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Abstract

The first main result of this paper is that the law of the (rescaled) two-dimensional
uniform spanning tree is tight in a space whose elements are measured, rooted real trees
continuously embedded into Euclidean space. Various properties of the intrinsic metrics,
measures and embeddings of the subsequential limits in this space are obtained, with it
being proved in particular that the Hausdor↵ dimension of any limit in its intrinsic metric
is almost surely equal to 8/5. In addition, the tightness result is applied to deduce that the
annealed law of the simple random walk on the two-dimensional uniform spanning tree is
tight under a suitable rescaling. For the limiting processes, which are di↵usions on random
real trees embedded into Euclidean space, detailed transition density estimates are derived.

1 Introduction

The study of uniform spanning trees (USTs) has a long history; in the 1840s Kirchho↵ used them
in his classic paper [34] on electrical resistance. Much of the recent theory in the probability
literature is based on the discovery that paths in the UST have the same law as loop erased
random walks. Using this connection, algorithms to construct the UST from random walks
have been given in [4, 14, 49]. See [12] for a survey of the properties of the UST, and a
description of Wilson’s algorithm, which will be important for this article, and [39] for a survey
of the properties of the loop erased random walk (LERW). We also remark that USTs can be
considered as a boundary case of the random cluster model – see [29].

In [48] Schramm studied the scaling limit of the UST in Z2, and this led him to introduce
the SLE process. In [41] it was proved that the LERW in Z2 has SLE2 as its scaling limit, and
this connection was used in [10, 45] to improve earlier results of Kenyon [31] on the growth
function of two-dimensional LERW. In [11] this good control on the length of LERW paths,
combined with Wilson’s algorithm, was used to obtain volume growth and resistance estimates
for the two-dimensional UST U . Using the connection between random walks and electrical
resistance, and the methods of [9, 37], these bounds then led to heat kernel bounds for U .

In this paper we study scaling limits of U , as well as the random walk on it. While very
significant progress in this direction was made on the first topic in [2, 48], those papers are
focused on the topological properties of the scaling limit as a subset of R2. Here we work in a
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framework that allows us to describe properties of the joint scaling limit of the corresponding
intrinsic metric, uniform measure and simple random walk.

We begin by introducing our main notation. Throughout this article, U will represent the
uniform spanning tree on Z2, and P the probability measure on the probability space on which
this is built. As proved in [47], U is the local limit of the uniform spanning tree on [�n, n]2\Z2

(equipped with nearest-neighbour bonds) as n !1. We note that U is P-a.s. indeed a spanning
tree of Z2 – i.e. it is a graph with vertex set Z2, and any two of its vertices are connected by
a unique path in U . We will denote by dU the intrinsic (shortest path) metric on the graph U ,
and µU the uniform measure on U (i.e. the measure which places a unit mass at each vertex).

To describe the scaling limit of the metric measure space (U , dU , µU ), we work with a
Gromov-Hausdor↵-type topology of the kind that has proved useful for studying real trees.
(See [15] for an introduction to the classical theory, and [25] for its application to real trees). In
particular, we will build on the notions of Gromov-Hausdor↵-Prohorov topology of [1, 25, 46],
and the topology for spatial trees of [23] (cf. the spectral Gromov-Hausdor↵ topology of [21]).
We extend the metric space (U , dU ) to a complete and locally compact real tree by adding unit
line segments along edges. The measure µU is then viewed as a locally finite (atomic) Borel
measure on this space. To retain information about U in the Euclidean topology, we consider
(U , dU ) as a spatial tree – that is, as an abstract real tree embedded into R2 via a continuous
map �U : U ! R2, which we take in our example to be just the identity on vertices, with linear
interpolation along edges. In addition, we will suppose the space (U , dU ) is rooted at the origin
of Z2. Thus we define a random quintuplet (U , dU , µU ,�U , 0), and our first result (Theorem
1.1 below) is that the law of this object is tight under rescaling in the appropriate space of
‘measured, rooted spatial trees’. The principal advantage of working in this topology is that it
allows us to preserve information about the intrinsic metric dU and measure µU ; these parts of
the picture were missing from the earlier scaling results of [2, 48].

The final ingredient we need in order to state our first main result comes from the growth
function for LERW in Z2. This is the function G2(r) = E|Lr|, where |Lr| is the length of a
LERW run from 0 until it first exits the ball of radius r. In particular, from the results in
[40, 45] we have (see [8, Corollary 3.15]) that there exist constants c1, c2 2 (0,1) such that

c1r
  G2(r)  c2r

, (1.1)

where the growth exponent  := 5/4. This exponent plays a key role in the comparison of the
intrinsic and Euclidean metrics on the UST. We remark that in [11], where the key result of [40]
was not available, the heat kernel estimates on U take on a more complicated form involving
the function G2 and functions derived from it.

Theorem 1.1. If P� is the law of the measured, rooted spatial tree (U , �dU , �2µU , ��U , 0) under
P, then the collection (P�)�2(0,1) is tight.

As already noted, this theorem extends the results of [2, 48] to include scaling of the intrinsic
metric and uniform measure. We further note that the tightness in [2, 48] was essentially a finite-
dimensional statement, since it described the shape in Euclidean space of the tree spanning a
finite number of points, while the result above establishes tightness for the entire space.

Remark 1.2. To extend the above theorem to a full convergence result, and establish that the
scaling limit satisfies the obvious scale invariance properties, it would be su�cient to characterise
the limit uniquely from a suitable finite-dimensional convergence result. We expect that such a
characterisation will be possible once it is known that two-dimensional loop-erased random walk
converges as a process. Proving this is an open problem, but see [3, 42, 43] for recent progress
on proving the convergence of LERW to the SLE2 curve in its ‘natural parameterisation’.
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The tightness in Theorem 1.1 implies the existence of subsequential scaling limits for the
collection (P�)�2(0,1) of laws on measured, rooted spatial trees as � ! 0. The following theorem
gives a number of properties of these limits. We note that (a)(ii) translates part of [2, Theorem
1.2] into our setting, and the topological aspects of (c)(i) and (c)(ii) are a restatement of parts
of [48, Theorem 1.6]. (In particular, the set �T (T o) that appears in the statement of our result
is identical to Schramm’s notion of the ‘trunk’ for the UST scaling limit – see Lemma 5.7.) We
do not expect the powers of logarithms and log-logarithms in (1.3) and (1.4) to be optimal.
We write degT (x) for the degree of a point x in a real tree T , i.e. the number of connected
components of T \{x}, |A| to represent the cardinality of a subset A ✓ T , and L to represent
Lebesgue measure on R2.

Theorem 1.3. If P̃ is a subsequential limit of (P�)�2(0,1), then for P̃-a.e. measured, rooted
spatial tree (T , dT , µT ,�T , ⇢T ) it holds that:
(a) (i) the Hausdor↵ dimension of the complete and locally compact real tree (T , dT ) is given

by

df :=
2


=
8
5
; (1.2)

(ii) (T , dT ) has precisely one end at infinity (i.e. there exists a unique isometric embed-
ding of R+ into (T , dT ) that maps 0 to ⇢T );

(b) (i) the locally finite Borel measure µT on (T , dT ) is non-atomic and supported on the
leaves of T , i.e. µT (T o) = 0, where T o := T \{x 2 T : degT (x) = 1};

(ii) given R > 0, there exists a random r0(T ) > 0 and deterministic c1, c2 2 (0,1) such
that

c1r
df (log r�1)�80  µT (BT (x, r))  c2r

df (log r�1)80, (1.3)

for every x 2 BT (⇢T , R) and r 2 (0, r0(T )), where BT (x, r) is the open ball centred
at x with radius r in (T , dT );

(iii) there exists a random r0(T ) > 0 and deterministic c1, c2 2 (0,1) such that

c1r
df (log log r�1)�9  µT (BT (⇢T , r))  c2r

df (log log r�1)3, (1.4)

for every r 2 (0, r0(T ));
(c) (i) the restriction of the continuous map �T : T ! R2 to T o is a homeomorphism

between T o (equipped with the topology induced by the metric dT ) and its image
�T (T o) (equipped with the Euclidean topology), the latter of which is dense in R2;

(ii) maxx2T degT (x) = 3 = maxx2R2 |��1
T (x)|;

(iii) µT = L � �T .

The second topic of this paper is the scaling limit of the simple random walk (SRW) on
the two-dimensional UST. For a given realisation of the graph U , the SRW on U is the discrete
time Markov process XU = ((Xn)n�0, (PU

x )x2Z2) which at each time step jumps from its current
location to a uniformly chosen neighbour in U (considered as a graph), see Figure 1. For x 2 Z2,
the law PU

x is called the quenched law of the simple random walk on U started at x. Since 0 is
always an element of U , we can define the annealed or averaged law P as the semi-direct product
of the environment law P and the quenched law PU

0 by setting

P (·) :=
Z

PU
0 (·)dP. (1.5)

It is this measure for which we will deduce scaling behaviour.
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Figure 1: The range of a realisation of the simple random walk on uniform spanning tree on a
60⇥ 60 box (with wired boundary conditions), shown after 5,000 and 50,000 steps. From most
to least crossed edges, colours blend from red to blue.

Techniques for deriving the scaling limits of random walks on the kinds of trees generated by
critical branching processes have previously been developed in [18, 19, 20]; see also [36, Chapter
7] for a survey. In the present work, we adapt these to prove a general result of the following
form – see Theorem 6.1 below for details and some additional technical conditions. If we have
a sequence of graph trees (Tn), n � 1, each equipped with its intrinsic metric dTn , a measure
µTn , an embedding �Tn : Tn ! R2 and a distinguished root vertex ⇢n, for which there exist null
sequences (an)n�1, (bn)n�1, (cn)n�1 with bn = o(an) such that (Tn, andTn , bnµTn , cn�Tn , ⇢Tn) !
(T , dT , µT ,�T , ⇢T ) in the space of measured, rooted spatial trees, then the corresponding
rescaled random walks (cn�Tn(XTn

t/anbn
))t�0 converge in distribution. Further, the limiting pro-

cess can be written as (�T (XT
t ))t�0, where XT = ((XT

t )t�0, (P T
x )x2T ) is the canonical Brownian

motion on (T , dT , µT ), as constructed in [6], for example (cf. [32]). (We give a brief introduction
to Brownian motion on measured real trees at the start of Section 6.)

Combining Theorem 1.1 and Theorem 6.1 we obtain the following theorem, which establishes
the existence of subsequential scaling limits for the annealed law of the simple random walk on
U . Given the volume estimates (1.3), the general results of [16] yield sub-di↵usive transition
density bounds for the limiting di↵usion. These demonstrate that, uniformly over bounded
regions of space, the transition density in question has at most logarithmic fluctuations from
the leading order polynomial terms in both the on-diagonal and exponential o↵-diagonal decay
parts. In Section 7, we also deduce point-wise on-diagonal estimates with only log-logarithmic
fluctuations (cf. the discrete result of [11, Theorem 4.5(a)]), as well as annealed on-diagonal
polynomial bounds. We note the similarity between these results and the transition density
estimates for the Brownian continuum random tree given in [17].

Theorem 1.4. If (P�i)i�1 is a convergent sequence with limit P̃, then the following statements
hold.
(a) The annealed law of (�T (XT

t ))t�0, where XT is Brownian motion on (T , dT , µT ) started
from ⇢T , i.e.

P̃ (·) :=
Z

P T
⇢T � �

�1
T (·)dP̃, (1.6)
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is a well-defined probability measure on C(R+, R2).
(b) If P� is defined to be the law of (�XU

��dw t)t�0 under P, where the walk dimension dw of U
is defined by

dw := 1 + df =
13
5

,

then (P�i)i�1 converges to P̃.
(c) P̃-a.s., the process XT is recurrent and admits a jointly continuous transition density
(pTt (x, y))x,y2T ,t>0. Moreover, it P̃-a.s. holds that, for any R > 0, there exist random constants
ci(T ) and t0(T ) 2 (0,1) and deterministic constants ✓1, ✓2, ✓3, ✓4 2 (0,1) (not depending on
R) such that

pTt (x, y)  c1(T )t�df /dw`(t�1)✓1 exp

(
�c2(T )

✓
dT (x, y)dw

t

◆1/(dw�1)

`(dT (x, y)/t)�✓2
)

,

pTt (x, y) � c3(T )t�df /dw`(t�1)�✓3 exp

(
�c4(T )

✓
dT (x, y)dw

t

◆1/(dw�1)

`(dT (x, y)/t)✓4
)

,

for all x, y 2 BT (⇢T , R), t 2 (0, t0(T )), where `(x) := 1 _ log x.

Remark 1.5. If follows that for P̃-a.e. realisation of (T , dT , µT ,�T , ⇢T ), we have that

� lim
t!0

2 log pTt (x, x)
log t

=
2df

1 + df
=

16
13

, for every x 2 T .

Using the language of di↵usions on fractals, this means that the spectral dimension of the
limiting tree is P̃-a.s. equal to 16/13, which is the same as for the discrete model (see [11]).

The remainder of this article is organised as follows. In Section 2, we prove some key
estimates for U , which enable us to compare distances in the Euclidean and intrinsic metrics
on this set. These allow us to extend some of the volume estimates of [11]. In Section 3 we
introduce our topology for measured, rooted spatial trees, and in Section 4 we prove tightness
in this topology for the rescaled trees. The properties of limiting trees are studied in Section 5.
Following this, we turn our attention to the simple random walk on U , establishing in Section
6 a general convergence result for simple random walks on measured, rooted spatial trees, and
applying this to the two-dimensional UST. In addition, we explain how this convergence result
can be applied to branching random walks and trees without embeddings. In Section 7 we then
derive the transition density estimates for the limiting di↵usion.

We write c or ci for constants in (0,1); these will be universal and non-random, but may
change in value from line to line. We use the notation ci(T ) for (random) constants which
depend on the tree T .

2 UST estimates

In this section we obtain estimates for the two-dimensional UST U , which improve those in [11].
Our arguments will depend heavily on Wilson’s algorithm, which gives the construction of U
in terms of LERW. In particular, we can construct U by first running an infinite loop-erased
random walk from 0 to 1 (for details of this see [45]), and then, sequentially running through
vertices x 2 Z2\{0}, adding a loop-erased random walk path from x 2 Z2 to the part of the
tree already created. We remark that U is a one-ended tree, see [12].
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We will consider three metrics on U , which we now introduce. We define dE to be the
Euclidean metric on Z2, and write BE(x, r) = {y : dE(x, y)  r} for balls in this metric. For
x 2 Z2, we let �(x, y) be the unique path in U between x and y. We define the intrinsic (shortest
path) metric dU by setting dU (x, y) := |�(x, y)|, that is, the number of edges on the path �(x, y),
and write BU (x, r) for balls in this metric. Finally, it will also be helpful to use a modification
of a metric introduced by Schramm in [48], given by

dS
U (x, y) := diam(�(x, y)), (2.1)

where the right-hand side refers to the diameter of �(x, y) in the metric dE .
We begin by recalling the comparison between BU (0, r1/) and BE(0, r) and the estimates

on the size of |BU (0, r)| from [11].

Theorem 2.1. (See [11, Theorem 1.1, 1.2]). (a) There exist c1, c2 such that for every r � 1
and � � 1,

P
⇣
BU (0,��1r) 6⇢ BE(0, r)

⌘
 c1e

�c2�2/3
,

P
⇣
BE(0, r) 6⇢ BU (0,�r)

⌘
 c1�

�1/5.

(b) There exist c1, c2 such that for every r � 1 and � � 1,

P
⇣
|BU (0, r)| � �rdf

⌘
 c1e

�c2�1/3
,

P
⇣
|BU (0, r)|  ��1rdf

⌘
 c1e

�c2�1/9
.

Since the law of U is translation invariant, the above result also holds for BU (x, r) for any
x 2 Zd. However, we wish to have these bounds (for suitable r, n) for every x 2 BE(0, n);
obtaining such uniform estimates is one of the main goals of this section. If we use a simple
union bound, as for example in [11, (4.47)], we obtain an error estimate of the form n2 exp(��c),
which is only small when �� (log n)1/c. To improve this, for a suitable � = �(�) > 0 we choose
a �-cover D of BE(0, n) with |D|  c��2. (Recall that a subset A of Z2 is called a �-cover
if every point of Z2 is within distance � of a point of A.) We then obtain good behaviour of
BU (x, r) for all x 2 D, except on a set of probability |D| exp(��c). Using a ‘filling in lemma’
(see Lemma 2.3 below), together with some additional bounds, we are able to extend this good
behaviour to BU (y, r) for all y 2 BE(0, n) – see Proposition 2.10 below for a uniform version
of part (b) in particular. An example of the kind of additional result that we need is that if
dE(x, y) = 3r then every path in U between BE(x, r) and BE(y, r) is of length at least cr,
except on a set of trees of small probability; note that [10, Theorem 1.2] shows that with high
probability the unique infinite self avoiding path in U started from x takes at least cr steps to
escape a Euclidean ball of radius r, but again this does not readily extend to a uniform bound
and so further work is required.

