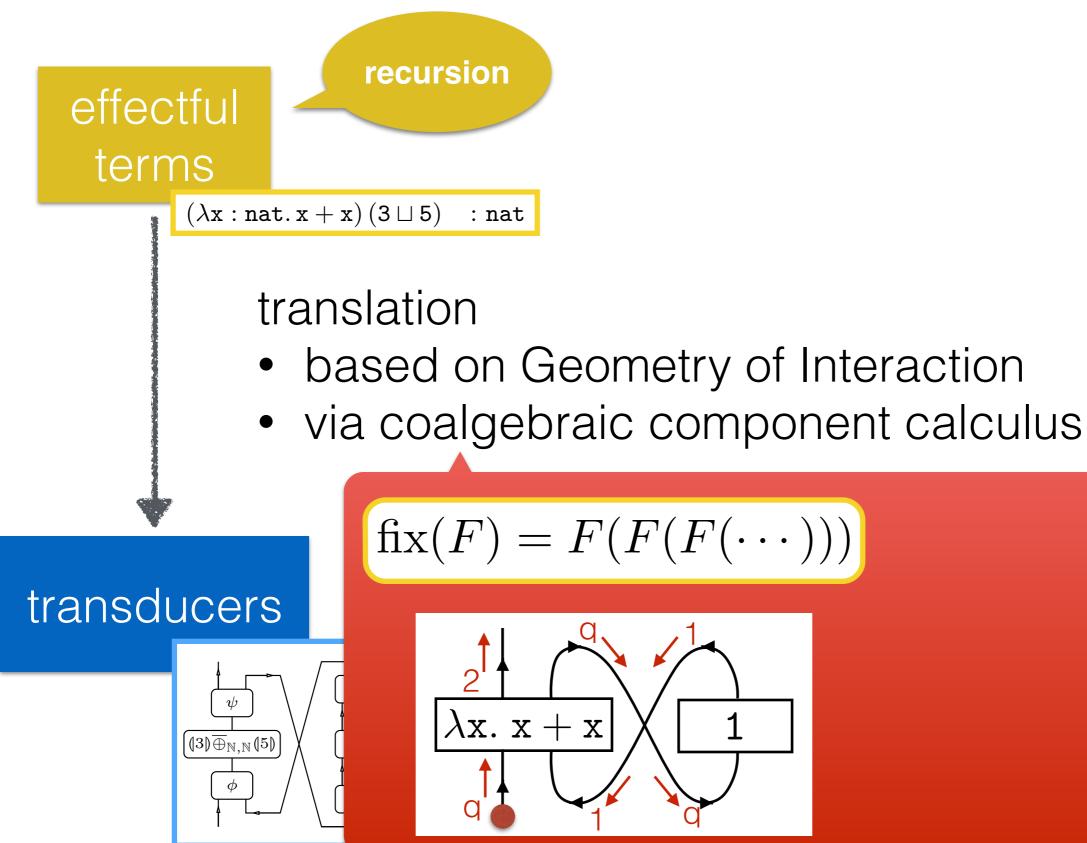




