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Abstract Parabolic Harnack inequalities are one of the most important inequalities
in analysis and PDEs, partly because they imply Hölder regularity of the solutions of
heat equations. Mean value inequalities play an important role in deriving parabol-
ic Harnack inequalities. In this paper, we first survey the recent results obtained in
[14, 15] on the study of stability of heat kernel estimates and parabolic Harnack in-
equalities for symmetric jump processes on general metric measure spaces. We then
establish the Lp-mean value inequalities for all p ∈ (0,2] for these processes.
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1 Introduction

Consider a divergence operator L = ∑
d
i, j=1

∂

∂xi
(ai j(x) ∂

∂x j
) acting on functions on

Rd , where (ai j(x))d
i, j=1 is bounded, measurable, and uniform elliptic. In 1964,

Moser [28] proved the parabolic Harnack inequalities (PHI(2); see Definition 6 with
φ(r) = r2) for non-negative solutions to the heat equation

∂u
∂ t

= L u. (1)

In 1967, Aronson [2] obtained Gaussian type bounds (i.e. (2) with µ(B(x, t1/2)) =
td/2 and d(·, ·) being the Euclidean metric) for the fundamental solution to (1). These
theorems had a profound influence on analysis and differential geometry. An impor-
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tant consequence of the results is that the non-negative solutions to (1) enjoy Hölder
regularity (i.e. (16) with φ−1(t) = t1/2). In deriving PHI(2), mean value inequalities
(i.e. (18) and (19) without the tail term) play essential roles. In fact, such mean value
inequalities were extended in various linear and non-linear PDEs to derive Harnack
inequalities (see, for instance [7, 20, 31, 33]).

There are further significant developments later in the last century. Consider a
complete Riemannian manifold M with the Riemannian metric d(·, ·) and with the
Riemannian measure µ . Let L be the Laplace-Beltrami operator on M. In 1986,
Li-Yau [26] proved the following remarkable fact – if M has non-negative Ricci
curvature, then the heat kernel pt(x,y) enjoys the following estimates

c1

µ(B(x, t1/2))
exp
(
− c2d(x,y)2

t

)
≤ p(t,x,y)≤ c3

µ(B(x, t1/2))
exp
(
− c4d(x,y)2

t

)
.

(2)

A few years later, Grigor’yan [21] and Saloff-Coste [30] refined the result and
proved that PHI(2) is equivalent to a volume doubling condition (VD; see Defi-
nition 1 (i)) plus Poincaré inequalities (PI(2); see Definition 8 (iii) with φ(r) = r2).
Later, these results were extended to the framework of strongly local Dirichlet forms
on metric measure spaces by Sturm [32] and on graphs by Delmotte [17]. It was al-
so known around 80s that (2) is equivalent to PHI(2), so the following equivalence
holds:

(2)⇔ VD+PI(2)⇔ PHI(2). (3)

One of the important consequence of the equivalence is that (2) and PHI(2) are
stable under perturbations, since both VD and PI(2) are stable under the pertur-
bations of rough isometries. Such an equivalence was generalized to the so-called
sub-Gaussian heat kernel estimates for symmetric diffusions:

c1

µ(B(x, t1/dw))
exp
(
−c2

(d(x,y)dw

t

)1/(dw−1)
)

≤ p(t,x,y)≤ c3

µ(B(x, t1/dw))
exp
(
−c4

(d(x,y)dw

t

)1/(dw−1)
) (4)

for some dw ≥ 2. When dw = 2, it is just the Aronson Gaussian estimates (2); and
when dw > 2, the behaviors of the corresponding diffusions are anomalous. Diffu-
sions on fractals are typical examples that enjoy (4) for some dw > 2. It turns out
(see [1, 3, 4, 24]) that there is an inequality CSA(dw), a version of the so-called
cut-off Sobolev inequality, such that the following equivalence holds:

(4)⇔ VD+PI(dw)+CSA(dw)⇔ PHI(dw). (5)

See Definition 6 and Definition 8 (iii) with φ(r) = rdw for definitions of PHI(dw) and
PI(dw), respectively. We will not give the precise definition of CSA(dw) (see Def-
inition 4 for the corresponding inequality for symmetric jump processes). Instead,
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we note that CSA(2) always holds (so that (5) is indeed a generalization of (3)), and
that CSA(dw) is stable under rough isometries (and, consequently, (4) and PHI(dw)
are stable under rough isometries).

