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Abstract

In this paper we give general criteria on tightness and weak convergence of discrete Markov
chains to symmetric jump processes on metric measure spaces under mild conditions. As an
application, we investigate discrete approximation for a large class of symmetric jump processes.
We also discuss some application of our results to the scaling limit of random walk in random
conductance.
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1 Introduction

This paper is concerned with the following two questions.

(Q1) Given a symmetric Hunt process X on R?, can it be approximated by a sequence of
symmetric Markov chains X *) on k1747

(Q2) For a sequence of {X*);k > 1} of symmetric Markov chains on k= 'Z?, when does X*)
converge weakly to a ‘nice’ Hunt process X on R? as k — oo?

In this paper, we address these two questions for symmetric processes X of pure jump type on
a general metric space F.

*Research partially supported by NSF Grants DMS-0906743 and DMR-1035196.

TResearch supported by Basic Science Research Program through the National Research Foundation of Ko-
rea(NRF) funded by the Ministry of Education, Science and Technology(0409-20110087)

tResearch partially supported by the Grant-in-Aid for Scientific Research (B) 22340017.



Let us briefly mention some work on these problems when X is a diffusion. When X is a diffusion
corresponding to an operator in non-divergence form, these problems were studied, for example, in
the book of Stroock-Varadhan ([28, Chapter 11]) by solving the corresponding martingale problem.
When X is a symmetric diffusion corresponding to a uniformly elliptic divergence form operator,
(Q1) is solved completely by Stroock-Zheng [29]. Let Xt(k) be a continuous time symmetric Markov
chain on k~'Z¢ with conductances C¥)(z,y); This means that X*) stays at a state z for an
exponential length of time with parameter C*)(z) := >ta C™)(z, ) and then jumps to the next
state y with probability C*)(z,y)/C*)(2). In [29], they also answered (Q2) when CF)(-,.) is of
finite range (ie. C®(z,y) = 0 if |z — y| > Ro/k for some Ry > 0) and has certain uniform
regularity. The core of their paper is to establish a discrete version of the De Giorgi-Moser-Nash
theory. Recently, in [3], the main results in [29] are extended in two ways: Markov chains with
unbounded range were allowed and the strong uniform regularity conditions on conductances in
[29] are weakened. This was further extended in [4] so that the limiting process X had a continuous
part and a jump part. For both [3, 4], a crucial step is to obtain a priori estimate of the solution of
the heat equation, which can be derived thanks to the recent developments of the De Giorgi-Moser-
Nash theory for jump processes. When X is reflected Brownian motion on a domain, (Q1) was
solved in [5] by a completely different method, without using a priori estimates on the transition
function of the Markov processes. The methodology of [5] is a Dirichlet form based approach.

Now consider the case where X is a symmetric Hunt process of pure jump. Let (€, F) be its
associated symmetric Dirichlet form on L%(R%;m), where m is a Radon measure on R? and

F = {u e L>(R%m) : / (u(w) — u(y))?J(dz, dy) < oo} , (1.1)
RdxRI\d
E(u,v) = ;/Rded\J(U(x) —u(y))(v(z) —v(y))J(dz, dy) for u,v € F.

Here d is the diagonal set in R¢ x R¢, J(-,-) is a measure on R? x R? such that J(A, B) = J(B, A).
The paper [15] considered (Q1)-(Q2) when J(dz,dy) = j(x,y)dxdy, j(z,y) < |z — y|~9 for
some 0 < a < 2 and m(dx) = dz. (Here and in the following, f < g means that there are ¢1,co > 0
so that c1g(x) < f(x) < cog(x) in the common domain of definition for f and g.) This is extended
in [2] to more general Dirichlet form (€, F). Again, for both [2, 15], the crucial point is to obtain a
priori Holder estimate of the solution of the heat equation. However for general symmetric Markov
processes, obtaining good a priori estimate for their transition densities is impossible. Indeed, even
in the case ci|z — ¥~ < j(z,y) < colz — y|7% %2 for |z — y| < 1 where oy < a2, one can
construct an example where there is a bounded harmonic function that is not continuous (see [1,
Theorem 1.9]).

In this paper, we will answer (Q1) affirmatively for a very general class of symmetric Markov
processes whose associated Dirichlet forms are of the form (1.1) (see Theorem 6.1), and give answer
to (Q2) when X*) and X satisfy either conditions (A1)-(A4) or conditions (A1)-(A2) and
(A3)*~(A4)* in Section 2 (see Theorem 2.2). Our approach does not rely on the a priori estimate
of the heat kernel, instead we adapt the ideas of [5] and use the Lyons-Zheng decomposition to



obtain tightness (Proposition 3.4). The drawback is we can only obtain tightness when the initial
distribution is absolutely continuous with respect to the reference measure. Note that when we have
a priori estimate of the heat kernel (such as examples discussed in [2, 15]), we can obtain tightness
for any initial distributions. To show finite dimensional distribution convergence, we establish the
Mosco convergence, which is equivalent to strong convergence of the semigroups (Theorems 4.5 and
4.7). We will obtain these results on a large class of metric measure spaces with volume doubling
property.

It is important and useful if we can obtain (Q2) in such a way that is applicable to prove
convergence of Markov chains on some random media. In order to establish such results, we need
to relax the assumption for X (*). In Theorem 4.7, we prove the Mosco convergence under a milder
condition on X *) and a stronger condition on X. Then the following example can be handled. Let
{€ey}ayend o2y De a sequence of i.i.d. non-negative real-valued random variables on a probability
space (2, A, P) with E[§; ,] =1 and Var (&) < co. Let d > 2, 0 < aw < 2 and

C($7y) = §Iy|1" - y|*d701’ Yy € Zd

be the random conductance. Let X be the corresponding Markov chain on Z? with this con-
ductance. Then we can prove that Xt(k) =klX ,Sl)t converges weakly to (a constant time change
of) symmetric a-stable process on R? equipped with convergence-in-measure topology P-a.s. (see
Proposition 7.1(i), and see the paragraph after Theorem 2.2 for the definition of convergence-in-
measure topology). Moreover, if we further assume that 0 < &, < Cy for some deterministic

)
equipped with the Skorohod topology P-a.s. (see Proposition 7.1(ii)).

constant C7 > 0, we can prove that Xt(k converges weakly to symmetric a-stable process on R?

The rest of the paper is organized as follows. In Section 2, we present the framework of the
base metric measure space E and present a graph approximation result. We then give the precise
statements of two main weak convergence results of this paper, and the conditions under which
these results hold. The proof of these two theorems will be given in Section 5. It is standard
that weak convergence of stochastic processes is established through two steps: tightness and
convergence of finite dimensional distributions. How to carry out these steps varies from problems
to problems and they can be very challenging tasks. In Section 3, we establish tightness results for
a family of Markov chains X (%) on the approximating graphs in the space D0, 1] of right continuous
functions having left limits equipped either with the Skorohod topology or with the convergence-
in-measure topology. The latter topology is also called pseudo-path topology in literature and is
weaker than the Skorohod topology. In Section 4, we give sufficient conditions for finite dimensional
distribution convergence of X(*) to X, through Mosco convergence method. Note the state spaces
of {X ®) k> 1} are changing. So we need an extension of the Mosco convergence introduced in
[26]. A full proof of the generalized Mosco convergence can be found in Appendix at the end of
this paper. In Section 6, we investigate the discrete approximation of X. Applications of our main
results to random walk in random conductance models are given in Section 7.

For technical convenience, we will often consider stochastic processes whose initial distribution
is a finite measure, not necessarily normalized to have total mass 1, for example, ¢(x)m(dz) where
¢ is bounded function with compact support. Translating our results to the usual probabilistic



setting is straightforward and is left to the reader.

[43

Throughout paper, we use “:=” to denote a definition, which is read as “is defined to be”. The
letter ¢, with or without subscripts, signifies a constant whose value is unimportant and which
may change from location to location, even within a line. We will use 0 to denote the cemetery
point and for every function f, we extend its definition to d by setting f(9) = 0. For a locally
compact metric space E, we use Fy := FE U {0} to denote the one-point compactification of E.
For a metric space E, we use C(E) to denote the space of continuous functions on E and Lip(E)
the space of Lipschitz continuous functions on E. For any collection of numerical functions H, H™
denotes the set of nonnegative functions in H, H; denotes the set of bounded functions in H and
H. denotes the set of functions in H with compact support. Moreover, we denote H} := HT NH,

and 7—[2’ := H* NHp. For any topological space W and any subset I C [0, 00), we denote
DwlI = {f - W ‘ f is right continuous having left limits.}. (1.2)

We will use #5S is the cardinality of a set S.

2 Statement of main results

2.1 Discrete approximation of state spaces

Let (E, p, m) be a metric measure space, where (E, p) is a locally compact separable connected met-
ric space and m is a Radon measure on E with V (z,r) := m(B(z,r)) € (0,00) and m(0B(z,r)) =0
for each 7 > 0 and « € E. Here and in the sequel, B(x,r) denotes the open ball of radius r centered

at x, and 0B(z,r) = B(xz,r) \ B(x,r). The metric measure space (E, p, m) will serve as the state
space of our jump processes X. We assume the following:

(MMS.1) The closure of B(z,r) is compact for every x € E and r > 0.

(MMS.2) p is geodesic, that is, for any two points z,y € FE, there exists a continuous map

v : [0,p(z,y)] = E such that v(0) = z, v(p(z,y)) = y and p(y(s),7(t)) =t — s for all
0<s<t<p(z,y).

(MMS.3) (E, p,m) satisfies volume doubling property (VD for short), that is,

there is a constant Cy > 0 such that V' (z,2r) < C.V(x,r) for every z € E and r > 0.

Fix some zg € E. Condition (MMS.3) in particular implies that
V(20,2") < C"V (xg,1) = (2122 V (9, 1) for every n > 1.
So there are constants ¢y = co(xg) > 0 and dp > 0 such that

V(xo,7) < cor® for every r > 1. (2.1)



It follows then
—Ap(z,z0) _ > —Ar _ > —Ar
/e m(dz) = / e d(V (B(o, 7)) _A/ V(B(zo,r)) e dr
E 0 0
< ¢cA <1—|—/ 7o e_MdT> < 0. (2.2)
1

Property (2.2) will imply that the jump process X under consideration in this paper is conservative
under the assumption (5.1) (see one line after (5.1)).

To study discrete approximation of X, we first need to have a discrete approximation of the
state space FE.

Consider approximating graphs {(Vi,Zx), k& € N} of E with the graph distance p; and the
associated partition {U(z),z € Vi; k € N} that satisfies the following properties. Here Vj is the
set of vertices and =y is the set of edges of the graph (Vi, Zj).

(AG.1) (Vj,Eg) is connected and has uniformly bounded degree.
(AG.2) V,, C E, U2, V} is dense in E and
%pk(x,y) < plz,y) < %pk(x,y) for every x,y € Vj. (2.3)
(AG.3) For each k > 1, Uyev, Ui(z) = E, m(Ug(x) N Ug(y)) =0 for = # y, and
sup{p(&,n) : &,n € Uk(x)} < Cs/k. (2.4)
Moreover, for each = € Vi, Vi NInt Ug(x) = {z}, and we have
Cam(Ug(z)) < V(z,1/k) < Cs m(U(x)). (2.5)

Here IntUy(x) denotes the set of the interior points of Ug(x).

Theorem 2.1 Suppose that (E, p,m) is a metric measure space satisfying conditions (MMS.1)—
(MMS.3). Then E admits approximating graphs {(Vi,Zk),k > 1} and associated partitions
{Uk(z),x € Vi;; k > 1} that satisfy the properties (AG.1)—-(AG.3).

The proof of Theorems 2.1 will be given in Section 3.