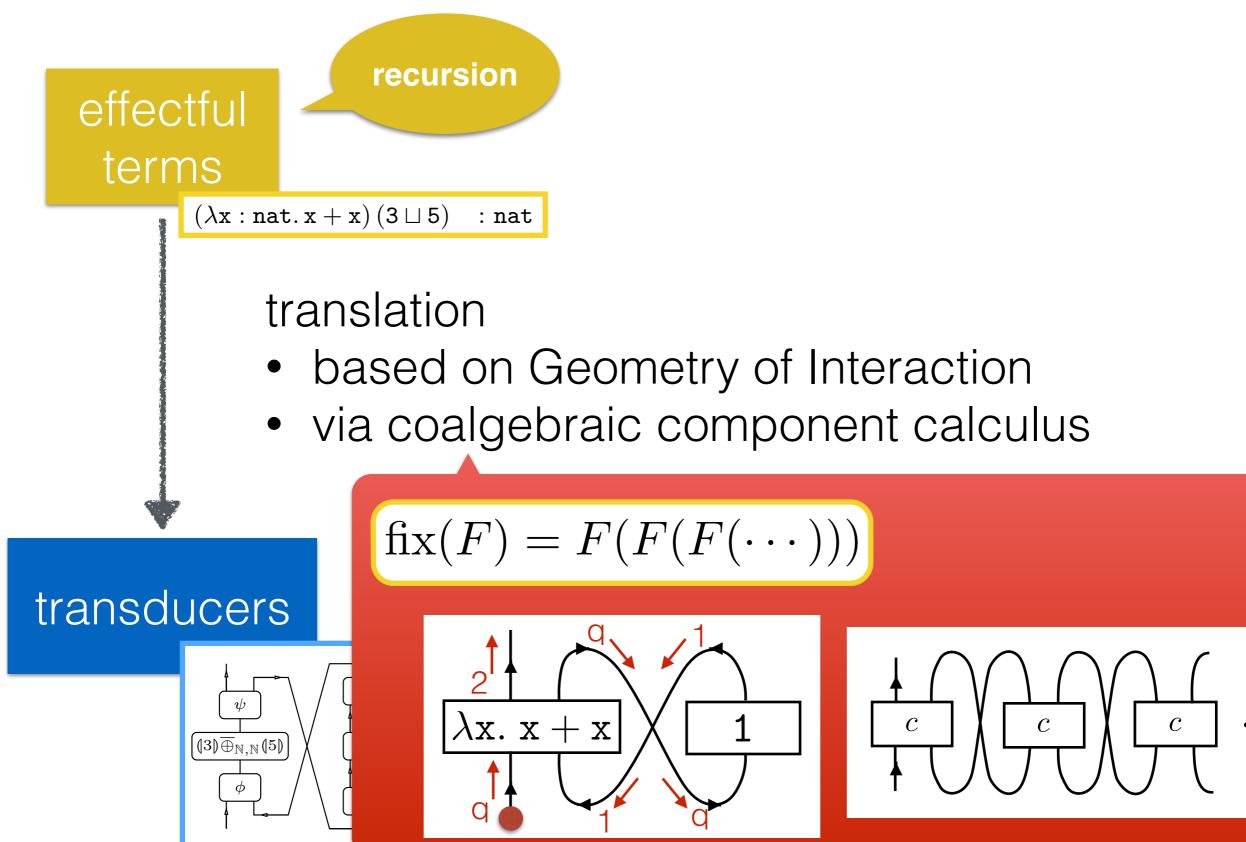
transducers

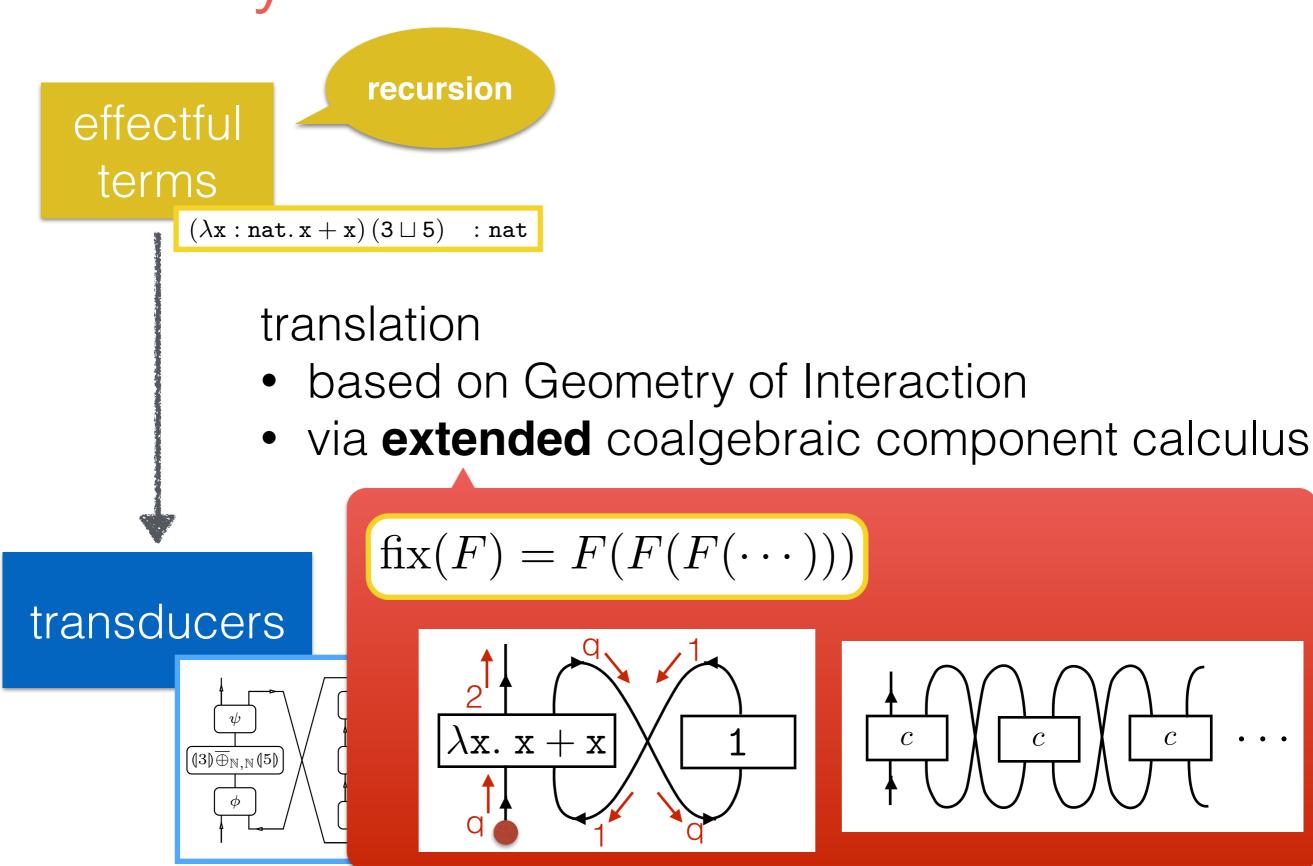