We proceed by introducing some further notation and results from [11]. Let �x = �(x,1)
be the unique infinite self avoiding path in U started at x; by Wilson’s algorithm �x has the
law of the loop-erased random walk from x to 1. Write �x[i] for the ith point on �x, and let
⌧y,r = ⌧y,r(�x) = min{i : �x[i] 62 BE(y, r)}. Whenever we use notation such as �x[⌧y,r], the exit
time ⌧y,r will always be for the path �x. We define the segment of the path �x between its ith
and jth points by �x[i, j] = (�x[i], �x[i + 1], . . . , �x[j]), and define �x[i,1) in a similar fashion.
For such paths, the following was established in [11].
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Lemma 2.2. (See [11, Lemma 2.4]). There exists c1 such that for every r � 1 and k � 2,

P(�x[⌧x,kr,1) \BE(x, r) 6= ;)  c1k
�1.

We next give the filling in lemma that we will use several times. This is a small extension of
[11, Proposition 3.2]. Note that [10, Proposition 6.2] shows that the function G(r) considered
in [11] is comparable with the function G2(r) appearing in (1.1).

Lemma 2.3. There exist constants c1, c2 2 (0,1) such that for each �  1 the following
holds. Let r � 1, and U0 be a fixed tree in Z2 with the property that dE(x, U0)  �r for
each x 2 BE(0, r). Let U be the random spanning tree in Z2 obtained by running Wilson’s
algorithm with root U0 (i.e. starting from the tree U0). Then there exists an event G such that
P(Gc)  c1e�c2��1/3, and on G we have that for all x 2 BE(0, r/2),

dU (x, U0)  (�1/2r); dS
U (x, U0)  �1/2r; �(x, U0) ⇢ BE(0, r).

Proof. Except for the bound involving dS
U this is proved in [11]. (Note that the hypothesis there

that U0 connects 0 to BE(0, 2r)c is unnecessary.) The proof of the dS
U bound is similar. ⇤

The following sequence of lemmas will improve the results in [11] on the comparison of
the metrics dU , dE and dS

U . Fix for now r, k � 1 and x 2 Z2, and choose points zj on �x

so that z0 = x and zj = �x[sj ], where sj = min{i : dE(�x[i], {z0, . . . zj�1}) � r/k}. Let
N = N(r, k) = max{j : sj  ⌧x,r(�x)}. Moreover, define a collection of disjoint balls Br,k =
{Bj = BE(zj , r/3k), j = 1, . . . , N(r, k)}. These depend on the path �x, and when we need to
recall this we will write Br,k(�x). Let a = 1 + k�1/8, and set

F1(x, r, k) = {�x[⌧x,ar,1] hits fewer than k1/2 of B1, . . . , BN(r,k)}.

Lemma 2.4. There exist constants c1, c2 2 (0,1) such that, if r, k � 1 and x 2 Z2, then

P
�
F1(x, r, k)c

�
 c1e

�c2k1/8
.

Proof. (See [11, Lemma 3.7].) Write ⌧s = ⌧x,s(�x), and let b = ek1/8 � 2. Then by Lemma 2.2,

P(�x[⌧br,1] \BE(x, r) 6= ;)  cb�1 = ce�k1/8
. (2.2)

If �x[⌧ar,1] hits more than k1/2 balls from the family Br,k(�x), then either �x hits BE(0, r)
after time ⌧br, or �x[⌧ar, ⌧br] hits more than k1/2 balls. Given (2.2), it is therefore su�cient to
prove that

P(�x[⌧ar, ⌧br] hits more than k1/2 balls)  c1e
�c2k1/8

. (2.3)

Let S be a simple random walk on Z2 started at x, L0 be the loop-erasure of S[0, ⌧x,4br(S)], and
L00 = L0[⌧x,ar(L0), ⌧x,br(L0)]. Then by [45, Corollary 4.5], in order to prove (2.3), it is su�cient
to prove that

P(L00 hits more than k1/2 balls in Br,k(L0) )  c1e
�c2k1/8

.

Define stopping times for S by letting T0 = ⌧x,ar(S) and for j � 1, setting Rj = min{n � Tj�1 :
Sn 2 BE(x, r)} and Tj = min{n � Rj : Sn /2 BE(x, ar)}. Note that the balls in Br,k(L0) can
only be hit by S in the intervals [Rj , Tj ] for j � 1. Let M = min{j : Rj � ⌧x,4br(S)}. Then, by
the result of [38, Exercise 1.6.8], P(M = j + 1|M > j) � c(log(ar)� log r)/(log(4br)� log r) �
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Figure 2: A sample of A1(x, r, k) in Lemma 2.5.

ck�2/8. Hence P(M � k3/8)  c1 exp(�c2k1/8). Now, for each j � 1, let Lj be the loop-erasure
of S[0, Tj ], ↵j be the first exit by Lj from BE(x, ar), and �j be the number of steps in Lj . If L00

hits more than k1/2 balls in Br,k(L0), then there must exist some j  M such that Lj [↵j ,�j ] hits
more than k1/2 of the balls in the collection Br,k(Lj). Hence, if M  k3/8 and L00 hits more than
k1/2 balls in Br,k(L0), then S must hit more than k1/8 balls in Br,k(Lj) in one of the intervals
[Rj , Tj ], without hitting the path Lj [0,↵j ]. However, by Beurling’s estimate (see [38, Lemma
2.5.3], for example), the probability of this event is less than c1 exp(�c2k1/8). Combining these
estimates concludes the proof. ⇤

Our next lemma shows that if D0 is �r-cover of BE(x, 2r), then with high probability we
can find points Yx,r and Wx,r which are close to the boundary of BE(x, r) and to each other,
and such that Yx,r 2 D0 and Wx,r 2 �x \BE(x, r). (See Figure 2.) In the proof, we refer to the
event F2(x, r, k) =

�
8k�1/4r  ⌧x,r(�x)  k1/4r

 
. From [10, Theorems 5.8, 6.1], we have

P(F2(x, r, k)c)  c1 exp(�c2k
1/6). (2.4)

Lemma 2.5. Let r � 1, k � 2, x 2 Z2, and D0 ⇢ Z2 satisfy BE(x, 2r) ⇢ [y2D0BE(y, r/18k).
Then there exists an event A1 = A1(x, r, k), defined in (2.8) below, which satisfies

P(Ac
1)  e�k1/8

, (2.5)

and on A1(x, r, k) there exists T  ⌧x,r(�x) such that, writing Wx,r = �x(T ):
(a) k�1/4r  T  k1/4r;
(b) a�2r  dE(x, Wx,r)  r;
(c) there exists Yx,r 2 D0 such that dE(Yx,r,Wx,r)  r/3k, dS

U (Yx,r,Wx,r)  2r/3k and also
dU (Yx,r,Wx,r)  c1(r/k).

Proof. Fix k � 1 and recall that a = 1 + k�1/8. Suppose that the event

F1(x, r/a, k) \ F2(x, r/a2, k) \ F2(x, r, k). (2.6)

occurs. Write ⌧s = ⌧x,s(�x), T1 = ⌧r/a2 , and T2 = ⌧r/a. Let J0 = J0(!) be the set of j

such that zj 2 �x[T1, T2] and BE(zj , r/3ak) ⇢ BE(x, r/a)\BE(x, r/a2). Then |J0| � ck7/8.
Since F1(x, r/a, k) holds, at most k1/2 of the balls (BE(zj , r/3ak), j 2 J0) are hit by �x[⌧r,1].
So if J = J(!) is the set of j 2 J0 such that BE(zj , r/3ak) \ �x[⌧r,1] = ;, then |J | �
k7/8� k1/2 � ck3/4. For each j 2 J we can find a point yj 2 D0 with dE(yj , zj)  r/18k. Hence
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BE(yj , r/18k)\ �x[T1, T2] 6= ;, while BE(yj , r/9k)\ �x[⌧r,1] = ;. Note that BE(yj , r/9k) may
however intersect the path �x in the interval [T2, ⌧r].

For the remainder of the proof it will be helpful to regard �x as a fixed deterministic path
which satisfies the conditions in (2.6). For each j 2 J , let Xj be a SRW started at yj and run
until it hits �x, and let Lj be the loop-erasure of Xj . Let

Hj =
�
Xj hits �x before it exits BE(zj , r/3ak), |Lj |  c0(r/3k)

 
.

By [11, Theorem 2.2] we have, (taking D = Z2\�x and D0 = D \BE(zj , r/3ak)),

P(|Lj \BE(zj , r/3ak)| > �(r/k))  c1 exp(�c2�).

So, by Beurling’s estimate (see [38, Lemma 2.5.3], for example), we can choose c0 so that there
exists p > 0 such that P(Hj) � p.

Recall now the implementation of Wilson’s algorithm using ‘stacks’ (see [49]). For each j
assume we have stack variables ⇠x,i for x 2 BE(zj , r/3ak). We use these to make a random
walk path Xj started at yj and run either it hits �x or leaves BE(zj , r/3ak). Thus the event
Hj is measurable with respect to �(⇠x,i, i � 1, x 2 BE(zj , r/3ak)). We now consider the yj one
at a time, and continue until either we obtain a success, or we have tried k3/4 of the points yj .
Since these events are independent, if H is the event that we obtain a success, then

P(Hc)  (1� p)k3/4  c1 exp(�c2k
3/4). (2.7)

If H occurs, with a success for yj , set Y = Yx,r = yj , let W = Wx,r be the point where Xj hits
�x, and let T be such that �x(T ) = W . We take

A1 = A1(x, r, k) = H \ F1(x, r/a, k) \ F2(x, r/a2, k) \ F2(x, r, k). (2.8)

By Lemma 2.4, (2.4) and (2.7), we have the upper bound (2.5) on P(Ac
1).

Finally, suppose that A1(x, r, k) occurs. By construction we have dE(Y,W )  r/3k, and
since the path Xj lies inside BE(zj , r/3k) we also have dS

U (Y,W )  2r/3k. The definition of the
event Hj gives that dU (Y,W )  c(r/k). Since Xj hits �x inside BE(zj , r/3ak), we must have
W 2 BE(x, r)\BE(x, a�2r). Moreover, because j 2 J , T  ⌧r(�x), so since F2(x, k, r) holds we
have T  k1/4r. Since BE(zj , r/3ak) \ BE(x, r/a2) = ;, we must also have T � ⌧r/a2 , and so
T � 8k�1/4(r/a2) � k�1/4r. ⇤

The next lemma allows us to compare dS
U and dU on a large family of paths in a ball.

Lemma 2.6. Let r � 1, k � 8, and x 2 Z2. Set M1 = ek1/8/27, M2 = ek1/8/3, Ri = rMi,
and let D0 ⇢ BE(x, 2R2) satisfy |D0|  ck2M2

2 , |D0 \ BE(x, 2R1)|  ck2M2
1 , BE(x, 2R2) ⇢

[y2D0BE(y, r/18k). Write D1 = D0 \ BE(x, 2R1). Then there exist constants b1, b2 and an
event A2 = A2(x, r, k) with

P(Ac
2)  c exp(�k1/8/4), (2.9)

such that on A2 the following holds for every y 2 D1:
(a) �y[⌧x,R2 ,1] \BE(x, 4R1) = ;;
(b) if x1, x2 2 �y[0, ⌧x,R2 ] and dS

U (x1, x2) > b2r, then dU (x1, x2) � 1
2k�1/4r;

(c) if x1, x2 2 �y[0, ⌧x,R2 ] and dS
U (x1, x2) < b1r, then dU (x1, x2)  2k1/4r.

Proof. For y 2 D1, let F3(y, r, k) = {�y[⌧x,R2 ,1] \ BE(x, 4R1) = ;}. By Lemma 2.2 we have
P(F c

3 )  cM1/M2. Now set

A2 =
⇣ \

y2D0

A1(y, r, k)
⌘
\
⇣ \

y2D1

F3(y, r, k)
⌘
,
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where A1(y, r, k) is the event defined by (2.8). From (2.5), we note that

P(Ac
2)  ck2M2

2 e�k1/8
+ cM2

1 k2M1M
�1
2  c exp(�k1/8/4).

Now suppose that A2 holds, and let y 2 D1. It is immediate that (a) holds. Write W0 =
Y0 = y, and let Y1 = YY0,r and W1 = WY0,r be the points given by the event A1(Y0, r, k).
Similarly write Yj+1 and Wj+1 for the points given by the event A1(Yj , k, r) for j � 1, and
continue until we have for some N = Ny that WN 62 BE(x, 3R2/2). Note that both dS

U and
dU are monotone on the path �y, in the sense that if x1, x2 2 �y and x3 2 �(x1, x2) then for
⇢ = dS

U or ⇢ = dU then ⇢(x1, x3)  ⇢(x1, x2). This is immediate for dU and easily proved from
the definition of dS

U .
The construction of the (Yj ,Wj) gives that:

r

a2
 dS

U (Yj ,Wj+1)  r, dS
U (Yj ,Wj) 

2r

k
,

k�1/4r  dU (Yj ,Wj+1)  k1/4r, dU (Yj ,Wj)  c(r/k).

Thus we have

dS
U (Wj ,Wj+1)  dS

U (Wj , Yj) + dS
U (Yj ,Wj+1) 

2r

k
+ r = 1

2b2r,

dS
U (Wj ,Wj+1) � dS

U (Yj ,Wj+1)� dS
U (Wj , Yj) � r/a2 � 2r

k
= b1r.

Here we have used the equations above to define b1 and b2. Similarly, we have

dU (Wj ,Wj+1)  dU (Yj ,Wj+1)  k1/4r

dU (Wj ,Wj+1) � dU (Yj ,Wj+1)� dU (Yj ,Wj) � k�1/4r � c(r/k) � 1
2k�1/4r.

Let x1, x2 2 �y[0, ⌧x,3R2/2]. We can assume that x1 2 �(y, x2). Let j = min{i : Wi 2
�(x1,1)}. If x2 2 �(x1,Wj+1), then dS

U (x1, x2)  dS
U (Wj�1,Wj) + dS

U (Wj ,Wj+1)  b2r. So
if dS

U (x1, x2) > b2r, then both Wj and Wj+1 are on the path �(x1, x2), and so dU (x1, x2) �
1
2k�1/4r, proving (b). Similarly, if both Wj and Wj+1 are on the path �(x1, x2), then we have
dS
U (x1, x2) � b1r. So if dS

U (x1, x2) < b1r, then Wj+1 2 �(x2,1), and hence dU (x1, x2)  2k1/4r.
⇤

We now extend this result to all paths �x in a ball.

Lemma 2.7. Let r � 1, k � 8, x0 2 Z2, Mi, Ri, and b1, b2 be as in Lemma 2.6. Then there
exist constants b3, b4 (depending on k) and an event A3 = A3(x0, r, k) with

P(Ac
3)  c1 exp(�c2k

1/8), (2.10)

such that on A3 the following holds for every x 2 BE(x0, R1):
(a) �x[⌧x0,R2 ,1] \BE(x0, 4R1) = ;;
(b) If x1, x2 2 �x[0, ⌧x0,R2 ] and dS

U (x1, x2) > b3r, then dU (x1, x2) � 1
2k�1/4r;

(c) If x1, x2 2 �x[0, ⌧x0,R2 ] and dS
U (x1, x2) < b1r, then dU (x1, x2)  b4k1/4r;

(d) If x1, x2 2 BE(x0, R1) and dS
U (x1, x2) > 2b3r, then dU (x1, x2) � 1

2k�1/4r;
(e) If x1, x2 2 BE(x0, R1) and dS

U (x1, x2) < b1r, then dU (x1, x2)  2b4k1/4r.
Proof. We begin by choosing a set D0 which satisfies the conditions of Lemma 2.6. Let
A2(x0, r, k) be the event defined in that lemma, and let U0 be the random tree obtained by
applying Wilson’s algorithm with initial points in D1 = D0 \ B(x0, 2R1). Let z 2 BE(x0, R1).
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We now apply the filling in Lemma 2.3 to BE(z, r) taking � = 1/18k. Let G(z) be the ‘good’
event given by the lemma; we have

P(G(z)c)  c exp(�ck1/3). (2.11)

Now choose zi, i = 1, . . . , N so that N  cM2
1 and BE(x0, R1) ⇢ [iBE(zi, r/4), and let

A3 = A2(x0, r, k) \ (\N
i=1G(zi)). The bound (2.10) then follows from (2.9) and (2.11).

Let x 2 B(x0, R1), and let Wx be the point where �x first hits the tree U0. Since G(zi)
holds for some zi with dE(x, zi)  r/4, we have by Lemma 2.3 that dS

U (x,Wx)  ck�1/2r,
dU (x, Wx)  c(k�1/2r). Since U0 = [y2D1�y there must exist a y 2 D1 such that Wx 2 �y. Let
Wj be the points given in the proof of Lemma 2.6. By property Lemma 2.6(a) we have that �y

does not return to BE(x0, 4R1) after leaving BE(x0, R2), and therefore there exists j such that
Wx 2 �(Wj�1,Wj). (We take Wx = Wj if Wx is one of the points Wi.) Note also that property
(a) of �x follows from the same property for �y.