2.2 Random walk on graphs and its weak limit

For the remainder of this paper, we assume that (E,p,m) is a metric measure space satisfying

conditions (MMS.1)-(MMS.3) and that {(Vx, =),k > 1}, with the graph distance py, are ap-

proximating graphs with associated partitions {Uy(x),z € Vi; k > 1} satisfying (AG.1)-(AG.3).
Let mg be the measure defined on Vi by

me(A) =D m(Uk(y))  for AC Vi (2.6)
yeEA



For y € Vi, my({y}) will simply be denoted by my(y).
For k € N, let {j¥)(z,), 2,5 € V}} be a family of non-negative functions defined on the graph
(Vk, Bx) such that j®)(z,2) =0, j®)(z,y) = j®) (y,z) for z,y € V} and

Z j(k) (2, 9)mp(y) < oo for every z € V. (2.7)
yeVE

Then {C¥)(z,y) = mp(x)j® (2, y)mi(y), =,y € Vi} form a family of conductance defined on
the graph (Vi,Zg). Note that in contrast with notations in some literatures on graphs, here the
set = of edges only gives the topological structure of the graph and has nothing to do with the
conductances; that is, Zj, can be different from the bond set {(x,y) : C*)(z,y) > 0}. Note also
that the graph with vertices V; and bonds {(x,y) : C%*)(x,y) > 0} could be disconnected. We
consider the following quadratic form (£®) F(*)):

FO = {ue Vs Y (@) - u()%® (@ yymie)ma(y) < oo}
z,yeVy
EW(u,v) = % > (ul@) = u)(w(@) — o(y)i™ (@, y)my(@)mi(y) - for u,v € F®.(2.8)
z,yeVi

It is easy to check that (F*), £(#)) is a regular Dirichlet form on L?(Vj;my) (see Theorem 3.2). Let
Xk = (Xt(k),]P’g(ﬁk),x € Vi) be the continuous time strong Markov process on Vj associated with
the Dirichlet form (F®*) £*)). The process X ¥ is sometimes called the continuous time random
walk on Vj, with conductance C*). We are interested in when and to which process X ¥) converges
weakly.

For notational convenience, let us fix some zy € F and, for r > 0, denote B(xq,r) by B,. Note

that by assumption (MMS.1), B, is compact for every r > 0.
Consider the following conditions:

(A1). There is ko > 1 so that for every integer j > 1,

. x, 2
sup  sup Y J(k)(fv,y)(pk(ky) A 1) my(y) < o0 (2.9)
k=ko zeBjNVi yev;,
and
sup sup Z i®) (@, y)ymi(y) < oo. (2.10)

k>ko $E(Bj+2)cﬂvk yeB;NVj,

(A2). For m-a.e. © € E, j(x,-) is a positive measure on E \ {x} such that the following holds:
(i) For any e >0, z — j(x, E \ B(x,¢€)) is locally integrable with respect to m.

(ii) For any non-negative Borel measurable functions u,v,

/U(l‘)(jv)(w)m(dx) =/(jU)(w)v(w)m(d$) (< 00).
E

E

Here ju(x) := fE\{m} u(y)j(z,dy).



(iii) For any compact set K,
sup/(p(aj y) A1)%j(z, dy) < oo. (2.11)
zeK JE

Denote by d the diagonal set in £ x E. The kernel j then determines a positive symmetric
Radon measure J(dz,dy) on E x E \ d by

/ExE\gf( y)J (dzx, dy) = /</f:vy a:dy))m(da:) for f € Co(E x E\ d).

Define a bilinear form (€, F) on L2(E;m) as follows:

F = {u € L*(E;m) : / (u(w) — u(y))?J(dz, dy) < oo} , (2.12)
ExE\d
E(u,v) = ;/EXE\J(U(.%') —u(y))(v(z) —v(y))J(dz,dy) for u,v € F.

Under condition (A2), it can be shown (see Lemma 4.2) that Lip,(E) C F. We now introduce
condition (A3).
(A3). Lip.(E) is dense in (F,E(,-)+ | - ||3).

Under conditions (A2) and (A3), by [9, Propostion 2.2] and its proof, (£, F) is a regular

Dirichlet form on L?(E;m). Denote by X = {X;,t > 0,P,,r € E} the symmetric Hunt process on
E associated with (&, F).

To state condition (A4), we need the following. First we define the restriction operator 7 :
L*(E;m) — L?(Vj;my) and the extension operator Ej : L?(Vi;my) — L?(E;m) as follows:

1
mef(x) = / f(y)m(dy) for f € L*(E;m) and x € Vj, (2.13)
my(z) Ug(z)

Erg(z) = g(z) for g € L*(Vi;my) and z € Int Ug(z) with z € V4. (2.14)
For each k > 1, whenever needed, we extend the definition of j*) (z,y) on Vi x Vi to E x E by

taking
0 (2 ) = §®) (2, ) when z € Int Ug(x) and w € Int Ui (y) for some z,y € Vi, (2.15)

0 elsewhere.

Next we will use the following definition for the remainder of this paper. For k,j > 1 and § > 0,
define for function f: EF — R,

k

7

w) — 2, (k) UJ A wimiaz .
V5 ) - / /{(MEB oy ) = T m@m@z), (210

and

— z 2 w 2. .
&5/ 1) - //{(MEB oy 1) = T ) (217)

7



Now we can state the following condition.

(A4). (i) For any compact subset K C E,

lim lim sup// p(z, )25 %) (2, y)ym(dz)m(dy) = 0, (2.18)
Y)EKXK:p(z,y)<n}

=0 koo

lim limsup/ / m(dx)m(dy) = 0. (2.19)
J=%0 koo
(ii) For every e > 0, there exists N > 0 such that for every k >i > N and f € L*(Vi;my),
EW(mpEif, meEi )2 < ED(f, /) + .
(iii) For any sufficiently small § > 0 and large j € N,

tim EL(f, 1) = E5(f.f)  Jor every [ € Lip,(E). (2.20)

We will also consider in this paper the following alternative conditions to (A3) and (A4). First,
for u € L?(Bj;m), let

—(k .
Ligula) = /B (uly) = @)V @Y Ly ysamldy)  forze B,  (221)
Ljsu(x) := /B (u(y) — u(x)) i pay)>s1d (T, dy) for x € B;. (2.22)

J

(A3)*. Condition (A3) holds and L;;f is continuous for all f € Lip.(E).

(A4)*. (i) Same as (A4)(i).
(ii) For any sufficiently small 6 > 0 and large j € N,

i [ (€ f(@)mid) = [ (Lyaf@)Pmide). ¥ € LindE).

k—o0 B]'

(iii) For any sufficiently small § > 0 and large j € N,

Jm EN(. 1) =Es(f 1) for every f € Cy(B)).

Note that, by the polarization identity, (A4)* (iii) is equivalent to

lim gg-ﬁ;) (f,9)=¢E;5(f,9) for every f,g € Cy(Bj). (2.23)

k—o00

For every function ¢ € CF(FE), we define measures

PO() = 3 BB p@mi(e)  and  Py(-) = /E Py( - Yo(z)m(dz). (2.24)

€V},

The following are two of the main results of this paper.



Theorem 2.2 Assume that (A1)—(A2) hold and that the symmetric Hunt process X on E asso-
ciated with (€, F) is conservative. Assume further that either (A3)-(A4) hold, or (A3)*-(A4)*
hold. Then, for any ¢ € C(E), the symmetric Hunt process {(X*), prk)); k > 1} on Vi associated
with (E(k),}"(k)) converges weakly to (X, Py) on DEg,|[0,1] equipped with the Skorohod topology.

In some of the applications, tightness in the space Dg, [0, 1] equipped with Skorohod topology
is very difficult to establish, if not impossible. So we need a weaker topology on spaces Dg, [0, 1]
and Dg[0, 1], namely, the convergence-in-measure topology. This topology was introduced in [12],
which is also called pseudo-path topology in literature, see [25, Lemma 1].

Let A be the Lebesgue measure on [0, 1]. For a Ey-valued Borel function w on [0, 1], the pseudo-
path of w is a probability law on [0, 1] X Ey: the image measure of A under the mapping ¢ — (¢, w(t)).
Denote by W the mapping which associates to a path w its pseudo-path, which identifies two paths
if and only if they are equal A-a.e. on [0,1]. In particular, ¥ is one-to-one on D, [0, 1] and embeds
it into the compact space of all probability measures on the compact space [0, 1] x Ey. Meyer gave
the name of the pseudo-path topology to the induced topology on D, [0, 1]. (See [12, chapter IV,
n 40-46] for more details.) [25, Theorem 5] tells us that if the law of {X®) k > 1} is tight in
Dg, [0, 1] equipped with pseudo-path topology, then there is a subsequence {n;} and a subset A of
[0, 1] having zero Lebesgue measure so that X (k) convergence in finite dimensional distribution on
[0,1] \ A.

Tightness of stochastic processes on D, [0,1] (respectively, on Dg[0,1]) equipped with the
convergence-in-measure topology is closely related to the number of crossing between two disjoint
sets by the stochastic processes (see [25]). The latter has been investigated in [7, 23].

Theorem 2.3 Assume that either (2.9) of (A1) and (A2)-(A4) hold, or (A.2), (A.3)* and
(A.4)* hold. Then for every p € C(E), {(X®), Pfak)); k > 1} converges weakly to (X, Py,) on
DE,[0,1] equipped with the convergence-in-measure topology.

The proofs of Theorems 2.2 and 2.3 will be given in Section 5.

3 Tightness

Before we go to tightness results, let’s first give a proof of Theorem 2.1, which gives the discrete
approximation of state space. We need the following ‘nice’ open covering of E (see, for example
[21, Lemma 3.1], for a proof).

Lemma 3.1 Suppose (E, p,m) is a metric measure space satisfying conditions (MMS.1)-(MMS.3).
Then there exist integers Ny, Ly > 1 that depend only on the constant Cy in (MMS.3) such that
for each r > 0 there exists an open covering {B(z;,r), i > 1} of E with the following property:

e No point in E is contained in more than Ny of the balls {B(x;,r), i € N}.

e {B(z;,1/2), i€ N} are disjoint.



e For each x € E, the number of balls B(x;,r) which intersects with B(x,2r) is bounded by Lyg.

Proof of Theorem 2.1. Let V(") = {a;,i > 1}, where {x;,7 > 1} are given in Lemma 3.1. We say
two distinct z,y € V(") are connected by a bond (which we will denote as {z,y} € ") if p(z,y) <
3r. In this way, we can define a graph (V"), 2(")) of bounded degree. We also define {U ) () Yrev s
an associated partition of E, as follows; U, (z1) = B(21,7) and Ug)(zx) = B(zk, 1) \ UL B(ai,r)
for k > 2. Clearly, c1V (z,7) < m(Ugy(2:)) < V(2i,7) and Uy (x;) N Uy (x5) C Uj_ 0B (xy, 1) for
i < j. The definition of (V") =) and partition {Upy(z), x € V(} depends on the choice of the
open covering of E (and its labeling). In the following, for each r > 0, we choose one open covering
with the above mentioned property and fix the graph (V("), 2(")) and a partition {Upy(z), = € 17408
For each sequence (r,) which converges to zero, the set U,,V (") is dense in E. Note that since p
is geodesic, for each z € V(") there exists y € V(") \ {z} such that y € B(z,2r). So (V") 2M) is
connected. Further, (V") 2(") has bounded degree, i.e. SUp,cy o Hy € VO Az, y} € 20} < 0.
Let p(") be the graph distance of (V") Z("); then

rom (r) (r)

5P (z,y) < p(z,y) < 3rp\"”(z,y) for z,y € V\". (3.1)
Clearly, this holds if {z,y} € Z("). In general, the second inequality of (3.1) clearly holds and
the first inequality can be verified as follows. Let v be a geodesic connecting = and y. Set k =
[1+ 7 p(z,y)], the largest integer not exceeding 1 + 7 p(z,y). Let {y;,0 < i < k} be equally
spaced points on v so that p(yi—1,v:) = p(z,y)/k < r for k = 1,--- |k with yp = = and y = y.
For each 1 < i < k = 1, there is some z; € V(") so that y; € B(x;,1;) (we take zyp = yp = = and
xr = yr = y). By the triangle inequality,

p(ri—1,25) < p(@io1,Yi-1) + p(Yi—1, i) + p(yi, i) < 3r fori=1,--- k.