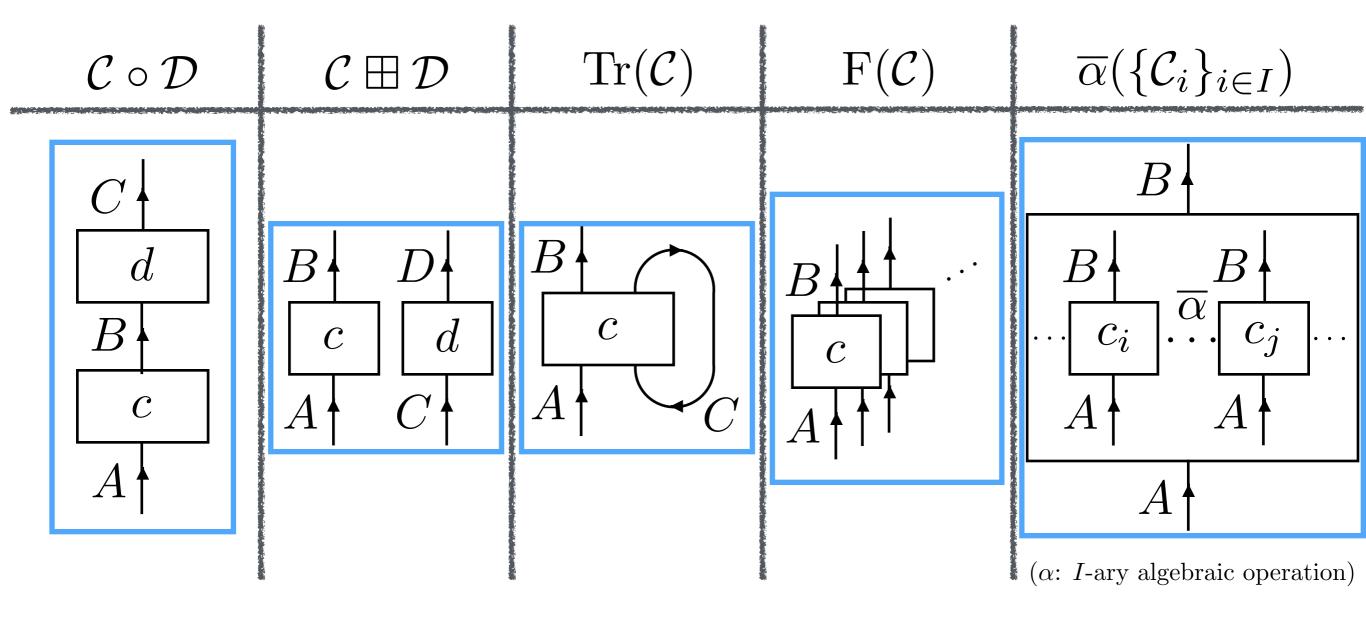