For symmetric jump processes, the corresponding results have been obtained on-
ly recently. Suppose that a metric measure space (M,µ) is an Alhfors d-regular set
on Rn; namely, µ(B(x,r))� rd , and a regular Dirichlet form (E ,F ) on L2(M; µ) is
defined by

E ( f ,g) :=
∫

M×M\∆

( f (x)− f (y)(g(x)−g(y))
|x− y|d+α

c(x,y)µ(dx)µ(dy),

where c(·, ·) is a measurable symmetric function that is bounded between two strict-
ly positive constants and 0 < α < 2. The Hunt process X associated with (E ,F )
is called a symmetric α-stable-like process on M. It was proved in [12] that the
corresponding heat kernel of the Dirichlet form (or equivalently, of X) enjoys the
following estimates for all t > 0 and x,y ∈M

c1

(
td/α ∧ t

|x− y|d+α

)
≤ p(t,x,y)≤ c2

(
td/α ∧ t

|x− y|d+α

)
.

In that paper, α-order parabolic Harnack inequalities (PHI(α); see Definition 6 with
φ(r) = rα ) were also proved. In the subsequent paper [13], the results were extend-
ed to more general time-scale functions, and in [5] some equivalence criteria were
given concerning the heat kernel estimates and parabolic Harnack inequalities for
symmetric α-stable-like processes with 0 < α < 2 on Alhfors regular graphs. In the
very recent papers [14, 15], complete equivalences and stability for heat kernel esti-
mates and parabolic Harnack inequalities have been established for symmetric jump
processes of variable order on general metric measure spaces. An important ingre-
dient in our approach in these two papers is the L2 and L1 mean value inequalities
for subharmonic functions of symmetric finite range jump processes.

The aim of this paper is twofold. Firstly, we present the main results obtained in
our recent papers [14, 15] on equivalent characterizations of heat kernel estimates
and parabolic Harnack inequalities. Secondly, we show that the Lp-mean value in-
equalities hold not only for p = 2 but also for all p ∈ (0,2] for a large class of
symmetric jump processes. There are done in Sections 2 and 3, respectively.

2 Stability of heat kernel estimates and parabolic Harnack
inequalities for symmetric non-local Dirichlet forms

2.1 Setting

Let (M,d) be a locally compact separable metric space, and µ a positive Radon
measure on M with full support. The triple (M,d,µ) is called a metric measure
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space. Throughout the paper, we assume for simplicity that µ(M) = ∞. Note that
we do not assume M to be connected nor (M,d) to be geodesic.

Let (E ,F ) be a regular Dirichlet form on L2(M; µ) of pure-jump type; namely,

E ( f ,g) =
∫

M×M\∆
( f (x)− f (y)(g(x)−g(y))J(dx,dy), f ,g ∈F , (6)

where ∆ := {(x,x) : x∈M} and J(·, ·) is a symmetric Radon measure on M×M \∆ .
In the paper, we will abuse notation and always take the quasi-continuous version
for an element of F (note that since (E ,F ) is regular, each function in F admits a
quasi-continuous version). Let L be the (negative definite) L2-generator of (E ,F )
and {Pt} be the associated semigroup on L2(M; µ). There exists an µ-symmetric
Hunt process X = {Xt , t ≥ 0,Px,x ∈ M \N } which is associated with the regu-
lar Dirichlet form (E ,F ) on L2(M; µ). Here N is a properly exceptional set for
(E ,F ) in that µ(N ) = 0 and Px(Xt ∈N for some t > 0) = 0 for all x ∈M \N . It
is known that this Hunt process is uniquely determined up to a properly exceptional
set (see [18, Theorem 4.2.8] or [27, Chapter IV, Theorem 6.4]). Furthermore, we can
obtain a more precise version of {Pt} with better regularity properties as follows:

Pt f (x) = Ex f (Xt), x ∈M0 := M \N

for any bounded Borel measurable function f on M.
A measurable function p(t,x,y) : (0,∞)×M0×M0→ (0,∞) is called a heat ker-

nel associated with {Pt} if the following hold:

Ex f (Xt) = Pt f (x) =
∫

p(t,x,y) f (y)µ(dy), ∀x ∈M0, f ∈ L∞(M,µ),

p(t,x,y) = p(t,y,x), ∀t > 0, x,y ∈M0,

p(s+ t,x,z) =
∫

p(s,x,y)p(t,y,z)µ(dy), ∀s, t > 0, x,z ∈M0.

We may extend p(t,x,y) to all x, y ∈M by setting p(t,x,y) = 0 if x or y is outside
M0.

