<u>Koko Muroya</u> (Univ. Tokyo) Naohiko Hoshino (Kyoto Univ.) Ichiro Hasuo (Univ. Tokyo)

LOLA(Kyoto), July 5, 2015

<u>Koko Muroya</u> (Univ. Tokyo) Naohiko Hoshino (Kyoto Univ.) Ichiro Hasuo (Univ. Tokyo)

LOLA(Kyoto), July 5, 2015

<u>Koko Muroya</u> (Univ. Tokyo)

Naohiko Hoshino (Kyoto Univ.) Ichiro Hasuo (Univ. Tokyo)

LOLA(Kyoto), July 5, 2015

Memoryful Gol [Hoshino, —, Hasuo '14]

effectful terms $(\lambda x : nat. x + x)(3 \sqcup 5) : nat$ sound translation

- based on Geometry of Interaction
- via coalgebraic component calculus

transducers

• semantics of {linear logic proofs [Girard '89], functional programming languages

"Gol interpretation"

• token machine representation [Mackie '95]

compilation techniques and implementations [Mackie '95] [Pinto '01] [Ghica '07]

Memoryful Gol [Hoshino, —, Hasuo '14]

effectful terms $(\lambda x : nat. x + x)(3 \sqcup 5) : nat$ sound translation

- based on Geometry of Interaction
- via coalgebraic component calculus

transducers

Memoryful Gol — Input

effectful terms

CBV λ -terms with <u>algebraic effects</u>

transducers

algebraic operations [Plotkin, Power '01]

- nondeterministic choice $M \sqcup N$
- probabilistic choice
- actions on global states

 $lookup_l(M_{v_1},\ldots,M_{v_{|Val|}})$ update_{l,v}(M)

 $M \sqcup_p N$

Memoryful Gol — Output

stream transducers (Mealy machines)

 $(X, c: X \times A \to T(X \times B), x_0 \in X): A \to B$

 a_0/b_2

T

 $= \mathcal{P}$

 x_2

transducers

 x_0

 a_0/b_1

 x_1

string diagram style

automaton style

Memoryful Gol — Output

stream transducers (Mealy machines)

 $(X, c: X \times A \to T(X \times B), x_0 \in X): A \twoheadrightarrow B$

transducers

Memoryful Gol — Output

stream transducers (Mealy machines)

 $(X, c: X \times A \to T(X \times B), x_0 \in X): A \to B$

$$T = S = (1 + (-) \times S)^{S}$$

computation with
global states

transducers

$$T = \mathcal{D} \quad (x_0, a_0) \mapsto \begin{bmatrix} (x_1, b_1) \mapsto 1/4, \\ (x_2, b_2) \mapsto 3/4 \end{bmatrix}$$

$$a_0/b_1 \quad x_0 \quad a_0/b_2 \quad \text{probabilistic} \\ x_1 \quad \frac{1}{4} \quad \frac{3}{4} \quad x_2 \end{pmatrix} \quad \text{probabilistic}$$

Memoryful Gol [Hoshino, —, Hasuo '14]

Def. (component calculus)

Def. (translation $(\Gamma \vdash M : \tau)$)

For a type judgement $(\Gamma \vdash M : \tau) (\Gamma = x_1 : \tau_1, \dots, x_n : \tau_n)$

we inductively define

$$(\!(\Gamma \vdash \mathsf{M} : \tau)\!) = \underbrace{\begin{pmatrix} n \\ \mathbb{N} \not & \mathbb{N} \not & \cdots & \mathbb{N} \\ (\!(\Gamma \vdash \mathsf{M} : \tau)\!) \\ \mathbb{N} \not & \mathbb{N} \not & \cdots & \mathbb{N} \\ \end{pmatrix}$$

Def. (translation $(\Gamma \vdash M : \tau)$)

Memoryful_IGol ation rans udDef. (translation $(\Gamma \vdash M : \tau)$ $([\Pi, \mathbf{f}: \sigma \to \mathbf{\eta}, \mathbf{x}: \sigma \vdash \mathbf{M}: \tau))$ W ww $(\![\Gamma \vdash \mathbf{x}_i : \tau_i]\!) =$ h h w'1 म d' $\overline{{\tt op}^+}$ $(\Gamma \vdash \mathsf{op}^+(\mathtt{M}_1, \dots, \mathtt{M}_{\mathrm{ar}(\mathsf{op})}) : \tau) =$ $(\Gamma \vdash \mathtt{M}_1 : \tau)$ $\left| \left(\Gamma \vdash \mathtt{M}_{\mathrm{ar}(\mathtt{op})} : \tau \right) \right.$ \cdots $(\Gamma \vdash \mathsf{op}^{0}():\tau) = \begin{array}{ccc} & \downarrow & \cdots & \downarrow \\ \hline \mathsf{op}^{0} & & w \\ \hline & & w' & w' \\ \downarrow & & \ddots & \downarrow \end{array}$ ϕ 15

Muroya (U. Tokyo)

Theorem III.3 (soundness of ([-])). For closed terms M and N of the base type nat, $\vdash M = N$: nat implies $([\vdash M : nat]) \simeq ([\vdash N : nat])$.