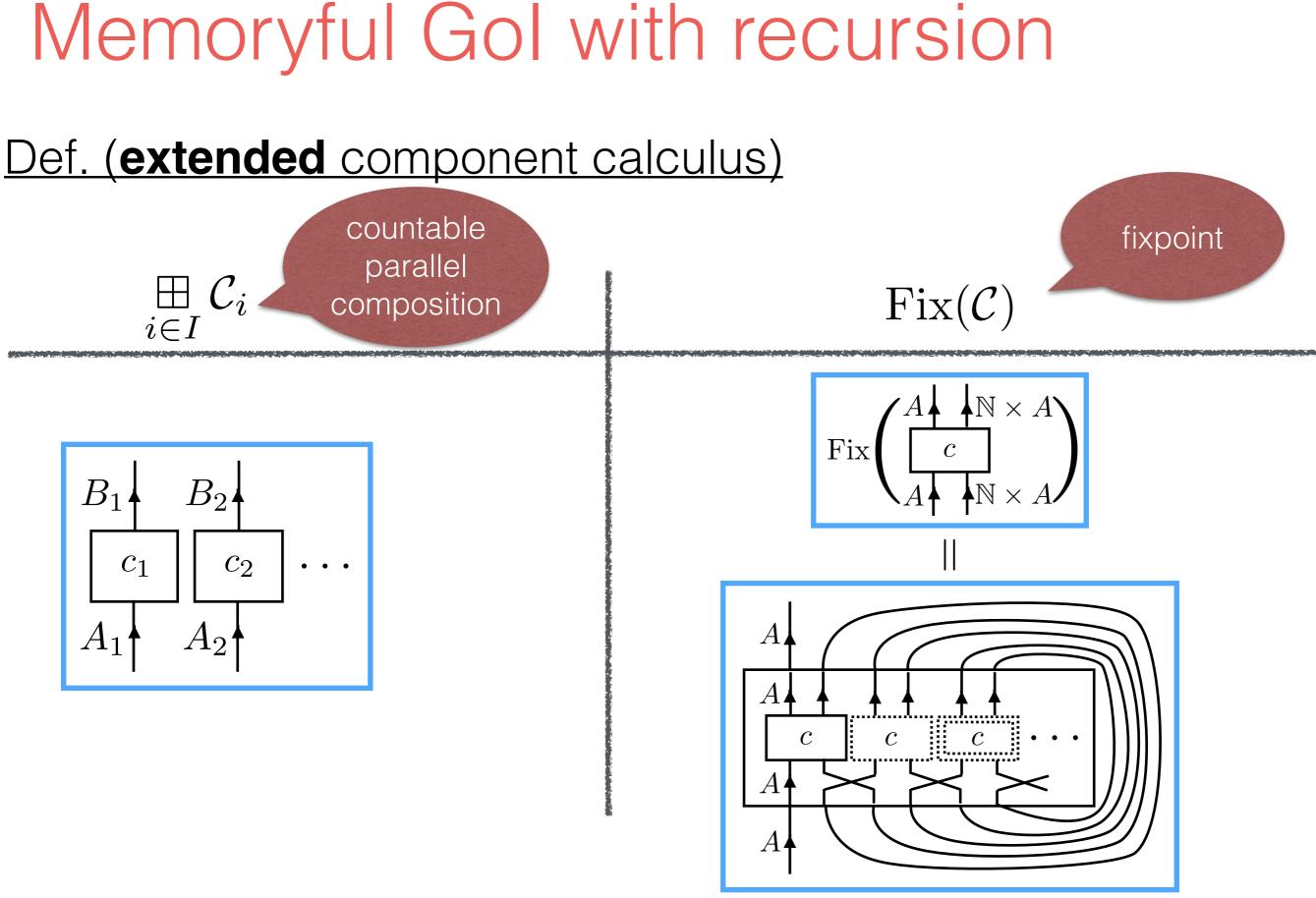
1VIUTOYa (U. 10KyO)