Let x1, x2 be on the path �x[0, ⌧x0,R2 ]; we can assume that x1 2 �(x, x2). If x1 2 �(Wx,1)
then both x1 and x2 are in �y, and so properties (b) and (c) follow from Lemma 2.6. So suppose
that x1 2 �(x, Wx). If x2 2 �(x,Wj+1), then

dS
U (x1, x2)  dS

U (x,Wx) + dS
U (Wx,Wj+1)

 dS
U (x,Wx) + dS

U (Wj�1,Wj) + dS
U (Wj ,Wj+1)

 ck�1/2r + b2r  (c + b2)r = b3r.

So if dS
U (x1, x2) > b3r, then x2 2 �(Wj+1,1), and hence dU (x1, x2) � dU (Wj ,Wj+1) �

1
2k�1/4r. Similarly, if x2 2 �(Wj+1,1), then dS

U (x1, x2) � dS
U (Wj ,Wj+1) � b1r. So if

dS
U (x1, x2) < b1r, then x2 2 �(x,Wj+1), and so

dU (x1, x2)  dU (x,Wx) + dU (Wj�1,Wj) + dU (Wj ,Wj+1)

 c(k�1/2r) + 2k1/4r  b4k
1/4r.

This proves properties (b) and (c) of �x.
Finally, let x1, x2 2 BE(x0, R1), and let W be the point where �x1 and �x2 meet. If

dS
U (x1, x2) > 2b3r and W 2 �x1 [0, ⌧x0,R2 ] \ �x2 [0, ⌧x0,R2 ], then we have maxi dS

U (xi,W ) > b3r,
and so dU (x1, x2) � maxi dU (xi,W ) � 1

2k�1/4r. If, on the other hand, dS
U (x1, x2) > 2b3r and

W 62 �xi [0, ⌧x0,R2 ] for either i = 1 or i = 2, then set W 0 = �xi(⌧x0,R2) for the relevant i. Note that
W 0 2 �(x1, x2)\ �xi [0, ⌧x0,R2 ] and dS

U (xi,W 0) � b3r, and so dU (x1, x2) � dU (xi,W 0) � 1
2k�1/4r

in this case as well. Similarly, if dS
U (x1, x2) < b1r, then necessarily we have W 2 �x1 [0, ⌧x0,R2 ] \

�x2 [0, ⌧x0,R2 ] and maxi dS
U (xi,W ) < b1r, which implies dU (x1, x2)  2b4k1/4r. This proves

properties (d) and (e). ⇤

Note that there is a gap between the conditions (d) and (e) above. We could fill this by a
direct calculation, but instead we will handle this in the next result by varying r.

Proposition 2.8. Let r � 1, � � �0 (where �0 is a large, finite constant), x0 2 Z2, and
R = rec1�1/2. There exists an event A4 with P(Ac

4)  c exp(�c2�1/2) such that on A4, for all
x, y 2 BE(x0, R),

��1dS
U (x, y)  dU (x, y)  �dS

U (x, y) if r  dS
U (x, y)  R, (2.12)

dU (x, y)  �r if dS
U (x, y)  r,

dU (x, y) � ��1R if dS
U (x, y) � R.
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Proof. Choose k = c�4, let m be such that 2m�1 < exp(k1/8/27)  2m, and define A4 =
\m

i=0A3(x0, 2ir, k). Then P(Ac
4)  exp(�ck1/8)  exp(�c0�1/2). Now let x, y 2 BE(x0, R), and

suppose r0 = dS
U (x, y)  R. Then choosing the largest i 2 {0, 1, . . . ,m} so that r0 � 2b32ir, we

have dU (x1, x2) � c��1(2ir) � c��1(r0). Similarly we have dU (x1, x2)  c�(r0). Replacing
c� by � this gives (2.12), and the other two inequalities follow. ⇤

One consequence of the above proposition is the following approximation result, which shows
that if a set of points is an r/18k2-cover in the Euclidean metric, then it is also a cover with
respect to the metrics dS

U and dU .

Proposition 2.9. Let r � k � 1. Define R1 := rek1/32, R2 := rek1/16, and suppose D2 ✓ Z2

satisfies
BE(0, 6R2) ✓

[
x2D2

BE(x, r/18k2). (2.13)

Then there exists an event A5 = A5(r, k) such that P(Ac
5)  c1e�c2k1/16 and on A5 the following

holds:
max

x2BE(0,R1)
dS
U (x,D2) 

2r

k
, (2.14)

max
x2BE(0,R1)

dU (x,D2) 
4r

k1/4
. (2.15)

Proof. First, choose a subset D0
2 ✓ D2 such that (2.13) holds when D2 is replaced by D0

2 and
also |D0

2|  ck4e2k1/16 . Set A0(r, k) := \x2D0
2
A1(x, r/k, k), where A1 is defined in the statement

of Lemma 2.5. From that result, we know that

P(A0c)  ck4e2k1/16
P(A1(0, r/k, k))  ce�ck1/8

. (2.16)

Moreover, if A0 holds, then for x 2 BE(0, 2R1) \D0
2 we can define (Wj , Yj)N

j=0 similarly to the
proof of Lemma 2.6. In particular, set W0 = Y0 = x, and let Wj , Yj be given by the event
A1(Yj�1, r/k, k), up to j = N := inf{m : dE(x,Wm) > 2R2}. By construction, it follows that

max
z2�x(0,⌧x,R2 )

dS
U (z,D2)  max

j=1,...,N
dS
U (Wj�1,Wj)  max

j=1,...,N
dS
U (Yj�1,Wj) 

r

k
. (2.17)

Next, choose D00
2 ✓ D0

2 \ BE(0, 2R1) such that BE(0, R1) ✓ [x2D00
2
BE(x, r/18k2) and |D00

2 | 
ck4e2k1/32 . Set A00(r, k) := A0(r, k) \ (\x2D00

2
B(x, r, k)), where B(x, r, k) := {�x(⌧x,R2 ,1) \

BE(0, 2R1) = ;}. By applying Lemma 2.2 in conjunction with (2.16), we obtain

P(A00c)  ce�ck1/8
+ ck4e2k1/32

P(�0(⌧0,R2 ,1) \BE(0, 4R1) 6= ;)  c1e
�c2k1/16

.

Define U0 to be the subtree of U spanned by D00
2 and suppose A00 holds. If x 2 U0 \BE(0, 2R1),

then it must be the case that x 2 �y(0, ⌧y,R2) for some y 2 D00
2 . Hence, by (2.17), it holds that

maxx2U0\BE(0,2R1) dS
U (x, D2)  r/k. Now, by applying Lemma 2.3 with root U0, it is possible

to deduce
P
✓

max
x2BE(0,R1)

dS
U (x, U0) >

r

k

◆
 Ce�cek1/32

.

So, if A000 is defined to be the event that both A00 and maxx2BE(0,R1) dS
U (x, U0)  r/k hold, then

we have P(A000c)  c1e�c2k1/16 and also (2.14) holds on A000.
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To complete the proof, we will use Proposition 2.8 with (x0, r,�) given by (0, 2r/k, k) to
compare the relevant distances. Since R = 2rk�1ec1k1/2 � 2R1 for large k, we find that with
probability exceeding 1� ce�c2k1/2 it is the case that

max
x,y2BE(0,2R1):
dS
U (x,y)2r/k

dU (x, y)  k

✓
2r

k

◆
 4r

k1/4
.

Note that if A000 and the above inequality both hold, then so does (2.15). Hence, in conjunction
with the conclusion of the previous paragraph, this completes the proof. ⇤

We can now improve the volume estimates of [11]. Recall from (1.2) that df = 2/ = 8/5,
and define, for �, n � 1,

Ã(�, n) := {! : ��1Rdf  |BU (x,R)|  �Rdf for all x 2 BE(0, n), R 2 [e��
1/40

n, n]}.

The following result extends a fundamental estimate of [11]; the key improvement is that the
upper bound does not depend on n (once n is suitably large). Although we do not need to do
so here, we note that the same approach can also be used to obtain a similar improvement of
the resistance estimates in [11].

Proposition 2.10. There exist constants c1, c2 2 (0,1) such that

P
⇣
Ã(�, n)c

⌘
 c1 exp(�c2�

1/80), for all n � e�
1/16

.

Proof. Let k = �, r = ne��
1/32 , and let R1 = n, R2 = rek1/6 and D2 be as in Proposition 2.9,

with |D2|  ck4e2k1/16 . Set m0 := inf{m : km � ek1/32}. Let A5(r, k) be the event given in the
statement of Proposition 2.9, and

E(r, k) :=
\

x2D2

m0+1\
m=1

{k�1(rkm)  |BU (x, (rkm))|  k(rkm)}.

A simple union bound allows us to deduce from Theorem 2.1(b) that

P (E(r, k)c)  Ck4e2k1/16
k1/32ce�k1/9  Ce�ck1/9

.

Consequently we have P(E(r, k)c [A5(r, k)c)  c exp(�c�1/16).
Suppose that E(r, k) \ A5(r, k) holds. Let x 2 BE(0, n), and s 2 [rk3, n]. Choose m 2

{3, . . . ,m0 + 1} such that s 2 [rkm, rkm+1). Since A5(r, k) holds, there exists y 2 D2 with
dU (x, y)  4r/k1/4. Hence,

|BU (x, s) | 
���BU

⇣
y, (rkm+1) + 4r/k1/4

⌘���  ��BU
�
y, (rkm+2)

���  k(rkm+2)2  k5s2.

Similarly, |BU (x, s)| � k�5s2. Since (rk3)  n exp(��1/40) it follows that E(r, k)\A5(r, k) ⇢
Ã(�5, n), which completes the proof of the proposition. ⇤

From this, we can prove the following distributional measure bounds, which will be used in
the proof of Theorem 1.3(b)(ii).
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Corollary 2.11. Given R > 0, there exist constants c1, . . . c7 2 (0,1) (depending on R) such
that for every r 2 (0, c7),

lim sup
�!0

P
⇣
�2 min

x2BE(0,��1R)
µU
⇣
BU (x, ��r)

⌘
 c1r

df (log r�1)�80
⌘
 c2r

c3 , (2.18)

lim sup
�!0

P
⇣
�2 max

x2BE(0,��1R)
µU
⇣
BU (x, ��r)

⌘
� c4r

df (log r�1)80
⌘
 c5r

c6 . (2.19)

Proof. We just prove (2.19); the proof of (2.18) is similar. Fix R � 1, and suppose r 2 (0, 1),
� 2 (0, 1). Define n := ��1R and � := (log(R/r))80. Since ��r 2 [e��1/40

n, n], we have
that, on Ã(�, n),

min
x2BE(0,��1R)

µU
�
BU (x, ��r)

�
� ��1��2rdf � c1�

�2rdf (log r�1)�80.

Hence, by Proposition 2.10, the left-hand side of (2.19) is bounded above by Ce�c�1/80 . ⇤

Let NU (r, s) the minimum number of dU -balls of radius s required to cover BU (0, r). Another
consequence of Proposition 2.10 is the following bound on NU (r, r/�).

Lemma 2.12. There exist constants c1, c2, c3,�0 2 (0,1) such that, for r � e(log �)41/16 and
� � �0,

P
⇣
NU (r, r/�) � c1(log �)107�df

⌘
 c2e

�c3(log �)41/80
.

Proof. Let ✓ � 1 be such that 2�  ✓�1 exp(✓1/40). By Theorem 2.1(a) we have that

P
⇣
BU (0, r) 6⇢ BE(0, ✓1/r1/)

⌘
 e�c✓2/3

.

Now it is straightforward to check that one can cover BU (0, r) by balls BU (zi, r/�), i = 1, . . . ,M ,
such that BU (zi, r/2�) are disjoint and zi 2 BU (0, r). Moreover, it is necessarily the case
that M � NU (r, r/�). Setting n = ✓r, if Ã(✓, n) holds and BU (0, r) ⇢ BE(0, n) then we
have |BU (0, r)|  (✓r)df and |BU (zi, r/2�)| � c✓�1(r/�)df for each i. Thus we deduce from
Proposition 2.10 that

P(NU (r, r/�) � c✓1+df�df )  c exp(�c✓1/80). (2.20)

Taking ✓ = (log �)41 completes the proof. ⇤

Remark 2.13. Taking ✓ = � in (2.20) gives the bound, for r � e�
1/16 and � large,

P(NU (r, r/�) � c�1+2df )  c exp(�c�1/80).

3 Topology for UST scaling limit

In this section we introduce the topology on measured, rooted spatial trees for which we prove
tightness for the law of the rescaled UST. This topology is finer than that considered in [2, 48],
since it incorporates the full convergence of real trees embedded into Euclidean space, rather
than merely the shape of subsets spanning a finite number of vertices. This point will be
important when it comes to the proof of Theorem 1.4.
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We define T to be the collection of quintuplets of the form

T = (T , dT , µT ,�T , ⇢T ),

where: (T , dT ) is a complete and locally compact real tree (see [44], Definition 1.1, for example);
µT is a locally finite Borel measure on (T , dT ); �T is a continuous map from (T , dT ) into a
separable metric space (M, dM ); and ⇢T is a distinguished vertex in T . (Usually the image space
(M, dM ) we consider is R2 equipped with the Euclidean distance, though we will also consider
other image spaces at certain places in our arguments.) We call such a quintuplet a measured,
rooted, spatial tree. Let Tc be the subset of T for which (T , dT ) is compact. We will say that two
elements of T, T and T 0 say, are equivalent if there exists an isometry ⇡ : (T , dT ) ! (T 0, d0T )
for which µT � ⇡�1 = µ0T , �T = �0T � ⇡ and also ⇡(⇢T ) = ⇢0T .

In order to introduce a topology on T, we will start by defining a topology on Tc. In
particular, for two elements of Tc, we set �c (T , T 0) to be equal to

inf
Z, , 0,C:

(⇢T ,⇢0T )2C

(
dZ

P

�
µT �  �1, µ0T �  0�1

�
+ sup

(x,x0)2C

�
dZ
�
 (x), 0(x0)

�
+ dM

�
�T (x),�0T (x0)

��)
,

(3.1)
where the infimum is taken over all metric spaces Z = (Z, dZ), isometric embeddings  :
(T , dT ) ! Z,  0 : (T 0, d0T ) ! Z, and correspondences C between T and T 0, and we define dZ

P to
be the Prohorov distance between finite Borel measures on Z. Note that, by a correspondence
C between T and T 0, we mean a subset of T ⇥ T 0 such that for every x 2 T there exists at
least one x0 2 T 0 such that (x, x0) 2 C and conversely for every x0 2 T 0 there exists at least one
x 2 T such that (x, x0) 2 C.

Proposition 3.1. The function �c defines a metric on the equivalence classes of Tc. Moreover,
the resulting metric space is separable.
Proof. The proof of this result is almost identical to that of [21, Lemma 2.1], taking, in the
notation of that paper, I = {1} and q1(x, y) := �T (x). The main change is that when considering
a correspondence between T and T 0, one has to require that the pair of roots (⇢T , ⇢0T ) is included,
and, when selecting the points xi, x0i as in [21], one should take x1 = ⇢T and x01 = ⇢0T . A second
change is that in the proof of separability, rather than approximating by metric spaces with a
finite number of vertices, one should approximate by real trees formed of a finite number of line
segments. However making these changes is routine and we omit the details. ⇤

Remark 3.2. Even if (M, dM ) is assumed to be complete, the space of equivalence classes of Tc

is not complete with respect to the metric �c in general. Indeed, suppose (M, dM ) = (R2, d(2)
E )

and consider ([0, 1], d(1)
E ,L, f, 0) 2 Tc, where d(d)

E is the d-dimensional Euclidean distance, L is
Lebesgue measure on [0, 1], and f : [0, 1] ! R2 is any continuous non-constant function. If we
replace d(1)

E by "d(1)
E , then the sequence of elements in Tc that we obtain is Cauchy as "! 0, but

does not have a limit in Tc. One way to ensure completeness would be to restrict to a subset of
Tc for which the functions �T satisfy an equicontinuity condition.

To extend �c to a metric on the equivalence classes of T, we consider bounded restrictions
of elements of T (cf. [1]). Thus for T 2 T, let T (r) = (T (r), d(r)

T , µ(r)
T ,�(r)

T , ⇢(r)
T ) be obtained by

taking: T (r) to be the closed ball in (T , dT ) of radius r centred at ⇢T ; d(r)
T µ(r)

T and �(r)
T to

be the restriction of dT , µT and �T respectively to T (r), and ⇢(r)
T to be equal to ⇢T . As in

[1], the fact that (T , dT ) is a real tree, and therefore a length space, means we can apply the
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Hopf-Rinow theorem (which implies that all closed, bounded subsets of a complete and locally
compact length space are compact) to establish that T (r) is an element of Tc. Furthermore, as
in [1, Lemma 2.8], we can check the regularity of this restriction with respect to the metric �c.

