
Memoryful GoI
with recursion

LOLA(Kyoto), July 5, 2015

Koko Muroya
(Univ. Tokyo)

Naohiko Hoshino
(Kyoto Univ.)

Ichiro Hasuo
(Univ. Tokyo)

Memoryful GoI
with recursion

LOLA(Kyoto), July 5, 2015

Koko Muroya
(Univ. Tokyo)

Naohiko Hoshino
(Kyoto Univ.)

Ichiro Hasuo
(Univ. Tokyo)

(1)

Memoryful GoI
with recursion

LOLA(Kyoto), July 5, 2015

Koko Muroya
(Univ. Tokyo)

Naohiko Hoshino
(Kyoto Univ.)

Ichiro Hasuo
(Univ. Tokyo)

(1)

(2)

Muroya (U. Tokyo)

Memoryful GoI [Hoshino, —, Hasuo ’14]

2

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

sound translation
• based on Geometry of Interaction
• via coalgebraic component calculus

Muroya (U. Tokyo)

• semantics of linear logic proofs [Girard ’89],
• semantics of functional programming languages

• token machine representation [Mackie ’95]

• compilation techniques and implementations
• [Mackie ’95] [Pinto ’01] [Ghica ’07]

Geometry of Interaction (GoI)

3

“GoI interpretation”

{

Muroya (U. Tokyo)

• token machine representation of GoI interpretation

Geometry of Interaction (GoI)

4

(�x. x+ x) 1

1�x. x+ x

�x. x+ x 1

Muroya (U. Tokyo)

• token machine representation of GoI interpretation

Geometry of Interaction (GoI)

4

(�x. x+ x) 1

1�x. x+ x

�x. x+ x 1

Muroya (U. Tokyo)

• token machine representation of GoI interpretation

Geometry of Interaction (GoI)

4

�x.x+ x 3 t 5

(�x. x+ x) 1

1�x. x+ x

�x. x+ x 1

Muroya (U. Tokyo)

• token machine representation of GoI interpretation

Geometry of Interaction (GoI)

4

�x.x+ x 3 t 5

(�x. x+ x) 1

q

1�x. x+ x

�x. x+ x 1

Muroya (U. Tokyo)

• token machine representation of GoI interpretation

Geometry of Interaction (GoI)

4

�x.x+ x 3 t 5

ask (left) x

(�x. x+ x) 1

q

1�x. x+ x

�x. x+ x 1

Muroya (U. Tokyo)

• token machine representation of GoI interpretation

Geometry of Interaction (GoI)

4

�x.x+ x 3 t 5

ask (left) x
answer 1

(�x. x+ x) 1

1

1�x. x+ x

�x. x+ x 1

Muroya (U. Tokyo)

• token machine representation of GoI interpretation

Geometry of Interaction (GoI)

4

�x.x+ x 3 t 5

ask (left) x
answer 1

ask (right) x

(�x. x+ x) 1

q

1�x. x+ x

�x. x+ x 1

Muroya (U. Tokyo)

• token machine representation of GoI interpretation

Geometry of Interaction (GoI)

4

�x.x+ x 3 t 5

ask (left) x
answer 1

ask (right) x
answer 1

(�x. x+ x) 1

1

1�x. x+ x

�x. x+ x 1

Muroya (U. Tokyo)

• token machine representation of GoI interpretation

Geometry of Interaction (GoI)

4

�x.x+ x 3 t 5

ask (left) x
answer 1

answer 1
ask (right) x

answer 2

(�x. x+ x) 1

2
1�x. x+ x

�x. x+ x 1

Muroya (U. Tokyo)

Memoryful GoI [Hoshino, —, Hasuo ’14]

5

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

sound translation
• based on Geometry of Interaction
• via coalgebraic component calculus

Muroya (U. Tokyo)

algebraic operations [Plotkin, Power ’01]

• nondeterministic choice
• probabilistic choice
• actions on global states

Memoryful GoI — Input

6

effectful
terms

transducers

CBV λ-terms with algebraic effects

M tN
M tp N

updatel,v(M)
lookupl(Mv1 , . . . ,Mv|Val|)

Muroya (U. Tokyo)

Memoryful GoI — Output

7

effectful
terms

transducers

stream transducers (Mealy machines)

automaton style

string diagram style

x0

x1 x2

a0/b1 a0/b2

(X, c : X ⇥A ! T (X ⇥B), x0 2 X) : A _ B

T = P

c

A

B

a0

x0

Muroya (U. Tokyo)

Memoryful GoI — Output

7

effectful
terms

transducers

stream transducers (Mealy machines)

automaton style

string diagram style

x0

x1 x2

a0/b1 a0/b2

(X, c : X ⇥A ! T (X ⇥B), x0 2 X) : A _ B

T = P

c

A

B

a0

x0

objects: sets
arrows: transducers modulo behavioral equivalence

Res(T)

[(X, c : X ⇥A ! T (X ⇥B), x0 2 X)]' : A _ B

Muroya (U. Tokyo)

Memoryful GoI — Output

8

effectful
terms

transducers

stream transducers (Mealy machines)

x0

x1 x2

a0/b1 a0/b2

T = P (x0, a0) 7�! {(x1, b1), (x2, b2)}

nondeterministic
computation

x0

x1 x2

a0/b1 a0/b2 probabilistic
computation

(x0, a0) 7�!

(x1, b1) 7! 1/4,
(x2, b2) 7! 3/4,

�
T = D

1

4

3

4

(X, c : X ⇥A ! T (X ⇥B), x0 2 X) : A _ B

T = S = (1 + (�)⇥ S)S

computation with
global states

Muroya (U. Tokyo)

Memoryful GoI [Hoshino, —, Hasuo ’14]

9

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

sound translation
• based on Geometry of Interaction
• via coalgebraic component calculus

[Barbosa ’03] [Hasuo, Jacobs ’11]

• composition operators for software components
• (many-sorted) process calculus

Muroya (U. Tokyo)

Memoryful GoI — Translation

10

Def. (component calculus)

C �D C �D Tr(C) F(C) ↵({Ci}i2I)

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

(↵: I-ary algebraic operation)

Muroya (U. Tokyo)

Memoryful GoI — Translation

11

Def. (component calculus)

C �D C �D
0

@
Y,

Y ⇥B

d�! T (Y ⇥ C),
y0 2 Y

1

A �

0

@
X,

X ⇥A

c�! T (X ⇥B),
x0 2 X

1

A =

0

@
X ⇥ Y,

· · ·
(x0, y0) 2 X ⇥ Y

1

A

0

@
X,

X ⇥A

c�! T (X ⇥B),
x0 2 X

1

A�

0

@
Y,

Y ⇥ C

d�! T (Y ⇥D),
y0 2 Y

1

A =

0

@
X ⇥ Y,

· · ·
(x0, y0) 2 X ⇥ Y

1

A

(x0, y0)