This shows that p(")(z,y) < k < 2p(z,y)/r, establishing the first inequality in (3.1). Let Vj :=
vk g =20k ppi= p/k) and Uy (z) == Uk (z). It is now easy to verify that (V, =g, px)
together with {Uy(z), v € Vi } satisfies (AG.1)-(AG.3). O

Recall that (E,p,m) is a metric measure space satisfying conditions (MMS.1)-(MMS.3)
and that {(Vj,Zg),k > 1}, with the graph distance pg, are approximating graphs with associated
partitions {Uy(z),x € Vi; k > 1} satisfying (AG.1)-(AG.3).

We now investigate the tightness of the continuous time random walks on graphs Vi. Recall
that my, is defined in (2.6), my(y) = mp({y}) and the Dirichlet form (£(*), F*)) defined in (2.8).

Theorem 3.2 (£*), F*)) is a regular Dirichlet form on L*(Vi;my,) with C.(Vy,) € F®). If

sup Z j(k)

eV, yEVi

(@, y)mx(y) < oo, (3.2)

then the symmetric Hunt process X¥) on V. associated with the reqular Dirichlet form (E(k), f(k))
1§ conservative.

10



Proof. For f € C.(V}), let K denote its support (note that K is a finite set). Then by (2.5) and
(27,

ENULS) = 5 3 () F0)PY ()

z,yeK

3 @2 [ 3 39 @, yymaly) | maa)

zeK yeKe
< BIAZY D P @ y)mi(y) | mi(z)
zeK \yeVy
< 3| fI1 P (K max Z 7Nz, y)ymi(y) | < oo.
yEVk

This shows that f € F*) and so C.(Vx) C F®) | Let K be an increasing sequence of compact (or
equivalently, finite) subsets of V}, with U;j>1K; = V},. For every u € fék), define uj = u—((—1/j)V
w))A(1/7). By [14, Theorem 1.4.2(iv)], u; is S(k)—convergent to u where El(k)( N = ER )43
Since u € L?(Vg;my), supplu;] C {x € Vi : Ju(z)| > 1/} is a finite set. Consequently u; € Ce(V)
and so (£®), F®) is a regular Dirichlet form on L?(Vj;my). Thus there is an associated my-
symmetric Hunt process X () on V.

To prove the second claim of Theorem 3.2, we will use [24, Theorem 3.1]. Note that py is a
discrete metric on Vi, so in view of (2.5), condition (3.2) is equivalent to having

sup > (pr(z,9)* A1) M) (2, y)ma(y) < oo.
zeVy, yEV;

Thus, since j*)(z,7) is symmetric, under the assumption (3.2), [24, Condition (C)] holds. Thus,
to apply [24, Theorem 3.1] to deduce the conservativeness of X (k) we only need to check that
x — e~ r@0) ¢ L1(Vy:my,) for some xy € V.

Fix some zg € V. Note that for r > 0, by (AG.1)-(AG.3) and (2.1)

m(Baor) = > my=m( U G)

YEVi,ox(0,y)<r YEVi,pr(x0,y)<r
< m(B(zo,Cor +C3)) < c(r+ l)d0

Thus for every A > 0,

[ eoemman) = [T B = A [ miBlao e dr
Vi 0 0
< ecA </ (1 + 7)o e/\rdr> < 00.
0

So we conclude from [24, Theorem 3.1] that under the condition (3.2), X*) is conservative. D

Recall that ]P’Spk) and P, is defined for every positive function ¢ € C.(E) in (2.24).
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Lemma 3.3 Assume condition (A1) holds. Then for every g € Lip.(FE), there exists a positive
constant ¢ such that for every k > ko and 0 < s <t < 00,

D @(XP) = g@) P XP, yyma(y)du < et — ).

S yevy

Proof. Let A be the Lipschitz constant of g. There is an integer j > 1 so that the topological
support K of g is contained in ball B; centered at xo with radius j. Let Ky := B;11 and K3 := Bj 3.
By (2.3) and (2.9)—(2.10),

sup »  (g(x) — g(1))%™ (2, y)ma(y)
eV yeVi

= sup | > g@iP@ymiy) + Y (9(@) = 9@) " (@, y)mi(y)

2€VE \ yeKenv;, yeK1NVj,

< gl swp D> W ymily) + sup Y g%V (@ y)mu(y)
zeKNVy yerka CEEKQQV]C yEK1NV;
+ osup Y (A%p(x,y)? AlgllZ) 5P (x, y)ma(y)
reKaNVy yeK1nVj,
2
Pr\T,Y .
< allgl e suwp Z((k )Al) 5 @ yymi() < cs,
reKaNVy

IS %

where c¢1, co and c3 are positive constants independent of k > kg. The conclusion of the lemma
follows directly from the above inequality. O

Recall that Ejy is the one-point compactification of E and the space D of right continuous
functions having left limits is defined in (1.2). Clearly X*) € Dg,[0, 00).

Since Lip/ (E) = {f € Lip.(E) : f > 0} separates points of E, using Stone-Weierstrass theorem,
it is easy to check that Lip/ (FE) is a dense subset of CL(E) (space of non-negative continuous
functions on F that vanishes at infinity).

Proposition 3.4 Assume (A1) holds and let ¢®) denote the lifetime of the process X¥). Then, for
any ¢ € CH(E), T >0, m>1and {g1, - ,gm} C LipS (E), the laws of {(g1,--" ,gm)()((l’“))}k>1
on {¢®) > T} with initial distribution (x)my,(dx) is tight in Dgm[0,T] equipped with the Skorohod
topology. Moreover, the laws of{Xt(k), t € (0,71} on {¢®) > T} with initial distribution ¢(x)my,(dz)
is tight in Dg,[0,T] equipped with the Skorohod topology.

Proof. Without loss of generality, we assume that m =1, T =1 and g = g;. We first show that
{(g(X(k)), ch)); k> 1} is relatively compact in Dg|[0, 1] equipped with the Skorohod topology.
Given t > 0 and a path w € Dg[0, 1], the time reversal operator r; is defined by

w((t—s)—), if 0<s<t,
w(0) if s > ¢.

12



Here for r > 0, w(r—) := limg, w(s) is the left limit at » and we use the convention that w(0—) :=
w(0)

Since fly, € F®) for every f € Lip.(E), by the same argument as that for [6, (2.3)] (see
also [8]), we have the following forward-backward martingale decomposition of f (Xt(k)) for every
f € Lip,(E); There exists a martingale M*/ such that on {¢(*) > 1},

k k 1 1
FE) = (™) = M = S = MET yor, e (o, 1), (3.3)

By [8, Proposition 2.8], for each M*/, there exists the continuous predictable quadratic variation
process (M*F);. Note that (for example, see [14, page 214])

(METy — (MM :/ ST A — £)) 2P (X5 y)m(y)du.

Thus by Lemma 3.3 and [16, Proposition VI1.3.26], {(M*7);};>1 is C-tight in Dg|0, 1] equipped
with the Skorohod topology, i.e., {(M*7);};>1 is tight in Dg[0,1] equipped with the Skorohod
topology and all limit points of {(M*7/);};>1 are laws of continuous processes. As my converges
weakly to m, by [16, Theorem VI.4.13] the laws of {M*/};; is tight in Dg[0,1] with the initial
distribution P;lk) for every h € LipS (E). Thus the laws of { M/ ,ug?m }k>1 is tight in the sense of
Skorohod topology on Dg[0, 1] for every hi, he € Lip] (E) where

i (4) = E [ In (X0 @) La(@)hao(X(Y @); ¢9 > 1], A € BDE[0,1]).
Note that for every A € B(Dg[0,1]),
“Eﬁ)ﬂha(“l or)) = E [hl(Xék) (W) 14 011 (w)ha (X P (w)); ¢®) > 1}
= B (X7 @) 1a@)h (X @)); (P > 1]
i, (A).

Thus the laws of {Mk’fvlig?m}kzl is the same as the laws of {M"/ o Tl),ug;:)hl}kZI and so the
laws of {M*f o rl,ug?,m }k>1 is tight in the sense of Skorohod topology on Dg[0,1] for every
hi, he € Lip.(F), too. So the laws of {Mkvf, ,ugf}}kZl and the laws of {Mk’vf ory, ,ug”;}}kzl are tight.

Since the laws of {g(X(k)),]P’Spk)}k>l restricted to {¢(®) > 1} are the same as {g(X(k)),ugf)g p>p 10

Dg[0, 1], by (3.3) {g(X(k)), IP’S(Dk)}k>1 restricted to {¢®) > 1} is tight (and so relatively compact) in
the sense of Skorohod topology on Dg]0, 1].

Since Ej is compact and the linear span of Lip/ (E) and constants is a dense subset in C'(Ejy)
equipped with uniform topology, we conclude from [13, Theorem 3.9.1 and Corollary 3.9.3] that
the laws of {Xt(k),t € [0,1]} on {¢® > 1} with initial distribution ¢(x)my(dz) is tight in Dg,[0, 1]
equipped with the Skorohod topology. 0
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4 Mosco convergence

We will show in Section 5 that symmetric continuous time random walk X*) with conductance
C®) converges to the symmetric Hunt processes X associated with (£, F) in the sense of finite
dimensional distributions (Theorem 5.1). One way to establish this is to show that corresponding
Dirichlet form converges in the sense of Mosco, a concept introduced in [26]. In [26], a symmetric
bilinear form a(u, u) defined on a linear subspace D[a] of a Hilbert space H is extended to the whole
space ‘H by defining a(u,u) = oo for every u € H \ D[a]. We will use this extension throughout
this paper. In [26], Mosco showed that the Mosco convergence of a sequence of densely defined
symmetric closed forms defined on the same Hilbert space is equivalent to the convergence of the
sequence of semigroups in strong operator sense. However, in many cases, semigroups and their
associated closed forms may live on different Hilbert spaces. Fortunately, the Mosco convergence
theory can be extended to cover these cases of varying state spaces. Theorem 8.3 in the Appendix,
which was obtained in [17] and [18, Theorem 2.5], gives one such extension. See [22] for another
extension.

In this section, we establish the Mosco convergence of (£*), F(¥)) in the sense of Definition
8.1 under two sets of conditions. We first prove some basic facts on the restriction and extension
operators.

Recall the restriction operator 7y : L?(E;m) — L?(Vi;my) and the extension operator Ej, :
L?(Vi;;my) — L?(E;m) defined in (2.13) and (2.14), respectively. Let (-,-)x (resp. (-,-)) be the
inner product in Hilbert space L?(Vj;my) (resp. L?(E;m)) and |-
of LP(Vi;my) (resp. LP(E;m)).

kp (resp. ||-||p) be the LP-norm

Lemma 4.1 (i) m is a bounded operator from L*(E;m) to L*(Vi;my) with supysy |7 < 1,
k2 = |fll2 for every f €

where ||| is the operator norm of wy. Further, limg_ oo |7k f]
L2(E;m).

(ii) For each fi € L*(Vy;my), we have the following;

WkEkfk = fk m-a.e., (4.1)
(g, fi)e = (9, Bxfr)  for every g € L*(E;m).

(iii) For every f € L*(Vi;my), Exf € L*(E;m) and | Exf13 = | Bx(f*)l = [ f1I7 o-
(iv) For every f € L?>(E;m), Exmif converges strongly to f in L?>(E;m).

(v) Suppose f € C.(E). Let fr :== flv, € L?(Vi;my). Then Eyfy converges strongly to f in
L*(E;m).