Lemma 3.3. For any two elements of T, T and T 0, the function r 7! �c(T (r), T 0(r)) is cadlag.
Proof. By considering the natural embedding of T (r) into T (r+"), along with the correspondence
consisting of pairs (x, x0) such that x is the closest point in T (r) to x0 2 T (r+"), we have, as in
[1, Lemma 5.2], that

�c

⇣
T (r), T (r+")

⌘
 µT

⇣
T (r+")\T (r)

⌘
+ "+ sup

x,x02T (r+"):
dT (x,x0)"

dM
�
�T (x),�T (x0)

�
;

given this, the proof is a straightforward adaption of the proof of [1, Lemma 2.8]. ⇤

This result allows us to well-define a function � on T2 by setting

�
�
T , T 0

�
:=
Z 1

0
e�r

⇣
1 ^�c

⇣
T (r), T 0(r)

⌘⌘
dr. (3.2)

Proposition 3.4. The function � defines a metric on the equivalence classes of T. Moreover,
the resulting metric space is separable.
Proof. Again, the proof is similar to the corresponding result in [1]. Positivity, finiteness and
symmetry of � are clear. Moreover, the triangle inequality is easy to check from the definition
and the fact that the triangle inequality holds for �c. So, to establish that � is a metric, it
remains to prove positive definiteness. To this end, suppose that T and T 0 are such that the ex-
pression at (3.2) is equal to zero. From Lemma 3.3, it follows that �c(T (r), T 0(r)) = 0 for every
r > 0. Consequently, for each r, there exists an isometry ⇡r : (T (r), d(r)

T ) ! (T 0(r), d0(r)T ) such
that µ(r)

T �⇡�1
r = µ0(r)T , �(r)

T = �0(r)T �⇡r and also ⇡r(⇢
(r)
T ) = ⇢0(r)T . For n, k � 1, let (xn,k

i )N(n,k)
i=1 be

a finite k�1-cover of T (n) containing the root ⇢T (such a collection exists as a result of the com-
pactness of T (n)). Since ⇡r is an isometry, we have that (⇡m(xn,k

i ))m�n is a bounded sequence
for each n, k � 1 and 1  i  N(n, k), and so has a convergent subsequence. By a diagonal
procedure, one can thus find a subsequence (mj)j�1 such that ⇡(xn,k

i ) = limj!1 ⇡mj (x
n,k
i )

exists for every n, k � 1 and 1  i  N(n, k). From this construction, we obtain that ⇡ is
distance-preserving on {xn,k

i : n, k � 1, 1  i  N(n, k)} and, since the latter set is dense in
T , we can extend it to a distance-preserving map on T . Clearly by reversing the roles of T
and T 0, it is also possible to find a distance-preserving map from T 0 to T . Hence, ⇡ must be
an isometry. Moreover, it is clear that this map is root-preserving, i.e. ⇡(⇢T ) = ⇢0T . To check
that it is measure-preserving, i.e. µT � ⇡�1 = µ0T , one can follow an identical argument to that
applied in the proof of [1, Proposition 5.3] based on considering approximations to the measures
µ(n)
T and µ0(n)

T supported on (xn,k
i )N(n,k)

i=1 and (⇡(xn,k
i ))N(n,k)

i=1 , respectively. Finally, we note that
the continuity of �0T implies

�0T (⇡(xn,k
i )) = lim

j!1
�
0(mj)
T � ⇡mj (x

n,k
i ) = lim

j!1
�

(mj)
T (xn,k

i ) = �T (xn,k
i ).

Since �T is also continuous, it follows that �T = �0T � ⇡. Hence we have shown that T and T 0
are equivalent, and so � is indeed a metric on the equivalence classes of T.

For separability, we first note that �(T , T (r))  e�r, and so Tc is dense in (T,�). Since
(Tc,�c) is separable, it will thus be su�cient to check that convergence in (Tc,�c) implies
convergence in (T,�) (cf. [1, Proposition 2.10]). So let us start by supposing that we have a
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sequence T n that converges to T in (Tc,�c). In particular, we can find a sequence of metric
spaces Zn, isometric embeddings  n : T ! Zn,  0n : Tn ! Zn and correspondences Cn between
T and Tn containing (⇢T , ⇢Tn) such that

dZn
P (µT �  �1

n , µTn �  0�1
n ) + sup

(x,x0)2Cn

�
dZn( n(x), 0n(x0)) + dM

�
�T (x),�Tn(x0)

��
< "n, (3.3)

where "n ! 0. Now, define  (r)
n to be the restriction of  n to T (r),  0n

(r) to be the restriction
of  0n to T (r)

n , and C(r)
n to be the collection of pairs (x, x0) such that: either x 2 T (r) and x0 is

the closest point in T (r)
n to an element x00 2 Tn such that (x, x00) 2 Cn; or x0 2 T (r)

n and x is the
closest point in T (r) to an element x00 2 T such that (x00, x0) 2 Cn. Note that  (r)

n and  0n
(r) are

isometric embeddings of T (r) and T (r)
n , respectively, into Zn, and that C(r)

n is a correspondence
between T (r) and T (r)

n such that (⇢(r)
T , ⇢(r)

Tn
) 2 C(r)

n . If we suppose that x 2 T (r) and x0 is the
closest point in T (r)

n to an element x00 2 Tn such that (x, x00) 2 Cn, then

dTn(⇢Tn , x00)  dZn( 0n(⇢Tn), n(⇢T )) + dZn( n(⇢T ), n(x)) + dZn( n(x), 0n(x00)),

which is bounded above by r + 2"n. It follows that dTn(x0, x00) < 2"n, and therefore also
dZn( n(x), 0n(x0)) < 3"n. A similar argument applies to the case when x0 2 T (r)

n and x is the
closest point in T (r) to an element x00 2 T such that (x00, x0) 2 Cn. Consequently, we obtain
that

sup
(x,x0)2C(r)

n

dZn( (r)
n (x), 0n

(r)(x0)) < 3"n. (3.4)

From this, one can proceed as in the proof of [1, Proposition 2.10] to deduce that

dZn
P

⇣
µ(r)
T � ( (r)

n )�1, µ(r)
Tn
� ( 0n

(r))�1
⌘

< "n + µT
⇣
T (r+4"n)\T (r�4"n)

⌘
.

Moreover, it is also elementary to deduce from (3.3) and (3.4) that

sup
(x,x0)2C(r)

n

����(r)
T (x)� �(r)

Tn
(x0)

���  "n + sup
(x,x0)2T (r+4"n):

dT (x,x0)<4"n

dM
�
�T (x),�T (x0)

�
.

Hence we have established that

�c

⇣
T (r)

n , T (r)
⌘
 5"n + µT

⇣
T (r+4"n)\T (r�4"n)

⌘
+ sup

(x,x0)2T (r+4"n):
dT (x,x0)<4"n

dM
�
�T (x),�T (x0)

�
. (3.5)

Since µT is a finite measure, this expression must converge to zero for all but at most a countable
number of values of r. Thus dominated convergence implies that �(T n, T ) ! 0, as desired. ⇤

Next, under the additional assumption that (M, dM ) is proper (i.e. every closed ball in M
is compact), we provide a su�cient condition for a subset A of T to be relatively compact with
respect to the topology induced by �. This extends the corresponding result of [1, Theorem
2.11] to include the spatial embedding.

Lemma 3.5. Suppose (M, dM ) is proper. Let A be a subset of T such that, for every r > 0:
(i) for every " > 0, there exists a finite integer N(r, ") such that for any element T of A there
is an "-cover of T (r) of cardinality less than N(r, ");
(ii) it holds that

sup
T 2A

µT
⇣
T (r)

⌘
< 1;
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(iii) {�T (⇢T ) : T 2 A} is a bounded subset of M , and for every " > 0, there exists a � =
�(r, ") > 0 such that

sup
T 2A

sup
x,y2T (r):
dT (x,y)�

dM (�T (x),�T (y)) < ".

Then A is relatively compact.
Proof. We follow closely the proof [1, Theorem 2.11]. Suppose that T n is a sequence in a set
A ✓ T that is assumed to satisfy the properties listed in the statement of the lemma. We
can then define U to be a countable index set such that {xn

u : u 2 U} is dense in Tn for
each n (we further assume that 0 2 U and xn

0 = ⇢Tn), and also introduce an abstract space
T 0 := {xu : u 2 U} such that, for some subsequence (ni)i�1,

dTni
(xni

u , xni
v ) ! dT (xu, xv) (3.6)

for each pair of indices u, v 2 U , where the right-hand side may be taken as a definition of the
function dT : T 0 ⇥ T 0 ! R+. In fact, dT is a quasi-metric on T 0, and so, with a slight abuse of
notation, we obtain a metric space (T 0, dT ) by identifying points that are a dT -distance of zero
apart. Moreover, the argument of [1] gives us that the completion (T , dT ) of this metric space
is locally compact, and identifies ⇢T := x0 as the root for the space. It also describes how to
construct a corresponding locally finite Borel measure on T , which we will call µT . Now, from
property (iii) and (3.6), it is easy to see that �Tni

(xni
u ) is bounded for each u, and so a diagonal

procedure yields that, by taking a further subsequence if necessary, �Tni
(xni

u ) ! �T (xu), for
each u 2 U , where, similarly to the definition of dT , the right-hand side provides a definition
of �T (xu) (that this function is well-defined on T 0 is readily checked from (iii) and (3.6)).
Moreover, it is not di�cult to check that

sup
x,y2T 0(r):

dT (x,y)�(r,")

dM (�T (x),�T (y)) < ",

and so the function can be extended continuously to the whole of T . In particular, we have
so far constructed T , and to check this is an element of T, it remains to show that (T , dT ) is
a real tree. However, in [1, Lemma 2.7] it is shown that (T , dT ) is a length space, and so it
is connected. Moreover, the four-point condition for the metric for (T , dT ) follows from the
four-point condition that must hold for (Tn, dTn) (see [26, (2.1)]). It follows that (T , dT ) must
be a real tree, as desired.

It remains to show that T ni
! T in (T,�). For this it is su�cient to show that T (r)

ni !
T (r) in (Tc,�c), at least whenever µT (@BT (⇢T , r)) = 0. Again, this may be accomplished
by following the argument of [1], which involves introducing finite subsets Uk,l ⇢ U such that
{xni

u : u 2 Uk,l} and {xu : u 2 Uk,l} suitably well-approximate T (r)
ni and T (r), respectively.

Moreover, a consideration of the correspondence between these finite sets given by (xni
u , xu),

u 2 Uk,l, allows it to be deduced in our case that

lim
i!1

�c

⇣
T (r)

ni
, T (r)

⌘
 2 sup

i�1
sup

x,y2T (r+�)
ni :

dTni
(x,y)�

dM

⇣
�Tni

(x),�Tni
(y)
⌘

+ 2 sup
x,y2T (r+�):
dT (x,y)�

dM (�T (x),�T (y)) ,

for any � > 0 (cf. the extra term involving the continuity of �T in (3.5)). Since the right-hand
side can be made arbitrarily small by suitable choice of �, this completes the proof. ⇤
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Remark 3.6. The restriction to real trees for (Tc,�c) has actually been unnecessary in this
section so far, and so the same topology could be extended to the setting where the metric
space part of an element – (T , dT ) – is simply assumed to be a compact metric space. Similarly,
for the topology, (T,�), it would have been enough to assume that the metric space part of an
element is a locally compact length space (cf. [1]). In both cases, the restriction to the case
where the metric space is a real tree would then simply be the restriction to a closed subset of
the relevant topology (cf. [25, Lemma 4.22]).

To conclude this section, we present two consequences of convergence in (Tc,�c), again
assuming that (M, dM ) is proper. Firstly, we prove convergence of the push-forward measures.
In what follows, BX(x, r) is the open ball in the metric space X = (X, dX) with radius r centred
at x.

Lemma 3.7. Suppose (M, dM ) is proper. If T n ! T in (Tc,�c), then

µTn � ��1
Tn
! µT � ��1

T (3.7)

weakly as Borel measures on (M, dM ).
Proof. Note first that if T n ! T in (Tc,�c) then for each n we can find a measurable function
fn : Tn ! T such that µTn � f�1

n ! µT weakly as measures on T , and also

sup
x2Tn

dM (�T (fn(x)),�Tn(x)) ! 0. (3.8)

Indeed, let Zn, n, 0n, Cn be defined as in the proof of Proposition 3.4, that is, so that (3.3) holds.
Let (xn

i )N(n)
i=1 be a "n-cover of T . Set An

1 := BZn( n(xn
1 ), 2"n) and An

i := BZn( n(xn
i ), 2"n)\An

i�1
for i = 2, . . . , N(n). Then the sets An

i , i = 1, . . . , N(n), are disjoint and their union contains all
those points in Zn within a distance "n of  n(T ). In particular, they cover  0n(Tn), so one can
define a (measurable) map fn : Tn ! T by setting fn(x) := xn

i if  0n(x) 2 An
i . For this map, we

have

dTP (µTn � f�1
n , µT )  dZn

P (µTn � f�1
n �  �1

n , µTn �  0�1
n ) + dZn

P (µTn �  0�1
n , µT �  �1

n ), (3.9)

where dTP is the Prohorov distance between measures on T . By (3.3), the second term in (3.9)
is bounded above by "n. Moreover, by definition we have that dZn( n(fn(x)), 0n(x)) is strictly
less than 2"n for all x 2 Tn, and so the first term is bounded above by 2"n. This confirms that
µTn � f�1

n ! µT . Next, observe that if fn(x) = xn
i and (x0, x) 2 Cn, then

dM (�T (fn(x)),�Tn(x))  "n + dM
�
�T (xn

i ),�T (x0)
�
 "n + sup

(x,x0)2T :
dT (x,x0)<3"n

dM
�
�T (x),�T (x0)

�
.

By the continuity of �T , this upper bound converges to zero as n ! 1, and we have thereby
established (3.8). As a consequence, if g : M ! R is continuous and compactly supported, then

��µTn � ��1
Tn

(g)� µT � ��1
T (g)

�� 
Z
Tn

|g(�Tn(x))� g(�T (fn(x)))|µTn(dx)

+
����
Z
T

g(�T (x))µTn � f�1
n (dx)�

Z
T

g(�T (x))µT (dx)
����

! 0,

where the convergence of the first term in the upper bound to zero follows from (3.8) (and the
fact that µTn(Tn) ! µT (T ) < 1, as follows from µTn � f�1

n ! µT ), and the convergence of the

19



second term to zero also follows from µTn �f�1
n ! µT . This establishes that µTn ���1

Tn
converges

vaguely to µT � ��1
T . Finally, since the masses of the measures in the sequence converge to the

mass of the limit, which is finite, it also demonstrates weak convergence. ⇤

Remark 3.8. It is not di�cult to extend the above proof to deduce that the conclusion of
(3.7) holds in the sense of vague convergence of measures whenever T n ! T in (T,�), and
in addition we have the following condition which prevents an explosion of mass in a bounded
region of the proper space (M, dM ): for each r 2 (0,1), there exists an R < 1 such that

��1
Tn

(BM (⇢M , r)) ✓ BTn(⇢Tn , R), for all n, (3.10)

where ⇢M is a distinguished point in M . We will apply a probabilistic version of such an
argument to prove Lemma 5.2.

Our second result is that convergence in Tc with respect to �c implies convergence in a
generalisation of the topology for path ensembles considered by Schramm in [48]. In that
paper, the space M considered was the one-point compactification of R2, S2 say. This result
will be used when we wish to transfer the results of [48] to our setting. Given a metric space X,
write H(X) for the Hausdor↵ space of compact subsets of X. We write �T (x, y) for the unique
path between x and y in T (including its endpoints).

Lemma 3.9. If we define

T (T ) := {(�T (x),�T (y),�T (�T (x, y))) : x, y 2 T } ,

then the convergence T n ! T in (Tc,�c) implies that T(T n) ! T(T ) in H(M ⇥M ⇥H(M)).
Proof. Suppose that T n ! T holds in (Tc,�c), and that Zn, n, 0n, Cn are defined as in the
proof of Proposition 3.4, so that (3.3) holds. We claim that if (x, xn), (y, yn) 2 Cn, then

dM
H (�T (�T (x, y)),�Tn(�Tn(xn, yn)))  ⌘n := "n + sup

(z,z0)2T :
dT (z,z0)<5"n

dM
�
�T (z),�T (z0)

�
, (3.11)

where dM
H is the Hausdor↵ distance between subsets of M . To prove this, we start by considering

z 2 �T (x, y), and defining zn to be any element of Tn such that (z, zn) 2 Cn. By applying (3.3)
and the fact that the metric dT is additive along paths, we obtain

dTn(xn, zn) + dTn(zn, yn) < dT (x, z) + dT (z, y) + 4"n = dT (x, y) + 4"n < dTn(xn, yn) + 6"n.