(x1, y1) (x2, y2)

a1/c1 a2/c2

c

A

B

C

d

c

A

B D

C

d
(x0, y0)

a1/b1 c1/d1

(x1, y0) (x0, y1)
x0

y0

x0 y0

sequential
composition

parallel
composition

Muroya (U. Tokyo)

Memoryful GoI — Translation

12

Def. (component calculus)

Tr(C) F(C) ↵({Ci}i2I)

c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

c

A

B

C

C

((Tr c

A

B

((F

= =

(↵: I-ary algebraic operation)

trace
operator

lifted algebraic
operation

countable copy
operator

"

x0

x1 x2

a0/b1 a0/b2

⇤

y0

y1 y2

a0/b
0
2a0/b

0
1

"

Muroya (U. Tokyo)

Memoryful GoI — Translation

12

Def. (component calculus)

Tr(C) F(C) ↵({Ci}i2I)

c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

c

A

B

C

C

((Tr c

A

B

((F

= =

(↵: I-ary algebraic operation)

trace
operator

lifted algebraic
operation

countable copy
operator

"

x0

x1 x2

a0/b1 a0/b2

⇤

y0

y1 y2

a0/b
0
2a0/b

0
1

"

q

2
q 1

q1

1�x. x+ x

Muroya (U. Tokyo)

Memoryful GoI — Translation

12

Def. (component calculus)

Tr(C) F(C) ↵({Ci}i2I)

c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

c

A

B

C

C

((Tr c

A

B

((F

= =

(↵: I-ary algebraic operation)

trace
operator

lifted algebraic
operation

countable copy
operator

"

x0

x1 x2

a0/b1 a0/b2

⇤

y0

y1 y2

a0/b
0
2a0/b

0
1

"

Muroya (U. Tokyo)

For a type judgement

we inductively define

 .

Memoryful GoI — Translation

13

Def. (translation)
L� ` M : ⌧M

L� ` M : ⌧M

L� ` M : ⌧M
(� = x1 : ⌧1, . . . , xn : ⌧n)

N

N N

N

N

N

· · ·

· · ·

{ n
L� ` M : ⌧M=

Muroya (U. Tokyo)

Memoryful GoI — Translation

14

q
2

q 1

q1

1�x. x+ x

4.2 The “Category” of Transducers
4.3 Fixed Point Operator Fix on Transducers
Since Set has countable coproducts, parallel composition � of
T -transducers can be extended to the countable one �i2N. It en-
ables us to define the fixpoint operator Fix: for a T -transducer
(X, c, x) : N _ N, the T -transducer

Fix(X, c, x) : N _ N

is defined by (X

N
, c̃, hxii2N).

Note that the countable copy operator F is a special case of the
operator �i2N. Exploiting this fact we can convert Fix(X, c, x) to
a T -transducer depicted in ?? (up to behavioral equivalence), that
gives a more efficient “implementation” of Fix(X, c, x).

Girard Style & Mackie Style

Order on Transducers

5. Concrete Translation to Transducers
Definition 5.1 (translation L�M). For each type judgment � ` M : ⌧

where � = x
1

: ⌧

1

, . . . xm : ⌧m, we inductively define a T -
transducer

L� ` M : ⌧M = L� ` M : ⌧M

N

N

N

N

N

N. . .

. . .

m

m

:

ma

i=0

N _
ma

i=0

N

as in Fig. 3, where labels of edges (either N or N⇥ N) are omitted
for visibility.

6. Adequacy
7. Conclusions and Future Work
Acknowledgments
Acknowledgments, if needed.

References
[1] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful Geometry of Inter-

action: from coalgebraic components to algebraic effects. In CSL-LICS

2014, page 52. ACM, 2014.
[2] E. Moggi. Computational lambda-calculus and monads. Tech. Report,

pages 1–23, 1988.
[3] G. Plotkin and J. Power. Adequacy for algebraic effects. In FoSSaCS

2001, volume 2030 of Lect. Notes Comp. Sci., pages 1–24. Springer,
2001.

[4] G. Plotkin and J. Power. Algebraic operations and generic effects. Appl.

Categorical Struct., 11(1):69–94, 2003.

A. Appendix Title
This is the text of the appendix, if you need one.

L� ` xi : ⌧iM =

L� ` �x : �. M : � ! ⌧M = h L�, x : � ` M : ⌧M

�

v

u

d0

d

d0

d

. . .

. . .

. . .

. . .

L� ` M N : ⌧M = L� ` M : � ! ⌧M L� ` N : �M

�

�

�

e0

e

c0

c

c0

c

. . .

. . .

. . .

. . .

L� ` rec(f : � ! ⌧, x : �). M : � ! ⌧M =

h L�, f : � ! ⌧, x : � ` M : ⌧M

�

v

u

c

c0

d0

d

d0

d

d0

d

. . .

. . .

. . .

. . .

L� ` op
+

(M
1

, . . . , M
ar(op)

) : ⌧M = L� ` M

1

: ⌧M L� ` M

ar(op)

: ⌧M. . .
op

+

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L� ` op
0

() : ⌧M =
op

0

w0

w

w0

w

. . .

. . .

Figure 3. inductive definition of the translation L�M

short description of paper 5 2015/7/4

Def. (translation)L� ` M : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Translation

15

4.2 The “Category” of Transducers
4.3 Fixed Point Operator Fix on Transducers
Since Set has countable coproducts, parallel composition � of
T -transducers can be extended to the countable one �i2N. It en-
ables us to define the fixpoint operator Fix: for a T -transducer
(X, c, x) : N _ N, the T -transducer

Fix(X, c, x) : N _ N

is defined by (X

N
, c̃, hxii2N).

Note that the countable copy operator F is a special case of the
operator �i2N. Exploiting this fact we can convert Fix(X, c, x) to
a T -transducer depicted in ?? (up to behavioral equivalence), that
gives a more efficient “implementation” of Fix(X, c, x).

Girard Style & Mackie Style

Order on Transducers

5. Concrete Translation to Transducers
Definition 5.1 (translation L�M). For each type judgment � ` M : ⌧

where � = x
1

: ⌧

1

, . . . xm : ⌧m, we inductively define a T -
transducer

L� ` M : ⌧M = L� ` M : ⌧M

N

N

N

N

N

N. . .

. . .

m

m

:

ma

i=0

N _
ma

i=0

N

as in Fig. 3, where labels of edges (either N or N⇥ N) are omitted
for visibility.

6. Adequacy
7. Conclusions and Future Work
Acknowledgments
Acknowledgments, if needed.

References
[1] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful Geometry of Inter-

action: from coalgebraic components to algebraic effects. In CSL-LICS

2014, page 52. ACM, 2014.
[2] E. Moggi. Computational lambda-calculus and monads. Tech. Report,

pages 1–23, 1988.
[3] G. Plotkin and J. Power. Adequacy for algebraic effects. In FoSSaCS

2001, volume 2030 of Lect. Notes Comp. Sci., pages 1–24. Springer,
2001.