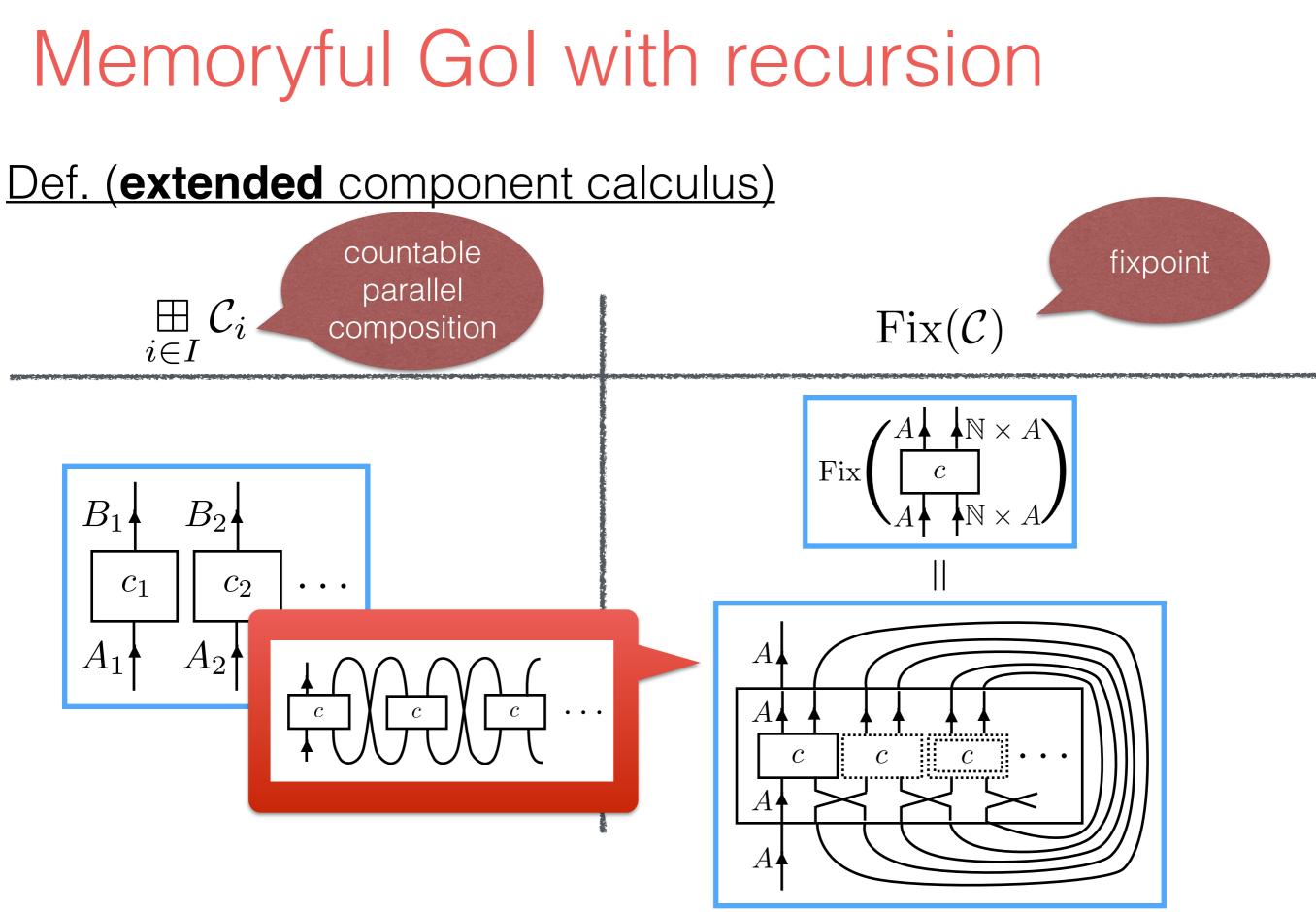




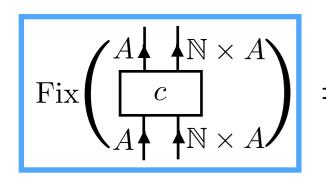
Def. (component calculus)