Definition 1. Let B(x,r) be the ball in (M,d) centered at x with radius r, and set

V (x,r) = µ(B(x,r)).

(i) We say that (M,d,µ) satisfies the volume doubling property (VD) if there exist
constants Lµ > 1 and Cµ ≥ 1 so that for all x ∈M and r > 0,

V (x,Lµ r)≤CµV (x,r). (7)

(ii) We say that (M,d,µ) satisfies the reverse volume doubling property (RVD) if
there exist constants lµ ,cµ > 1 so that for all x ∈M and r > 0,

V (x, lµ r)≥ cµV (x,r).
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VD condition (7) is equivalent to the following: there exist positive constants d2
and C̃µ so that

V (x,R)
V (x,r)

≤ C̃µ

(R
r

)d2
for all x ∈M and 0 < r ≤ R. (8)

It is known that VD implies RVD if M is connected and unbounded (see, for example
[22, Proposition 5.1 and Corollary 5.3]).

Let R+ := [0,∞) and φ : R+→ R+ be a strictly increasing continuous function
with φ(0) = 0, φ(1) = 1 that satisfies the following: there exist constants c1,c2 > 0
and β2 ≥ β1 > 0 such that

c1

(R
r

)β1
≤ φ(R)

φ(r)
≤ c2

(R
r

)β2
for all 0 < r ≤ R. (9)

Definition 2. We say Jφ holds if there exists a non-negative symmetric function
J(·, ·) so that for µ×µ-almost all x,y ∈M,

J(dx,dy) = J(x,y)µ(dx)µ(dy), (10)

and c1

V (x,d(x,y))φ(d(x,y))
≤ J(x,y)≤ c2

V (x,d(x,y))φ(d(x,y))
(11)

for some constants c2 ≥ c1 > 0. We say that Jφ ,≤ (resp. Jφ ,≥) if (10) holds and the
upper bound (resp. lower bound) in (11) holds.

For a non-local Dirichlet form (E ,F ), we define the carré du-Champ operator
Γ ( f ,g) for f ,g ∈F by

Γ ( f ,g)(dx) =
∫

y∈M
( f (x)− f (y))(g(x)−g(y))J(dx,dy).

Clearly E ( f ,g) = Γ ( f ,g)(M). Note that for any f ∈Fb := F ∩L∞(M,µ), Γ ( f , f )
is the unique Borel measure (called the energy measure) on M satisfying∫

M
gdΓ ( f , f ) = E ( f , f g)− 1

2
E ( f 2,g), f ,g ∈Fb.

2.2 Heat kernel estimates

Definition 3. We say that HK(φ) holds if there exists a kernel p(t,x,y) with respect
to the measure µ of the semigroup {Pt} for (E ,F ) so that the following estimates
hold for all t > 0 and all x,y ∈M0,
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c1

( 1
V (x,φ−1(t))

∧ t
V (x,d(x,y))φ(d(x,y))

)
≤ p(t,x,y)

≤ c2

( 1
V (x,φ−1(t))

∧ t
V (x,d(x,y))φ(d(x,y))

)
,

(12)

where c1,c2 > 0 are constants independent of x,y ∈ M0 and t > 0. Here φ−1(t) is
the inverse function of t 7→ φ(t). We say UHK(φ) (resp. LHK(φ)) holds if the upper
bound (resp. the lower bound) in (12) holds for p(t,x,y).

Remark 1. (i) We can replace V (x,d(x,y)) by V (y,d(x,y)) in (12) by modifying the
values of c1 and c2. Indeed, the following holds (see [14, Remark 1.12]):

1
V (y,φ−1(t))

∧ t
V (y,d(x,y))φ(d(x,y))

� 1
V (x,φ−1(t))

∧ t
V (x,d(x,y))φ(d(x,y))

.

Here for two functions f and g, notation f � g means f/g is bounded between two
positive constants.

(ii) It follows from [14, Theorem 1.13 and Lemma 5.6] that if HK(φ) holds, then
the heat kernel p(t,x,y) is Hölder continuous on (x,y) for every t > 0, so (12) holds
for all x,y ∈M and t > 0.

In [14], stability of heat kernel estimates has been established for symmetric
pure-jump processes on a general metric measure space. Below is the precise state-
ment.