14



Proof. (i) By the Cauchy-Schwarz inequality,

2
1
= Yo (s [ fmi) (13)
m;/k (mk(ﬂf) U ()
mi(z) / 2 2
< fy) m(dy) = | £l
2o e 2
Moreover, by the uniform continuity, we easily see from (4.3) that limg_,o || f HiQ = ||fl3 for

f € C.(E). As C.(E) is dense in L*(E;m) and ||| < 1, we have limy_, H7rkf||i2 = |If||3 for
f € L3E;m).
(ii) (4.1) is clear from the definitions of 7, and Ej. The left hand side of (4.2) is

@
— 9(y)m(dy) fi(x)mu ().
By Fubini’s theorem, the above is equal to
/ S fe@)9 ) Lo W)mldy) = (Bxfio g)-
eV,
(iii) Note that, since m(Uy(z) N Uk(y)) = 0 for = # y, we have for f € L?(Vi;mp)

1218 = [ (2 @) midy)

€V,

- / > F@) 1w @)mldy) = B

€V},
Moreover, by Fubini’s theorem,
)2
/ S 1) 1y, =Y f@ — 12
€V}, eV

(iv) First assume that f € C.(F). Let K := {z € E : p(x,supp[f]) < 1}. By the Cauchy-
Schwarz inequality, for sufficiently large k > 1,

\Eef — fIB = /K B fi(x) — f (@) m(dz)

2
1
ze%;w /Lfk(z) (mk(z) /Uk-(z)(f(y> - f(x))m(dy)) m(da)

1 — T 2m mlaxr
< X T U@ S mymas)

zeViNK

IN

which, by the uniform continuity of f € C.(E), tends to zero as k — oo. That is, for f € C.(F),
Eymif converges strongly in L2(E;m) to f. Since by (i) and (iii),

1B fllz = Imefllrz < | fllz for f € L*(E;m)
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and that C.(E) is dense in L?(E;m), we conclude that for every f € L?(E;m), Exmf converges
strongly in L2(E;m) to f.
(v) Let K :={z € E: p(x,supp|f]) < 1}. Then for k sufficiently large,

/ By fi(a) — f(x) Pda) = / (B fi(a) — f(z) Pmdz),
FE K

which goes to zero by the uniform continuity of f. O

4.1 Mosco convergence under conditions (2.9) and (A2)—(A4)
We start with

Lemma 4.2 Under the condition (A2), Lip.(F) C F.

Proof. Let u € Lip,(E). Clearly it is L?(E;m)-integrable. Denote by A the Lipschitz constant of
uw and K := supp|u]. Then by the symmetry of j(z,dy),

—u 2i(x m(dx

E(uu) < /K (/E \{ﬂ(u(m) ()% ,dy>) (da)

/ (/ (A2p(xay)21{p(x,y)§1}+4||u||gol{p(w,y)>1})j(xvdy)> m(dx)
K E

< em(K) jg}g[E(p(aﬁ,y)Q/\l)j(x,dy),

IN

which is finite by condition (2.11). This proves that u € F. O

Lemma 4.2 in particular implies that F is a dense linear subspace of L2(E;m). It is easy to
check by using Fatou’s lemma that (€, F) is a Dirichlet form on L?(E;m) (cf. [14, Example 1.2.4]).

Recall that we have fixed some z¢ € E and B, = B(zo,r), and that quadratic forms Eg-ﬁg) and
&;s are defined in (2.16) and (2.17), respectively. Recall also that the definition of j*) has been

extended to be defined on E x E by (2.15). For f: E — R, we define

1

g® = = w) — F(2))21%) (w, 2)m(dw)m(dz).
V)= [ () = FH . mdw)m(dz)

Note that for function f on Vi, (Enf(z) — Exf(w))? = (f(z) — f(y))?* where z,y € V with
z € Ug(z),w € Ug(y). Thus

g(k)(Eku, Ewu) = EP(u,u), for all u e FK) (4.4)
Remark 4.3 It follows from (2.11) of (A2) that for every compact subset K C E

lim plz,y)2j(z, dy)m(dz) = 0. (4.5)
170 J{(@y) €K x Bsp(a,y)<n}

O
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Lemma 4.4 Suppose the conditions (A2), (A3) and (A4) (i)(iil) hold, then for every f € Lip.(E),
limgso0 EF (mp f,mi f) = E(S, f).

Proof. First, note that by (4.4), £*) (e fymif) = ( )(Emrkf, Eymif).

Fix f € Lip.(¥) and let K be the support of f, K; := {x € E : p(z,K) < 1} and My :=
sup,ep |f(x)]. Then, by (2.19) and the symmetry of j(*) for each € > 0, there exists jo such that
the following holds for j > 7o,

mmwl/L”B(mmﬂm—mmﬂm%wmwmmwmw

k—o0

< (2My) hmsup/ /B) (z,y)m(dz)m(dy) <

k—o0

Similarly, using (2.11) and choosing jp larger if necessary, we have

1 ) F (e E
2//(Bj><Bj)C(f( ) f(y)) J(d 7dy) <

Since f € Lip.(F) is Lipschitz continuous, using (AG.2), (AG.3), (2.18) and (4.5) and arguing
similarly, we have

mel// (Bmf (2) — By f ()% (2, yym(dz)m(dy) < e
{(z,y)eK1 x K1:p(x,y) <8}

k—o0

and

// (f(x) = f(y)*J(dz, dy) <
{(z,y)e K1 x K1:p(x,y) <8}

for all 6 € (0,1). Thus, it is enough to show the following for any sufficiently small ¢ and large j:

hm 5( )(Ekﬂ'kf, Eymif) =Eis(f, f)-

By the symmetry of Sj(fs) and Lemma 4.1(iv),

1im )f(-k) Eymif, Ekﬂkf)l/Q - E('k)(fa f)l/Z‘

IN

hmé’ (f Eymif, f — Exmf)Y/?

1/2
= lim (1/ ((f = Bxmif)(@) = (f = Exmrf) ()5 (@ 9) 1 p0y) 55y m(da)m (dy)>
B]'XBJ'

k—oo \ 2

ékg&<LJﬂ@—J%mﬂ@V<A;

< lim ¢(4,0) || f — Exmifll2 = 0.
k—o0

1/2
5K (xvy)l{p(m,y)>5}m(dy)> m(dw)>

J

Hence we have
lim & (Bymyf, Bymif) = lim E9(/, 1),
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On the other hand, by (2.20), hmkﬁooé’ (f f) = &s5(f, f). This completes the proof of the
Lemma. O

Theorem 4.5 Suppose the conditions (2.9) of (A1) and (A2)-(A4) hold, then (EF), FK)) is
Mosco convergent to (€, F) in the generalized sense of Definition 8.1.

Proof. Take D = Lip.(F) in Lemma 8.2. Then, by our assumption (A3) and Lemmas 4.2, 4.4,
8.2, we only need to check condition (i) in Definition 8.1.

It is enough to consider sequences {uy}r>1 C LQ(Vk; my) such that Fyuy converges weakly to
u € L?(E;m) and liminfy,_ . S(k)(uk, uy) < oo. Taking a subsequence if necessary, we may and do
assume that limy_, oo E(k)(uk, uy) exists and is finite, and that

sup uk,uk + Z ug(z mk < 0. (4.6)
k=1 zeVy,

So in particular, uj, € F*) for every k > 1. By uniform boundedness principle, { Eyuy; k > 1} is a
bounded sequence on L2(E;m).

By the Banach-Saks theorem, taking a subsequence if necessary, vy := %Zle F;u; converges
to some vy in L2(E;m). Since Epuy converges weakly to u in L?(E;m), vs must be u m-a.e. on
E.

Fix an integer j > 1 and 6 > 0. For € > 0, let f € Lip.(E) such that |lu — fl2 < e/\/2a;s,
where

ajs = maX{SUP Sup/j(k)($7y)1{p(:v,y)>5}m(dy)v Sup/l{p(z,y)>6}j(zadw)}u
k>koz€B; JE 2€B; JE

which is finite by (2.9) of (A1) and (A2)(iii). Observe that by (A4)(iii)

lim sup 55 g(vk, Uk)1/2 - &s(f, f)lm‘

k—o00
< hzn sup Eg (g)(vk, vk)1/2 — ng{(s)(f, f)l/Z‘
—00
< hmsupgg(g)(vk = fiok — f)1/2
k—o0
1/2
< limsup (2/ (vk(x) — f(l‘))Q </ j(k:)(x,y)l{p(x,y)>5}m(dy)> m(dx))
k—o0 Bj E
< likmSUP\/%llvk — fll2 = V2a;5llu— fll2 <e.
—00

Similarly, we have

€500 D2 = &) 2| < Ei5(F —u f = )"/ < /2ag5 IS ~ulls < e.
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Thus we have
hmmf&’( )(vk, v) Y2 > Ei5(f, HV? — e > &js(u,u)/? — 2e. (4.7)

k—o0

Observe that for kg < n < k,

65 cS)(Una Un) /2 - 6j,5(fa f)1/2

< (&8 wn,en) 2~ 2 (1, 11
< &~ fooa— N
1/2
< (2 /B]- (Un(x) - f(ZL‘))2 (/E](k) (l'vy)l{p(m,y)>6}m(dy)> m(d:z:))
< V2ajs[[vn — fll2-

Thus

lim sup 5 (vn, )2 < E5(f, NV + \/Bazs lu — fllz < Ea(f, ))Y? +e < oc.

n—o0 k>n
By condition (A4)(ii) and the above, there exists N > 0 such that for every k > i > N,
S(k) (WkEiuz’, ﬂ'kEiuz')lm S 8(1)(u1, ui)1/2 + S (4.8)

and

sup Egg)(vN,vN)l/Q < 00. (4.9)

Since, for k > N

=(k) 1/2 ~ (1 1 ¢ 1/2
7,0 (Vg V&) = gj,é (% Z Eiui, % Z zuz>
i=1 i1
N k N k
/1 1 1 1 1/2
= Ea(p X Bty X By 3 Bty Y i)
i=1 i=N+1 i1 i=N+1
k
Nk 1 k
< ?Sg (S)(UNa UN)l/Q + Z 5§ 5) (Ezuw E; 2)1/2
i=N+1
N 1<
< — | sup ?E?)(UN,UN)I/Q + - Z EW (m Bius, ﬂ'kEiui)l/Q
Fo\m=n 7 o

by (4.8)-(4.9),

A

=(k) 1/2 L z) 1/2
hkn_lggfcf 5 (vk, Vi) < hn_l)lolgf ? (l %;_15 Uu;, uZ >

lim S(k)(uk, uk)l/2 + €
k—o0

IN
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Now from (4.7), we have
Ejs(u, u)1/2 < lim S(k)(uk uk)l/2 + 3e.

k—o0

Since £ > 0 is arbitrary, we have

Eio(u,u) < lim EW® (uy, up,).
k—o0

By first letting j — oo and then § — 0, one has limy_,o0 £ (uy, ug) > €(u,u), which completes
the proof of the theorem. O

4.2 Mosco convergence under conditions (A2), (A3)* and (A4)*

In this subsection, we present Mosco convergence under the assumptions (A2), (A3)* and (A4)*.

We do not assume (A1) in this subsection. Recall that operators Z;-ﬁ;) and L; 5 are defined in (2.21)
and (2.22), respectively. Observe that

?g?(u,v) = —(U,Zg'ig)v)Q’Bj and Ejs(u,v) = —(u, Ljsv)2 B;,

where (u,v)2 B, fB m(dx) and ?g{? (u,v) and &;5(u,v) are defined in (2.16) and (2.17)
respectively.
In this subsection, we assume conditions (A2), (A3)* and (A4)* hold. Let

Kjs = Sup/ L p(ay)>o1d (2, dy),
:EEB]- Bj

which is finite due to (A2). Also, let || - ||2,3, be the L?-norm on Bj. We then have the following

basic estimates.

Lemma 4.6 The following holds for any 0 > 0 and j € N.

(i) &s(u,u) < Kj75||u\|§73], for all w € L*(Bj;m). In particular, & s(u,u) < oo for all u €

Lz(Bj; m)

i . 2 -y 2(3..

(i) [1£6ull3 5, < Kj,ijl:);(u, u) for allu € L*(Bj;m).

(i) T oo (L5 — Z9) flla,5, = O for all f € Lip,(E).