[4] G. Plotkin and J. Power. Algebraic operations and generic effects. Appl.

Categorical Struct., 11(1):69–94, 2003.

A. Appendix Title
This is the text of the appendix, if you need one.

L� ` xi : ⌧iM = h
w0

w

w0

w

w0

w

w0

w

. . .

. . .

. . .

. . .

. . .

. . .

i� 1

i� 1

L� ` �x : �. M : � ! ⌧M =

L� ` M N : ⌧M = L� ` M : � ! ⌧M L� ` N : �M

�

�

�

e0

e

c0

c

c0

c

. . .

. . .

. . .

. . .

L� ` rec(f : � ! ⌧, x : �). M : � ! ⌧M =

h L�, f : � ! ⌧, x : � ` M : ⌧M

�

v

u

c

c0

d0

d

d0

d

d0

d

. . .

. . .

. . .

. . .

L� ` op
+

(M
1

, . . . , M
ar(op)

) : ⌧M = L� ` M

1

: ⌧M L� ` M

ar(op)

: ⌧M. . .
op

+

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L� ` op
0

() : ⌧M =
op

0

w0

w

w0

w

. . .

. . .

Figure 3. inductive definition of the translation L�M

short description of paper 5 2015/7/4

4.2 The “Category” of Transducers
4.3 Fixed Point Operator Fix on Transducers
Since Set has countable coproducts, parallel composition � of
T -transducers can be extended to the countable one �i2N. It en-
ables us to define the fixpoint operator Fix: for a T -transducer
(X, c, x) : N _ N, the T -transducer

Fix(X, c, x) : N _ N

is defined by (X

N
, c̃, hxii2N).

Note that the countable copy operator F is a special case of the
operator �i2N. Exploiting this fact we can convert Fix(X, c, x) to
a T -transducer depicted in ?? (up to behavioral equivalence), that
gives a more efficient “implementation” of Fix(X, c, x).

Girard Style & Mackie Style

Order on Transducers

5. Concrete Translation to Transducers
Definition 5.1 (translation L�M). For each type judgment � ` M : ⌧

where � = x
1

: ⌧

1

, . . . xm : ⌧m, we inductively define a T -
transducer

L� ` M : ⌧M = L� ` M : ⌧M

N

N

N

N

N

N. . .

. . .

m

m

:

ma

i=0

N _
ma

i=0

N

as in Fig. 3, where labels of edges (either N or N⇥ N) are omitted
for visibility.

6. Adequacy
7. Conclusions and Future Work
Acknowledgments
Acknowledgments, if needed.

References
[1] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful Geometry of Inter-

action: from coalgebraic components to algebraic effects. In CSL-LICS

2014, page 52. ACM, 2014.
[2] E. Moggi. Computational lambda-calculus and monads. Tech. Report,

pages 1–23, 1988.
[3] G. Plotkin and J. Power. Adequacy for algebraic effects. In FoSSaCS

2001, volume 2030 of Lect. Notes Comp. Sci., pages 1–24. Springer,
2001.

[4] G. Plotkin and J. Power. Algebraic operations and generic effects. Appl.

Categorical Struct., 11(1):69–94, 2003.

A. Appendix Title
This is the text of the appendix, if you need one.

L� ` xi : ⌧iM =

L� ` �x : �. M : � ! ⌧M =

L� ` M N : ⌧M = L� ` M : � ! ⌧M L� ` N : �M

�

�

�

e0

e

c0

c

c0

c

. . .

. . .

. . .

. . .

L� ` rec(f : � ! ⌧, x : �). M : � ! ⌧M =

h L�, f : � ! ⌧, x : � ` M : ⌧M

�

v

u

c

c0

d0

d

d0

d

d0

d

. . .

. . .

. . .

. . .

L� ` op
+

(M
1

, . . . , M
ar(op)

) : ⌧M = L� ` M

1

: ⌧M L� ` M

ar(op)

: ⌧M. . .
op

+

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L� ` op
0

() : ⌧M =
op

0

w0

w

w0

w

. . .

. . .

Figure 3. inductive definition of the translation L�M

short description of paper 5 2015/7/4

Def. (translation)L� ` M : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Translation

16

L� ` ⇤ : unitM = h
w0

w

w0

w

. . .

. . .

L� ` fst(M) : ⌧M = L� ` M : ⌧ ⇥ �M

�

h

w0

w

�

�

. . .

. . .

L� ` snd(M) : �M = L� ` M : ⌧ ⇥ �M

�

h

w0

w

�

�

. . .

. . .

L� ` hM, Ni : ⌧ ⇥ �M = L� ` N : �M L� ` M : ⌧M

c0

c

c0

c

�

�

h

�

�

�

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4. inductive definition of the translation L�M

L� ` inl⌧,�(M) : ⌧ + �M = L� ` M : ⌧M

�

h

�

�

w0

w

�

�

. . .

. . .

L� ` inr⌧,�(M) : ⌧ + �M = L� ` M : �M

�

h

�

�

w0

w

�

�

. . .

. . .

L� ` case(M, x. N, x
0
. N

0
) : �M =

L� ` M : ⌧ + ⌧ 0M L�, x : ⌧ ` N : �M L�, x0 : ⌧ 0 ` N

0 : �M

�

�

�

�

�

�

�

�

c0

c

c0

c

c0

c

c0

c

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L� ` n : natM = h kn
w0

w

w0

w

. . .

. . .

L�, x : nat, y : nat ` x+ y : natM = h sum

w0

w

w0

w

. . .

. . .

(if x 6⌘ y)

L�, x : nat ` x+ x : natM = h sum

c0

c

w0

w

w0

w

. . .

. . .

Figure 5. inductive definition of the translation L�M

short description of paper 6 2015/7/4

Def. (translation)L� ` M : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Translation

17

behavioral equivalence

• (almost full fragment of) Moggi’s equations for
computational lambda-calculus

• equations for algebraic operations

M tM = M

E[opr(M1, . . . ,Mn)] = opr(E[M1], . . . , E[Mn])

(�x. M) (N1 tN2) = (�x. M)N1 t (�x. M)N2

B. Translation from Terms to Transducers

In our mGoI framework, to be precise, the provided interpre-
tation L�M is from a type judgment � ` M : ⌧ to a T -transducer

L� ` M : ⌧M :
ma

i=0

N _
ma

i=0

N .

Here N is the set of natural numbers. The interpretation is de-
fined inductively on the type derivations, using the component
calculus introduced in the above.