Theorem 1. Assume that the metric measure space (M,d,µ) satisfies VD and RVD,
and φ satisfies (9). Let (E ,F ) be a regular (resp. regular and conservative) symmet-
ric Dirichlet form on L2(M; µ) of pure-jump type (6). (Ẽ ,F ) Let (Ẽ ,F ) be anoth-
er regular (resp. regular and conservative) symmetric Dirichlet form on L2(M; µ̃)
of pure-jump type (6) with jumping measure J̃(dx,dy), and there exists a constant
1≤ c < ∞ such that for all measurable sets A and B,

c−1
µ(A)≤ µ̃(A)≤ cµ(A), (13)

c−1J(A,B)≤ J̃(A,B)≤ cJ(A,B) when d(A,B)> 0. (14)

Then (E ,F ) satisfies HK(φ) (resp. UHK(φ)) if and only if so does (Ẽ ,F ).

In [14], this theorem is a direct consequence of the stable characterization of
HK(φ) and UHK(φ), which is stable under perturbations (13) and (14). Precise
statements will be given in Theorems 2 and 3 below. First we need some definitions.

The following inequality CSJ(φ) that controls the energy of cutoff functions,
introduced in [14], is a modification of CSA(φ) in [1] for strongly local Dirichlet
forms as a weaker version of the cut-off Sobolev inequality CS(φ) in [3, 4]. In [24],
the inequality corresponding to CSJ(φ) for strongly local Dirichlet forms is called
a generalized capacity inequality.
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Definition 4. (i) Let U ⊂ V be open sets in M with U ⊂ U ⊂ V . A non-negative
bounded measurable function ϕ is said to be a cutoff function for U ⊂V if ϕ = 1
on U , ϕ = 0 on V c and 0≤ ϕ ≤ 1 on M.

(ii)We say that CSJ(φ) holds if there exist constants c0 ∈ (0,1] and c1,c2 > 0 such
that for every 0 < r ≤ R, almost all x ∈M and any f ∈F , there exists a cutoff
function ϕ ∈Fb for B(x,R)⊂ B(x,R+ r) so that the following holds:∫

B(x,R+(1+c0)r)
f 2 dΓ (ϕ,ϕ)≤c1

∫
U×U∗

( f (x)− f (y))2 J(dx,dy)

+
c2

φ(r)

∫
B(x,R+(1+c0)r)

f 2 dµ,

where U = B(x,R+ r)\B(x,R) and U∗ = B(x,R+(1+ c0)r)\B(x,R− c0r).

Remark 2. As is pointed out in [14, Remark 1.7], under VD, (9) and Jφ ,≤, CSJ(φ)
always holds if β2 < 2, where β2 is the exponent in (9). In particular, CSJ(φ) always
holds for φ(r) = rα with 0 < α < 2.

For any open set D⊂M, FD is defined to be the E1-closure in F of F ∩Cc(D),
where ‖ · ‖2

E1
= ‖ · ‖2

E +‖ · ‖2
2, and Cc(D) is the space of continuous functions on M

with compact support in D. Define

λ1(D) = inf{E ( f , f ) : f ∈FD with ‖ f‖2 = 1} ,

the bottom of the Dirichlet spectrum of −L on D. For a set A ⊂M, define its exit
time τA = inf{t > 0 : Xt ∈ Ac}.

Definition 5. (i) We say that the Faber-Krahn inequality FK(φ) holds if there
exist constants c,ν > 0 such that for any ball B(x,r) and any open set D⊂B(x,r),

λ1(D)≥ c
φ(r)

(V (x,r)/µ(D))ν .

(ii) We say that Eφ holds if there is a constant c1 > 1 such that for all r > 0 and
all x ∈M0,

c−1
1 φ(r)≤ Ex[τB(x,r)]≤ c1φ(r).

We say that Eφ ,≤ (resp. Eφ ,≥) holds if the upper bound (resp. lower bound) in the
above display holds for Ex[τB(x,r)].
(iii) We say UHKD(φ) holds if there is a constant c > 0 such that

p(t,x,x)≤ c
V (x,φ−1(t))

for all t > 0 and x ∈M0.

(iv) We say (E ,F ) is conservative if its associated Hunt process X has infinite
lifetime. This is equivalent to Pt1 = 1 a.e. on M0 for every t > 0.

The following are the main results of [14].
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Theorem 2. ([14, Theorem 1.13]) Assume that the metric measure space (M,d,µ)
satisfies VD and RVD, and φ satisfies (9). Then the following are equivalent:
(1) HK(φ).
(2) Jφ and Eφ .
(3) Jφ and CSJ(φ).

Theorem 3. ([14, Theorem 1.15]) Assume that the metric measure space (M,d,µ)
satisfies VD and RVD, and φ satisfies (9). Then the following are equivalent:
(1) UHK(φ) and (E ,F ) is conservative.
(2) UHKD(φ), Jφ ,≤ and Eφ .
(3) FK(φ), Jφ ,≤ and CSJ(φ).