Proof. (i) For u € L*(Bj;m), we have
1 )
Eistun) = 5 [ [ (@) v ) sy dody
;i J/ Bj

< ul g, Sup/ (@, ) pey>aydy < Kjsllull3 s,

pAS j Bj

(ii) As in (i), & s(u,u) < oo for u € L*(Bj;m). So, using the Cauchy-Schwarz inequality, we have

2
- / / — uw(@)) (>3 (2, dy)) m(dx)
B;

J

/B / — w(Y))* L (=51 (2, dy) - /B L p(z,0)>517 (T, dy)>m(d$)

J J

< ffj7 535(u u)

1£5,

IN
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(iii) Using the second half of (A3)* and (A4)*(ii)(iii) (and (2.23)), we have

k —(k
1(Lss — LY 138, = 1L55 135, + L5 £13 5, — 2655 (Ciaf, F) = 0

7

O

We now prove the Mosco convergence that corresponds to Theorem 4.5. Recall that we do not
assume (A1) in this subsection.

Theorem 4.7 Under the assumptions (A2), (A3)* and (A4)*, (EW), F*)) is Mosco convergent
to (€, F) in the generalized sense of Definition 8.1.

Proof. Since Lemma 4.4 works in this setting, as before, we only need to check condition (i) in
Definition 8.1. Also, as in the proof of Theorem 4.5, we may assume {Ejux; k > 1} is a bounded
sequence on L?(E;m) that converges weakly to u € L2(E;m), limj_,oo E®) (uy, uz) < 0o, and (4.6)
holds

Fix j large and 6 > 0 small then take positive € < &;5(u,u). In the following, we simply write
(-s+), || - ]2 for inner product and L%norm on B; and use L? = L?(Bj;m). For u € L* which is the
weak limit of Ejuy, take f € Lip,(E) so that & s(u— f,u— f)+|lu— f||3 < & (note that by Lemma
4.6(i), it is enough to take ||u — f||3 small). First, note that

. —(k
lim (Bpug, (L35~ £93)f) =0, (4.10)
where ug, u and f are as above. Indeed, using Lemma 4.6(iii),
k — —
(B (€3 = Z) < IBuunllys - E5)51e < (sup 1Bl ) 1235~ EED A1 0.
Now
5o (Brug, ) = Es(f O = 1(f,L6f) (Ekulm ol
< |(Brug, (Ljs — ) N+ [(Brug —u, L s )] + [(w—f, Ljsf)]-

Using (4.10), the first term of the last line goes to zero and since { Exug} converges weakly to wu,
the second term goes to zero as k — oo (note that £;sf € L? due to Lemma 4.6(i)(ii)). Further,
there exists a C' = C(j,0,u) > 0 such that

((w=FLisHl < lu—fll2llCisflla < flu— flla(l£56(u = Fllz + [[1£55ul2)
<l = fllo(Esllu = fllz + [1£55ull2) < Ce2,

where Lemma 4.6(i),(ii) are used in the third inequality.
Thus, using the Cauchy-Schwarz inequality, we have

Es(f.f) < limsup |E)y (Epug, f)| + Ce'/?

o k—o0

< lim (E§§(Ekuk,Ekuk)1/25 (f, f)1/2)+051/2

k—o00

= [lim g;(;)(Ekuk,Ekuk)l/QEj,é(f; HY2 4 0el/?
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where the last equality is due to (A4)* (iii). Since € < &;5(u,u), by a rearrangement, we obtain

1/2

2 < e (f V2 4l < fim BV 2o Sl 4l
Eioluu) ™ < &, f)7 e < Iim &5 (Blur, Byuw) ™+ O + ¢
1/2
. a(k) 1/2 £ 1/2
< .
< kh—>nc}og (Eruk, Eyug)™’= + ngy(;(u,u)l/Q _ 12 e
Taking € — 0 and then j — co and § — 0, we obtain the desired inequality. t

Remark 4.8 The second assumption in (A3)* is used only in the proof of Lemma 4.6(iii). Thus
if we strengthen (A4)* (iii) further by assuming instead

klim Egkg) (f, ) =&s(f. f) for every bounded measurable function f on Bj.
—o0 7

Then we can remove the second assumption in (A3)*. Note that £;sf is bounded on B; for each
f € Lip.(F) by (2.11).

5 Proofs of Main Results

In this section, we give the proof of the main results of this paper.

Under conditions (A2) and (A3), by [9, Propostion 2.2] and its proof, (£,F) is a regular
Dirichlet form on L?(E;m). Let X = {X;,t > 0,P,,2 € E} be the symmetric Hunt process
associated with (£, F) on E and recall that X*) is symmetric continuous time random walk on Vj,
with conductance C¥) (x, y) = my(x)i® (z, y)mr(y).

In the next theorem we show that X(*) converges to X in the sense of finite dimensional
distributions under the assumption that X is conservative; that is, X has infinite lifetime P,-a.s.
for £-q.e. x € E. We remark here, that, if

sup [ (ple.) A Di(edy) < oc, (51)
rzeE JE
then we have by (2.2) and [24, Theorem 3.1] that the process X is conservative.

Throughout this section, X *) and X are the symmetric Hunt processes associated with (& k), F (k))
and (&, F), respectively.

Theorem 5.1 Assume that (A2) holds and that X is conservative. Assume further that either
(2.9) of (A1), (A3)-(A4) hold, or (A3)*~(A4)* hold. Suppose ¢ is in C(E). Then {X(k)}k>1
(k) y

with initial distribution Py’ converge to X with initial distribution P, in the finite dimensional

SENSeE.

Proof. Without loss of generality, we assume [ @(z)m(dz) = 1. Let P, f(z) := E,[f(X;)] and

Pt(k)g(x) =EP [g(Xt(k))] be the contraction semigroups on L?(E;m) and L?(V};my) respectively.
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By Theorems 4.5, 4.7 and 8.3, Eth(k)ﬂ'k converges to P; strongly in L?(E;m). For any | > 1,
{h1,--- ,l} C L(E;m) and 0 < #1 < t3 < -+ < #;, we have by Lemma 4.1 and the Markov
property of X*) and X that

lim EQ, |miha (X)) mehi(X() | = B (X)) - - la(X)] (5.2)

k—o00

We fix [ > 1. Since X is conservative, for any € > 0, there is ball B = B(z¢,7) so that Py, (Xy; €
B) > 1 —¢ for every j € {1,...1}. By the strong L?-convergence of Eth(jk)wklg to P;1p in
L?(E;m), we have

lim P, (Xt(f) € B) >1—e foreveryje{l,...1}. (5.3)

k—o00
For any {f1, -, fi} C Cb(E), since Eymyf; converges uniformly to f; on B, from (5.2) we have
. k k k k
tim B, [A () f(xfD) nfoy (X)) e BY

= lim EY), [Wk(fllB)(Xt(lk))"'Wk(fllB)(Xt(lk))}

k—o00
= Eom [(118)(Xy) - (filp)(Xy))]
= Epon [[1(X0) - f5(X0,) s Ni_i{X, € BY . (5.4)
We deduce the finite-dimensional convergence from (5.3) and (5.4). O

Definition 5.2 ([13]) A collection of function S C Cy(E) is said to strongly separate points if for
every x € E and § > 0, there exists a finite set {hy,--- ,h} C S such that

inf hi(y) — hi(x)| > 0.
yeoly) > max [hi(y) — hi(@)]

We can easily check that Lip} (E) strongly separates points in E.

Proof of Theorem 2.2. First, note that, by Proposition 3.4, for every T > 0 and any m > 1 and

{91, ,9m} C Lip} (E), {(gl, . ,gm)(X(”“))}k21 restricted to {¢*) > T'} is tight in the Skorohod

space Dgm [0, T'] with the initial distribution IP’c(pk). Since X is conservative, by (5.3), for every € > 0,

i (k) (k) —
kIL%on.mk (C > T) >1-—c¢.

So it follows from [16, Theorem VI.3.21], {(g1, - ,gm)(X(k))}k>1 is tight in the Skorohod space

Drm [0, T] with the initial distribution Pfok). This together with Theorem 5.1 implies the weak
convergence of {(g1,- - ,g7n)(X(k))}k>1 with initial distribution IP’EDk) to (g1, , gm)(X) with initial
distribution P,. Since Lip/ (E) strongly separates points in E, we have the desired result by [13,
Corollary 3.9.2]. O

We now turn our attention to the weak convergence of {X*) k> 1} under the convergence-in-
measure (or pseudo-path) topology.
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Proposition 5.3 Assume that (A.2), (A.3) and (A.4)(i)(iii) hold. Then for every p € CI(E),
the law {P&k), k > 1} is tight on D, [0, 1] equipped with the convergence-in-measure topology.

Proof. Let D; and Dy be two relatively compact open subsets in £ with disjoint closure. By
(A.3), there is some f € Lip,(F) C F so that f = 1 in an open neighborhood of Dy and f = 0 in
an open neighborhood of Dy. Then for k sufficiently large, 7, f = 1 on V;, N Dy and 7, f = 0 on
Vi N D1. Let N®) be the number of crossings by X*) from D; into D,. By [7, Theorem in page
69], if g € F®) such that g =1 on Dy NV and g = 0 on Dy NV, then

Eh [NV < 2]l¢]lo0 £M(g, 9). (5.5)
It follows from Lemma 4.4 that
sup Egﬁnk [N®W] < .
E>1
Since the above holds for every pair of relatively compact open subsets in £ with disjoint closure,
we conclude by [25, Theorem 2] and a diagonal selection procedure that the law {IPc(pk), kE>1}is
tight on Dg, [0, 1] equipped with the convergence-in-measure topology. O

Proof of Theorem 2.3. First, note that conditions (A.3)* and (A.4)* are stronger than condi-
tions (A.3) and (A.4)(i)(iii). So, by Proposition 5.3, for any subsequence {ng; k > 1}, there exists
a sub-subsequence {n};k > 1} such that {(X (%), ]P’c(pn;“));k > 1} converges weakly on Dg, [0, 1]
equipped with the convergence-in-measure topology to a law of say P. Thus by [25, Theorem 5], we
may assume without loss of generality that there is a subset A C [0,1] of zero Lebesgue measure
so that {(X (), P&n;)); k > 1} converges in finite dimension over the time interval [0, 1]\ A to that
of P. Let Pif(x) := E,[f(X;)] and Pt(k)g(a:) = EW [g(Xt(k))]. By Theorem 4.5 or Theorem 4.7, we
know that (£#), F*)) is Mosco convergent to (£, F). So by Theorem 8.3 (ii), Eth(k)ﬂkf converges
to P,f in L?(E;m). This implies by the Markov property that, for any [ > 1, {hy,--- , i} C C(E)
and 0 <t) <ty < -+ <ty
lim ES meha(X() - mehy(X0) | = B [ (X0y) -+ la(X0,)].

Thus the finite dimensional distribution under P over the time interval [0,1] \ A is the same as
that of (X, P,). Since both laws P and P, are carried on D, [0, 1], it follows that P has the same
distribution as the law of (X, IP,). Since this holds for any subsequence {ny;k > 1}, we obtain the
desired result. 0

6 Discrete approximation

In this section, we give a general criteria for the approximation of symmetric pure-jump processes
on metric measure spaces.
We introduce a condition on our approximating graphs.
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(AG.4) There exists ng > 1 such that for every j > n > ng and = € Vy;, there is some y € Van so
that Uyj(x) C Uan (y).

Recall that conditions (AG1)-(AG.3) are given in Section 2. When E = R? the following
sequence of approximating graphs {(Vj, ZEx); k > 1} and associated partitions {Ug(z),x € Vi; k > 1}
satisfy conditions (AG.1)-(AG.4):

Vi=k7'2%,  (z,y)€ZE, ifandonlyif xyek 2% with |z —y| =k, (6.1)
and
d
Uk(x) = 1_[[13Z —(2k) 7Yz 4+ (28) 7Y for x = (z1, -+ ,zq) € Vi. (6.2)
i=1

Condition (AG.4) is needed only in this section. Recall that B, = B(zo,r) for r > 0.
Theorem 6.1 Let j(x,y) be a non-negative measurable symmetric function on E x E such that
Jjlz,y) < My < o0 for every x,y € E with p(z,y) > 1

and for every compact set K C F,

lim sup j(z, (B;)°) = 0.