In [9] we presented a prototype implementation—TtT, short
for “Terms to Transducers”—of the translation L�M. Given a
closed term M of type ⌧ , the tool first generates a Haskell pro-
gram that implements a transition function of the T -transducer
L` M : ⌧M; and then it produces a simulation result of the
execution of the transducer. We believe that the tool serves as
a first step towards high-level synthesis (that translates a �-
term to hardware design like on FPGA)—much like in [4] but
now with algebraic effects.

Some further comments are in order on: 1) a categorical
model behind the translation L�M; and 2) prospects of accom-
modating recursion. In fact the translation L�M is extracted
from a categorical model Per�—a Kleisli category of a strong
monad � on a cartesian closed category Per—built on T -
transducers and the component calculus. It is an instance of
the class of models, that is provided in [6], of the Moggi’s
computational �-calculus [8] with algebraic operations and
arithmetic primitives. In [6] a class of models that accommo-
dates recursion is studied as well; the key is a fixed point
operator on a categorical model. However it was not clear,
at the time of writing our previous paper [5], how to obtain a
fixed point operator on the categorical model Per� and extend
the translation L�M to recursion.

III. TRANSLATION OF RECURSION

Here we report our ongoing work that introduces recursion
to the mGoI framework in [5].

A. Extension of Component Calculus and Translation

Our approach is to extend the component calculus shown in
Fig. 2: binary parallel composition � is extended to a countable
one �i2I ; and on top of the calculus, a “fixed point” operator
Fix is introduced. It is presented in Fig. 3.

c

A

A

N⇥A

N⇥A

c c c . . .

Fig. 3. Fix(X, c, x) : A _ A. Here one dashed box means countable
duplication of a component.

It indeed gives a fixed point with respect to binary application
•.

Lemma III.1. Let (X, c, x) : A+ N⇥ A _ A+ N⇥ A be a
T -transducer. The T -transducer Fix(X, c, x) : A _ A satisfies
the behavioral equivalence

(X, c, x) • Fix(X, c, x) ' Fix(X, c, x).

Here the behavioral equivalence ' [5, Definition 5.2] is used
for (equational) reasoning on T -transducers; it enables us to
abstract away from internal state spaces of T -transducers.

With this extension of the component calculus the translation
L�M can be extended to recursion: the following definition is
precisely what is given in [5], except recursion that is new.

Definition III.2 (translation L�M). For each type judgment � `
M : ⌧ where � = x1 : ⌧1, . . . xm : ⌧m, we inductively define a
T -transducer

L� ` M : ⌧M = :

ma

i=0

N _
ma

i=0

N

as in Fig. 4. In Fig. 4, ↵ is an n-ary algebraic operation on T

that is the interpretation of op; and all the T -transducers other
than those in the form L� ` M : ⌧M are primitives (see [5] for
their definitions).

The translation L�M is sound with respect to the equational
theory given in [6]. The latter is (an almost full fragment of)
the Moggi’s equational theory of computational �-calculus,
extended by algebraic operations, arithmetic primitives and
recursion.

Theorem III.3 (soundness of L�M). For closed terms M and N

of the base type nat, ` M = N : nat implies L` M : natM '
L` N : natM.

For simplicity we have restricted to algebraic operations with
finite arities; accommodating countable arities is straightfor-
ward (much like in [5], [10]). On top of soundness, we expect
adequacy to hold too, against the operational semantics in [6].
Extension of our implementation tool TtT with recursion is
future work, too.

B. The Categorical Model

The translation L�M extended with recursion (Def. III.2) is
backed up by a categorical model, too—this fact underlies
Thm. III.3. Starting from the model Per� used in [5], we
use its modification Per�0 (whose details we do not describe
here); then we can show that the construction Fix in Lem. III.1
indeed yields a (categorical) fixed point operator in Per�0 . In
showing the latter, the following is a key technical lemma.

Lemma III.4. Let Cppo be the category of pointed !-cpo’s
(i.e. with the least element ?) and continuous maps. Assume
that the Kleisli category SetT satisfies the following:

• it is Cppo-enriched (with a partial order v) and has
Cppo-enriched (countable) cotupling;

• its compositions �T is strict, in the restricted sense as
in [5, Lem. 4.3];

Muroya (U. Tokyo)

Memoryful GoI [Hoshino, —, Hasuo ’14]

18

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

sound translation
• based on Geometry of Interaction
• via coalgebraic component calculus

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

L� ` M : ⌧M

N

N N

N

N

N

· · ·

· · ·

{ n
L� ` M : ⌧M=

Muroya (U. Tokyo)

Memoryful GoI with recursion

19

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

recursion

translation
• based on Geometry of Interaction
• via coalgebraic component calculus

Muroya (U. Tokyo)

Memoryful GoI with recursion

19

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

recursion

translation
• based on Geometry of Interaction
• via coalgebraic component calculus

Muroya (U. Tokyo)

Memoryful GoI with recursion

19

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

recursion

translation
• based on Geometry of Interaction
• via coalgebraic component calculus

fix(F) = F (F (F (· · ·)))

Muroya (U. Tokyo)

Memoryful GoI with recursion

19

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

recursion

translation
• based on Geometry of Interaction
• via coalgebraic component calculus

q

2
q 1

q1

1�x. x+ x

fix(F) = F (F (F (· · ·)))

Muroya (U. Tokyo)

Memoryful GoI with recursion

19

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

recursion

translation
• based on Geometry of Interaction
• via coalgebraic component calculus

q

2
q 1

q1

1�x. x+ x

c c c · · ·

fix(F) = F (F (F (· · ·)))

Muroya (U. Tokyo)

Memoryful GoI with recursion

20

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

recursion

translation
• based on Geometry of Interaction
• via extended coalgebraic component calculus

q

2
q 1

q1

1�x. x+ x

c c c · · ·

fix(F) = F (F (F (· · ·)))

Muroya (U. Tokyo)

Memoryful GoI with recursion

21

Def. (component calculus over transducers)

C �D C �D Tr(C) F(C) ↵({Ci}i2I)

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

(↵: I-ary algebraic operation)

sequential
composition

parallel
composition

trace
operator

lifted algebraic
operation

countable copy
operator

Muroya (U. Tokyo)

Memoryful GoI with recursion

22

Def. (extended component calculus)
“fixed point”

operatorcountable
parallel

composition�
i2I

Ci

A1

B1

c1 c2

A2

B2

· · ·

Fix(C)

c

A

A

c c · · ·

A

A

=

c

A
((Fix

N⇥A

N⇥A

A

Muroya (U. Tokyo)

Memoryful GoI with recursion

22

Def. (extended component calculus)
“fixed point”

operatorcountable
parallel

composition�
i2I

Ci

A1

B1

c1 c2

A2

B2

· · ·

Fix(C)

c

A

A

c c · · ·

A

A

=

c

A
((Fix

N⇥A

N⇥A

A

c c c · · ·

Muroya (U. Tokyo)

“Fixed point” operator

23

Lem. (as a fixed point operator)

c

A

A

c c · · ·

A

A

Fix(c)

A

A

c

A
((Fix

N⇥A

N⇥A

A

= =:

'c Fix(c)

A

N⇥A

A
N⇥A

satisfies Fix(c)

A

A

.