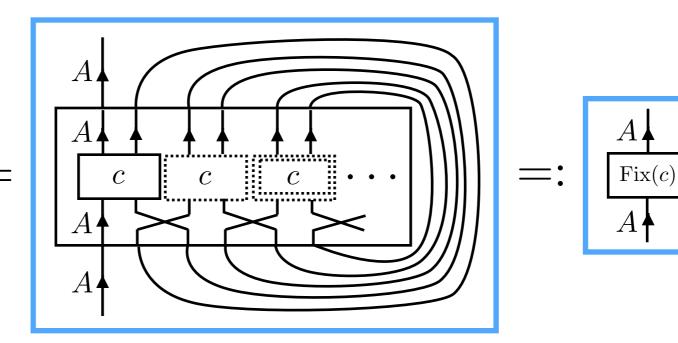




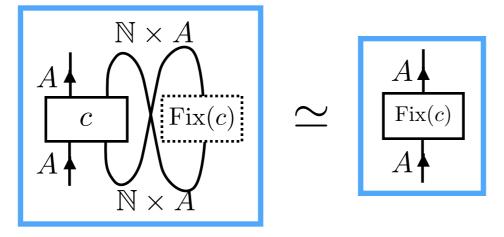


<u>Lem.</u>





satisfies



Def. (interpretation $(\Gamma \vdash t : \tau)$)

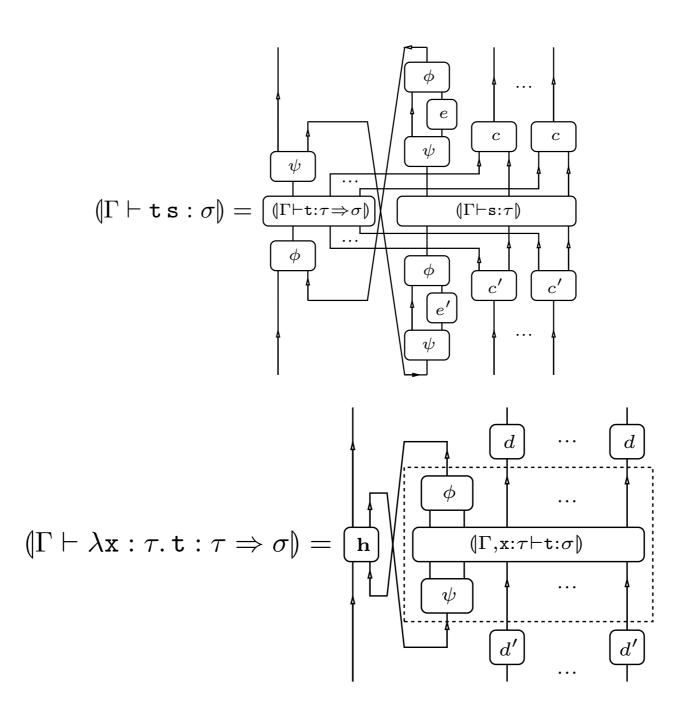
For a type judgement $(\Gamma \vdash t: \tau)(\Gamma = x_1: \tau_1, \ldots, x_n: \tau_n)$,

we inductively define

$$(\!(\Gamma \vdash \mathbf{t} \colon \tau)\!) = \begin{array}{c} & & & & & & & \\ \mathbb{N} \not \mid \mathbb{N} \not \mid \cdots \not \mid \mathbb{N} \\ & & & & & \\ \mathbb{N} \not \mid \mathbb{N} \not \mid \cdots \not \mid \mathbb{N} \end{array}$$