IR0 zeK
Assume that the Dirichlet form (€, F) determined by the jumping kernel j(z,dy) := j(z,y)m(dy)
satisfies the conditions (A2)—(A3) and that the symmetric Hunt process X associated with the
regqular Dirichlet form (€, F) on L*(E;m) is conservative. Let {(Var, Zor); k > 1} be approzimating
graphs of E and {Uyk (x),x € Vor; k > 1} be the associated partitions satisfying (AG.1)—(AG.4).
Let

. 1 .
J(Qk)(l‘ay) = 1{p2k(ac,y)2403/01} WWW/U ( )J(ﬁa Usk (y))m(d§) for x,y € Vor, (6.3)
2k (T

where mqr(x) = m(Uyk(x)) and C1,C3 are given in (2.3), (2.4). Then (5(2k),.7-"(2k)) as defined
in (2.8) is a reqular Dirichlet form on L?>(Vgr;mor). Let X@ be its associated continuous time
Markov chain on Vyr. Then, for any positive function ¢ € CF (E), {(X(Zk), Pffk)); k > 1} converges
weakly as k — oo to (X, Py) on Dg,[0, 1] equipped with the Skorohod topology.

Proof. For notational simplicity, in this proof we write k for 2¥. In view of Theorem 2.2, it is
enough to show (A1) and (A4) hold. For pi(z,y) > 4C3/Cy and & € Ug(x),n € Uk(y), we have
by (2.3)-(2.4) and the triangle inequality that p(x,y) > Cipi(z,y)/k > 4Cs/k,

1p(&:m) — p(z,y)| < p(z,€) + p(n,y) < Cs3/k+ C3/k =2C3/k (6.4)
and so
D) < o )2 < plem) < ol /2 < 22 D) (65)
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Take a compact set K C F and Ky := {z € E: p(z, K) < 1}. Then by (6.5)

IA

<

<

) x, 2
sup sup Y J(’“)(w,y)(pk(ky) A 1) mi(y)
keN we KNV Sy

1

Pe(2,Y) 2 / .
sup su ——= A1) 14, (a —_— U, m(d
kegxeKrIW)Vk EEV < . ) {on( 7y)24C3/C1}mk(x) Uk(x)](é k(y))m(dE)

Pk

sup sup
keNze KNV GV

2
n 1) L pu(ay)2acs/c1y (€5 dn)m(dE)

U (z

Uk(y
csup

< sup / <p<g,n>2A1>j<s,dn>) m(de)
keEN ze KNV, yevi (z) \€€Ug(z) JUk(y)

csup sup /U ( )(0(5,77)2/\1)J'(§,d77)
k\Y

keN e K, yeVi

¢ sup / (plE.1)? A)j(E.dn) < Ce
FE

§EKy

by (A2) (iii). This proves (2.9) of (A1).
By (6.4), for k > 2C5 and z,y € V}, with pg(z,y) > 2,

p&m) = p(x,y) —2C3/k>1  for § € Ug(z) and n € Uk(y).

So for each k > 2C3, j > 1 and @ € B; NV, y € (Bj+2)° NV,

1

i) (2 —_— ] m m
) < s | & (e mdn) < M,

which establishes (2.10) of (A1).
By the definition of j*)(-, ), (2.18) clearly holds. For any compact set K C E with K; := {z €
E :p(z,K) <1}, we have

lim supsup/ i@, y)m(dy) < lim sup/ (& y)m(dy) =0,
(Bj)° (Bj)°

Jj—ro0 k>1zeK J—=0 2e Ky

o (2.19) holds.
On the other hand by (A1), for any f € L}(E,m) with ||f|lcc < M1, j >1and § > 0,

‘%5 (f, )V - 5( )(EkﬂkfaEkaf)l/zl
5( )(Emkf—fvEka—f)l/Q

(2 [ (@) - By ( /

J

c(4,6) I f — Exmfll2,

IN

IN

1/2
](k) (xa y)l{p(x,y)>6}m(dy)) m(dy>>

J

IN
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which goes to 0 as kK — oo by Lemma 4.1(iv). Note that for large k and small §,

e Bt Bimd) = [ (Bum (@) = Bemf )% (2,01 0>y da)m(dy)

. 1
- 3 Z (mif(2) — mf (w))? W%(Z)mk(w)/U " J (&, Ug(w))m(d€) x
(z,w)EVi XV ,
' ! ! 6.7
’ /<Bijj>ﬂ(Uk(z)xUk(w)) Lote.)>symldz)m(dy) (6.7)

and

Ejs(Exmif, Exmif) = ;/B B_(Ekﬂkf(x) — Exmi f ()25 (2, ) 1 pay)>sym(dz)m(dy)

= % Z (ka(z) - ka(w))Z/ ](ZE, y)l{p(%y»(g}m(dm)m(dy) (68)

(z,w)EVE XV, (B xBj)N(Uk(2) x Uy (w))

Since, except the case p(x,y) is small and y is near the boundary of Bj, the summands in (6.7) and
(6.8) are the same, it is easy to see that there exists kg = ko(d) > 0 and ¢ > 0 such that for k > ko,

—(k
‘555) (Exmif, Exmif) — Es(Epmif, Emkf)‘

IN

2/ (Epmf (2) = Bxme f ()2 5(2, )1 (0 )55ty m(da)m(dy)
By x{j—cq<p(y,xo)<j+ci} z

+/ (Ekﬂ'k:f(x) - Ek‘ﬂ-k’f(y))Qj(xa y)1{54_6%>p(x,y)>5_cé}m(da:)m(dy)
Bjt+1xBjt+1

IN

2(2M1)2/ j(:c,y)l - 5_cl m(dl')m(dy)
Bjx{j—ct<p(yxo)<j+ci} {p(z,y)>6—c}

+(2M1)2/

]1'73/1 Cl T _Clmdmmdy,
Bji1xBji1 (@) 51t s p(ay)>s—ctym(dz)m(dy)

which goes to zero as k goes to co. Therefore

kl;rilo ’?%)(Ekﬂkf, Eymif) —&j5(f, f)‘

< ¢ lim ‘E§f€g(Ekﬂkf7 Eumef)'? = &5(f, f)l/Q’
< Ckli_{{.lo ‘gj,é(Ekﬂ'kfv Eemef)'? = &5(f, f)1/2’
< e lim & 5(Bymif — f Eymef — )Y
1/2
< ¢ lim (/ ((f = By f)(z) — (f — Ek‘ﬂ'k)f(y))Zj(l'vy)l{p(ac,y)>5}m(dx)m(dy)>
=00 \ JB;xB;
1/2
< ¢ lim (/Bj(f(x) — Epmpf(z))? (/Bj j(%y)l{p(r,ybé}m(dy) m(d$)>
< ¢ lim [|f = Egmpflla = 0 (6.9)
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where ¢ = ¢(My, j, 0, f) > 0. This combined with (6.6) shows that limy_, ?;i;) (f, f)=&;5(f, f) for
any f € L}(E;m). The monotonicity property of (A4)(ii) (with 2* instead of k) is an immediate
consequence of (AG.4) and (6.3). So we have established (A4). O

Remark 6.2 For any f € L?(E;m) with ||fllcc < Mi, j > 1 and § > 0, computing similarly to
(6.9), we have

) — Iz E <12 -E < c(j,8)|If - E

1£55 Fll2.8; = I£j5 Exmiflle.s;| < |I1£55 (f = Exmef)ll2.;| < ¢, 0) If — Exmefll2,
which goes to 0 as k — oo by Lemma (4.1) (iv). Moreover, by Lemma 4.6 (i) (ii),
< [1£55(f = Bvmif)la.n,
< lim ¢(j,0) || f = Egmpfll2 = 0.

k—o0

Thus, to show (A4)* (ii), it is enough to show that

dim [1£55f 2.8, = 155 Exmef 2.5,

. —(k
limsup | [ £ By f113 5, — 1£55Exmif 1135,
k—oo

= 0. (6.10)

Remark 6.3 Note that Theorem 6.1 is applicable to the example discussed after (1.1), namely
when E = R m(dr) = dr and J(dz,dy) = j(z,y)drdy where j is a symmetric measurable
function on R% x R? so that

alr —y| "M <jla,y) <oz —y| T when |z —y| <1 (6.11)

for some 0 < a1 < @y < 2 and that j is bounded on {|z — y| > 1} with

sup / |z —y|"j(z,y)m(dy) < oo for some v > 0. (6.12)
zeR?J B(z,1)¢

In this case, one may take {(Vi,Zg); k > 1} and {Ui(z),z € Vi;k > 1} asin (6.1) and (6.2).

We may also apply Theorem 6.1 in more general metric measure spaces (for instance in a
subclass of spaces discussed in [9]). Here we give one simple example which is the 2-dimensional
Sierpinski gasket. Let ag = (0,0), a; = (1,0) and ap = (3, @), and let Fy = {ag,a1,az}. Define
inductively

Foa :FnU(Q"al—i—Fn)U(Q"ag—i—Fn), n=20,1,2,---,

where we write a + A = {a +z : © € A}. Let Vo = U F, and define Vor = 27%V;. Then
F = m is the 2-dimensional Sierpinski gasket having Hausdorff dimension d = log 3/ log 2.
Let p(-,-) be the geodesic distance function on E and m the d-dimensional Hausdorff measure
on E. Then (E,p,m) satisfies (MMS.1)-(MMS.3). Define Zox by (z,y) € Zgr if and only if
z,y € Vor with p(z,y) = 27%. For each z € Vi, set Uy (z) = {y € E : p(z,y) < 27%}. Then,
{(Var, Egr); k > 1} and {Ugk(z),x € Vor;k > 1} satisfies (AG.1)-(AG.4). Now consider the
Dirichlet form (2.12) with J(dz,dy) = j(z,y)m(dx)m(dy), where j a symmetric Borel measurable
function that satisfies the conditions (6.11)~(6.12) with |z —y| and R? being replaced by p(z,y) and
E, respectively. (We remark here that the geodesic distance p on F is in fact comparable to the
Euclidean distance on E.) Then (&, F) satisfies the conditions (A2)—(A3) and it is conservative
since (5.1) is satisfied. Thus, the conclusion of Theorem 6.1 holds for this example as well.
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7 Application to random walk in random conductance

In this section, we present application of Theorem 4.7 to the scaling limit of some random walk in
random conductance.

Throughout this subsection, £ = R? and m is d-dimensional Lebesgue measure. Let Vj, = k~17Z¢
and my(x) = k=% for every = € V. Let j(x,%) be a symmetric non-negative continuous function
of z and y on R? x R?\ d such that there exist a,fB € (0,2), a > B and positive constants K1, ko
such that

rily — 2| 77F < j(2,y) < kaly — 2|74 for [y — x| <1 (7.1)
and
sup  j(z,y) <kop<oo and  sup / Jj(x,y)m(dy) < oo. (7.2)
(z,y) R4 xRD x€R4 J B(z,1)¢
|ly—z[>1

Let (£,F) be the Dirichlet form defined by (2.12) with J(dz,dy) = j(z,y)m(dz)m(dy), where
the jumping kernel j(z,y) is given by (7.1)—(7.2). Finally we assume (A3) holds, i.e., Lip.(F) is
dense in (F,&(-,-) + - [|3). Then, by [9, Propostion 2.2] and its proof, the Dirichlet form (€, F) is
regular on R? and so it associates a Hunt process X starting from quasi-everywhere on L%(R%; m).
Moreover X is conservative since (5.1) is satisfied.

Proposition 7.1 (i) Suppose d > 2. Let {§sy}, yend oty @ Sequence of i.i.d. non-negative real-
valued random variables defined on a probability space (2, A, P) with E[¢; ] =1 and Var (&) <
o0o. Set

i (@,y) = Chamyi(x,y)  for z,y € Vi (7.3)

Let (E®) F(®)) be the Dirichlet form on L*(Vi;my) defined by (2.8) with j%)(x,y) in (7.3) and
X&) be the continuous-time Markov chain associated with the regular Dirichlet form (S(k),]-"(k)
on L?>(Vi;my). Let X be the Hunt process corresponding to (€,F) which is defined by (2.12)
with J(dz,dy) = j(x,y)m(dz)m(dy) where j(x,y) defined in (7.1)~(7.2). Let {Tt(k),t > 0} and
{Ti,t > 0} be the transition semigroups of X&) and X, respectively. Then for each t > 1, as
k — oo, Eth(k)ﬂ'k — Ty strongly in L*(R%;m) P-a.s. and the convergence is uniform in any finite
interval of t > 0. Moreover, for every ¢ € CH(E), (X(k),prk)) converges weakly to (X,Py) on
Dg, [0, 1] equipped with convergence-in-measure topology P-a.s..