Fix

Muroya (U. Tokyo)

“Fixed point” operator

24

Lem. (two styles of “implementation”)

'Fix(c)

v

u

N⇥A

N⇥A

A

A

v

u

A

A

N⇥A

N⇥A

c

N2 ⇥A

N2 ⇥A

cc c c . . .

c

v

u

c

c0

v

u

d0

d

A

A

A

A

N⇥A

N⇥A

N⇥A

N⇥A

N2 ⇥A

N2 ⇥A A

A

'

Girard style

Mackie style

Muroya (U. Tokyo)

“Fixed point” operator

25

Lem. (domain-theoretic characterization of)Fix

Under the assumption that

• SetT is a Cppo-enriched category with Cppo-enriched (countable) cotu-

plings

• compositions �T of SetT is strict in the restricted form: f �T ? = ? and

? �T (⌘Y � g) = ? hold for any f : X ! TY and g : X ! Y in Set

• premonoidal structures X ⌦ �,� ⌦ X of SetT is locally continuous and

strict for any X in Set

it holds that:

Muroya (U. Tokyo)

“Fixed point” operator

26

Lem. (domain-theoretic characterization of)Fix

is a supremum of an !-chain

E

where

c

A

A

c c · · ·

A

A

c

A
((Fix

N⇥A

N⇥A

A

=

E

(X, c : X ⇥A ! T (X ⇥B), x0 2 X) E (Y, c : Y ⇥A ! T (Y ⇥B), y0 2 Y)

def.(=) X = Y ^ x = y ^ c v d in SetT (X ⇥A,X ⇥B)

E · · ·c

A

A

· · ·

A

A

? ? c

A

A

c · · ·

A

A

?

A

A

· · ·

A

A

? ? ?

Muroya (U. Tokyo)

Memoryful GoI with recursion

27

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

recursion

translation
• based on Geometry of Interaction
• via extended coalgebraic component calculus

c

A

A

c c · · ·

A

A

Muroya (U. Tokyo)

For a type judgement

we inductively define

 .

Memoryful GoI — Translation

28

L� ` M : ⌧M

L� ` M : ⌧M

(� = x1 : ⌧1, . . . , xn : ⌧n)

N

N N

N

N

N

· · ·

· · ·

{ n
L� ` M : ⌧M=

Def. (translation)L� ` M : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Translation

29

q
2

q 1

q1

1�x. x+ x

4.2 The “Category” of Transducers
4.3 Fixed Point Operator Fix on Transducers
Since Set has countable coproducts, parallel composition � of
T -transducers can be extended to the countable one �i2N. It en-
ables us to define the fixpoint operator Fix: for a T -transducer
(X, c, x) : N _ N, the T -transducer

Fix(X, c, x) : N _ N

is defined by (X

N
, c̃, hxii2N).

Note that the countable copy operator F is a special case of the
operator �i2N. Exploiting this fact we can convert Fix(X, c, x) to
a T -transducer depicted in ?? (up to behavioral equivalence), that
gives a more efficient “implementation” of Fix(X, c, x).

Girard Style & Mackie Style

Order on Transducers

5. Concrete Translation to Transducers
Definition 5.1 (translation L�M). For each type judgment � ` M : ⌧

where � = x
1

: ⌧

1

, . . . xm : ⌧m, we inductively define a T -
transducer

L� ` M : ⌧M = L� ` M : ⌧M

N

N

N

N

N

N. . .

. . .

m

m

:

ma

i=0

N _
ma

i=0

N

as in Fig. 3, where labels of edges (either N or N⇥ N) are omitted
for visibility.

6. Adequacy
7. Conclusions and Future Work
Acknowledgments
Acknowledgments, if needed.

References
[1] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful Geometry of Inter-

action: from coalgebraic components to algebraic effects. In CSL-LICS

2014, page 52. ACM, 2014.
[2] E. Moggi. Computational lambda-calculus and monads. Tech. Report,

pages 1–23, 1988.
[3] G. Plotkin and J. Power. Adequacy for algebraic effects. In FoSSaCS

2001, volume 2030 of Lect. Notes Comp. Sci., pages 1–24. Springer,
2001.

[4] G. Plotkin and J. Power. Algebraic operations and generic effects. Appl.

Categorical Struct., 11(1):69–94, 2003.

A. Appendix Title
This is the text of the appendix, if you need one.

L� ` xi : ⌧iM =

L� ` �x : �. M : � ! ⌧M = h L�, x : � ` M : ⌧M

�

v

u

d0

d

d0

d

. . .

. . .

. . .

. . .

L� ` M N : ⌧M = L� ` M : � ! ⌧M L� ` N : �M

�

�

�

e0

e

c0

c

c0

c

. . .

. . .

. . .

. . .

L� ` rec(f : � ! ⌧, x : �). M : � ! ⌧M =

h L�, f : � ! ⌧, x : � ` M : ⌧M

�

v

u

c

c0

d0

d

d0

d

d0

d

. . .

. . .

. . .

. . .

L� ` op
+

(M
1

, . . . , M
ar(op)

) : ⌧M = L� ` M

1

: ⌧M L� ` M

ar(op)

: ⌧M. . .
op

+

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L� ` op
0

() : ⌧M =
op

0

w0

w

w0

w

. . .

. . .

Figure 3. inductive definition of the translation L�M

short description of paper 5 2015/7/4

Def. (translation)L� ` M : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Translation

30

4.2 The “Category” of Transducers
4.3 Fixed Point Operator Fix on Transducers
Since Set has countable coproducts, parallel composition � of
T -transducers can be extended to the countable one �i2N. It en-
ables us to define the fixpoint operator Fix: for a T -transducer
(X, c, x) : N _ N, the T -transducer

Fix(X, c, x) : N _ N

is defined by (X

N
, c̃, hxii2N).

Note that the countable copy operator F is a special case of the
operator �i2N. Exploiting this fact we can convert Fix(X, c, x) to
a T -transducer depicted in ?? (up to behavioral equivalence), that
gives a more efficient “implementation” of Fix(X, c, x).

Girard Style & Mackie Style

Order on Transducers

5. Concrete Translation to Transducers
Definition 5.1 (translation L�M). For each type judgment � ` M : ⌧

where � = x
1

: ⌧

1

, . . . xm : ⌧m, we inductively define a T -
transducer

L� ` M : ⌧M = L� ` M : ⌧M

N

N

N

N

N

N. . .

. . .

m

m

:

ma

i=0

N _
ma

i=0

N

as in Fig. 3, where labels of edges (either N or N⇥ N) are omitted
for visibility.