As is remarked in [14], UHK(φ) alone does not imply the conservativeness of
the associated Dirichlet form (E ,F ).

We note that there are two other independent related work around the same time.
In [29], stability of discrete-time long range random walks of stable-like jumps is
studied on infinite connected locally finite graphs. In [23], stability of stable-like
pure-jump processes is studied on metric measure spaces. In both papers, they ob-
tain the stability results under the condition that φ(r) = rα and that (M,d,µ) is an
Alhfors d-regular set.

2.3 Parabolic Harnack inequalities

In this subsection, we assume that for each x ∈M, there is a kernel J(x,dy) so that

J(dx,dy) = J(x,dy)µ(dx).

Let Z := {Vs,Xs}s≥0 be the space-time process corresponding to X , where Vs =

V0− s. We denote by {F̃s;s ≥ 0} the filtration generated by Z satisfying the usu-
al conditions. The law of the space-time process s 7→ Zs starting from (t,x) will
be denoted by P(t,x). Define τD = inf{s > 0 : Zs /∈ D} for every open subset D of
[0,∞)×M. A set A ⊂ [0,∞)×M is said to be nearly Borel measurable if for any
probability measure µ on [0,∞)×M, there are Borel measurable subsets A1, A2 of
[0,∞)×M so that A1 ⊂ A⊂ A2 and that Pµ(Zt ∈ A2 \A1 for some t ≥ 0) = 0. Nearly
Borel measurable σ -field is the collection of all nearly Borel measurable subsets of
[0,∞)×M.

Definition 6. (i) We say that a nearly Borel measurable function u(t,x) on
[0,∞)×M is parabolic (or caloric) on D = (a,b)× B(x0,r) for the process
X if there is a properly exceptional set Nu of the process X so that for ev-
ery relatively compact open subset U of D, u(t,x) = E(t,x)u(ZτU ) for every
(t,x) ∈U ∩ ([0,∞)× (M\Nu)).
(ii) A nearly Borel measurable function u on M is said to be subharmonic (resp.
harmonic, superharmonic) in D (with respect to the process X) if for any relative-
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ly compact subset U ⊂ D, t 7→ u(Xt∧τU ) is a uniformly integrable submartingale
(resp. martingale, supermartingale) under Px for q.e. x ∈U .
(iii) We say that the parabolic Harnack inequality PHI(φ) holds for the process
X , if there exist constants 0 < c1 < c2 < c3 < c4, 0 < c5 < 1 and c6 > 0 such that
for every x0 ∈M, t0 ≥ 0, R > 0 and for every non-negative function u = u(t,x) on
[0,∞)×M that is parabolic on cylinder Q(t0,x0,c4φ(R),R) := (t0, t0+c4φ(R))×
B(x0,R),

ess sup Q−u≤ c6 ess inf Q+u, (15)

where Q− :=(t0+c1φ(R), t0+c2φ(R))×B(x0,c5R) and Q+ :=(t0+c3φ(R), t0+
c4φ(R))×B(x0,c5R).

Note that the above definition of PHI(φ) is called a weak parabolic Harnack
inequality in [6], in the sense that (15) holds for some c1, · · · ,c5. The definition of a
parabolic Harnack inequality in [6] is (15) valid for any choice of positive constants
c4 > c3 > c2 > c1 > 0, 0< c5 < 1 with c6 = c6(c1, . . . ,c5)<∞. Since our underlying
metric measure space may not be geodesic, we cannot deduce parabolic Harnack
inequality from weak parabolic Harnack inequality.

The following stability result for parabolic Harnack inequalities for symmetric
pure-jump processes has been obtained in [15].

Theorem 4. Assume that the metric measure space (M,d,µ) satisfies VD and RVD,
and φ satisfies (9). Let (E ,F ) be a regular Dirichlet form on L2(M; µ) of pure-jump
type (6). Let (Ẽ ,F ) be another regular Dirichlet form on L2(M; µ̃) of pure-jump
type (6) with jumping measure J̃(dx,dy) that satisfies (13) and (14). Then PHI(φ)
holds for (E ,F ) if and only if it holds for (Ẽ ,F ).

In fact the above theorem is a direct consequence of the stable characterization
of PHI(φ) obtained in [15], which is stable under perturbations (13) and (14). A
precise statement of the latter will be given below in Theorem 5(7).