It follows that zn is within a distance of 3"n (with respect to dTn) of �Tn(xn, yn). Now, if we let z0n
be the closest point in �Tn(xn, yn) to zn, and z00n be such that (z00n, z0n) 2 Cn, then it is the case that
dT (z, z00n) < dTn(zn, z0n)+2"n < 5"n, and so dM (�T (z),�Tn(z0n)) < "n +dM (�T (z),�T (z00n))  ⌘n.
Thus �T (z) is within a dM -distance ⌘n of �Tn(�Tn(xn, yn)). A similar argument yields that any
point of �Tn(�Tn(xn, yn)) is within a dM -distance ⌘n of �T (�T (x, y)). This establishes (3.11),
from which the result follows. ⇤

Remark 3.10. As with Lemma 3.7, this result is readily extended to the non-compact case
when (M, dM ) is proper. Indeed, under this assumption, if T n ! T in (T,�) and (3.10)
holds, then T(T n) ! T(T ) in H(Ṁ ⇥ Ṁ ⇥ H(Ṁ)), where Ṁ is defined to be the one-point
compactification of M . A probabilistic version of this argument will be used to prove Lemma
5.5.

Remark 3.11. While we do not need the result, we note that a similar argument can be used
to relate convergence in our topology to convergence in the topology of [2]. This topology is
similar to that of Schramm, but it incorporates convergence of the shape of subtrees spanning
an arbitrary finite number of vertices, rather than just two.
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4 Tightness of UST law under rescaling

The aim of this section is to prove Theorem 1.1, that is, to establish that the law of the UST,
considered as a measured, rooted, spatial tree, is tight under rescaling. The key estimates for
this purpose were already established in Section 2. As discussed in the introduction, here we
extend U to a (locally compact) real tree by adding line segments of unit length along its edges,
and define �U : U ! R2 to be the identity map on vertices with linear interpolation along edges.
Throughout this section, we suppose that the image space (M, dM ) introduced in Section 3 is
R2 equipped with the Euclidean distance.

Lemma 4.1. For every r > 1, " 2 (0, "0), it holds that

lim
N!1

lim inf
�!0

P (there exists a ��"-cover for BU (0, ��r) of cardinality  N) = 1. (4.1)

Proof. Recalling the notation NU introduced above Lemma 2.12. we have that the probability
in (4.1) is at least P(NU (��r, ��")  N). Let ✓ = ✓(N) be such that c✓1+df (r/")df = N ;
then by (2.20) we have that lim sup�!0 P(NU (��r, ��") � N)  c exp(�✓1/80), and since
limN!1 ✓(N) = 1, this proves the result.

Lemma 4.2. For every r < 1, it holds that

lim
�!1

lim inf
�!0

P
�
�2µU

�
BU (0, ��r)

�
 �

�
= 1.

Proof. This is a simple consequence of Theorem 2.1(b). ⇤

Lemma 4.3. For every " > 0, r < 1, it holds that

lim
⌘!0

lim inf
�!0

P
⇣

max
x,y2BU (0,��r):
dU (x,y)��⌘

|�U (x)� �U (y)|  ��1"
⌘

= 1.

Proof. Since |�U (x)� �U (y)|  dS
U (x, y) it is su�cient to prove that

lim
⌘!0

lim inf
�!0

P
⇣

max
x,y2BU (0,c1��r):
dU (x,y)c2��⌘

dS
U (x, y) > ��1"

⌘
= 0. (4.2)

Let r0 = ��1", and set A⇤(�) := {BU (0, c1��r) ⇢ BE(0, r0ec1�1/2)}, where c1 is the constant of
Proposition 2.8. By Theorem 2.1(a),

P
��

BU (0, c1�
�r) ⇢ BE(0, (�r)1/��1)

 c�  c2e
�c3�2/3

, 8�  �r,� � c1,

and in addition (�r)1/��1  r0ec1�1/2 for � large. Thus P(A⇤(�)c)  c2e�c3�2/3 for all � 
�r, � � �1, where �1 is some large, finite constant. Next let A4 be as in Proposition 2.8
(taking (x0, r,�) in that result to be (0, r0,�) in our current parametrisation), so that P(Ac

4) 
c4 exp(�c5�1/2) for all �  ", � � �0. Clearly, it is enough to consider the event of (4.2) on
A⇤(�) \ A4. On A⇤(�) \ A4, if x, y 2 BU (0, c1��r) satisfy dS

U (x, y) > ��1" = r0, then by
Proposition 2.8, dU (x, y) � ��1dS

U (x, y) � ��1"��. Thus, by taking ⌘ < ��1", dU (x, y) >
⌘��, so (4.2) is proved. ⇤

Proof of Theorem 1.1. This is clear given the pre-compactness result of Lemma 3.5, and Lemmas
4.1–4.3. ⇤
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5 Properties of limit measures

In this section, we establish properties of the limit measure of the UST and will prove Theorem
1.3. Throughout, we fix a sequence �n ! 0 such that (P�n)n�1 converges weakly (as measures
on (T,�)), and write U�n = (U , �ndU , �2nµU , �n�U , 0). Letting P̃ be the relevant limiting law,
we denote by T = (T , dT , µT ,�T , ⇢T ) a random variable with law P̃. Again, we take the image
space (M, dM ) of Section 3 to be R2 equipped with the Euclidean distance. In many of the
arguments, the following coupling result will be useful.

Lemma 5.1. There exist realisations of (U�n)n�1 and T built on the same probability space,
with probability measure P⇤ say, such that: for some subsequence (ni)i�1 and divergent sequence
(rj)j�1 it holds that, P⇤-a.s.,

Di,j := �c

⇣
U (rj)
�ni

, T (rj)
⌘
! 0 (5.1)

as i !1, for every j � 1.
Proof. Recall that by the definition of P̃ we have that U�n ! T in distribution (where the
laws of random variables on the left-hand side are considered under P, and those on the right
under P̃). Thus, since the space (T,�) is separable (see Proposition 3.4), we can suppose
that we have versions of the random variables built on a common probability space, with
probability measure P⇤, such that the convergence holds P⇤-a.s. From the definition of �
and Fubini’s theorem, it follows that

R1
0 e�r(1 ^ E⇤(�c(U (r)

�n
, T (r))))dr ! 0. Some standard

analysis now yields that there exists a subsequence (ni)i�1 such that for Lebesgue almost-every
r, E⇤(�c(U (r)

�ni
, T (r))) ! 0. In turn, letting (rj)j�1 be a divergent sequence such that the above

holds for every rj , a straightforward diagonalisation argument yields the result. ⇤

We now show that the push-forward of µT by �T is P̃-a.s. equal to Lebesgue measure on
R2.

Lemma 5.2. P̃-a.s., it holds that µT � ��1
T = L.

Proof. We first note that since �2µU � ��1
U (��1 ·) ! L for any realisation of the UST, it will

su�ce to show that
�2nµU � ��1

U (��1
n ·) ! µT � ��1

T (5.2)

in distribution with respect to the topology of vague convergence of probability measures on R2.
For this, it will be enough to establish that, for any continuous, positive, compactly supported
function f ,

�2n

Z
R2

f(�nx)µU � ��1
U (dx) !

Z
R2

f(x)µT � ��1
T (dx) (5.3)

in distribution (see [30, Theorem 16.16], for example).
Applying the coupling of Lemma 5.1 in conjunction with Lemma 3.7, we obtain

�2ni
µU
�
��1
U
�
��1
ni

·
�
\BU

�
0, ��ni

rj
��
! µT

⇣
��1
T (·) \ T (rj)

⌘
(5.4)

weakly as measures on R2 as i !1, for every rj , P⇤-a.s. In particular, this confirms that, for
every rj , the above convergence holds in distribution (under the convention that the laws of
random variables on the left-hand side are considered under P, and those on the right under
P̃). By monotonicity, we also clearly have P̃-a.s. that, for any positive measurable f ,Z

R2
f(x)µT

⇣
��1
T (·) \ T (r)

⌘
(dx) !

Z
R2

f(x)µT � ��1
T (dx), (5.5)
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as r !1.
As a consequence of (5.4) and (5.5), to establish the convergence at (5.3) along the sub-

sequence (ni)i�1, it is su�cient to show that µT � ��1
T is locally finite and also that, for any

continuous, positive, compactly supported function f ,

lim
j!1

lim sup
i!1

�2ni

�����E
 Z

BU(0,��
ni rj)c

f(�ni�U (x))µU (dx)

!����� = 0 (5.6)

(cf. [13, Theorem 3.2]). To show that the latter is true, first choose r such that the support of f
is contained within BE(0, r) (where we write A to represent the closure of a set A), and define
A(i, j) to be the event that

��1
U
�
BE(0, ��1

ni
r)
�
✓ BU

�
0, ��ni

rj
�

(5.7)

(i.e. similarly to the inclusion at (3.10)). It is then the case that the expression within the limits
on the left-hand side of (5.6) is equal to

�2ni

�����E
 Z

BU(0,��
ni rj)c

f(�ni�U (x))µU (dx)1A(i,j)c

!����� ,

which is bounded above by supx2R2 f(x)�2ni
µU (BE(0, ��1

ni
r))P(A(i, j)c)  cP(A(i, j)c) for some

finite constant c. Consequently, since

lim
j!1

lim sup
i!1

P(A(i, j)c) = 0 (5.8)

by Theorem 2.1(a), we have proved (5.6), as desired.
To check that µT � ��1

T is locally finite, we will show that, for every r > 0,

lim
R!1

P̃
⇣
��1
T
�
BE(0, r)

�
6✓ T (R)

⌘
= 0. (5.9)

Suppose that (5.9) is not true for some r0 > 0, with the limit instead being equal to " > 0. It
is then the case that for every R, there exists an R0 such that

P̃
⇣
�T (x) 2 BE(0, r0) for some x 2 T (R0)\T (R)

⌘
� "/2. (5.10)

Next, let us suppose that the sequences (ni)i�1 and (rj)j�1 are given by Lemma 5.1, and
Di,j , as defined by (5.1), is bounded strictly above by �. We can then find a correspondence
Ci,j ✓ BU (0, ��ni

rj) ⇥ T (rj) such that |�ni
dU (0, x) � dT (⇢T , x0)| < 2� and also |�ni�U (x) �

�T (x0)|  � for every (x, x0) 2 Ci,j . It is then easy to check that if rj > R0 and the event
within the probability at (5.10) holds, then so does the event that �U (x) 2 BE(0, ��1

ni
(r0 + �))

for some x 2 BU (0, ��ni
rj)\BU (0, ��ni

(R� 2�)), which is a subset of {��1
U (BE(0, ��1

ni
(r0 + �))) 6✓

BU (0, ��ni
(R� 2�))}. Since we know that P⇤(Di,j > �) ! 0 as i !1, it follows that

lim inf
i!1

P
�
��1
U (BE(0, ��1

ni
(r0 + �))) 6✓ BU (0, ��ni

(R� 2�))
�
� "/2.

However, replacing r0+ � by r and R�2� by rj for suitably large j, we see that this contradicts
the statement at (5.8). Consequently, (5.9) must actually be true.

What we have proved already is enough to yield the lemma. We do note, though, that for
any subsequence (ni)i�1, we could have applied the same argument to find a sub-subsequence
(nij )j�1 along which the convergence at (5.3) holds. Since the limit is identical for any such
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sub-subsequence, it must be the case that the full sequence also converges to this limit, which
thereby establishes (5.2). ⇤

Next, similarly to (2.1), define a ‘Schramm-metric’ on T by setting, for x, y 2 T ,

dS
T (x, y) := diam (�T (�T (x, y))) ,

where the diameter is in the Euclidean metric. It follows immediately from the continuity of �T
that dS

T takes values in [0,1), and it is easy to verify from the definition that dS
T is symmetric

and satisfies the triangle inequality. In the next two lemmas, we show that dS
T is a metric on

T , and that it gives the same topology as dT .

Lemma 5.3. For every r, ⌘ > 0, we have

lim
"!0

P̃

 
inf

x,y2BT (⇢T ,r):
dT (x,y)�⌘

dS
T (x, y) < "

!
= 0. (5.11)

Proof. We start by proving the discrete analogue of the result: for every r, ⌘ > 0,

lim
"!0

lim sup
�!0

P

 
inf

x,y2BU (0,��r):
dU (x,y)���⌘

dS
U (x, y) < ��1"

!
= 0. (5.12)

We argue similarly to the proof of Lemma 4.3. Again, it is enough to consider the event in
A⇤(�)\A4. On A⇤(�)\A4, if x, y 2 BU (0, c1��r) satisfy dS

U (x, y)  ��1", then by Proposition
2.8, dU (x, y)  �"��. Thus, by taking " small enough so that �" < ⌘, we have dU (x, y) <
⌘��. This proves (5.12) with r replaced by c1r, and a simple reparameterisation yields the
result.

To transfer to the continuous setting, let us suppose that the sequences (ni)i�1 and (rj)j�1

are defined by Lemma 5.1 and that the �c distance between U (rj)
�ni

and T (rj), again denoted by
Di,j , is bounded strictly above by �. Similarly to (3.11), we can then find a correspondence
Ci,j ✓ BU (0, ��ni

rj)⇥ T (rj) such that for every (x, x0), (y, y0) 2 Ci,j , we have

dR2

H (�ni�U (�(x, y)),�T (�T (x0, y0)))  � + sup
(z,z0)2T (rj): dT (z,z0)<5�

|�T (z)� �T (z0)|,

where dR2

H is the Hausdor↵ distance on R2, and so
���nid

S
U (x, y)� dS

T (x0, y0)
��  2� + 2 sup

(z,z0)2T (rj):
dT (z,z0)<5�

���T (z)� �T (z0)
�� .

We can further assume that |�ni
dU (x, y)� dT (x0, y0)|  2� for every (x, x0), (y, y0) 2 Ci,j . Next,

fix r, ⌘ > 0 and select j so that rj > r. It then holds that the probability on the left-hand side
of (5.11) is bounded above by

P

 
inf

x,y2BU (0,��
ni rj):

dU (x,y)���
ni (⌘�2�)

dS
U (x, y) < 2��1

ni
"

!
+ P̃

 
2� + 2 sup

(z,z0)2T (rj):
dT (z,z0)<5�

���T (z)� �T (z0)
�� > "

!
+ P⇤ (Di,j > �) ,

where P⇤ is the coupling measure defined in the statement of Lemma 5.1. Now, by our choice
of subsequence (ni)i�1, the final expression converges to zero as i !1, for any value of � > 0.
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Since �T is continuous, the second term converges to zero as � ! 0, for any value of " > 0.
Hence we can conclude

P̃

0
B@ inf

x,y2BT (⇢T ,r):
dT (x,y)�⌘

dS
T (x, y) < "

1
CA  lim sup

i!1
P

0
BB@ inf

x,y2BU (0,��
ni rj):

dU (x,y)���
ni ⌘/2

dS
U (x, y) < 2��1

ni
"

1
CCA .

Since the upper bound converges to zero as "! 0 by (5.12), this completes the proof. ⇤

Lemma 5.4. P̃-a.s., dS
T is a metric on T , and the identity map from (T , dT ) to (T , dS

T ) is a
homeomorphism.
Proof. To establish that dS

T is a metric, it remains to check that it is positive definite. For this,
we note P̃(dS

T (x, y) = 0 for some x, y 2 T with dT (x, y) > 0) is equal to

lim
r!1

lim
⌘!0

lim
"!0

P̃
�
dS
T (x, y) < " for some x, y 2 BT (⇢T , r) with dT (x, y) � ⌘

�
,

which in turn is equal to zero by Lemma 5.3. Next we check that the identity map from (T , dT )
to (T , dS

T ) is a homeomorphism. Clearly it is a bijection. Moreover, its continuity follows
from the continuity of �T . For the continuity of the inverse, we start by noting that a simple
Borel-Cantelli argument yields that, P̃-a.s., for every ⌘ > 0, there exists a "⌘ > 0 such that
infx,y2BT (⇢T ,r): dT (x,y)�⌘ dS

T (x, y) > "⌘. In particular, this implies that if x, y 2 BT (⇢T , r) and
dS
T (x, y)  "⌘, then dT (x, y) < ⌘. Hence the identity map from (T , dS

T ) to (T , dT ) is continuous,
as desired. ⇤

In order to transfer results from [48], we now show that the push-forward of P̃ by the map
T introduced in Lemma 3.9 gives precisely a subsequential limiting measure as considered in
the latter paper. In particular, in [48], Schramm studied properties of the subsequential limits
as � ! 0 of the laws of T(U�), viewed as probability measures on the space H(S2⇥ S2⇥H(S2))
(with S2 the one-point compactification of R2). Whilst the space H(S2⇥S2⇥H(S2)) is compact,
and so it is immediate that the laws of (T(U�))�>0 are tight and admit such subsequential limits,
the next result shows that along the subsequence (�n)n�1 we actually have convergence, with
the limit being the law of T(T ) under P̃.