6. Adequacy
7. Conclusions and Future Work
Acknowledgments
Acknowledgments, if needed.

References
[1] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful Geometry of Inter-

action: from coalgebraic components to algebraic effects. In CSL-LICS

2014, page 52. ACM, 2014.
[2] E. Moggi. Computational lambda-calculus and monads. Tech. Report,

pages 1–23, 1988.
[3] G. Plotkin and J. Power. Adequacy for algebraic effects. In FoSSaCS

2001, volume 2030 of Lect. Notes Comp. Sci., pages 1–24. Springer,
2001.

[4] G. Plotkin and J. Power. Algebraic operations and generic effects. Appl.

Categorical Struct., 11(1):69–94, 2003.

A. Appendix Title
This is the text of the appendix, if you need one.

L� ` xi : ⌧iM = h
w0

w

w0

w

w0

w

w0

w

. . .

. . .

. . .

. . .

. . .

. . .

i� 1

i� 1

L� ` �x : �. M : � ! ⌧M =

L� ` M N : ⌧M = L� ` M : � ! ⌧M L� ` N : �M

�

�

�

e0

e

c0

c

c0

c

. . .

. . .

. . .

. . .

L� ` rec(f : � ! ⌧, x : �). M : � ! ⌧M =

h L�, f : � ! ⌧, x : � ` M : ⌧M

�

v

u

c

c0

d0

d

d0

d

d0

d

. . .

. . .

. . .

. . .

L� ` op
+

(M
1

, . . . , M
ar(op)

) : ⌧M = L� ` M

1

: ⌧M L� ` M

ar(op)

: ⌧M. . .
op

+

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L� ` op
0

() : ⌧M =
op

0

w0

w

w0

w

. . .

. . .

Figure 3. inductive definition of the translation L�M

short description of paper 5 2015/7/4

4.2 The “Category” of Transducers
4.3 Fixed Point Operator Fix on Transducers
Since Set has countable coproducts, parallel composition � of
T -transducers can be extended to the countable one �i2N. It en-
ables us to define the fixpoint operator Fix: for a T -transducer
(X, c, x) : N _ N, the T -transducer

Fix(X, c, x) : N _ N

is defined by (X

N
, c̃, hxii2N).

Note that the countable copy operator F is a special case of the
operator �i2N. Exploiting this fact we can convert Fix(X, c, x) to
a T -transducer depicted in ?? (up to behavioral equivalence), that
gives a more efficient “implementation” of Fix(X, c, x).

Girard Style & Mackie Style

Order on Transducers

5. Concrete Translation to Transducers
Definition 5.1 (translation L�M). For each type judgment � ` M : ⌧

where � = x
1

: ⌧

1

, . . . xm : ⌧m, we inductively define a T -
transducer

L� ` M : ⌧M = L� ` M : ⌧M

N

N

N

N

N

N. . .

. . .

m

m

:

ma

i=0

N _
ma

i=0

N

as in Fig. 3, where labels of edges (either N or N⇥ N) are omitted
for visibility.

6. Adequacy
7. Conclusions and Future Work
Acknowledgments
Acknowledgments, if needed.

References
[1] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful Geometry of Inter-

action: from coalgebraic components to algebraic effects. In CSL-LICS

2014, page 52. ACM, 2014.
[2] E. Moggi. Computational lambda-calculus and monads. Tech. Report,

pages 1–23, 1988.
[3] G. Plotkin and J. Power. Adequacy for algebraic effects. In FoSSaCS

2001, volume 2030 of Lect. Notes Comp. Sci., pages 1–24. Springer,
2001.

[4] G. Plotkin and J. Power. Algebraic operations and generic effects. Appl.

Categorical Struct., 11(1):69–94, 2003.

A. Appendix Title
This is the text of the appendix, if you need one.

L� ` xi : ⌧iM =

L� ` �x : �. M : � ! ⌧M =

L� ` M N : ⌧M = L� ` M : � ! ⌧M L� ` N : �M

�

�

�

e0

e

c0

c

c0

c

. . .

. . .

. . .

. . .

L� ` rec(f : � ! ⌧, x : �). M : � ! ⌧M =

h L�, f : � ! ⌧, x : � ` M : ⌧M

�

v

u

c

c0

d0

d

d0

d

d0

d

. . .

. . .

. . .

. . .

L� ` op
+

(M
1

, . . . , M
ar(op)

) : ⌧M = L� ` M

1

: ⌧M L� ` M

ar(op)

: ⌧M. . .
op

+

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L� ` op
0

() : ⌧M =
op

0

w0

w

w0

w

. . .

. . .

Figure 3. inductive definition of the translation L�M

short description of paper 5 2015/7/4

Def. (translation)L� ` M : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Translation

31

L� ` ⇤ : unitM = h
w0

w

w0

w

. . .

. . .

L� ` fst(M) : ⌧M = L� ` M : ⌧ ⇥ �M

�

h

w0

w

�

�

. . .

. . .

L� ` snd(M) : �M = L� ` M : ⌧ ⇥ �M

�

h

w0

w

�

�

. . .

. . .

L� ` hM, Ni : ⌧ ⇥ �M = L� ` N : �M L� ` M : ⌧M

c0

c

c0

c

�

�

h

�

�

�

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4. inductive definition of the translation L�M

L� ` inl⌧,�(M) : ⌧ + �M = L� ` M : ⌧M

�

h

�

�

w0

w

�

�

. . .

. . .

L� ` inr⌧,�(M) : ⌧ + �M = L� ` M : �M

�

h

�

�

w0

w

�

�

. . .

. . .

L� ` case(M, x. N, x
0
. N

0
) : �M =

L� ` M : ⌧ + ⌧ 0M L�, x : ⌧ ` N : �M L�, x0 : ⌧ 0 ` N

0 : �M

�

�

�

�

�

�

�

�

c0

c

c0

c

c0

c

c0

c

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L� ` n : natM = h kn
w0

w

w0

w

. . .

. . .

L�, x : nat, y : nat ` x+ y : natM = h sum

w0

w

w0

w

. . .

. . .

(if x 6⌘ y)

L�, x : nat ` x+ x : natM = h sum

c0

c

w0

w

w0

w

. . .

. . .

Figure 5. inductive definition of the translation L�M

short description of paper 6 2015/7/4

Def. (translation)L� ` M : ⌧M

Muroya (U. Tokyo)

Memoryful GoI with recursion

Mackie style

32

4.2 The “Category” of Transducers
4.3 Fixed Point Operator Fix on Transducers
Since Set has countable coproducts, parallel composition � of
T -transducers can be extended to the countable one �i2N. It en-
ables us to define the fixpoint operator Fix: for a T -transducer
(X, c, x) : N _ N, the T -transducer

Fix(X, c, x) : N _ N

is defined by (X

N
, c̃, hxii2N).