(i) Assume further that 0 < &, < C P-a.s. for some deterministic constant C > 0. Then for
any ¢ € CH(E), {(XW), }P’gpk)); k > 1} converges weakly to (X, Py,) on Dg,[0,1] equipped with the
Skorohod topology P-a.s..

Proof. (i) Note first that since, by (7.2)

E|Y jO@ym@)| < Y Kle-yfT0 Y K ey) <eo
yEVk YEVi,|lz—y|<1 YEVi,|lz—y|>1

we have > . 38 (2, )my(y) < oo P-a.s., so (2.7) holds. Thus, by Theorem 3.2, (€®), F(*)) is a
regular Dirichlet form. In order to prove the first assertion of (i), by Theorem 4.7, Theorem 5.1 and
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Theorem 8.3, it is enough to prove (A2), (A3)* and (A4)* P-a.s.. Recall that we assume (A3).

Moreover, the second half of (A3)* is true by the continuity of j(z,y). Furthermore, by symmetry

of j(z,y) and (7.1)—(7.2), one can easily see that (A2) is true. So, we will prove (A4)* below.
We first show (2.18). Let n < 1. Note that, by (7.1)

2
2 :(k) —2d |2 — Y1“ka ky _. —2d
T—y m(dy) < kok E — =2 = kok T “YHy,.
//{(x,y EK X K:|lz—y|<n} | | ( ) ( ) ( ) ? |1: - y|d+a ?

z,yeVENK
lz—y|<n

Since |z —y| > k~! when z # y, setting 2 — a = ¢,

Var (Hy) = Z |z — y |2~ Var (Ekapy) < k> k72 Z |z — y| 742 < ok Tm (K’
z,y€VENK z,y€VENK
lz—yl|<n lz—y|<n

So,
< ZVar (Hy) c3

P (k2 |Hy — B[, > /?) e
and using the Borel-Cantelli Lemma, we have lim sup,_, . k~2¢|Hy — E[H}]| < n°/? P-as., so

lim lim sup k24| Hy, — E[Hy]| = 0.

=0 koo

On the other hand, by (7.1)

limsup k2?E[Hy] < ko limsup k29 Z |z — y| PV E € 1]

k—oo k—o0 2 yeVENK

lz—y|<n

= kolimsup k¢ Z \x—y\Q_d—O‘ < em(K) 77(2—&)/27

k—o0 @,yeVNK

lz—y|<n

which vanishes when 1 — 0, so we obtain (2.18) P-a.s..
We next show (2.19). Note that

/ / m(dym(dy) = k2 S (e y) = k2],

yeVirNK zeV,yN(B;)°

Then, for j > jo where K C Bj,_1, by (7.2) we have

k_QdVar (Hllc) - k_Qd Z Var ({kx,ky)j($7y)2

2€VEN(B;)°
yeVNk
—2d . —2d . Lk
< ck Z jlz,y) < ck Z jlx,y) =: ca;.
zEVEN(B;)¢ z€Vy:lz—y|>j—jo
yeVLNK yeEVENK

Thus,
Var (HJ) o
) kidgk k‘77
J

P (k2(a¥) /2 |H] ~ E[H}]| > 1

IN
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and using the Borel-Cantelli Lemma, we have limsup;,_, k:*Qd(a;?)*l/Q]I—L,’c — E[H}]| <1 P-as..

Since aé? converges to

= [ [ igmidom(dy) € 0,00
K J{lz—y|>j—jo}

by continuity of j(z,y) and (7.2), we have

lim limsup k24| H! — E[H.]| = <limsu k2o 12\ g E[H! > lim /a; < lim /a; = 0.
et k_mp | Hj, [H,]| k_mp (]) | Hj, [H,]| jﬁooﬁ_jﬁooﬁ

In the last equality above, we have used (7.2). On the other hand, by similar computation we have

lim limsup k" E[H}] < ¢ lim a; =0
J—0 koo Jj—00
We have proved (2.19).
For the remainder part of the proof, we fix §, j > 0. We now show (A4)* (iii).
Let h be a bounded and continuous function in B; x Bj. By the continuity and boundedness
of h(z,y) and j(z,y) on Bj x B;\ d, we have

fim K20 b)) = [ b)Yy il pm(dom(d), (74

k—o0 . .
z,yEVENB; Bjx B
lz—y|>6

so it is enough to show

lim k=24 —1)j = .
Jim % > h(@ ) (Eepy — Dilz,y) =0 P-as (7.5)
z,yEVkﬁBj
lz—y|>6

Using (7.1)—(7.2), we have,

P(k_Qd‘ > h(@y) Ehaky — 1)j(x,y)’ S 51/2>

z,yEVkﬁBj
lz—y|>d
1 .
S Clmvar ( Z h(xay)(gk’x,ky - 1)] (-T,y))
z,yGVkﬂBj
lz—y|>5
1 1 —2d— 5,5
< amrVar (G (g D h(@y)le -yl ) < S5
z,yEVkﬁBj
lz—y|>6

so using the Borel-Cantelli Lemma, computing similarly as before, we obtain (7.5).
Lastly, we show (A4)* (ii). Fix f € Lip,(E) and let || - |2 be L?>-norm on B;. Note that

LN @) = % 3 (f(y)—f(a:))j(:c,y)vL% Y (Graky — V() — f(2))i(z,y)
LA e

= I @)+ 1P ().
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One can easily see that HIYC) — Ljsfll2 = 0 as k = co. Indeed, by the continuity and bound-
edness of j and f, it is clear that limg_, Il(k) (x) = Ljsf(x) for all z and ]IYC) (z)] < C for large
C'. Thus the bounded convergence theorem can be applied. So all we need is to show HIQ(]C) |2 —0
P-a.s. as k — oo. Since

BIBOE = B[ [ (X @un - DU - Fe)ile) mido)

yGVkﬁBj
|z—y|>6

_ /B S (@) — F)2Var (€ (e, y)*m(de)

J erkﬂBj
lz—y|>6

B Ck_d/B. > (@) = f@)%i(@.y) mu(y)m(de) < cpsik™,

J yGVkﬂBj
lz—y|>6
computing similarly as before,
k - k Cf,8,j
P(| 573 > 2) < e "B L3 < LY (7.6)

gkd

So using the Borel-Cantelli Lemma, Hlék)Hg — 0 P-a.s. for d > 2. The weak convergence follows
from Theorem 2.3.

(ii) Using (7.1)-(7.2), it is easy to show that (A1) holds P-a.s., and X is conservative. Thus,
by Theorems 2.2 and 4.7, we obtain the desired result. O

More concretely, we have the following example.

Example 7.2 Let ¢ : (0,00) — (0,00) be a strictly increasing, continuous function such that
»(0) =0 and for all 0 < r < R < o0,

“ <If>m§q;(<f>) = o <R> and /qx)d§3as<>

Here 0 < a1 < ap < 2. Assume that there exists ¢ : (0,00) — (0,00) a strictly increasing,

continuous function with 1(0) = 0 such that

k) _ 1 for every r > 0. (7.7)

Ry oy

(1) Let {&xy}syezd zzy e 1i.d. on (2, F,P) such that 0 < &y, E[§;y] = 1 and Var (£,) < co. Let

Je(z,y) = \:v—yl‘%w for z,y € Z¢, and define instead of (7.3),

8 (e, y) = Ko(R)je (ke ky) = —kzdu?F) for 2,y € V.

|z —ylo(klz —y))

Then the claim of Proposition 7.1(i) holds, where Xt(k) = k:_lX&L)t

where the jump kernel of the Dirichlet form is j(z,y) = (|z — y|%™(|Jz — y|)) ™"

and X is the Hunt process
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(ii) Assume further that 0 < &, < Cy for some deterministic constant C; > 0. Then the claim of
Proposition 7.1(ii) holds.

Proof. The proof of Proposition 7.1 works line by line by plugging % into j(z,y). Note
that instead of (7.4), the following holds by using (7.7),
— k) Hja—y>5)
lim k24 h(z,y) i = / h(z,y) Y m(dx)m(dy).
k=00 ,,yg};mj [z —ylio(klz —yl)  Jpxp, |z = y|“p(lz = yl)
|z—y[>d
Given this equality, we can obtain (A4)* (iii) by the same way as that of Proposition 7.1. O

Remark 7.3 (i) In Theorem 7.1, we assumed that d > 2. The above proof of Theorem 7.1 works
for d = 1 except that the right hand side of (7.6) is no longer summable. We can however obtain the
corresponding results (strong convergence of the semigroup and weak convergence) in dimension 1
for any subsequence {n} such that >, 1/n; < co.

(ii) The most typical case in the Example 7.2 is to take ¢(r) = r*. Then Xt(k) = k_legla)t. Thus
Proposition 7.1 says that, if d > 2, 0 < &, ,, E[{; 4] =1 and Var (§;,) < oo, then for any positive
function ¢ € C.(E), {(k:_lX,Sl)t, IP’S(,k)); k > 1} converges weakly to (X,P,) on Dg,[0, 1] equipped
with the convergence-in-measure topology P-a.s., which in particular implies the finite dimensional
convergence. Assume further that 0 < ¢, , < C P-a.s. Then {(klelgi)t, ]Pspk)); k > 1} converges
weakly to (X, P,) on Dg, [0, 1] equipped with the Skorohod topology P-a.s..

(iii) As mentioned in the introduction, one cannot obtain the a priori Hélder estimates of caloric

functions in general (see [1, Theorem 1.9]).

(iv) It would be very nice if one can prove the Mosco convergence for random walk on long range
percolation. Unfortunately, (A4)*(ii) does not hold for the corresponding generator, so we cannot
apply Theorem 4.7 to this model. We note that the heat kernel upper bound is obtained recently
in [10] for simple random walk on the infinite cluster of supercritical long range percolation on Z?,
where the probability that two vertices z,y are connected behaves asymptotically as ||z — y||~* for
s € (d,(d+2) A 2d). Further, it is proved in [11] that the scaling limit of the simple random walk
converges to an (s — d)-stable process for s € (d,d + 1).

8 Appendix

This appendix contains several equivalence conditions for generalized Mosco convergence that was
first obtained in [18, Theorem 2.5] (appeared earlier in the second author’s thesis [17]). In fact,
a similar and more general form of such equivalence conditions for generalized Mosco convergence
was discussed in [22] independently. Since we are using a minor modified version of [18, Theorem
2.5] and only the proof of (i) = (iv) is given in [18], we give full details for readers’ convenience.
We believe that, even if the version in [22] is quite general, our version in this paper is simple, and
it is applicable to many cases.
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For k > 1, (Hk, (-, )x) and (H, (-,-)) are Hilbert spaces with the corresponding norms || - ||, and
|- ||. Suppose that (a®*), D(a®)) and (a, D(a)) are densely defined closed symmetric bilinear forms
on H*) and H, respectively. We extend the definition of a(*) (u,u) to every u € H*) by defining
a®) (u,u) = oo for u € Hy, \ D[a®]. Similar extension is done for a as well.