Lemma 5.5. The laws of (T(U�n))n�1 under P converge to the law of T(T ) under P̃, weakly
as probability measures on H(S2 ⇥ S2 ⇥H(S2)).
Proof. We again consider the coupling of Lemma 5.1. Together with Lemma 3.9, this gives that
there exists a divergent sequence (rj)j�1 such that, for every rj , P⇤-a.s., T(U (rj)

�ni
) ! T(T (rj))

in H(R2 ⇥ R2 ⇥H(R2)), and thus also in H(S2 ⇥ S2 ⇥H(S2)).
Let dS2 be the usual metric on S2. Set �r := supx,y2S2\BE(0,r) dS2(x, y), and note that �r ! 0

as r !1. Let also

dS2⇥S2⇥H(S2)((x, y,A), (x0, y0, A0)) := dS2(x, x0) + dS2(y, y0) + dS2

H (A,A0),

where dS2

H is the Hausdor↵ distance on H(S2). Now, suppose that i and j are indices such that
the event A(i, j) holds, where A(i, j) is defined as in the proof of Lemma 5.2 (see the definition
at (5.7) in particular). Denoting by dS2⇥S2⇥H(S2)

H the Hausdor↵ distance on H(S2 ⇥ S2 ⇥H(S2)),
we claim that on A(i, j),

dS2⇥S2⇥H(S2)
H

⇣
T(U (rj)

�ni
),T(U�ni

)
⌘

< 3�r,
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and similarly, if ��1
T
�
BE(0, r)

�
✓ T (R), then

dS2⇥S2⇥H(S2)
H

⇣
T(T (R)),T(T )

⌘
< 3�r.

Since the two statements can be proved in the same way, let us consider only the latter. We need
to show that if x 2 T \T (R) and y 2 T then (�T (x),�T (y),�T (�T (x, y))) is within a distance of
�r of T(T (R)) with respect to the metric dS2⇥S2⇥H(S2). First, define x0, y0 to be the closest point
of T (R) to x, y, respectively, so that the triple (�T (x0),�T (y0),�T (�T (x0, y0))) is an element
of T(T (R)). By definition, we have that �T (x0, x)\{x0} is a subset of T \T (R), and so its image
under �T must fall outside of BE(0, r). A similar observation holds in the case that y 62 T (R). It
follows that dS2⇥S2⇥H(S2)((�T (x),�T (y),�T (�T (x, y))), (�T (x0),�T (y0),�T (�T (x0, y0)))) < 3�r,
as desired.

Given (5.8), (5.9) and the conclusions of the previous two paragraphs, it is not di�cult
to show that T(U�ni

) converges to T(T ) in distribution. The full convergence result can be
obtained from this by applying a subsequence argument as in the proof of Lemma 5.2. ⇤

As a consequence of the previous lemma, we immediately inherit a number of results from
[48].

Lemma 5.6. (See [48, Theorem 1.6, Corollary 10.4]). For P̃-a.e. realisation of T , the following
properties are satisfied:
(a) For every (a, b,!) 2 T(T ), if a 6= b, then ! is a simple path, that is, homeomorphic to [0, 1].
If a = b, then ! is a single point or homeomorphic to a circle.
(b) Considered as a subset of S2,

trunk :=
[

(a,b,!)2T(T )

!\{a, b} (5.13)

is a dense topological tree.
(c) For each x 2 trunk, there are at most three connected components of trunk\{x}.
(d) The Hausdor↵ dimension of trunk is in (1, 2).

Note that, by construction, the set trunk defined at (5.13) is actually a subset of R2, and is
also a dense topological tree when considered a subset of this space. In the following lemma, we
show further that trunk is topologically equivalent to the set T o introduced in the statement of
Theorem 1.3. For the proof of this result, we observe that T o can equivalently be defined by

T o =
[

x,y2T
�T (x, y)\{x, y}. (5.14)

Define, for x, y 2 trunk, dS
trunk(x, y) := diam (�trunk(x, y)), where �trunk(x, y) is the unique path

between x and y in trunk, and the diameter is taken with regards to the Euclidean metric.
We remark that although the metric dS

trunk behaves quite di↵erently to the Euclidean one, the
topologies these two metrics induce on trunk are the same – see the proof of Theorem 1.3 for
details (cf. [48, Remark 10.15]).

Lemma 5.7. P̃-a.s., �T is an isometry from (T o, dS
T ) to (trunk, dS

trunk).
Proof. We start the proof by establishing that

�T (�T (x, y)\{x, y}) = �T (�T (x, y)) \{�T (x),�T (y)} (5.15)
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for every x, y 2 T . The inclusion ◆ is easy, and so we work towards showing ✓. Let z 2
�T (�T (x, y)\{x, y}) for some x 6= y, and suppose that it is also the case that z = �T (x). By
assumption, we know that z = �T (x0) for some x0 2 �T (x, y)\{x, y}. Now, by Lemma 5.5,
because �T (x0) = �T (x) we can apply Lemma 5.6(a) to deduce that �T (�T (x, x0)) is either a
single point or homeomorphic to a circle. Actually, since dT (x, x0) > 0, Lemma 5.4 tells us that
dS
T (x, x0) > 0, and so it must be the latter option that holds true. We continue to consider

two cases. Firstly, if �T (y) 6= �T (x), then Lemma 5.6(a) tells us that �T (�T (x, y)) must be a
simple path. However, the circle �T (�T (x, x0)) is a subset of �T (�T (x, y)), and so we arrive at
a contradiction. Secondly, if �T (y) = �T (x), then one can again apply Lemma 5.4 to choose
x00 2 �T (x, y) such that �T (x00) 6= �T (x). Clearly, we have that either z 2 �T (�T (x, x00)\{x, x00})
or z 2 �T (�T (x00, y)\{x00, y}). Since x00 62 {x, y} and �T (x00) 62 {�T (x),�T (y)}, the situation
reduces to the first case, and yields another contradiction. Hence, we can not have z = �T (x).
Similarly, z 6= �T (y), so the claim at (5.15) is proved.

Now, from (5.13), (5.14) and (5.15), it is clear that

�T (T o) =
[

x,y2T
�T (�T (x, y)\{x, y}) =

[
x,y2T

�T (�T (x, y)) \{�T (x),�T (y)} = trunk,

and so the map �T : T o ! trunk is a surjection. To complete the proof, we will again use
the fact that, for every x, y 2 T with �T (x) 6= �T (y), �T (�T (x, y)) is a simple path, and note
that the proof of this result in [48] includes showing that the endpoints of this path are �T (x)
and �T (y). In particular, if x, y 2 T o are such that �T (x) 6= �T (y), then we know that the
simple path �T (�T (x, y)) from �T (x) to �T (y) is contained in trunk. Recalling that trunk is
a topological tree, which implies there is be a unique path �trunk(�T (x),�T (y)) between �T (x)
and �T (y) within this set, it must be the case that �T (�T (x, y)) = �trunk(�T (x),�T (y)). On
the other hand, if x, y 2 T o are such that �T (x) = �T (y), then, by Lemma 5.6(a), it must
hold that �T (�T (x, y)) = {�T (x)}, where we note that we can exclude the possibility that
�T (�T (x, y)) is homeomorphic to a circle, since trunk is a topological tree and can not contain
such a subset. Hence we obtain that �T (�T (x, y)) = �trunk(�T (x),�T (y)) in this case too.
Consequently, dS

T (x, y) = dS
trunk(�T (x),�T (y)) for every x, y 2 T o. This confirms that �T is an

isometry, as desired. ⇤

Before we complete the proof of Theorem 1.3 we mention another property of the trunk that
will be needed. This is that the trunk can be used to reconstruct the dual trunk, that is, the (sub-
sequential) scaling limit of the dual graph of the UST (see [48, Remarks 10.13 and 10.14]). More
precisely, for any two points x, y 2 S2\trunk, there exists a unique path in S2\trunk between
them. Denote this path by �trunk†(x, y), and set trunk† := [x,y2S2\trunk�trunk†(x, y)\{x, y}. This
is the dual trunk, which is distributed identically to trunk.
Proof of Theorem 1.3. It readily follows from Theorem 1.1 and the unboundedness of (U , dU )
that the diameter of (T , dT ) is infinite, and so it has at least one end at infinity. Thus to
complete the proof of part (a)(ii), it will su�ce to show that there can be no more than one
end at infinity. To this end, note that, for any r > 0,

P̃ ((T , dT ) has � 2 ends at infinity)  lim
R!1

P̃ (CT (r,R) � 2) ,

where CT (r,R) is the event that there exist x, y 62 T (R) such that �T (x, y) \ T (r) 6= ;.
By applying the coupling of Lemma 5.1, it is possible to bound the inner probability by
lim sup�!0 P(CU (2��r, ��R/2)), where CU (r,R) is defined similarly to CT (r,R), with T re-
placed by U . (Since we have already presented similar coupling arguments in the proofs of
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Lemmas 5.2, 5.3 and 5.5, we omit the details.) Now, for � > 0,

P
�
CU (2��r, ��R/2)

�
 P

⇣
CE
U (���1r1/, ��1R1//�)

⌘
+ P

⇣
BU (0, 2��r) 6✓ BE(0,���1r1/)

⌘

+P
⇣
BE(0,��1��1R1/) 6✓ BU (0, ��R/2)

⌘
,

where CE
U (r,R) is the event that there exist x, y 62 BE(0, R) such that �(x, y) \ BE(0, r) 6= ;.

Hence, from Theorem 2.1(a) and [2], we obtain, for R � � � 2 and R � �2r,

P
�
CU (2��r, ��R/2)

�
 c1

 
�2r1/

R1/

!c2

+ c3�
�1/6.

Taking � = R1/3, this converges to 0 as R ! 1. It follows that the P̃-probability of (T , dT )
having � 2 ends at infinity is zero, as desired.

For part (b)(i), we begin by noting that A ✓ ��1
T (�T (A)) for any set A. Consequently, from

Lemma 5.2, we obtain µT ({x})  L({�T (x)}) = 0 for every x 2 T . Moreover, by Lemma 5.7,
µT (T o)  L(�T (T o)) = L(trunk) = 0, where the final equality is a consequence of the fact that
trunk has Hausdor↵ dimension strictly less than two (as recalled in Lemma 5.6(d)).

To establish part (b)(ii), it will su�ce to check that, given R > 0, there exist constants
c1, c2, c3, c4, c5, c6 2 (0,1) such that, for every r 2 (0, 1),

P̃
⇣

inf
x2BT (⇢T ,R)

µT
⇣
BT (x, r)

⌘
 c1r

df (log r�1)�80
⌘

 c2r
c3 ,

P̃
⇣

sup
x2BT (⇢T ,R)

µT
⇣
BT (x, r)

⌘
� c4r

df (log r�1)80
⌘

 c5r
c6 .

Indeed, one can then apply a simple Borel-Cantelli argument along the subsequence rn = 2�n,
n 2 N, to deduce the result. We observe that the above inequalities can be deduced from
the definition of P̃ and Corollary 2.11 by applying the coupling of Lemma 5.1. Furthermore,
note that part (a)(i) is an elementary consequence of (b)(ii) (see [24, Proposition 1.5.15], for
example).

Part (b)(iii) can also be obtained using a Borel-Cantelli argument in conjunction with the
following: there exist constants c1, c2 2 (0,1) such that

P̃
⇣
µT (BT (⇢T , r)) � �rdf

⌘
 c1e

�c2�1/3
, (5.16)

P̃
⇣
µT (BT (⇢T , r))  ��1rdf

⌘
 c1e

�c2�1/9
, (5.17)

for all r > 0, � � 1. Again applying the definition of P̃ and the coupling of Lemma 5.1, it is
possible to deduce the bound at (5.16) from Theorem 2.1(b). The proof for the bound at (5.17)
is similar.

The first statement of part (c)(i) depends on Lemmas 5.4 and 5.7. In particular, these two
results imply that �T is a homeomorphism from (T o, dT ) to (trunk, dS

trunk). To replace the
topology generated by dS

trunk with the Euclidean one, we will show that the identity map from
(trunk, dS

trunk) to (trunk, dE) is also a homeomorphism. Clearly it is a continuous bijection, and
so we need to show its inverse is continuous. To do this, suppose that xn, x 2 trunk are such
that dE(xn, x) ! 0. Now, in light of �T : (T o, dT ) ! (trunk, dS

trunk) being a homeomorphism,
the map �T : T ! R2 can be viewed as the extension of the identity map trunk ! R2 to a
continuous map on the completion of (trunk, dS

trunk), and it therefore follows from the discussion

28



in [48, Remark 10.15] that |��1
T (x)| is equal to one if x is not contained in trunk†. In particular,

since trunk \ trunk† = ;, there exist unique yn, y 2 T such that �T (yn) = xn and �T (y) = x.
Moreover, since xn, x 2 BE(0, r) for some r < 1, there must exist an R < 1 such that
yn, y 2 BT (⇢T , R) – this is an easy consequence of (5.9). Hence, by compactness, for any
subsequence ni, there exists a sub-subsequence ynij

such that dT (ynij
, y0) ! 0 for some y0 2 T .

By the continuity of �T , it follows that dE(�T (y0),�T (y)) = limj!1 dE(�T (ynij
),�T (y)) =

limj!1 dE(xnij
, x) = 0, and so y0 = y. Noting that yn, y are necessarily in T o, Lemmas 5.4 and

5.7 thus yield dS
trunk(xnij

, x) = dS
T (ynij

, y) ! 0. Since the initial subsequence (ni) was arbitrary,
this implies dS

trunk(xn, x) ! 0, as desired. The denseness of �T (T o) in R2 follows from Lemmas
5.6(b) and 5.7. Furthermore, applying Lemma 5.6(c) together with the homeomorphism between
T o and trunk yields that maxx2T degT (x) = 3, which is the first claim of part (c)(ii). To check
the remaining claim of part (c)(ii), we note that if x is contained in trunk†, then |��1

T (x)| is
equal to the degree of x in trunk† (again, see the discussion in [48, Remark 10.15]). Since
trunk† also has maximum degree 3 (by Lemma 5.6(c) again), this establishes the desired result.
(Recall that |��1

T (x)| = 1 for x 62 trunk†.) Finally, point (c)(iii) will be a simple consequence
of Lemma 5.2, at least if we can show that L({x : |��1

T (x)| � 2}) = 0. However, from our
previous observations, we know that the set {x : |��1

T (x)| � 2} is contained in trunk†, which
has Hausdor↵ dimension strictly less than two (by Lemma 5.6(d)). ⇤

6 Simple random walk scaling limit

In this section we prove Theorem 1.4. The general convergence result for simple random walks
on graph trees (see Theorem 6.1 below) that we apply extends [18, 19, 20] from the setting of
ordered graph trees (in particular, in those articles graph trees and real trees were encoded by
functions). Work is also needed to extend to the non-compact setting of this article.

Let us start by introducing some notation. Let (Tn)n�1 be a sequence of finite graph trees.
Write dTn for the shortest path graph distance on Tn, and µTn for the counting measure on
the vertices of Tn. Suppose that �n is a map from the vertices of Tn into M – until otherwise
noted, we assume that M is a separable normed vector space, and write the metric induced
by its norm as dM . Fix a distinguished vertex ⇢Tn of Tn. We extend (Tn, dTn , µTn ,�Tn , ⇢Tn)
to an element of Tc by adding line segments of unit length along edges of the graph tree,
and (isometrically) interpolating �Tn between these along the relevant geodesics. The process
(XTn

t )t�0 is the discrete time simple random walk on Tn, and P Tn
x its law started from x. We

extend (�Tn(XTn
t ))t�0 to an element of C(R+,M) by interpolation along geodesics.

The limit space we consider in Theorem 6.1 is the natural generalisation of that of [20].
In particular, let T⇤c be the collection of those elements T of Tc such that µT is non-atomic,
supported on the leaves of T (recall that the leaves of a real tree T are those points x 2 T such
that T \{x} is connected, i.e. which have degT (x) = 1), and also there exists a constant c such
that

lim inf
r!0

inf
x2T

r�cµT (BT (x, r)) > 0. (6.1)

For a locally compact real tree (T , dT ) equipped with a locally finite Borel measure µT of
full support, it is shown in [6] how to construct an associated ‘Brownian motion’ (cf. [32], which
deals with the case when (T , dT ) is complete). For readers’ convenience, let us briefly summarise
this construction. In particular, first define the length measure �T on T to be the restriction of
one-dimensional Hausdor↵ measure to T o := T \{x 2 T : degT (x) = 1}. Moreover, let A be the
collection of locally absolutely continuous functions on T , where we say a function f : T ! R is
locally absolutely continuous if and only if for every " > 0 and subset A ✓ T with �T (A) < 1,
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there exists a � > 0 such that: if �T (x1, y1), . . . , �T (xk, yk) ✓ A, k 2 N are disjoint arcs withPk
i=1 dT (xi, yi) < �, then

Pk
i=1 |f(xi) � f(yi)| < ". Given a function f 2 A, there exists a

unique (up to �T -null sets) function g that is locally in L1(T ,�T ) such that

f(y)� f(x) = �
Z
�T (bT (⇢T ,x,y),x)

g(z)�T (dz) +
Z
�T (bT (⇢T ,x,y),y)

g(z)�T (dz),

for all x, y 2 T , where bT (⇢T , x, y) is the unique branch-point of ⇢T , x and y in T [6, Proposition
1.1]. (Note that the above di↵erence can be interpreted as an oriented integral from x to y,
and is independent of the choice of ⇢T .) The function g in the previous sentence is called the
gradient of f , and is denoted rf . Next, define

ET (f, g) :=
1
2

Z
rf(x)rg(x)�T (dx),

for all f, g 2 FT , where F := {f 2 A : rf 2 L2(T ,�T )} \ L2(T , µT ) \ C1(T ). Here, C1(T )
is the space of continuous functions on T that vanish at infinity. By [6, Propositions 2.4 and
4.1, and the proof of Theorem 1], (ET ,FT ) is a local, regular Dirichlet form on L2(T , µT ).
The Brownian motion on (T , dT , µT ) is the continuous, µT -symmetric, strong Markov process
((XT

t )t�0, (P T
x )x2T ) associated with this Dirichlet form (see [27]). Clearly this construction

applies to elements of T⇤c , and the additional restriction (6.1) allows one to deduce that this
Brownian motion has local times (LT

t (x))x2T ,t�0 which are jointly continuous in t and x (see
[20, Lemma 2.2]).