Note that the countable copy operator F is a special case of the
operator �i2N. Exploiting this fact we can convert Fix(X, c, x) to
a T -transducer depicted in ?? (up to behavioral equivalence), that
gives a more efficient “implementation” of Fix(X, c, x).

Girard Style & Mackie Style

Order on Transducers

5. Concrete Translation to Transducers
Definition 5.1 (translation L�M). For each type judgment � ` M : ⌧

where � = x
1

: ⌧

1

, . . . xm : ⌧m, we inductively define a T -
transducer

L� ` M : ⌧M = L� ` M : ⌧M

N

N

N

N

N

N. . .

. . .

m

m

:

ma

i=0

N _
ma

i=0

N

as in Fig. 3, where labels of edges (either N or N⇥ N) are omitted
for visibility.

6. Adequacy
7. Conclusions and Future Work
Acknowledgments
Acknowledgments, if needed.

References
[1] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful Geometry of Inter-

action: from coalgebraic components to algebraic effects. In CSL-LICS

2014, page 52. ACM, 2014.
[2] E. Moggi. Computational lambda-calculus and monads. Tech. Report,

pages 1–23, 1988.
[3] G. Plotkin and J. Power. Adequacy for algebraic effects. In FoSSaCS

2001, volume 2030 of Lect. Notes Comp. Sci., pages 1–24. Springer,
2001.

[4] G. Plotkin and J. Power. Algebraic operations and generic effects. Appl.

Categorical Struct., 11(1):69–94, 2003.

A. Appendix Title
This is the text of the appendix, if you need one.

L� ` xi : ⌧iM =

L� ` �x : �. M : � ! ⌧M =

L� ` M N : ⌧M = L� ` M : � ! ⌧M L� ` N : �M

�

�

�

e0

e

c0

c

c0

c

. . .

. . .

. . .

. . .

L� ` rec(f : � ! ⌧, x : �). M : � ! ⌧M =

h L�, f : � ! ⌧, x : � ` M : ⌧M

�

v

u

c

c0

d0

d

d0

d

d0

d

. . .

. . .

. . .

. . .

L� ` op
+

(M
1

, . . . , M
ar(op)

) : ⌧M = L� ` M

1

: ⌧M L� ` M

ar(op)

: ⌧M. . .
op

+

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

L� ` op
0

() : ⌧M =
op

0

w0

w

w0

w

. . .

. . .

Figure 3. inductive definition of the translation L�M

short description of paper 5 2015/7/4

c

v

u

c

c0

v

u

d0

d

A

A

A

A

N⇥A

N⇥A

N⇥A

N⇥A

N2 ⇥A

N2 ⇥A A

A

Def. (translation)L� ` M : ⌧M

Muroya (U. Tokyo)

Memoryful GoI — Translation

33

behavioral equivalence

• (almost full fragment of) Moggi’s equations for
computational lambda-calculus

• equations for algebraic operations

M tM = M

E[opr(M1, . . . ,Mn)] = opr(E[M1], . . . , E[Mn])

(�x. M) (N1 tN2) = (�x. M)N1 t (�x. M)N2

B. Translation from Terms to Transducers

In our mGoI framework, to be precise, the provided interpre-
tation L�M is from a type judgment � ` M : ⌧ to a T -transducer

L� ` M : ⌧M :
ma

i=0

N _
ma

i=0

N .

Here N is the set of natural numbers. The interpretation is de-
fined inductively on the type derivations, using the component
calculus introduced in the above.

In [9] we presented a prototype implementation—TtT, short
for “Terms to Transducers”—of the translation L�M. Given a
closed term M of type ⌧ , the tool first generates a Haskell pro-
gram that implements a transition function of the T -transducer
L` M : ⌧M; and then it produces a simulation result of the
execution of the transducer. We believe that the tool serves as
a first step towards high-level synthesis (that translates a �-
term to hardware design like on FPGA)—much like in [4] but
now with algebraic effects.

Some further comments are in order on: 1) a categorical
model behind the translation L�M; and 2) prospects of accom-
modating recursion. In fact the translation L�M is extracted
from a categorical model Per�—a Kleisli category of a strong
monad � on a cartesian closed category Per—built on T -
transducers and the component calculus. It is an instance of
the class of models, that is provided in [6], of the Moggi’s
computational �-calculus [8] with algebraic operations and
arithmetic primitives. In [6] a class of models that accommo-
dates recursion is studied as well; the key is a fixed point
operator on a categorical model. However it was not clear,
at the time of writing our previous paper [5], how to obtain a
fixed point operator on the categorical model Per� and extend
the translation L�M to recursion.

III. TRANSLATION OF RECURSION

Here we report our ongoing work that introduces recursion
to the mGoI framework in [5].

A. Extension of Component Calculus and Translation

Our approach is to extend the component calculus shown in
Fig. 2: binary parallel composition � is extended to a countable
one �i2I ; and on top of the calculus, a “fixed point” operator
Fix is introduced. It is presented in Fig. 3.

c

A

A

N⇥A

N⇥A

c c c . . .

Fig. 3. Fix(X, c, x) : A _ A. Here one dashed box means countable
duplication of a component.

It indeed gives a fixed point with respect to binary application
•.

Lemma III.1. Let (X, c, x) : A+ N⇥ A _ A+ N⇥ A be a
T -transducer. The T -transducer Fix(X, c, x) : A _ A satisfies
the behavioral equivalence

(X, c, x) • Fix(X, c, x) ' Fix(X, c, x).

Here the behavioral equivalence ' [5, Definition 5.2] is used
for (equational) reasoning on T -transducers; it enables us to
abstract away from internal state spaces of T -transducers.

With this extension of the component calculus the translation
L�M can be extended to recursion: the following definition is
precisely what is given in [5], except recursion that is new.

Definition III.2 (translation L�M). For each type judgment � `
M : ⌧ where � = x1 : ⌧1, . . . xm : ⌧m, we inductively define a
T -transducer

L� ` M : ⌧M = :

ma

i=0

N _
ma

i=0

N

as in Fig. 4. In Fig. 4, ↵ is an n-ary algebraic operation on T

that is the interpretation of op; and all the T -transducers other
than those in the form L� ` M : ⌧M are primitives (see [5] for
their definitions).

The translation L�M is sound with respect to the equational
theory given in [6]. The latter is (an almost full fragment of)
the Moggi’s equational theory of computational �-calculus,
extended by algebraic operations, arithmetic primitives and
recursion.

Theorem III.3 (soundness of L�M). For closed terms M and N

of the base type nat, ` M = N : nat implies L` M : natM '
L` N : natM.