We assume throughout this section that for each & > 1, there is a bounded linear operator
Ey : Hr — H such that 7 := EJ is a left inverse of Ej, that is,

(i f, friorw = (f, Exfr) and mpEpfy = fr  for every f € H, fr € Hy. (8.1)
Moreover we assume that mp : H — Hj satisfies the following two conditions

sup ||mx|| < oo, (8.2)
E>1

where ||| denotes the operator norm of 7y, and

kl;rilo e flle = || I for every f € H, (8.3)

Let || Ex|| denote the operator norm of Ej, : H*®) — 7. Note that (Exfrs Exgr) = (fx, gx)x for
every fir,gr € Hi, k> 1 and so clearly

Bkl =1 and ||Epfil = Ifellx for every fr. € Hy, k>1. (8.4)

Definition 8.1 Under the above setting, we say that the closed bilinear form a* is Mosco-convergent
to a in the generalized sense if

(i) If vy € Hg, u € H and Exvr, — u weakly in H, then

lim inf a™® (vg,, v) > alu, v).
k—ro00

(ii) For every u € H, there exists uy € Hy such that f € H Ejur — u strongly in H and

lim sup a® (ug, ug,) < a(u,u).
k—o0

Before we prove several equivalence conditions for generalized Mosco convergence, we give the
following lemma which is useful in establishing the Mosco convergence. Even though the next
lemma is essentially same as [20, Lemma 2.8], we give the proof for the completeness.

Lemma 8.2 Under the above setting, a'¥) is Mosco convergent to a in the generalized sense of

Definition 8.1 if Definition 8.1(i) holds and in addition the following hold:
(1) There exists a set D C H which is dense in (Dla],a + || - ||?).

(2) m(¢) € D[a®)] for every ¢ € D.
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(3) For every ¢ € D,
limsup o) (10, T.0) = a (9, §).

k—o0

Proof. Fix v € H with a(u,u) < oo and, using the assumption (1), choose g € D such that

gk — w in ‘H and

lim a(gg, gr) = a(u, ).
k—o00
Note that

Tim g = Ju]
— 00
and, by Definition 8.1(i) and the assumptions (2)—(3),

lim a(m)(ﬁmgk,ﬂ'mgk) = a(gk,gx), forall k>1.

m— 00

Using (8.3) and (8.7), recursively we choose ny > ng_1 with ng = 0 and k > 1 such that

for all m > ny.

=

1 m
17mgellm — llgxll] < - and @™ (T, Tmgn) — algr, gr)| <

Define
{ﬂmgk if k> 2and ng <m <nggq,
Uy, =

Tmg1 if 1 <m < ns.

Then by (8.5), (8.6) and (8.8), we have
lim ™ (um, um) = a(u,u) and limy || Emtom| = [/l = [l

m—o0

Moreover, using (8.1)—(8.2) we have that for every h € H and ny < m < ngy1,k > 2,
[(Emttm, h) = (u, B)| = (T (g — w), Tl | < cllge — ull[[7]],

which goes to zero as m — 0 since g — v in ‘H. Thus E,,u,, to u strongly in H.

(8.5)

(8.6)

(8.7)

O

Let {Tt(k),t > 1} and {Gs\k), A> O} be the strongly continuous symmetric contraction semigroup
and the resolvent associated with (a(®), D(a(®))). The infinitesimal generator of {Tt(k),t > 1}
(equivalently, of (a®), D(a®)))) will be denoted by A*. Similarly, the semigroup, resolvent and
infinitesimal generator associated with (a,D(a)) will be denoted by {73,t > 0}, {Gx,A > 0} and A

respectively.

Theorem 8.3 Under the above setting, the followings are equivalent.

(i) a'®) is Mosco-convergent to a in the generalized sense;

(i) Eth(k)TFk — Ty strongly in ‘H and the convergence is uniform in any finite interval of t > 0;

(ili) For each f € Cy, there exists { fx}r>1 such that fj € D[A®), Epfi — f and E AP £, — Af

m H;
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(iv) Eng\k)ﬂ'k — G strongly in H for every A > 0.

Proof. Let My := supy>, [|mx||. Note that, by polarization identity and (8.3), we have
lim (mpu, o), = (u,v), for all u,v € H. (8.9)
k—o0

By (8.1)-(8.4), we see that for every f € H and fi € Hy,

Jim | fi — i = Jim (I Felld = 20fxs 7 )i + llme f1I7)
Jim (| B fill® = 2(Bxfi, ) + 1£17) = lim || By fi = £

Therefore
lim HTt(k)ka—wthfH — lim ‘Eth(k)wkf—thH (8.10)
k—o00 k k—o0
for every f € ‘H and
lim HG wkf—ka,\fH ~ lim ‘EkG(Ak)wkf—GAfH (8.11)
— 00

for every f € H and A > 0.

(ii) <= (iii) : It is a special case of [13, Theorem 1.6.1].

(ii) <= (iv) : This can be proved using similar argument in the proof of [27, Theorem 3.4.2 and
Lemma 3.4.1]. We give a sketch here. Similar to [27, Lemma 3.4.1], one can check the following

t
E,GP (wth — Tt(’%k) Grf = / B,r® (ka(j) _ Gm) T, fds (8.12)
0

for f € H and A > 0. We first prove that (iv) implies (ii).
(ii) <= (iv) : We assume (iv) is true. Fix A>0and T'> 0, If fe Hand 0 <¢ < T,

| (B —72) eas]

|t (i = Gm) ]+ el (1m =) 1]+ | (rGime = 63) ]
= L+ 1L+ 1Is.

I + I3 goes to 0 uniformly on [0,¢] as k — oo by (iv) and (8.11). If f € D[A], the domain of A,
there exists g € H such that f = Gyg. Since

HEth L (mGat - G )ﬂkT)gH < My |GrTgll + HG 1 Tsg

< 20y,

by (8.12) and Lebesgue’s dominated convergence theorem, we have

t
IQ S / HEth(fl (ﬂ'kG)\TS — Gg\k)ﬂkTs) gH ds
0
t
< / H?TkG)\ng—G()\k)Wkng‘kd8—>0
0

36



uniformly on [0,7] as k — oo by (iv) and (8.11). Since A is densely defined, the above implies that
(ii) is true.
(ii) = (iv): Assume now that (ii) holds. Then for A > 0 and f € H,

HEkGE\k)wkf—GAfH < /Oo e*MH(Eth(’%k—:/}) fHdt—>O as k — oo.
0

(iv) = (i) : Let
ax(u,v) := A(u— AGyu, v)  foru,v e H
and
ag\k) (wk, vg) == MNup — AGhuy, Uk>k for uy, v € Hy.

It is well known that ay(u,u) and ag\k) (ug, uy) are non-decreasing, and limy_,oo a(u,u) = a(u,u)
and limy_,o ag\k) (ug, up) = a®(ug, uy) for every u € H and uy, € Hy.

Assume (iv) is true. By (8.11) and (8.3),

lim H(G’;ﬁk —7rkG)\> fHk — lim ‘EkG’f\wkf—GAfH —0, lim ]Gﬁwkak —Gfl (8.13)

k—o0 k—o0

for every f € H and A > 0. Since

| Mmpu — AGE T, mru)e — AMu — AGau, u) |
< N (GRme = mGa)u [l |l + A (i (u = AGau), mpui — (u— AGau, u) |,
by (8.2), (8.9) and (8.13) we have

klim ag\k) (mpu, mpu) = ax(u,u)  for A > 0. (8.14)
— 00

Suppose v, € Hi, u € H and Ejvy converges weakly to u in H. By (8.1) and (8.9)

lim |(vy — mpu, mrg),|  for every g € H. (8.15)
k—o0
We also have
lim (v, meu, = [luf?,  sup fuelk <oo  and  Timinf|lugl > [lul.
k—o0 k>1 k—o0

Note that
ak(vk, vg) > af\k) (v, vg) > ag\k) (mpu, Tew) + 22X (mpu — )\G’iﬂku, Vg — TEU)E-
Since, by (iv) and (8.15),

| (mpu — AGEmpu, vp — mpude | < | (TR, v — TRUE |
+A | (G, v — TRw) g |

X | Gimpu — Gl ([ ve e + I 7w e),
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goes to 0 as k — oo, we have by (8.14),
lim inf ak(vk, vg) > liminf aE\k) (v, vg) > liminf as\k)(ﬂku, ) = ay(u,u).
k—o0 k—o0 k—o0

Letting A — oo, we obtain
liminf a®(vg, vi) > a(u, u).
—00

Now we suppose u € D[a] and show (ii) in Definition 8.1. First note that, by (iv),

lim A lim EkGAﬂ'ku = hm AGhu=u, inH.
A—oo  k—oo

Thus, by (8.14) and the monotonicity of ag\k), we can choose an increasing sequence {\g}r>1 such
that

lim A\ = o0, lim )\kEkG]; mpu=uinH and lim a’& )(Trku, mru) < a(u, u) < co.
k—o0 k—o0 k k—o00

For k > 1, let uy, := )\kGl}\kﬂku € H;. and note that Frui — u in H. Since
k _ Kk 2 _ k 2
aly,) (T, mpu) = a” (ug, ug) + Allug — mully = a”(ug, wk) + Al Byug — ull,
we conclude that

a(u, w) > limsup a®(up, up).
k—o0

(i) = (iv) : Suppose (i) is true. Fix A > 0 and assume f € H. Since

My
supHEkG 7rkH < 5 <%

there exists a subsequence of {EkG i f } , still denoted {EkG(k T f } , such that EkG T f
converges weakly in A to some u in H. So by Definition 8.1(i)

lilgninf< ®©) (G f, Py f) +/\HG n fH ) > a(d, @) + Al (8.16)
— 00

By (8.1) and (8.16),

a(@, @)+ Alal* - 2(f, @)

2
< lilgninf (a(k)(Gg\k)ka, Gg\k)’ﬂ'kf) + A ‘ Gg\k)wkf‘ k> -2 hm <f, EkG 7rkf>
— 00
2
< liminf <a<'€>(ag’f>wk £GP f) + ‘ GV f‘ —2mf.G ") e P > (8.17)
—00
< i a®(@ G\ MW sl 8.18
< limsup ( D f, G f) + N Trf 2(mif, G ka> (8.18)
k—o0 k

For arbitrary v € ‘H, by Definition 8.1(ii), there exist vy € Hj such that

lim [Joglle = o], lim (Epog, f) = (v, f) and limsup a™ (ug, uz) < a(u, u). (8.19)
k—o0 k—o0

k—o0
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Since G&k)ﬂkf is the unique minimizer of a® (-, )+ X || - ||} = 2(mf, - )& over Hy, for each k > 1,
(8.18) is less than or equals to

lim sup a® (vy,, vg) + Alim sup [|vg||2 — 211m 1nf(7rkf, V) k-
k—o0 k—o0

By (8.19), the above is less than or equals to a(v,v) + A ||[v]|* — 2(f, v). Therefore @ = Gy f because
G f is the unique minimizer of a(-, - )+ A|| - ||* = 2(f, - ) over .
On the other hand, by (i) there exists wy € Hy, such that

lim |Fywr — Gaf|| =0 and lim a(k)(wk, wg) = a(Grf, Grf).
k—o00 k—o0

So by (8.16), the second equation above and the unique minimizer argument used above, we have

2
Alim sup Gf\k)ﬂkf _ S
k—o00 A k
< timsup | a® (wy, wi) — a® (G f, G ka)+)"wk—m
k—o0 A k
k k mef ||
< limsup a(k)(wk, wg) — liminf a(k)(Gg\ )ka, G(A )ﬂ'kf) + Aimsup [|wp — —=—
k—o00 k—o0 k—00 A k
mef ||
< Alimsup ||jw — —
k—o0 A k

Combining the above inequality with

klggo<G(Ak)7ka7 T f)e = (GAf, f) and kli_{gOK?ka,wwk—(f,GAf)’ = 0,

we obtain
. k
lim sup HG'(A )ﬂ'kak
k—00
k k mof |2
= limsup Gg\ )ka —|— 2 hm <GE\ )ka, e f)r — lim || —=
k—00 k—ro0 A k
mef||? (k) mof |2
< limsup ||(wy — —=| +2 lim (G, 7 f, 7 f)r — lim || —=
. et || . s
< limsup ||lwg — —|| +2 lim (wk, mef)r — lim || —=
k—00 A k k— k—ro0 k
o 7ka Tka
= limsup ||(wp — — = hmsup || wg]| -
k—00 A
Therefore
. k .
limsup || ExG\F mp | = limsup |G meflle < limsup | Epwgl] = [|GAf]|
k—o0 k—o0 k—o0
and we conclude that, for every f € H, EkGE\k)ﬂ'kf converges to G f in H. O
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