Theorem 6.1. Let (an)n�1, (bn)n�1, (cn)n�1 be null sequences with bn = o(an) such that

(Tn, andTn , bnµTn , cn�Tn , ⇢Tn) ! T (6.2)

in (Tc,�c), where T is an element of T⇤c . Then
⇣
cn�Tn

⇣
XTn

t/anbn

⌘⌘
t�0

!
�
�T
�
XT

t

��
t�0

(6.3)

in distribution in C(R+,M), where we assume XTn
0 = ⇢Tn for each n, and also XT

0 = ⇢T .

Since the proof of this result is close to the arguments of [18, 19, 20], we will not give all
of the details. For clarity, though, we will break it into three lemmas. The basic idea is to
approximate the processes of interest by processes on trees which have finite total length, for
which convergence is more straightforward to prove. So, let T be an element of T⇤c , and (xi)i�1

be a dense sequence of vertices in T – these will be fixed throughout the current discussion. (To
avoid trivialities, we assume that T consists of more than one point.) We suppose that (xi)i�1

are distinct, and none is equal to the root ⇢T , which we will sometimes also denote by x0. For
each k � 1, define T (k) := [k

i=1�T (⇢T , xi), and let ⇡T ,T (k) be the natural projection from T to
T (k), i.e. for x 2 T , ⇡T ,T (k)(x) is the closest point in T (k) to x. Taking µ(k) := µT � ⇡�1

T ,T (k),

we define XT (k),µ(k) to be Brownian motion on (T (k), dT |T (k), µ
(k)). By [20, Proposition 2.1], if

we assume that XT (k),µ(k) and XT are both started from ⇢T , then (XT (k),µ(k)

t )t�0 ! (XT
t )t�0

in distribution in C(R+, T ). (This step is one of the places in the proof that the existence of
jointly continuous local times for the Brownian motion XT is used.) Hence, the continuous
mapping theorem implies that

⇣
�T
⇣
XT (k),µ(k)

t

⌘⌘
t�0

!
�
�T
�
XT

t

��
t�0

(6.4)
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in distribution in C(R+,M). Moreover, if we define B(k) := {bT (⇢T , xi, xj) : i, j 2 {0, . . . , k}}
and �(k)

T : T (k) ! M by setting �(k)
T = �T on B(k) and interpolating along geodesics between

these vertices, then one can deduce from the denseness of (xi)i�1 and continuity of �T that
limk!1 supx2T (k) dM (�(k)

T (x),�T (x)) = 0 (cf. [19, Theorem 8.2] and the following discussion).
Consequently (6.4) yields the following lemma.

Lemma 6.2. As k !1,
⇣
�(k)
T

⇣
XT (k),µ(k)

t

⌘⌘
t�0

!
�
�T
�
XT

t

��
t�0

in distribution in C(R+,M).

Before describing the connection with discrete objects, let us note that XT (k),µ(k) can also
be represented as a time change of another Brownian motion on T (k). In particular, let �(k)

be the one-dimensional Hausdor↵ measure on (T (k), dT |T (k)), and XT (k),�(k) be the associated
Brownian motion. Since �(k) satisfies (6.1), this process admits jointly continuous local times
(L(k)

t (x))x2T (k),t�0, from which we define an additive functional Â(k)
t :=

R
T (k) L(k)

t (x)µ(k)(dx),

and its inverse ⌧̂ (k)(t) := inf{s : Â(k)
s > t}. (NB. We use hatted notation for consistency with

[20].) From [20, Lemma 2.4], we then obtain that if XT (k),�(k) is started from ⇢T , then
⇣
XT (k),�(k)

⌧̂ (k)(t)

⌘
t�0

(6.5)

is distributed identically to XT (k),µ(k) started from ⇢T .
For the next part of the proof of Theorem 6.1, we fix a sequence of metric spaces Zn, isometric

embeddings  n : T ! Zn,  0n : (Tn, andTn) ! Zn and correspondences Cn between T and Tn

containing (⇢T , ⇢Tn) and such that (3.3) holds with T n replaced by (Tn, andTn , bnµTn , cn�Tn , ⇢Tn)
for some sequence "n ! 0. (This is possible if we suppose that (6.2) holds.) Moreover, let
xn

i 2 Tn be such that (xi, xn
i ) 2 Cn, and define the subtree Tn(k) ✓ Tn and projection ⇡n,k :

Tn ! Tn(k) similarly to the continuous case. Using elementary arguments, one can check that

lim
k!1

lim sup
n!1

an max
x2Tn

dTn(x,⇡n,k(x))  lim
k!1

lim sup
n!1

✓
sup
x2T

dT (x,⇡T ,T (k)(x)) + 5"n
◆

= 0, (6.6)

(cf. [18, Lemma 2.7]), which says that the subtrees Tn(k) are uniformly good approximations of
the full trees Tn. As for processes, we define Xn,k := ⇡n,k(XTn) and Jn,k to be the corresponding
jump chain, i.e. if An,k

0 := 0 and An,k
t := min{s � An,k

t�1 : XTn
s 2 Tn(k)\{XTn

An,k
t�1

}}, then

Jn,k
t = XTn

An,k
t

. Conversely, if ⌧n,k(t) := max{s : An,k
s  t}, then we can write

Xn,k
t = Jn,k

⌧n,k(t)
. (6.7)

Define the local times of Jn,k by setting Ln,k
t (x) := 2

degn,k(x)

Pt�1
s=0 1x(Jn,k

s ) for x 2 Tn(k) and
t � 0, where degn,k(x) is the usual graph degree of x in Tn(k). We use these to define an
associated additive functional Ân,k by setting Ân,k

0 := 0 and Ân,k
t :=

R
Tn(k) Ln,k

t (x)µn,k(dx),

where µn,k := µTn � ⇡�1
n,k. Finally, from the inverse ⌧̂n,k(t) := max{s : Ân,k

s  t}, we define an
alternative time-change of Jn,k by setting

X̂n,k
t = Jn,k

⌧̂n,k(t)
. (6.8)
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In the next lemma we describe how methods of [20, Section 3] can be applied to deduce a scaling
limit for these processes. The map �(k)

Tn
: Tn(k) ! M is defined analogously to the continuous

case.

Lemma 6.3. Suppose that (6.2) holds, and fix k � 1. Then⇣
cn�

(k)
Tn

⇣
X̂n,k

t/anbn

⌘⌘
t�0

!
⇣
�(k)
T

⇣
XT (k),µ(k)

t

⌘⌘
t�0

,

in distribution in C(R+,M).
Proof. In this proof, we will use an embedding of trees into `1, the Banach space of infinite
sequences of real numbers equipped with the metric d`1 induced by the norm

P
i�1 |x(i)| for

x 2 `1 (the procedure was originally described in [5]). In particular, given a sequence (T (k))k�1

as above it is possible to construct a distance-preserving map  ̃ : (T , dT ) ! (`1, d`1) that
satisfies  ̃(⇢) = 0 and

⇡k( ̃(�)) =  ̃(⇡T ,T (k)(�)) (6.9)

for every � 2 T and k � 1, where ⇡k is the projection map on `1, i.e. ⇡k(x(1), x(2), . . . ) =
(x(1), . . . , x(k), 0, 0, . . . ). Roughly speaking, we first map T (1) to a line segment of length
dT (⇢T , x1) in the first coordinate direction of `1. Then, given the map  ̃ on T (k), map the
additional line segment in T (k + 1) to a line segment in the (k + 1)st coordinate direction of `1

(i.e. orthogonally to  ̃(T (k))), attached at the image in `1 of the appropriate branch-point. Such
a map is determined uniquely by insisting that  ̃(T ) ✓ {(x(1), x(2), . . . ) 2 `1 : x(i) � 0, i =
1, 2, . . . }. We can of course embed the discrete trees similarly, and we denote the corresponding
embeddings by  ̃n. It is not di�cult to check from our construction that, for every i � 0,

an ̃n(xn
i ) !  ̃(xi). (6.10)

As a consequence of this and the fact that the maps  ̃ and  ̃n are isometries, we find that
(Tn, andTn , bnµTn , an ̃n, ⇢Tn) ! (T , dT , µT ,  ̃, ⇢T ) in the version of (Tc,�c) where maps are into
(M, dM ) = (`1, d1

` ). Moreover, taking projections ⇡k yields (Tn, andTn , bnµTn ,⇡k � an ̃n, ⇢Tn) !
(T , dT , µT ,⇡k �  ̃, ⇢T ) in the version of (Tc,�c) where maps are into Rk. Hence, by applying
Lemma 3.7, and noting the characterisation of  ̃ at (6.9), it follows that

bnµn,k � (an ̃n)�1 ! µ(k) �  ̃�1 (6.11)

weakly as measures on Rk, and the same conclusion also holds in terms of weak convergence of
measures on `1. The two conditions (6.10) and (6.11) enable us to obtain from [20, Proposition
3.1], (see also the proof of [20, Lemma 4.2]) that⇣

an ̃n

⇣
Jn,k

t/a2
n

⌘
, anbnÂn,k

t/a2
n

⌘
t�0

!
⇣
 ̃
⇣
XT (k),�(k)

t

⌘
, Â(k)

t

⌘
t�0

(6.12)

in distribution in C(R+, `1 ⇥ R+). Since the functions t 7! Â(k)
t are almost-surely continuous

and strictly increasing (by [20, Lemma 2.5]), one can take an inverse in the second coordinate
and compose with the first to obtain⇣

an ̃n

⇣
X̂n,k

t/anbn

⌘⌘
t�0

!
⇣
 ̃
⇣
XT (k),µ(k)

t

⌘⌘
t�0

(6.13)

in distribution in C(R+, `1), for which it is helpful to recall the expressions at (6.5) and (6.8).
Now, from our choice of xn

i , one can check that, for every i, j � 0, cn�Tn(bTn(⇢Tn , xn
i , xn

j )) !
�T (bT (⇢T , xi, xj)), where the function bTn returns the branch-point of three vertices of Tn. This
allows one to transfer the convergence of (6.13) into M , and so obtain the result. ⇤

In light of Lemmas 6.2 and 6.3, the proof of Theorem 6.1 is completed by the following
lemma (see [13, Theorem 3.2], for example).
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Lemma 6.4. Suppose that (6.2) holds. For every " > 0,

lim
k!1

lim sup
n!1

P Tn
⇢Tn

 
sup

s2[0,t]
dM

⇣
cn�Tn

⇣
XTn

s/anbn

⌘
, cn�

(k)
Tn

⇣
X̂n,k

s/anbn

⌘⌘
> "

!
= 0.

Proof. From the definition of "n, one can obtain

lim
�!0

lim
k!1

lim sup
n!1

max
x2Tn,y2Tn(k):
andTn (x,y)�

cndM

⇣
�Tn(x),�(k)

Tn
(y)
⌘

 lim
�!0

lim
k!1

lim sup
n!1

⇣
sup

x,y2T :
dT (x,y)�+�k+18"n

dM (�T (x),�T (y)) + 2"n
⌘
.

Here, �k is the maximum dT -distance between two adjacent vertices of B(k), where by saying
x, y 2 B(k) are adjacent, we mean that �T (x, y) contains no element of B(k) other than x and y.
By the continuity of �T and denseness of (xi)i�1, the upper bound above is equal to 0. Hence
the lemma will follow from

lim
k!1

lim sup
n!1

P Tn
⇢Tn

⇣
an sup

s2[0,t]
dTn

⇣
Xn,k

s/anbn
, X̂n,k

s/anbn

⌘
> "
⌘

= 0, (6.14)

where we have applied (6.6) to replace XTn by Xn,k in this requirement. Now, by making the
change from ↵�1

n to an and from n�1 to bn, one can follow the argument of [20, Lemma 4.3]
exactly to deduce that

lim
k!1

lim sup
n!1

P Tn
⇢Tn

✓
anbn sup

st

���An,k
s/a2

n
� Ân,k

s/a2
n

��� > "

◆
= 0.

Note that we needed the fact that bn = o(an), and also (6.6), (6.12) and bnµTn(Tn) ! µT (T )
(which follows from our assumption at (6.2)). Recalling the characterisations of Xn,k and X̂n,k

given in (6.7) and (6.8) respectively, we can complete the proof of (6.14) by combining the limit
above with the convergence statements of (6.13) and Lemma 6.2 (cf. [20, Proposition 4.1]). ⇤

The following measurability result will be useful when we come to look at random walks on
random trees. Its proof is similar to that of [18, Lemma 8.1(b)].

Lemma 6.5. The map T 7! P T
⇢T � �

�1
T defines a measurable function from T⇤c (equipped with

the subspace �-algebra) to the space of probability measures on C(R+,M).
Proof. Suppose that T n ! T in T⇤c . A straightforward adaptation of [46, Proposition 10] then
yields that if (xn

i )i�1 is a sequence of µTn-random vertices of Tn and (xi)i�1 is a sequence of
µT -random vertices of T , then, for each fixed k � 1,

⇣
Tn, dTn , µTn ,�Tn , ⇢Tn , (xn

i )k
i=1

⌘
!
⇣
T , dT , µT ,�T , ⇢T , (xi)k

i=1

⌘
,

in distribution in a version of (Tc,�c) where metric spaces are marked by k points (so that the
supremum in (3.1) is taken over correspondences that include not only the root pairs (⇢T , ⇢0T ),
but also the marked pairs (xi, x0i), i = 1, . . . , k, say). Since the latter space can be checked to be
separable in the same way as was discussed for (Tc,�c) in the proof of Proposition 3.1, one can
apply a Skorohod representation argument to deduce that there exist realisations of the relevant
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random variables such that the above convergence occurs almost surely. As a consequence, the
proof of Lemma 6.3 can be applied to deduce that for fixed k � 1, as n !1,

P
Tn(k),µ

(k)
Tn

⇢Tn
� ��1

Tn
! P

T (k),µ
(k)
T

⇢T � ��1
T

in distribution as probability measures on C(R+,M), where P
T (k),µ

(k)
T

⇢T is the law of XT (k),µ(k)

started from ⇢T , and the objects indexed by n are defined analogously to the limiting ones. In

particular, this establishes that the map from T to the law of P
T (k),µ

(k)
T

⇢T � ��1
T is continuous,

and therefore measurable, on T⇤c . Moreover, since µT is non-atomic and has full support, then
we may assume that (xi)i�1 is almost-surely dense in T , and that all the vertices are distinct
(and not equal to the root ⇢T ). Hence, by Lemma 6.3, it holds that

P
T (k),µ

(k)
T

⇢T � ��1
T ! P T

⇢T � �
�1
T

almost-surely as probability measures on C(R+,M). Thus the map from T to the law of
P T
⇢T ��

�1
T is a limit of measurable functions, and so is also measurable on T⇤c . Since P T

⇢T ��
�1
T is

a function of only T (and not the particular sequence (xi)i�1), the result follows from a standard
argument. ⇤

Suppose that T is a random element of Tc, built on a probability space with probability mea-
sure P, and P-a.s. takes values in T⇤c . The previous lemma tells us that the annealed law of the
process �T (XT ), where the Brownian motion XT is started from the root, i.e.

R
Tc

P T
⇢T ��

�1
T (·)dP

(cf. (1.6)), is a well-defined probability measure on C(R+,M). By a Skorohod representation
argument, we also obtain the following as an immediate corollary of Theorem 6.1.

Corollary 6.6. Let (Tn, dTn , µTn ,�Tn , ⇢Tn), n � 1 be a random sequence, and (an)n�1, (bn)n�1,
(cn)n�1 be null sequences with bn = o(an), such that (6.2) holds in distribution, and the limit T
almost-surely takes values in T⇤c . Then the annealed laws of the processes⇣

cn�Tn

⇣
XTn

t/anbn

⌘⌘
t�0

(cf. (1.5)) converge to the annealed law of �T (XT ), where we assume that XTn
0 = ⇢Tn for each

n, and also XT
0 = ⇢T .