Memoryful Gol with Federsion

<u>Def. (interpretation $(\Gamma \vdash t : \tau)$)</u>



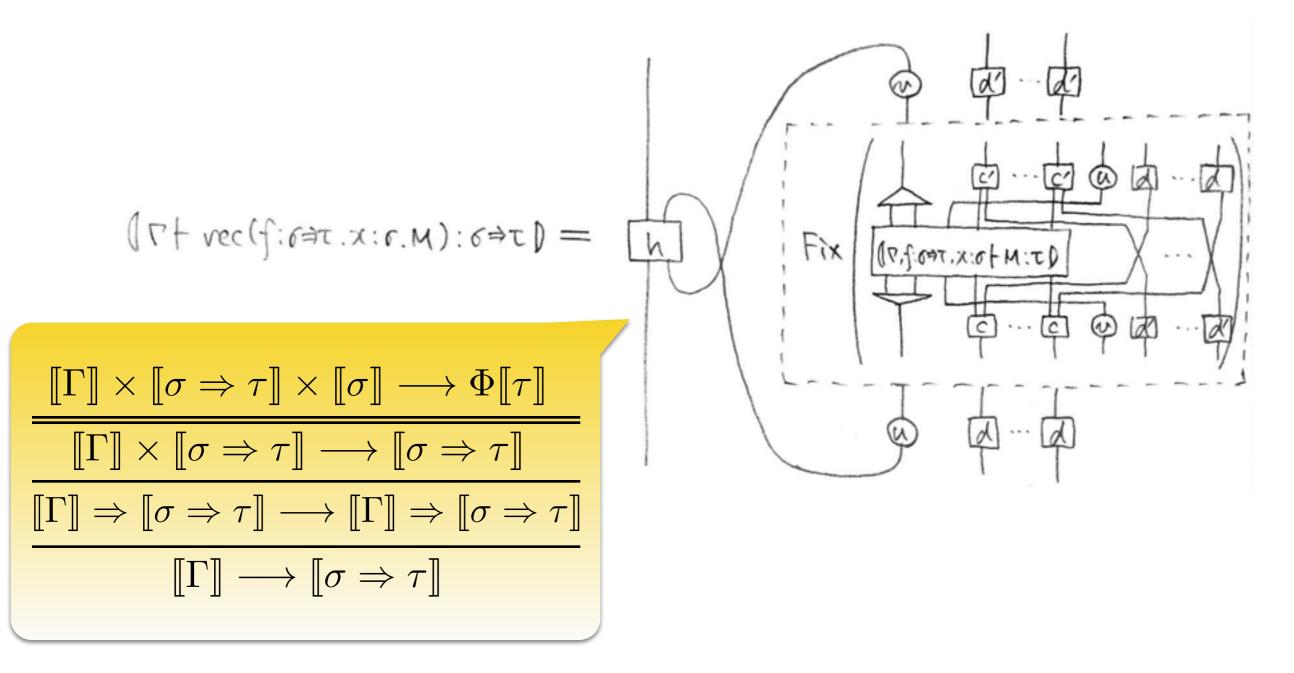
Def. (interpretation $(\Gamma \vdash t : \tau)$)

$$(\Gamma \vdash n : \operatorname{nat}) = (\Gamma \vdash (\lambda xy : \operatorname{nat} x + y) ts : \operatorname{nat})$$

$$(\Gamma \vdash t + s : \operatorname{nat}) = (\Gamma \vdash (\lambda xy : \operatorname{nat} x + y) ts : \operatorname{nat})$$

$$(\mathbf{x}_{1} : \tau_{1}, \cdots, \mathbf{x}_{n} : \tau_{n} \vdash \mathbf{x}_{i} : \tau_{i}) = (\mathbf{x}_{1} \cdots \mathbf{x}_{n} \cdots \mathbf{x}_{i} \cdots \mathbf{x}_{i})$$

<u>Def. (interpretation $(\Gamma \vdash t : \tau)$)</u>



<u>Thm. (soundness)</u>

For closed terms M and N of type τ ,

• $\vdash M = N : \tau$ implies $([(M)]_{\simeq}, [(N)]_{\simeq}) \in \Phi[[\tau]]$