Definition 7. (i) We say that the parabolic Harnack inequality PHI+(φ) holds
for the process X , if Definition 6 (iii) holds for some constants c1 > 0, ck = kc1
for k = 2,3,4, 0 < c5 < 1 and c6 > 0.
(ii) We say that the elliptic Harnack inequality (EHI) holds for the process X , if
there exist constants c > 0 and δ ∈ (0,1) such that for every x0 ∈M, r > 0 and
for every non-negative function u on M that is harmonic in B(x0,r),

ess sup B(x0,δ r)h≤ cess inf B(x0,δ r)h.

(iii) We say that the parabolic Hölder regularity PHR(φ) holds for the process X ,
if there exist constants c > 0, θ ∈ (0,1] and ε ∈ (0,1) such that for every x0 ∈M,
t0 ≥ 0, r > 0 and for every bounded measurable function u = u(t,x) that is caloric
in Q(t0,x0,φ(r),r), there is a properly exceptional set Nu ⊃N so that

|u(s,x)−u(t,y)| ≤ c
(

φ−1(|s− t|)+d(x,y)
r

)θ

ess sup [t0,t0+φ(r)]×M|u| (16)
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for every s, t ∈ (t0, t0 +φ(εr)) and x,y ∈ B(x0,εr)\Nu.
(iv) We say that the elliptic Hölder regularity (EHR) holds for the process X , if
there exist constants c > 0, θ ∈ (0,1] and ε ∈ (0,1) such that for every x0 ∈M,
r > 0 and for every bounded measurable function u on M that is harmonic in
B(x0,r), there is a properly exceptional set Nu ⊃N so that

|u(x)−u(y)| ≤ c
(

d(x,y)
r

)θ

ess sup M|u| (17)

for any x, y ∈ B(x0,εr)\Nu.

Note that in the definition of PHR(φ) (resp. EHR) if the inequality (16) (resp.
(17)) holds for some ε ∈ (0,1), then it holds for all ε ∈ (0,1) (with possibly different
constant c). See [15, Remark 1.13 (iv)].

Clearly PHI+(φ) =⇒ PHI(φ) =⇒ EHI and PHR(φ) =⇒ EHR.
In order to discuss stability of parabolic Harnack inequalities, we need some

more definitions.

Definition 8. (i) We say that lower bound near diagonal estimates for Dirichlet
heat kernel (NDL(φ)) hold, i.e. there exist ε ∈ (0,1) and c1 > 0 such that for any
x0 ∈M, r > 0, 0 < t ≤ φ(εr) and B = B(x0,r),

pB(t,x,y)≥ c1

V (x0,φ−1(t))
, x,y ∈ B(x0,εφ

−1(t))∩M0.

(ii) We say that the UJS holds if there is a symmetric function J(x,y) so that
J(x,dy) = J(x,y)µ(dy), and there is a constant c > 0 such that for µ-a.e. x,y∈M
with x 6= y,

J(x,y)≤ c
V (x,r)

∫
B(x,r)

J(z,y)µ(dz) for every 0 < r ≤ d(x,y)/2.

(iii) We say that the (weak) Poincaré inequality (PI(φ)) holds if there exist con-
stants c > 0 and κ ≥ 1 such that for any ball Br = B(x,r) with x ∈M and for any
f ∈Fb, ∫

Br

( f − f Br)
2 dµ ≤ cφ(r)

∫
Bκr×Bκr

( f (y)− f (x))2 J(dx,dy),

where f Br =
1

µ(Br)

∫
Br

f dµ is the average value of f on Br.

The following is the main result of [15].

Theorem 5. Suppose that the metric measure space (M,d,µ) satisfies VD and
RVD, and φ satisfies (9). Then the following are equivalent:
(1) PHI(φ).
(2) PHI+(φ).
(3) UHK(φ), NDL(φ) and UJS.
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(4) NDL(φ) and UJS.
(5) PHR(φ), Eφ ,≤ and UJS.
(6) EHR, Eφ and UJS.
(7) PI(φ), Jφ ,≤, CSJ(φ) and UJS.

We remark that any of the conditions above implies the conservativeness of the
process X . As a corollary of Theorem 2 and Theorem 5 (noting that Jφ implies UJS),
we have the following.

Corollary 1. Suppose that the metric measure space (M,d,µ) satisfies VD and
RVD, and φ satisfies (9). Then

HK(φ)⇐⇒ PHI(φ)+ Jφ ,≥.