- (almost full fragment of) Moggi's equations for computational lambda-calculus
- equations for algebraic operations

 $M \sqcup M = M$

$$E[\operatorname{opr}(M_1,\ldots,M_n)] = \operatorname{opr}(E[M_1],\ldots,E[M_n])$$

 $(\lambda x. M) (N_1 \sqcup N_2) = (\lambda x. M) N_1 \sqcup (\lambda x. M) N_2$

behavioral equivalence

Memoryful Gol [Hoshino, —, Hasuo '14]

transducers

transducers

iviuroya (U. Tokyo)

Def. (component calculus over transducers)

Lem. (Fix as a fixed point operator)

satisfies

Lem. (two styles of "implementation")

Lem. (domain-theoretic characterization of Fix)

Under the assumption that

- Set_T is a Cppo-enriched category with Cppo-enriched (countable) cotuplings
- compositions \circ_T of \mathbf{Set}_T is strict in the restricted form: $f \circ_T \bot = \bot$ and $\bot \circ_T (\eta_Y \circ g) = \bot$ hold for any $f: X \to TY$ and $g: X \to Y$ in \mathbf{Set}
- premonoidal structures $X \otimes -, \otimes X$ of \mathbf{Set}_T is locally continuous and strict for any X in \mathbf{Set}

it holds that:

Lem. (domain-theoretic characterization of Fix)

is a supremum of an $\omega\text{-chain}$

where $(X, c: X \times A \to T(X \times B), x_0 \in X) \leq (Y, c: Y \times A \to T(Y \times B), y_0 \in Y)$ $\stackrel{\text{def.}}{\Longrightarrow} X = Y \land x = y \land c \sqsubseteq d \text{ in } \mathbf{Set}_T(X \times A, X \times B)$

transducers

Def. (translation $(\Gamma \vdash M : \tau)$)

For a type judgement $(\Gamma \vdash M : \tau) (\Gamma = x_1 : \tau_1, \dots, x_n : \tau_n)$

we inductively define

$$(\!(\Gamma \vdash \mathsf{M} : \tau)\!) = \underbrace{(\!(\Gamma \vdash \mathsf{M} : \tau)\!)}_{\mathbb{N} \not\models \mathbb{N} \not\models \mathbb{N} \not\models \mathbb{N} \not\models \mathbb{N}}^{n}$$

Def. (translation $(\Gamma \vdash M : \tau)$)

Memoryful_IGol ation rans udDef. (translation $(\Gamma \vdash M : \tau)$ $([\Pi, \mathbf{f}: \sigma \to \mathbf{\eta}, \mathbf{x}: \sigma \vdash \mathbf{M}: \tau))$ W ww $(\![\Gamma \vdash \mathbf{x}_i : \tau_i]\!) =$ h w'<u>ju</u> d' $\overline{\texttt{op}^+}$ $(\Gamma \vdash \mathsf{op}^+(\mathtt{M}_1, \dots, \mathtt{M}_{\mathrm{ar}(\mathsf{op})}) : \tau) =$ $(\Gamma \vdash \mathtt{M}_1 : \tau)$ $\left| \left(\Gamma \vdash \mathtt{M}_{\mathrm{ar}(\mathtt{op})} : \tau \right) \right.$ \cdots $(\Gamma \vdash \mathsf{op}^{0}():\tau) = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ ϕ 30

Muroya (U. Tokyo)

Muroya (U. Tokyo)

Theorem III.3 (soundness of ([-])). For closed terms M and N of the base type nat, $\vdash M = N$: nat implies $([\vdash M : nat]) \simeq ([\vdash N : nat])$.

- (almost full fragment of) Moggi's equations for computational lambda-calculus
- equations for algebraic operations

 $M\sqcup M=M$

$$E[\operatorname{opr}(M_1,\ldots,M_n)] = \operatorname{opr}(E[M_1],\ldots,E[M_n])$$

 $(\lambda x. M) (N_1 \sqcup N_2) = (\lambda x. M) N_1 \sqcup (\lambda x. M) N_2$

behavioral equivalence

 $case(inl_{1,1}(*) \sqcup inr_{1,1}(*), y.1, z.fx)$

 $(\operatorname{rec}(f, x) \cdot \operatorname{if} \operatorname{true} \sqcup \operatorname{false} \operatorname{then} 1 \operatorname{else} f x) 0) =$

sound (& adequate) translation

- based on Geometry of Interaction
- via extended coalgebraic component calculus

sound (& adequate) translation

- based on Geometry of Interaction
- via extended coalgebraic component calculus