•
$$\vdash M = N : \text{nat implies } (M) \simeq (N).$$

- Moggi's equations for computational lambda-calculus
- equations for algebraic operations

 $M \sqcup M = M$ $E[\operatorname{opr}(M_1, \dots, M_n)] = \operatorname{opr}(E[M_1], \dots, E[M_n])$ $(\lambda x. M) (N_1 \sqcup N_2) = (\lambda x. M) N_1 \sqcup (\lambda x. M) N_2$ $rec(f: \sigma \Rightarrow \tau, x: \sigma. M) = \lambda x. M[rec(f: \sigma \Rightarrow \tau, x: \sigma. M)/f]$ behavioral equivalence

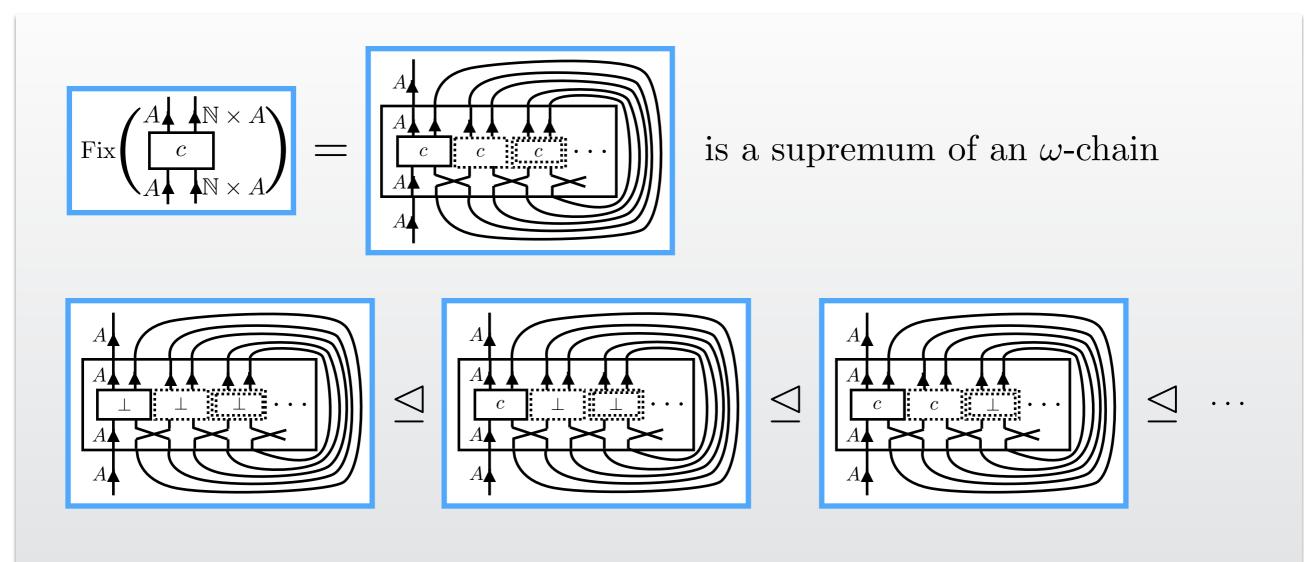
Thm. (domain-theoretic characterization of Fix)

Under the assumption that

- Set_T is a Cppo-enriched category with Cppo-enriched (countable) cotuplings
- compositions \circ_T of \mathbf{Set}_T is strict in the restricted form: $f \circ_T \bot = \bot$ and $\bot \circ_T (\eta_Y \circ g) = \bot$ hold for any $f: X \to TY$ and $g: X \to Y$ in \mathbf{Set}
- premonoidal structures $X \otimes -, \otimes X$ of \mathbf{Set}_T is locally continuous and strict for any X in \mathbf{Set}

it holds that:

Thm. (domain-theoretic characterization of Fix)



where $(X, c: X \times A \to T(X \times B), x_0 \in X) \leq (Y, c: Y \times A \to T(Y \times B), y_0 \in Y)$ $\stackrel{\text{def.}}{\Longrightarrow} X = Y \land x = y \land c \sqsubseteq d \text{ in } \mathbf{Set}_T(X \times A, X \times B)$