Unlike the diffusion case (3), heat kernel estimates and parabolic Harnack in-
equalities are no longer equivalent for discontinuous Markov processes.

3 Lp-mean value inequality

In this section, we establish Lp-mean value inequality for every p ∈ (0,2] for sym-
metric jump processes. See [8, 9, 25] for the recent study on elliptic Harnack in-
equalities and mean value inequalities of fractional Laplacian operators.

Definition 9. Let D be an open subset of M. A function f is said to be locally in
FD, denoted as f ∈F loc

D , if for every relatively compact subset U of D, there is a
function g∈FD such that f = g m-a.e. on U . We say that a nearly Borel measurable
function u on M is E -subharmonic (resp. E -harmonic, E -superharmonic) in D if
u ∈F loc

D that is locally bounded, and satisfies∫
U×V c

|u(y)|J(dx,dy)< ∞

for any relatively compact open sets U and V of M with Ū ⊂V ⊂ V̄ ⊂ D, and

E (u,ϕ)≤ 0 (resp. = 0,≥ 0)

for any 0≤ ϕ ∈FD.

The following is established in [10, Theorem 2.11 and Lemma 2.3] first for har-
monic functions, and then extended in [16, Theorem 2.9] to subharmonic functions.

Theorem 6. Let D be an open subset of M, and let u be a bounded function. Then
u is E -harmonic (resp. E -subharmonic) in D if and only if u is harmonic (resp.
subharmonic) in D.

Following [9, 14], we define the nonlocal tail Tail(u;x0,r) of a Borel measurable
function u on M in the complement of the ball B(x0,r) by
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Tail(u;x0,r) := φ(r)
∫

B(x0,r)c

|u(z)|
V (x0,d(x0,z))φ(d(x0,z))

µ(dz).

For simplicity, we denote B(x0,r) by Br(x0). The following L2-mean value inequal-
ity has been obtained in [14, Proposition 4.10].

Proposition 1. (L2-mean value inequality) Assume VD, (9), FK(φ), CSJ(φ) and
Jφ ,≤ hold. For any x0 ∈M and r > 0, let u be a bounded E -subharmonic in Br(x0).
Then there is a constant c0 > 0 independent of x0 and r so that

ess sup Br/2(x0)
u≤ c0

[(
1

V (x0,r)

∫
Br(x0)

u2 dµ

)1/2

+Tail(u;x0,r/2)

]
. (18)

Using Proposition 1, we can establish the following Lp-mean value inequality for
every p ∈ (0,2) for bounded E -subharmonic functions.

Theorem 7. (Lp-mean value inequality with p ∈ (0,2)) Assume that VD, (9),
FK(φ), CSJ(φ) and Jφ ,≤ hold. For any x0 ∈ M and r > 0, let u be bounded and
E -subharmonic in Br(x0) such that u ≥ 0 on Br(x0). Then for any σ ∈ (0,1) and
p ∈ (0,2),

ess sup Bσr(x0)
u≤ c0

(1−σ)2(d2+β2−β1)/p

×

[(
1

V (x0,r)

∫
Br(x0)

|u|p dµ

)1/p

+Tail(u;x0,r/2)

]
,

(19)

where β1,β2 are the constants in (9), d2 is the exponent in (8) from VD, and c0 > 0
is a constant independent of x0, σ and r.

Proof. To prove (19), it suffices to consider the case when σ ≥ 1/2. In this case, for
any σ ≤ t < s ≤ 1 and z ∈ Btr(x0), applying Proposition 1 with B(s−t)r(z) playing
the role of Br(x0), we get that

u(z)≤ c1

[
1

(s− t)d2/2

(
1

V (x0,sr)

∫
Bsr(x0)

u2 dµ

)1/2

+Tail(u;z,(s− t)r/2)

]
,

where we have used the facts that B(s−t)r(z)⊂ Bsr(x0) for any z ∈ Btr(x0), and

V (x0,sr)
V (z,(s− t)r)

≤ c′
(

1+
d(x0,z)+ sr
(s− t)r

)d2

≤ c′′
(

1+
tr+ sr
(s− t)r

)d2

≤ c′′′

(s− t)d2
,

thanks to VD and (9).
Next, by splitting the integration domain of the integral in Tail(u;z,(s− t)r/2)

into the sets Br/2(x0)\B(s−t)r/2(z) and M\(Br/2(x0)∪B(s−t)r/2(z)), we get that

Tail(u;z,(s− t)r/2)



Mean value inequalities for jump processes 13

=φ((s− t)r/2)
∫

Br/2(x0)\B(s−t)r/2(z)

|u(y)|
V (z,d(z,y))φ(d(z,y))