As with Lemmas 3.7 and 3.9, Theorem 6.1 and Corollary 6.6 can be extended to the non-
compact case with an additional assumption. To begin with the deterministic case, suppose
(Tn)n�1 is a deterministic sequence of locally finite graph trees for which (6.2) holds in (T,�),
where T is such that µT is non-atomic, supported on the leaves of T , and satisfies (6.1) when
the infimum is taken over BT (⇢T , R) for any R; we denote the subset of T whose elements
satisfy these properties by T⇤. (Note that for an element of T⇤, it is possible to define Brownian
motion XT on (T , dT , µT ) by the procedure of [6], as described above the statement of Theorem
6.1.) Moreover, assume that, for t > 0,

lim
R!1

lim sup
n!1

P Tn
⇢Tn

�
⌧
�
XTn , BTn(⇢Tn , a�1

n R)
�
 t/anbn

�
= 0,

where, here and in the following, ⌧(X,A) := inf{t � 0 : Xt 62 A} is the exit time of a process
X from a set A. It is then the case that (6.3) holds. Similarly to Remarks 3.8 and 3.10, we do
not include the full details of this argument, but instead restrict our presentation to describing
the probabilistic version of the argument needed to handle the simple random walk on U . In
particular, given Theorems 1.1 and 1.3, the key additional ingredient for this is the following,
where we recall P is the annealed law of the simple random walk on U , as introduced at (1.5).
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Proposition 6.7. For t > 0,

lim
R!1

lim sup
�!0

P
⇣
⌧
�
XU , BU (0, ��R)

�
 t��dw

⌘
= 0.

Proof. Given the volume growth and resistance estimates of [11, Proposition 4.2], we can apply
an identical argument to that used to prove the corresponding limit in [22, Theorem 1.1]. ⇤

We are now ready to prove the main simple random walk convergence result for the UST.
In the proof, we let (P�n)n�1 be a convergent sequence with limit P̃, and suppose that T is a
random variable with law P̃. Unless otherwise noted, we take (M, dM ) to be R2 equipped with
the Euclidean distance.

Proof of Theorem 1.4(a),(b). As in the proof of Lemma 5.2, the separability of (T,�) allows
us to find realisations of U�n , n � 1, and T built on a common probability space with prob-
ability measure P⇤ such that U�n ! T holds in (T,�), P⇤-a.s. This yields the existence of
a subsequence (ni)i�1 and divergent sequence (rj)j�1 such that, for every rj , P⇤-a.s., we have
convergence in (Tc,�c) of the radius rj restrictions along the subsequence (ni)i�1, i.e. U (rj)

�ni
con-

verges to T (rj). Moreover, since the Lebesgue measure of those r � 0 for which µT (@T (r)) > 0
is zero, P̃-a.s., we may further assume that µT (@T (rj)) = 0 for every rj , P̃-a.s. Noting that the
map T 7! T (r) is continuous at those elements of T satisfying µT (@T (r)) = 0 (cf. the proof of
Proposition 3.4, and equation (3.5) in particular), this final condition ensures that, for every
rj , T (rj) is T -measurable. Now, from Theorem 1.3(b)(ii), it is the case that T (r) takes values
in T⇤c , P̃-a.s. (Observe that if r0  r/2 and x 2 T (r), then there exists an x0 2 T (r) such that
BT (r)(x, r0) ◆ BT (x0, r0/2), and so there is no problem in deducing the lower volume estimate
of (6.1) for the ball T (r) from the lower volume estimate from T . The further two properties
– that µ(r)

T is non-atomic and supported on the leaves of T (r) – are immediate from the full T
statements.) Hence, by Corollary 6.6 (with ani = �ni

, bni = �2ni
, cni = �ni), it follows that, for

every rj , the annealed law of ✓
�niX

BU (0,��
ni rj)

��dw
ni t

◆
t�0

,

where XBU (0,��
ni rj) is the simple random walk on BU (0, ��ni

rj), converges as i ! 1 to the
annealed law of (�(rj)

T (XT (rj)

t ))t�0, where XT (rj)
is Brownian motion on the measured real tree

(T (rj), d
(rj)
T , µ

(rj)
T ), and we assume processes are started from the roots of the relevant trees.

Given the measurability of T (rj) described above, this limit law can be expressed asZ
P T (rj)

⇢T � ��1
T (·) dP̃. (6.15)

Furthermore, since the limit does not depend on the subsequence, we obtain annealed distribu-
tional convergence of the rescaled discrete processes along the full sequence (�n)n�1.

Next, suppose XU and XBU (0,��
ni rj) are coupled so that their sample paths agree up to

⌧(XU , BU (0, ��ni
rj)) (for example, by taking XBU (0,��

ni rj) to be XU observed on BU (0, ��ni
rj)).

It then holds that, for t < 1 and " > 0,

P
⇣

sup
s2[0,t]

�n
���XU

��dw
n s

�X
BU (0,��

n rj)

��dw
n s

��� > "
⌘
 P

⇣
⌧
�
XU , BU (0, ��n rj)

�
 t��dw

⌘
.

Hence we deduce from Proposition 6.7 that the left-hand side converges to 0 as n ! 1 and
then j !1.
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Finally, we need to take care of the situation when rj ! 1 for the continuous trees. We
have already established that P T (rj)

⇢T � ��1
T is T -measurable for every rj . To show that this is

also the case for P T
⇢T ��

�1
T , it will su�ce to check that P T (r)

⇢T ! P T
⇢T as r !1, P̃-a.s. This will

follow if we can check that

P T
⇢T

⇣
lim

r!1
⌧
�
XT , BT (⇢T , r)

�
= 1

⌘
= 1, (6.16)

for P̃-a.e. realisation of T . To this end, first note that

P T
⇢T

⇣
lim

r!1
⌧
�
XT , BT (⇢T , r)

�
< 1

⌘
= lim

t!1
lim

r!1
lim

j!1
P T (rj)

⇢T

⇣
⌧
⇣
XT (rj)

, BT (⇢T , r)
⌘
 t
⌘

,

(6.17)
where we note that the laws of XT and XT (rj)

agree up to the exit time of BT (⇢T , r) whenever
rj > r. Now, suppose that U�n , n � 1, and T are coupled as in the first part of the proof.
It is not di�cult to check from the definition of �c that the convergence in (Tc,�c) of the
radius rj restrictions still holds P⇤-a.s. if �n�U is replaced by �n�̃U and �T is replaced by
�̃T , where �̃U (x) := (dU (0, x), 0) and �̃T (x) := (dT (0, x), 0), respectively. Thus an application
of Theorem 6.1 (with M = R) and a subsequence argument yields that, for every rj , P⇤-

a.s., (�ndU (0, X
BU (0,��

n rj)

��dw
n t

))t�0 converges to (dT (⇢T , XT (rj)

t ))t�0 in distribution in C(R+, R) as
n !1. Consequently,

Z
P T (rj)

⇢T

⇣
⌧
⇣
XT (rj)

, BT (⇢T , r)
⌘
 t
⌘

dP̃

=
Z

P T (rj)

⇢T

 
sup

s2[0,t]
dT
⇣
⇢T , XT (rj)

s

⌘
� r

!
dP̃


Z

lim inf
n!1

P
BU (0,��

ni rj)
0

 
sup

s2[0,t]
dU
⇣
0, X

BU (0,��
n rj)

��dw
n s

⌘
� ��n r/2

!
dP

 lim inf
n!1

P
⇣
⌧
⇣
XBU (0,��

n rj), BU (0, ��n r)
⌘
 t��dw

n

⌘
,

where we note that the necessary measurability of the law of dT (⇢T , XT (rj)
) can be checked

similarly to the measurability of P T (rj)

⇢T ���1
T . Taking limits as j !1, r !1 and then t !1,

we obtain from another application of Proposition 6.7 that the upper bound above converges to
zero. Thus the dominated convergence theorem yields that the P̃-expectation of the left-hand
side of (6.17) is equal to zero, and so we have established (6.16), as desired. In summary, we
have now shown that P T

⇢T � �
�1
T is T -measurable, and so P̃ – the annealed law of �T (XT ), as

introduced at (1.6) – is well-defined. This establishes part (a) of the theorem. Moreover, since
P T (r)

⇢T ! P T
⇢T , P̃-a.s., the continuous mapping theorem and the dominated convergence theorem

yield that the annealed law at (6.15) converges as j !1 to P̃. Together with the conclusions
of the previous two paragraphs, this completes the proof of part (b) (see [13, Theorem 3.2], for
example). ⇤

Remark 6.8. In [19, Theorem 8.1], it was shown that the convergence of rescaled graph tree
‘tours’ (that is, functions encoding trees and embeddings into Rd) implies convergence of spatial
trees. It only requires a simple extension of the proof of that result to add the measure, and
thereby deduce that convergence of tours also implies convergence in the topology of (Tc,�c)
(with R2 replaced by Rd). Consequently, (the Rd version of) Theorem 6.1 provides an extension
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of the random walk convergence result of [19, Theorem 8.1], and can also be used to deduce
a scaling limit for the simple random walks on critical branching random walks satisfying the
various assumptions on the o↵spring and step distribution detailed in [19, Section 10].

Remark 6.9. In [20, Theorem 1.1], (see also [18, Theorem 1.1],) a scaling limit was established
for simple random walks on ordered graph trees. The proofs of these results used the convenience
of encoding ordered graph trees by functions to simplify various technical details. Theorem 6.1
provides the additional framework needed to handle unordered graph trees. Indeed, suppose
that we have a sequence of finite rooted graph trees such that

(Tn, andTn , bnµTn , ⇢Tn) ! (T , dT , µT , ⇢T ) , (6.18)

for some null sequences (an)n�1 and (bn)n�1 with bn = o(an) in the Gromov-Hausdor↵-Prohorov
topology of [1] for rooted, compact metric spaces equipped with Borel measures. Moreover,
assume that the limit satisfies the additional properties on the measure that hold for elements
of T⇤c . It is then the case that, by applying the procedure described in the proof of Lemma 6.3,
one can find isometric embeddings  ̃ : T ! `1 and  ̃n : Tn ! `1, n � 1, such that

⇣
an ̃n

⇣
XTn

t/anbn

⌘⌘
t�0

!
⇣
 ̃
�
XT

t

�⌘
t�0

,

in distribution in C(R+, `1), where XTn is the simple random walk on Tn started from ⇢Tn , and
XT is the Brownian motion on (T , dT , µT ) started from ⇢T . We note that a similar, but slightly
stronger result was recently established independently in [7] – the most important di↵erence
being that the argument of the latter work required a weaker lower volume growth condition.

The above result can also be extended to the random case by embedding trees into `1

in a canonical random way – specifically, by choosing the vertices (xi)i�1 2 T to be a µT -
random sequence. The only additional complications come from some measurability issues,
but these can be resolved using similar ideas to those applied in the proof of Lemma 6.5.
To summarise the conclusion, suppose that (Tn)n�1 is a sequence of finite rooted (unordered)
graph trees for which (6.18) holds in distribution for some random measured compact real tree
(T , dT , µT , ⇢T ). Moreover, assume that µT is a non-atomic probability measure, supported on
the leaves of T and satisfies (6.1), almost-surely. It can then be checked that the annealed laws
of (an ̃n(XTn

t/anbn
))t�0, where  ̃n is the canonical random isometric embedding of Tn into `1,

converge to the annealed law of Brownian motion on T randomly isometrically embedded into
`1. For example, taking an = n�1/2, bn = n�1, this result applies to the model of uniformly
random unordered trees with n vertices, in which each vertex has at most m 2 {2, 3, . . . ,1}
children, as studied in [28]. Moreover, applying the argument of [21, Section 5.2] (where critical
Galton-Watson trees were considered), a corollary of this is that the mixing times of the simple
random walks on the random discrete trees, when rescaled by n3/2, converge in distribution to
(a constant multiple of) the mixing time of the limiting di↵usion.

7 Heat kernel bounds for the scaling limit

As in Section 5 and the proof of Theorem 1.4(a),(b), let (P�n)n�1 be a convergent sequence with
limit P̃, and suppose that (T , dT , µT ,�T , ⇢T ) is a random variable with law P̃. It follows from
[6, Remark 3.1] and [27, Theorem 1.5.2] that the Dirichlet form (ET ,FT ) given in Section 6 is
the same as that of [32, Section 5]. In particular, this is the form associated with the natural
‘resistance form’ on (T , dT ), and so we can apply [33, Theorem 10.4] to deduce the existence of
a jointly continuous transition density (pTt (x, y))x,y2T ,t>0 for the process XT .
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Let RT be the resistance associated with (ET ,FT ), defined by setting, for two disjoint subsets
A,B ✓ T ,

RT (A,B)�1 := inf{ET (f, f) : f 2 FT , f |A = 0, f |B = 1}.

Since T is complete and, by Theorem 1.3(a)(ii), has a single end at infinity, we deduce from
[6, Theorem 4] that XT is recurrent. As a consequence, combining [27, Theorem 1.6.3] and [6,
Proposition 3.5] yields that the resistance between two points corresponds to (a multiple of)
the distance between them, i.e. RT ({x}, {y}) = 2dT (x, y) for all x, y 2 T , x 6= y (see [6], for
example). Hence we can use [16, Theorem 3] to obtain estimates for pTt (x, y) from the volume
estimates of Theorem 1.3(b)(ii).
Proof of Theorem 1.4(c). We have already discussed the claims about the existence and joint
continuity of the heat kernel, and the recurrence of XT . So, we will simply present here a few
key points that are needed to apply the heat kernel estimates of [16, Theorem 3]. As already
noted, the resistance metric coincides with (a multiple of) the tree metric dT in our setting,
and so we can replace RT in the conclusion of [16] by dT . Moreover, the fact that (T , dT ) is
a real tree automatically means the ‘chaining condition’ of [16] is satisfied, i.e. there exists a
constant c1 such that for all x, y 2 T and all n 2 N, there exist x0 = x, x1, . . . , xN = y such
that dT (xi�1, xi)  c1dT (x, y)/n, 8i = 1, . . . n. (Clearly, we can take c1 = 1 and equality in the
latter statement.) Finally, note that in [16] volume estimates were assumed to hold uniformly
over the entire space, but Theorem 1.3(b)(ii) only gives uniformity over balls of finite radius.
However, it is straightforward to check that the arguments of [16] are enough to give the stated
heat kernel estimates. ⇤

For the remaining heat kernel estimates we derive, the following tail bound for the resistance
from the root to the radius of a ball will be useful.

Lemma 7.1. There exist constants c1, c2, ✓ 2 (0,1) such that for all r > 0, � � 1,

P̃
�
RT (⇢T , BT (⇢T , r)c)  ��1r

�
 c1e

�c2�✓
, (7.1)

Proof. As we have done several times previously, we will apply a coupling argument, and start
by supposing that we have a realisation of random variables such that U�n ! T holds almost-
surely along the sequence (�n)n�1. Let NT (r, r/�) be the minimum number of dT -balls of radius
r/� required to cover BT (⇢T , r). From the definition of (T,�), it is elementary to check that if
NT (r, r/�) � N0, then so is NU (4��n r, ��n r/8�) for large n. It follows that

P̃
�
NT (r, r/�) � c�5

�
 lim sup

n!1
P
�
NU (4��n r, ��n r/8�) � c�5

�
, (7.2)

which by Remark 2.13 is, for a suitable choice of c, bounded above by c1e�c2�1/80 . Now, the proof
of [35, Lemma 4.1] gives that RT (⇢T , BT (⇢T , r)c) � r/8NT (r, r/4), and so, for any � > 45c,

P̃ (RT (⇢T , BT (⇢T , r)c)  r/�)  P̃
⇣
NT (r, c1/5r/�1/5) � 8�

⌘
.

Combining this bound with (7.2) yields the result. ⇤

Given (5.16), (5.17) and (7.1), the next two results can be proved in exactly the same way
as the corresponding parts of [17, Theorem 1.6] and [17, Proposition 1.7], modulo a di↵erent
volume growth exponent.
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Theorem 7.2. (a) P̃-a.s., there exists a random t0(T ) 2 (0,1) and deterministic constants
c1, c2, ✓1, ✓2 2 (0,1) such that

c1t
�8/13(log log t�1)�✓1  pTt (⇢T , ⇢T )  c2t

�8/13(log log t�1)✓2 ,

for all t 2 (0, t0).
(b) There exist constants c1, c2 2 (0,1) such that

c1t
�8/13  ẼpTt (⇢T , ⇢T )  c2t

�8/13,

for all t 2 (0, 1).
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2101 Ecole d’été de probabilités de Saint-Flour XL–2010. Springer, New York, (2014).

[37] T. Kumagai and J. Misumi. Heat kernel estimates for strongly recurrent random walk on random
media. J. Theoret. Probab. 21 (2008), no. 4, 910–935.

[38] G.F. Lawler. Intersections of random walks. Birkhäuser, Boston, 1996.
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