For simplicity we have restricted to algebraic operations with
finite arities; accommodating countable arities is straightfor-
ward (much like in [5], [10]). On top of soundness, we expect
adequacy to hold too, against the operational semantics in [6].
Extension of our implementation tool TtT with recursion is
future work, too.

B. The Categorical Model

The translation L�M extended with recursion (Def. III.2) is
backed up by a categorical model, too—this fact underlies
Thm. III.3. Starting from the model Per� used in [5], we
use its modification Per�0 (whose details we do not describe
here); then we can show that the construction Fix in Lem. III.1
indeed yields a (categorical) fixed point operator in Per�0 . In
showing the latter, the following is a key technical lemma.

Lemma III.4. Let Cppo be the category of pointed !-cpo’s
(i.e. with the least element ?) and continuous maps. Assume
that the Kleisli category SetT satisfies the following:

• it is Cppo-enriched (with a partial order v) and has
Cppo-enriched (countable) cotupling;

• its compositions �T is strict, in the restricted sense as
in [5, Lem. 4.3];

Muroya (U. Tokyo)

Memoryful GoI recursion

34

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x 2 X to x

0) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad T and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful �-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful GoI framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful GoI as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect T , and compiling
�-terms with T -algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or GoI at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice t in it. Its translation to a (three-state,
nondeterministic) transducer LPM : 3⇥ N ! P(3⇥ N), after some
manual simplifications, is depicted below (manually).

LPM =

�

h sum cpy

�

L3M�N,NL5M

. (3)

The figure is a string diagram in the traced monoidal category of
resumptions; the box L3M�N,NL5M in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like q or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four � and nodes get identified and yield two nodes
that are understood as ` or ⌦ links in the proof net.

The tool TtT generates the transducer LPM inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of LPM for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (�f. f 0+f 1) (�x. 3t5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3t5, written as 3|_|5 in Fig. 1; and (�x. x) 1 in Fig. 2.

1 . ---- dd<42,137> --->

2 | Query:[[3|_|5] @ Nothing]

3 +-. ---- dd<42,137> --->

4 | | Query:[[3]|_|5 @ *]

5 | | h; k_3; h

6 | | [[3]|_|5 @ *]:Answer

7 | | ---- dd<42,3> --->

8 | | [[3|_|5] @ Just (Left (*))]:Answer

9 | | ---- dd<42,3> --->

10 | Result: 3 / State: Just (Left (*))

11 ‘-. ---- dd<42,137> --->

12 | Query:[3|_|[5] @ *]

13 | h; k_5; h

14 | [3|_|[5] @ *]:Answer

15 | ---- dd<42,5> --->

16 | [[3|_|5] @ Just (Right (*))]:Answer

17 | ---- dd<42,5> --->

18 Result: 5 / State: Just (Right (*))

Figure 1. Simulation Result for 3 t 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements ---- n ---> of the token are
expressions like Query:[[3|_|5] @ Nothing] and h; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p:[t@x]—with a subterm t

0 of t

designated by [t

0
]—means: the token entered to (a copy of) the

transducer Lt0M, whose current state is x, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x]:p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3

node and then an h node. The definition of these nodes (as pure
functions like h : N + N ! N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. `; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x 2 X , or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))

and Just (Right (*)) encode x

3

and x

5

in (2), respectively.
The indentation designates the depth of the subterm in focus. In

Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(�x. x) 1 (denoted by (\x.x) [1]) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1–2 are just arbitrary numbers). An answer to
this query, that the value is l, is given by a token carrying dd<n,l>.

sound translation
• based on Geometry of Interaction
• via extended coalgebraic component calculus

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

L� ` M : ⌧M

N

N N

N

N

N

· · ·

· · ·

{ n
L� ` M : ⌧M=

recursion

c

A

A

c c · · ·

A

A

Muroya (U. Tokyo)

Examples

35

L(�x.x) (3 t0.4 5)M =

Muroya (U. Tokyo)

Examples

35

L(�x.x) (3 t0.4 5)M =

Muroya (U. Tokyo)

Examples

36

L(rec(f, x).f x) 0M =

Muroya (U. Tokyo)

Examples

37

L(rec(f, x).if true t false then 1 else f x) 0M =

case(inl1,1(⇤) t inr1,1(⇤), y.1, z.f x)

Muroya (U. Tokyo)

Memoryful GoI recursion

38

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

sound (& adequate) translation
• based on Geometry of Interaction
• via extended coalgebraic component calculus

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

L� ` M : ⌧M

N

N N

N

N

N

· · ·

· · ·

{ n
L� ` M : ⌧M=

recursion

c

A

A

c c · · ·

A

A

Muroya (U. Tokyo)

Memoryful GoI recursion

38

effectful
terms

transducers

Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Koko Muroya Toshiki Kataoka Ichiro Hasuo
Dept. Computer Science, University of Tokyo
{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

Naohiko Hoshino
RIMS, Kyoto University

naophiko@kurims.kyoto-u.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful GoI framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (GoI) Girard’s Geometry of Interaction
(GoI) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of GoI has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“GoI implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

GoI is “Memoryless” In the common presentation of GoI by
token machines [10], a �-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of GoI is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of GoI, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in GoI interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless GoI” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (�x : nat. x+ x) (3 t 5) : nat (1)

where the subterm 3 t 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual GoI interpretation can yield 8 too: in the interaction between
the subterms �x. x+ x and 3 t 5, the value of the latter is queried
twice, to which the subterm 3t5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3t5
to remember the choice that it has made, and to stick to it.

“Memoryful” GoI Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

quantum �-calculus [7], in [8] we introduced the memoryful GoI
framework that systematically equips proof nets with memories.1

Let T be a monad on Set and ⌃ be a set of algebraic operations,
as in [12]. Our framework yields a translation of a �-term t (in
which algebraic operations � can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T -effect. The latter is concretely given by

�
X, X ⇥A

c! T (X ⇥B), x0 2 X

�
;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x 2 X . An example
is shown below that would adequately model the term 3 t 5 in (1).

x

3

q/3
::

x

3t5

q/3
oo

✏✏

q/5
//

x

5

q/5
dd

(2)

Here the machine can initially respond to a query q with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link”) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of GoI by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful GoI. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect T) as a Haskell program
of the type Td m x a b:

type Td m x a b = (x, a) -> m (x, b)

where m is the Haskell monad that corresponds to T , x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) �-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

1 The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.

sound (& adequate) translation
• based on Geometry of Interaction
• via extended coalgebraic component calculus

c

A

B

C

d

c

A

B D

C

d c

A

B

C

cc

A

B

c

· · ·

A

B
ci

A

B
↵
· · · · · ·· · · cj

A

B

L� ` M : ⌧M

N

N N

N

N

N

· · ·

· · ·

{ n
L� ` M : ⌧M=

recursion

c

A

A

c c · · ·

A

A