µ(dy)

+φ((s− t)r/2)
∫

M\(Br/2(x0)∪B(s−t)r/2(z))

|u(y)|
V (z,d(z,y))φ(d(z,y))

µ(dy)

≤
∫

Br/2(x0)\B(s−t)r/2(z)

|u(y)|
V (z,d(z,y))

µ(dy)

+φ((s− t)r/2)
∫

M\(Br/2(x0)∪B(s−t)r/2(z))

|u(y)|
V (z,d(z,y))φ(d(z,y))

µ(dy)

≤ c1

(s− t)d2

1
V (x0,r/2)

∫
Br/2(x0)

|u|dµ +
c2

(s− t)d2+β2−β1
Tail(u;x0,r/2)

≤ c3

(s− t)d2+β2−β1

[
1

V (x0,sr)

∫
Bsr(x0)

|u|dµ +Tail(u;x0,r/2)
]

≤ c3

(s− t)d2+β2−β1

[(
1

V (x0,sr)

∫
Bsr(x0)

u2 dµ

)1/2

+Tail(u;x0,r/2)

]
,

where in the second inequality we have used the following two facts that for any
z ∈ Btr(x0) and y ∈ Br/2(x0)\B(s−t)r/2(z),

V (x0,r/2)
V (z,d(z,y))

≤ c4

(
1+

d(x0,z)+ r/2
d(z,y)

)d2

≤ c5

(s− t)d2
;

for z ∈ Btr(x0) and y /∈ Br/2(x0)∪B(s−t)r/2(z),

V (x0,d(x0,y))φ(d(x0,y))
V (z,d(z,y))φ(d(z,y))

≤ c6

(s− t)d2+β2

and
φ((s− t)r/2)

φ(r/2)
≤ c7(s− t)β1 ,

due to VD and (9) again.
Combining both estimates above, we find that for any 1/2≤ t ≤ s≤ 1,

ess sup Btr(x0)
u≤ c8

(s− t)d2+β2−β1

[(
1

V (x0,sr)

∫
Bsr(x0)

u2 dµ

)1/2

+Tail(u;x0,r/2)

]
.

Recall that u ≥ 0 on Br(x0). By VD and the standard Young inequality with expo-
nents 2/(2− p) and 2/p for 0 < p < 2, we know that for any 1/2≤ t ≤ s≤ 1,

(s− t)d2+β2−β1
( 1

V (x0,sr)

∫
Bsr(x0)

u2 dµ

)1/2

≤ c9(ess sup Bsr(x0)
u)(2−p)/2 1

(s− t)d2+β2−β1

(
1

V (x0,r)

∫
Br(x0)

|u|p dµ

)1/2
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≤ 1
2

ess sup Bsr(x0)
u+

c10

(s− t)2(d2+β2−β1)/p

(
1

V (x0,r)

∫
Br(x0)

|u|p dµ

)1/p

.

Thus, we have for any 0 < p < 2 and 1/2≤ t ≤ s≤ 1,

ess sup Btr(x0)
u≤ 1

2
ess sup Bsr(x0)

u

+
c11

(s− t)2(d2+β2−β1)/p

[(
1

V (x0,r)

∫
Br(x0)

|u|p dµ

)1/p

+Tail(u;x0,r/2)

]
.

Therefore, the desired assertion (19) now follows from Lemma 1 below. ut

The following lemma is taken from [19, Lemma 1.1], which is used in the proof
of Theorem 7.

Lemma 1. Let f (t) be a non-negative bounded function defined for 0≤ T0 ≤ t ≤ T1.
Suppose that for T0 ≤ t ≤ s≤ T1 we have

f (t)≤ A(s− t)−α +B+θ f (s),

where A,B,α,θ are non-negative constants, and θ < 1. Then there exists a constant
c depending only on α and θ such that for every T0 ≤ r ≤ R≤ T1, we have

f (r)≤ c
(

A(R− r)−α +B
)
.

Proof. Consider the sequence {ti; i ≥ 0} defined by t0 = r and ti+1 = ti + (1−
δ )δ i(R− r) with δ ∈ (0,1). By iteration

f (t0)≤ θ
k f (tk)+

(
A

(1−δ )α
(R− r)−α +B

) k−1

∑
i=0

θ
i
δ
−iα .

We now choose δ such that δ−α θ < 1 and let k→ ∞, getting the desired assertion
holds with c = (1−δ )−α(1−θδ−α)−1. ut
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